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Abstract. Group signatures are cryptographic primitives where users can anonymously sign messages in the
name of a population they belong to. Gordon et al. (Asiacrypt 2010) suggested the first realization of group
signatures based on lattice assumptions in the random oracle model. A significant drawback of their scheme is
its linear signature size in the cardinality N of the group. A recent extension proposed by Camenisch et al. (SCN
2012) suffers from the same overhead. In this paper, we describe the first lattice-based group signature schemes
where the signature and public key sizes are essentially logarithmic in N (for any fixed security level). Our basic
construction only satisfies a relaxed definition of anonymity (just like the Gordon et al. system) but readily
extends into a fully anonymous group signature (i.e., that resists adversaries equipped with a signature opening
oracle). We prove the security of our schemes in the random oracle model under the SIS and LWE assumptions.
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1 Introduction

Group signatures are a core cryptographic primitive that paradoxically combines the properties of authen-
ticity and anonymity. They are useful in many real-life applications including trusted computing platforms,
auction protocols or privacy-protecting mechanisms for users in public transportation.

Parties involved in such a system are a special entity, called the group manager, and group members. The
manager holds a master secret key, generates a system-wide public key, and administers the group members,
by providing to each of them an individual secret key that will allow them to anonymously sign on behalf
of the group. In case of dispute, the manager (or a separate authority) is able to determine the identity
of a signer via an opening operation. This fundamental primitive has been extensively studied, from both
theoretical and practical perspectives: It has been enriched with many useful properties, and it has been
implemented in the contexts of trusted computing (using privacy-preserving attestation [14]) and of traffic
management (e.g., the Vehicle Safety Communications project of the U.S. Dept. of Transportation [29]).

Group signatures were originally proposed by Chaum and van Heyst [20] and made scalable by Ateniese
et al. in [3]. Proper security models were introduced in [5] and [7, 30] (for dynamic groups), whereas more
intricate and redundant properties were considered hitherto. The model of Bellare et al. [5] requires two
main security properties called full anonymity and full traceability. The former notion means that signatures
do not leak the identities of their originators, whereas the latter implies that no collusion of malicious
users can produce a valid signature that cannot be traced to one of them. Bellare et al. [5] proved that
trapdoor permutations suffice to design group signatures, but their theoretical construction was mostly a
proof of concept. Nevertheless, their methodology has been adapted in practical constructions: Essentially,
a group member signs a message by verifiably encrypting a valid membership certificate delivered by
the authority, while hiding its identity. While numerous schemes (e.g., [3, 15, 17, 9]) rely on the random
oracle model (ROM), others are proved secure in the standard model (e.g., [5, 7, 11, 12, 24, 25]). Except
theoretical constructions [5, 7], all of these rely on the Groth-Sahai methodology to design non-interactive
proof systems for specific languages involving elements in bilinear groups [27]. This powerful tool led to the
design of elegant compact group signatures [12, 24, 25] whose security relies on pairing-related assumptions.
The resulting signatures typically consist in a constant number of elements of a group admitting a secure
and efficient bilinear map.



Lattices and Group Signatures. Lattices are emerging as a promising alternative to traditional
number-theoretic tools like bilinear maps. They lead to asymptotically faster solutions, thanks to the
algorithmic simplicity of the involved operations and to the high cost of the best known attacks. Moreover,
lattice-based schemes often enjoy strong security guarantees, thanks to worst-case/average-case connections
between lattice problems, and to the conjectured resistance to quantum computers.

While numerous works have been (successfully) harnessing the power of lattices for constructing digital
signatures (see [35, 22, 19, 32, 10, 33] and references therein), only two works addressed the problem of
efficiently realizing lattice-based group signatures. The main difficulty to overcome is arguably the scarcity
of efficient and expressive non-interactive proof systems for statements involving lattices, in particular for
statements on the witnesses of the hard average-case lattice problems. This state of affairs contrasts with
the situation in bilinear groups, where powerful non-interactive proof systems are available [26, 27].

In 2010, Gordon et al. [23] described the first group signature based on lattice assumptions using
the Gentry et al. signature scheme [22] as membership certificate, an adaptation of Regev’s encryption
scheme [42] to encrypt it, and a zero-knowledge proof technique due to Micciancio and Vadhan [38]. While
elegant in its design principle, their scheme suffers from signatures and public keys of sizes linear in the
number of group members, making it utterly inefficient in comparison with constructions based on bilinear
maps [9] or the strong RSA assumption [3]. Quite recently, Camenisch et al. [18] proposed anonymous
attribute token systems, which can be seen as generalizations of group signatures. One of their schemes
improves upon [23] in that the group public key has constant size5 and the anonymity property is achieved
in a stronger model where the adversary is granted access to a signature opening oracle. Unfortunately,
all the constructions of [18] inherit the linear signature size of the Gordon et al. construction. Thus far,
it remained an open problem to break the linear-size barrier. This is an important challenge considering
that, as advocated by Bellare et al. [5], one should expect practical group signatures not to entail more
than poly-logarithmic complexities in the group sizes.

Our Contributions. We describe the first lattice-based group signatures featuring sub-linear signature
sizes. If t and N denote the security parameter and the maximal group size, the public keys and signatures
are Õ(t2 · logN) bit long. Notice that no group signature scheme can provide signatures containing o(logN)
bits (such signatures would be impossible to open), so that the main improvement potential lies in the Õ(t2)
factor. These first asymptotically efficient (in t and logN) lattice-based group signatures are a first step
towards a practical alternative to the pairing-based counterparts. The security proofs hold in the ROM (as
for [23, 18]), under the Learning With Error (LWE) and Short Integer Solution (SIS) assumptions.

While our basic system only provides anonymity in a relaxed model (like [23]) where the adversary has
no signature opening oracle, we show how to upgrade it into a fully anonymous group signature, in the
anonymity model of Bellare et al. [5]. This is achieved at a minimal cost in that the signature length is
only increased by a constant factor. In contrast, Camenisch et al. [18, Se. 5.2] achieve full anonymity at
the expense of inflating their basic signatures by a factor proportional to the security parameter.

Construction Overview. Our basic construction is inspired by the general paradigm from [5] consisting
in encrypting a membership certificate under the authority’s public key while providing a non-interactive
proof that the ciphertext encrypts a valid certificate belonging to some group member. Nevertheless, our
scheme differs from this paradigm in the sense that it is not the certificate itself which is encrypted.
Instead, a temporary certificate, produced at each signature generation, is derived from the initial one and
encrypted, with a proof of its validity.

We also depart from the approach of [23] at the very core of the design, i.e., when it comes to provide
evidence that the encrypted certificate corresponds to a legitimate group member. Specifically, Gordon et
al. [23] hide their certificate, which is a GPV signature [22, Se. 6], within a set of N − 1 (encrypted) GPV
pseudo-signatures that satisfy the same verification equation without being short vectors. Here, to avoid the
O(N) factor in the signature size, we take a different approach which is reminiscent of the Boyen-Waters
group signature [11]. Each group member is assigned a unique `-bit identifier id = id[1] . . . id[`] ∈ {0, 1}`,
where ` = dlog2Ne. Its certificate is an extension of a Boyen signature [10] consisting in a full short basis
of a certain lattice (instead of a single vector), which allows the signer to generate temporary certificates

5 This can also be achieved with [23] by replacing the public key by a hash thereof, and appending the key to the signature.
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composed of a pair x1,x2 ∈ Zm of discrete Gaussian vectors such that

xT1 ·A + xT2 · (A0 +
∑

1≤i≤`
id[i] ·Ai) = 0 mod q. (1)

Here, q is a small bit length integer and A,A0, . . . ,A` ∈ Zm×nq are part of the group public key. Our
choice of Boyen’s signature [10] as membership certificate is justified by it being the most efficient known
lattice-based signature proven secure in the standard model, and enjoying a simple verification procedure
corresponding to a relation for which we can easily design a proof of knowledge. A signature proven secure
in the standard model allows us to obtain an easy-to-prove relation that does not involve a random oracle.
Indeed, as noted for example in [3, 16, 17] signature schemes without random oracles make it easier to prove
knowledge of a valid message-signature pair in the design of privacy-preserving protocols.

We then encrypt x2 ∈ Zm as in [23], using a variant of the dual-Regev encryption scheme [22, Se. 7]:
the resulting ciphertext is c0 = B0 · s+x2, where B0 ∈ Zm×nq is a public matrix and s is uniform in Znq . We
prove that c0 hides a short vector using the Micciancio-Vadhan proof system [38], as in [23]. Then, for each
i ∈ [1, `], we also compute a proper dual-Regev encryption ci of id[i] · x2 and generate a non-interactive
OR proof that ci encrypts either the same vector as c0 or the 0 vector.

It remains to prove that the encrypted vectors x2 are part of a signature satisfying (1) without giving
away the id[i]’s. To this end, we choose the signing matrices Ai orthogonally to the encrypting matrices Bi,
as suggested in [23]. Contrarily to the case of [23], the latter technique does not by itself suffice to guarantee
the well-formedness of the ci’s. Indeed, we also need to prove properties about the noise vectors used in
the dual-Regev ciphertexts {ci}1≤i≤`. This is achieved using a modification of Lyubashevsky’s protocol [31,
33] to prove knowledge of a solution to the Inhomogeneous Short Integer Solution problem (ISIS). This
modification leads to a Σ-protocol which is zero-knowledge when the transcript is conditioned on the
protocol not aborting. As the challenge space of this Σ-protocol is binary, we lowered the abort probability
so that we can efficiently apply the Fiat-Shamir heuristic to a parallel repetition of the basic protocol.
In the traceability proof, the existence of a witness extractor will guarantee that a successful forger will
either yield a forgery for Boyen’s signature or a short non-zero vector in the kernel of one of the matrices
{Ai}1≤i≤`. In either case, the forger allows the simulator to solve a SIS instance.

In the fully anonymous variant of our scheme, the difficulty is to find a way to open adversarially-
chosen signatures. This is achieved by implicitly using a “chosen-ciphertext-secure” variant of the signature
encryption technique of Gordon et al. [23]. While Camenisch et al. [18] proceed in a similar way using
Peikert’s technique [39], we use a much more economical method borrowed from the Agrawal et al. [1]
identity-based cryptosystem. In our basic system, each ci is of the form Bi · s + p · ei + id[i] ·x2, where p is
an upper bound on x2’s coordinates, and can be decrypted using a short basis Si such that Si·Bi = 0 mod q.
Our fully anonymous system replaces each Bi by a matrix Bi,VK that depends on the verification key VK
of a one-time signature. In the proof of full anonymity, the reduction will be able to compute a trapdoor
for all matrices Bi,VK, except for one specific verification key VK? that will be used in the challenge phase.
This will provide the reduction with a backdoor allowing it to open all adversarially-generated signatures.

Open problems. The schemes we proposed should be viewed as proofs of concept, since instantiating
them with practical parameters would most likely lead to large keys and signature sizes. It is an interesting
task to replace the SIS and LWE problems by their ring variants [34, 40, 36], to attempt to save linear
factors in the security parameter t. The main hurdle in that direction seems to be the design of appropriate
zero-knowledge proofs of knowledge for the LWE and ISIS relations (see Section 2.2).

As opposed to many pairing-based constructions, the security of our scheme is only proven in the
random oracle model: We rely on the Fiat-Shamir heuristic to remove the interaction in the interactive
proof systems. This is because very few lattice problems are known to belong to NIZK. The problems
considered in the sole work on this topic [41] seem ill-fitted to devise group signatures. As a consequence,
the security proofs of all known lattice-based group signatures are conducted in the random oracle model.
Recently suggested multi-linear maps [21] seem like a possible direction towards solving this problem.
However, the only known instantiation so far relies on stronger assumptions than LWE or SIS.
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2 Background and Definitions

We first recall standard notations. All vectors will be denoted in bold lower-case letters, whereas bold upper-
case letters will be used for matrices. If b and c are two vectors of compatible dimensions and base rings,
then their inner product will be denoted by 〈b, c〉. Further, if b ∈ Rn, its euclidean norm will be denoted
by ‖b‖. This notation is extended to any matrix B ∈ Rm×n with columns (bi)i≤n by ‖B‖ = maxi≤n ‖bi‖.
If B is full column-rank, we let B̃ denote the Gram-Schmidt orthogonalisation of B.

If D1 and D2 are two distributions over the same countable support S, then their statistical distance
is defined as ∆(D1, D2) = 1

2

∑
x∈S |D1(x) − D2(x)|. A function f(n) is said negligible if f(n) = n−ω(1).

Finally, the acronym PPT stands for probabilistic polynomial-time.

2.1 Lattices

A (full-rank) lattice L is the set of all integer linear combinations of some linearly independent basis
vectors (bi)i≤n belonging to some Rn. For a lattice L and a real σ > 0, we define the Gaussian distribution
of support L and standard deviation σ by ∀b ∈ L : DL,σ[b] ∼ exp(−π‖b‖2/σ2). We will extensively use
the fact that samples from DL,σ are short with overwhelming probability.

Lemma 1 ([4, Le. 1.5]). For any lattice L ⊆ Rn and σ > 0, we have Prb←↩DL,σ [‖b‖ ≤
√
nσ] ≥ 1−2−Ω(n).

Further, as shown by Gentry et al. [22], Gaussian distributions with lattice support can be sampled
from efficiently, given a sufficiently short basis of the lattice.

Lemma 2 ([13, Le. 2.3]). There exists a PPT algorithm GPVSample that takes as inputs a basis B of a
lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖ ·Ω(

√
log n), and outputs vectors b ∈ L with distribution DL,σ.

Cash et al. [19] showed how to use GPVSample to randomize the basis of a given lattice. The following
statement is obtained by using [13, Le. 2.3] in the proof of [19].

Lemma 3 (Adapted from [19, Le. 3.3]). There exists a PPT algorithm RandBasis that takes as inputs a
basis B of a lattice L ⊆ Zn and a rational σ ≥ ‖B̃‖·Ω(

√
log n), and outputs a basis C of L satisfying ‖C̃‖ ≤√

nσ with probability ≥ 1− 2−Ω(n). Further, the distribution of C is independent of the input basis B.

Let m ≥ n ≥ 1 and q ≥ 2. For a matrix A ∈ Zm×nq , we define the lattice Λ⊥q (A) = {x ∈ Zm : xT ·A =

0 mod q}. We will use an algorithm that jointly samples a uniform A and a short basis of Λ⊥q (A).

Lemma 4 ([2, Th. 3.2]). There exists a PPT algorithm TrapGen that takes as inputs 1n, 1m and an
integer q ≥ 2 with m ≥ Ω(n log q), and outputs a matrix A ∈ Zm×nq and a basis TA of Λ⊥q (A) such that A

is within statistical distance 2−Ω(n) to U(Zm×nq ), and ‖T̃A‖ ≤ O(
√
n log q).

Lemma 4 is often combined with the sampler from Lemma 2. Micciancio and Peikert [37] recently
proposed a more efficient approach for this combined task, that should be preferred in practice but, for the
sake of simplicity, we present our schemes using TrapGen.

Lemma 4 was later extended by Gordon et al. [23] so that the columns of A lie within a prescribed
linear vector subspace of Znq (for q prime). For the security proof of our fully anonymous scheme, we will
use an extension where the columns of the sampled A lie within a prescribed affine subspace of Znq . A proof
is given in Appendix C.

Lemma 5. There exists a PPT algorithm SuperSamp that takes as inputs integers m ≥ n ≥ 1 and q ≥ 2
prime such that m ≥ Ω(n log q), as well as matrices B ∈ Zm×nq and C ∈ Zn×nq such that the rows of B

span Znq . It outputs A ∈ Zm×nq and a basis TA of Λ⊥q (A) such that A is within statistical distance 2−Ω(n)

to U(Zm×nq ) conditioned on BT ·A = C, and ‖T̃A‖ ≤ O(
√
mn log q logm).

Finally, we also make use of an algorithm that extends a trapdoor for A ∈ Zm×nq to a trapdoor of

any B ∈ Zm′×nq whose top m× n submatrix is A.

4



Lemma 6 ([19, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as inputs a matrix B ∈ Zm′×nq

whose first m rows span Znq , and a basis TA of Λ⊥q (A) where A is the top m × n submatrix of B, and

outputs a basis TB of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

For the sake of simplicity, we will assume that when the parameter conditions are satisfied, the distri-
butions of the outputs of TrapGen and SuperSamp are exactly those they are meant to approximate, and
the probabilistic norm bounds of Lemmas 1 and 3 always hold.

2.2 Computational problems

The security of our schemes provably relies (in the random oracle model) on the assumption that both algo-
rithmic problems below are hard, i.e., cannot be solved in polynomial time with non-negligible probability
and non-negligible advantage, respectively.

Definition 1. Let m, q, β be functions of a parameter n. The Short Integer Solution problem SISm,q,β is
as follows: Given A←↩ U(Zm×nq ), find x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

Definition 2. Let q, α be functions of a parameter n. For s ∈ Znq , the distribution Aq,α,s over Znq × Zq is
obtained by sampling a←↩ U(Znq ) and (a noise) e←↩ DZ,αq, and returning (a, 〈a, s〉+e). The Learning With
Errors problem LWEq,α is as follows: For s ←↩ U(Znq ), distinguish between arbitrarily many independent
samples from U(Znq × Zq) or the same number of independent samples from Aq,α,s.

If q ≥
√
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with approximation fac-

tors γ = Õ(β
√
n) reduce to SISm,q,β (see, e.g., [22, Se. 9]). Similarly, if αq = Ω(

√
n), then standard

worst-case lattice problems with approximation factors γ = O(α/n) quantumly reduce to LWEq,α (see [42],
and also [39, 13] for partial dequantizations). Note that we use the discrete noise variant of LWE from [23].

We will make use of a non-interactive zero-knowledge proof of knowledge (NIZPoK) protocol, which
can be rather directly derived from [31, 33], for the following relation corresponding to an inhomogenous
variant of the SIS relation:

RISIS =
{

(A,y, β; x) ∈ Zm×nq × Znq ×Q× Zm : xT ·A = yT ∧ ‖x‖ ≤ β
}
.

The protocol, detailed in Appendix 2.3, is derived from the parallel repetition of a Σ protocol with bi-
nary challenges. We call ProveISIS and VerifyISIS the PPT algorithms run by the Prover and the Verifier
when the scheme is rendered non-interactive using the Fiat-Shamir heuristic (i.e., the challenge is imple-
mented using the random oracle H(·)). Algorithm ProveISIS takes (A,y, β; x) as inputs, and generates a
transcript (Comm,Chall,Resp). Algorithm VerifyISIS takes (A,y, β) and such a transcript as inputs, and
returns 0 or 1. The scheme has completeness error 2−Ω(n): if ProveISIS is given as input an element of RISIS,
then given as input the output of ProveISIS, VerifyISIS replies 1 with probability ≥ 1− 2−Ω(m) (over the ran-
domness of Prove). Also, there exists a PPT algorithm SimulateISIS that, by reprogramming the random ora-
cle H(·), takes (A,y, β) as input and generates a transcript (Comm,Chall,Resp) whose distribution is within
statistical distance 2−Ω(m) of the genuine transcript distribution. Finally, there also exists a PPT algo-
rithm ExtractISIS that given access to a time T algorithm A that generates transcripts accepted by VerifyISIS
with probability ε, produces, in time Poly(T, 1/ε) a vector x′ such that (A,y,O(β ·m2); x′) ∈ RISIS.

We will also need a NIZKPoK protocol for the following language:

RLWE =
{

(A,b, α; s) ∈ Zm×nq × Zmq ×Q× Znq : ‖b−A · s‖ ≤ αq
√
m
}
.

As noted in [33], we may multiply b by a parity check matrix G ∈ Z(m−n)×m
q of A and prove the existence

of small e ∈ Zm such that eT · GT = bT · GT . This may be done with the above NIZKPoK protocol
for RISIS. We call ProveLWE, VerifyLWE, SimulateLWE and ExtractLWE the obtained PPT algorithms.
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2.3 Proof of Knowledge of an ISIS Solution

In [31], Lyubashevsky described an identification scheme whose security relies on the hardness of the SIS
problem. Given a public vector y ∈ Znq and a matrix A ∈ Zm×nq , the prover holds a short secret x and

generates an interactive witness indistinguishable proof of knowledge of a short vector x′T ∈ Zm such
that x′T ·A = yT mod q. A variant was later proposed in [33], which enjoys the property of being zero-
knowledge (when the distribution of the transcript is conditioned on the prover not aborting). We present
an adaptation of [33, Fig. 1] (still enjoying the same zero-knowledgedness property): the secret is a single
vector, the challenges are binary (which we use for the extraction vector), and we increase the standard
deviation of the commited vector to lower the rejection probability (we use a parallel repetition of the basic
scheme, and want the probability that there is a reject among all the parallel iterations to be sufficiently
away from 1).

Assume the prover P wishes to prove knowledge of an x such that yT = xT ·A mod q and ‖x‖ ≤ β,
where y and A are public. The protocol takes place between the prover P and the verifier V and proceeds
by the parallel repetition of a basic Σ protocol with binary challenges. We set σ = Θ(βm3/2) and ML

as specified by [33, Th. 4.6]. Thanks to our larger value of σ, we obtain (by adapting [33, Le. 4.5]) have
that ML is now 1−Ω(1/m).

1. The prover P generates a commitment Comm = (wi)i≤t where, for each i ≤ t, wi ∈ Znq is obtained by

sampling yi ←↩ DZm,σ and computing wT
i = yTi ·A mod q. The message Comm is sent to V .

2. The verifier V sends a challenge Chall←↩ {0, 1}t to P .

3. For i ≤ t, the prover P does the following.

a. Compute zi = yi + Chall[i] · x, where Chall[i] denotes the ith bit of Chall.

b. Set zi to ⊥ with probability min(1, exp(−π‖z‖2/σ2

ML·exp(−π‖Chall[i]·x−z‖2/σ2)
).

Then P sends the response Resp = (zi)i≤t to V .

4. The verifier V checks the transcript (Comm,Chall,Resp) as follows:

1. For i ≤ t, set di = 1 if ‖zi‖ ≤ 2σ
√
m and zTi ·A = wT

i + Chall[i] · yT . Otherwise, set di = 0.

2. If
∑

i≤t di ≥ 0.65t, return 1 (and accept the transcript). Otherwise, return 0.

The protocol has completeness error 2−Ω(t). Further, by [33, Th. 4.6], the distribution of the transcript
conditioned on zi 6= ⊥ can be simulated efficiently. Note that if we implement the challenge phase with a
random oracle, we can compute the zi’s for increasing value of i, and repeat the whole procedure if zi = ⊥
for some i. Thanks to our choice of σ, for any t ≤ O(m), the probability that zi = ⊥ for some i is ≤ c, for
some constant c < 1. Thanks to this random oracle enabled rejection, the simulator produces a distribution
that is within statistical distance 2−Ω(m) to the transcript distribution.

Finally, the modified protocol provides special soundness in that there is a simple extractor that takes as
input two valid transcripts (Comm,Chall,Resp), (Comm,Chall′,Resp′) with distinct challenges Chall 6= Chall′

and obtains a witness x′ such that x′T ·A = yT mod q and ‖x′‖ ≤ O(σ
√
m) ≤ O(βm2).

2.4 Group Signatures

This section recalls the model of Bellare, Micciancio and Warinschi [5], which assumes static groups. A
group signature scheme GS consists of a tuple of four PPT algorithms (Keygen,Sign,Verify,Open) with the
following specifications:

– Keygen takes 1n and 1N as inputs, where n ∈ N is the security parameter, and N ∈ N is the maximum
number of group members. It returns a tuple (gpk, gmsk,gsk) where gpk is the group public key, gmsk
is the group manager secret key, and gsk is an N -vector of secret keys: gsk[j] is the signing key of the
j-th user, for j ∈ {0, . . . , N − 1}.

– Sign takes the group public key gpk, a signing key gsk[j] and a message M ∈ {0, 1}∗ as inputs. Its
output is a signature Σ ∈ {0, 1}∗ on M under gsk[j].
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– Verify is deterministic and takes the group public key gpk, a message M and a putative signature Σ of
M as inputs. It outputs either 0 (reject) or 1 (accept).

– Open is deterministic and takes as input the group public key gpk, the group manager secret key gmsk,
a message M and a valid group signature Σ w.r.t. gpk. It returns an index j ∈ {0, . . . , N − 1} or a
special symbol ⊥ in case of opening failure.

The group signature scheme must be correct, i.e., for all integers n and N , all (gpk, gmsk,gsk) obtained
from Keygen with (1n, 1N ) as input, all j ∈ {0, . . . , N − 1} and M ∈ {0, 1}∗:

Verify(gpk,M, Sign(gpk, gsk[j],M)) = 1 and Open(gpk, gmsk,M, Sign(gpk, gsk[j],M)) = j,

with probability negligibly close to 1 over the internal randomness of Keygen and Sign.
Beyond the correctness requirement, the security model of Bellare et al. [5] considers two notions

called traceability and anonymity. The former asks that no coalition of group members be able to create a
signature that cannot be traced to one of them. The latter implies that, even if all group members’ private
keys are given to the adversary, signatures generated by two distinct members should be computationally
indistinguishable. Formal definitions of these properties are provided in Appendix A.

3 An Asymptotically Shorter Lattice-Based Group Signature

At a high level, our key generation is based on the variant of Boyen’s lattice signatures [10] described
in [37, Se. 6.2]: Boyen’s secret and verification keys respectively become our secret and public keys, whereas
Boyen’s message space is mapped to the users’ identity space. There are however several additional twists
in Keygen. First, each group member is given a full short basis of the public lattice associated to its identity,
instead of a single short lattice vector. The reason is that, for anonymity and unlinkability purposes, the
user has to generate each group signature using a fresh short lattice vector. Second, we sample our public
key matrices (Ai)i≤` orthogonally to publicly known matrices Bi, similarly to the group signature scheme
from [23]. These Bi’s will be used to publicly verify the validity of the signatures. They are sampled along
with short trapdoor bases, using algorithm SuperSamp, which become part of the group signature secret
key. These trapdoor bases will be used by the group authority to open signatures.

To anonymously sign a message M , the user samples a Boyen signature (x1,x2) with its identity as
message, which is a temporary certificate of its group membership. It does so using its full trapdoor matrix
for the corresponding lattice. The user then encrypts x2, in a fashion that resembles [23], using Regev’s
dual encryption scheme from [22, Se. 7.1] with the Bi’s as encryption public keys. Note that in all cases but
one (c0 at Step 2), the signature is not embedded in the encryption noise as in [23], but as proper plaintext.
The rest of the signing procedure consists in proving in zero-knowledge that these are valid ciphertexts and
that the underlying plaintexts indeed encode a Boyen signature under the group public key. These ZKPoKs
are all based on the interactive protocols recalled in Section 2.2. These were made non-interactive via the
Fiat-Shamir heuristic with random oracle H(·) taking values in {0, 1}t. The message M is embedded in
the very last application of the Fiat-Shamir transform at Step 6 of the signing algorithm.

The verification algorithm merely consists in verifying all proofs of knowledge concerning the Boyen
signature embedded in the plaintexts of the ciphertexts.

Finally, the group manager can open any signature by decrypting the ciphertexts (using the group
manager secret key) and then recovering the underlying Boyen signature within the plaintexts: this reveals
which public key matrices Ai have been considered by the signer, and therefore its identity.

The scheme depends on several functions m, q, p, α and σ of the security parameter n and the group
size N(=2`). They are set so that all algorithms can be implemented in polynomial time and are correct
(Theorem 1), and so that the security properties (Theorems 2 and 3) hold, in the ROM, under the SIS
and LWE hardness assumptions for parameters for which these problems enjoy reductions from standard
worst-case lattice problems with polynomial approximation factors. More precisely, we require that:

• parameter m is Ω(n log q),
• parameter σ is Ω(m3/2

√
`n log q logm) and ≤ nO(1),

• parameter p is Ω((αq + σ)m5/2),
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• parameter α is set so that α−1 ≥ Ω(pm3 logm) and ≤ nO(1),
• parameter q is prime and Ω(`+ α−1

√
n`) and ≤ nO(1).

For example, we may set m = Õ(n), σ = Õ(n2
√
`), p = Õ(n9/2

√
`), α−1 = Õ(n15/2

√
`) and q =

Õ(`+ n8
√
`).

Keygen(1n, 1N ): Given a security parameter n > 0 and the desired number of group members N = 2` ∈
poly(n), choose parameters q, m, p, α and σ as specified above and make them public. Choose a hash
function H : {0, 1}∗ → {0, 1}t for some t ∈ [Ω(n), nO(1)], which will be modeled as a random oracle.
Then, proceed as follows.

1. Run TrapGen(1n, 1m, q) to get A ∈ Zm×nq with a short basis TA of Λ⊥q (A).
2. For i = 0 to `, sample Ai ←↩ U(Zm×nq ) and compute (Bi,S

′
i)← SuperSamp(1n, 1m, q,Ai,0). Then,

randomize S′i as Si ← RandBasis(S′i, Ω(
√
mn log q logm)).6

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj and define:

Aidj =

[
A

A0 +
∑`

i=1 idj [i]Ai

]
∈ Z2m×n

q .

Then, run T′idj ← ExtBasis(Aidj ,TA) to get a short delegated basis T′idj of Λ⊥q (Aidj ). Eventually,

run Tidj
← RandBasis(T′idj , Ω(m

√
`n log q logm)).6 The j-th member’s private key is gsk[j] := Tidj .

4. The group manager’s private key is gmsk := {Si}`i=0 and the group public key is defined to be
gpk :=

(
A, {Ai,Bi}`i=0

)
. The algorithm outputs

(
gpk, gmsk, {gsk[j]}N−1j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , proceed as follows.

1. Run GPVSample(Tidj , σ) to obtain a vector (xT1 |xT2 )T ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

2m.
2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Zmq by computing c0 = B0 · s0 + x2 ∈ Zmq .
3. Sample s←↩ U(Znq ). For i = 1 to `, sample ei ←↩ DZm,αq and compute ci = Bi · s + p · ei + idj [i] ·x2,

which encrypts x2 ∈ Zmq (resp. 0) if idj [i] = 1 (resp. idj [i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0, c0,
√

2σ/q; s0) ∈ RLWE (see Section 2.2).
5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:

(i) ((Bi|B0), p
−1(ci− c0),

√
2α; (sT | − sT0 )T ) ∈ RLWE (the vectors ci and c0 encrypt the same x2, so

that p−1(ci − c0) is close to the Zq-span of (Bi|B0));
(ii) or (Bi, p

−1ci, α; s) ∈ RLWE (the vector ci encrypts 0, so that p−1ci is close to the Zq-span of Bi).
This can be achieved by OR-ing two proofs for RLWE, and making the resulting protocol non-
interactive with the Fiat-Shamir heuristic.7

6. For i = 1 to `, set yi = idj [i]x2 ∈ Zm and generate a NIZKPoK πK of (ei)1≤i≤`, (yi)1≤i≤`,x1 s.t.:

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
pAi

)
and eTi

(
pAi

)
+ yTi Ai = cTi Ai for i ∈ [1, `] (2)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ max(σ, αq)
√
m for all i. This is achieved using ProveISIS, producing a triple

(CommK ,ChallK ,RespK), where ChallK = H(M,CommK , (ci)0≤i≤`, π0, (πOR,i)1≤i≤`).
The signature consists of

Σ =
(
(ci)0≤i≤`, π0, (πOR,i)1≤i≤`, πK

)
. (3)

Verify(gpk,M,Σ): Parse Σ as in (3). Then, return 1 if π0, (πOR,i)1≤i≤`, πK properly verify. Else, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (3). Compute x2 by decrypting c0 using S0. For
i = 1 to `, use Si to determine which one of the vectors p−1ci and p−1(ci − x2) is close to the Zq-span
of Bi. Set id[i] = 0 in the former case and id[i] = 1 in the latter. Eventually, output id = id[1] . . . id[`].

All steps of the scheme above can be implemented in polynomial-time as a function of the security
parameter n, assuming that q ≥ 2 prime, m ≥ Ω(n log q), σ ≥ Ω(m3/2

√
`n log q logm) (using Lemmas 2

and 3), αq ≥ Ω(1) (using Lemma 2 in dimension 1). Under some mild conditions on the parameters, the
scheme above is correct, i.e., the verifier accepts honestly generated signatures, and the group manager suc-
cessfully opens honestly generated signatures. In particular, multiplying the ciphertexts by the Si modulo q
should reveal p · ei + idj [i] · x2 over the integers, and idj [i] · x2 should always be smaller than p.

6 These randomisation steps are not needed for the correctness of the scheme but are important in the traceability proof.
7 Recall that HVZK is stable under disjunctions: The OR of two HVZK proofs enjoying special soundness is itself HVZK.
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Theorem 1. Assume that q ≥ 2 is prime and that m ≥ Ω(n log q), σ ≥ Ω(m3/2
√
`n log q logm), α−1 ≥

Ω(pm5/2 logm
√
n log q) and q ≥ Ω(α−1 + σm5/2 logm

√
n log q). Then the group signature scheme above

can be implemented in time polynomial in n, is correct, and the bit-size of the generated signatures
in O(`tm log q). (The proof is given in Appendix B).

4 Security

4.1 Anonymity

Like in [23, 9], we use a relaxation of the anonymity definition, called weak anonymity and recalled in
Definition 3 (in Appendix A). Analogously to the notion of IND-CPA security for public-key encryption,
the adversary does not have access to a signature opening oracle.

We show that the two versions (for b = 0, 1) of the anonymity security experiment recalled in Figure 2
(in Appendix A) are indistinguishable under the LWE assumption. We use several intermediate hybrid

experiments called G
(i)
b , and show that each of these experiments is indistinguishable from the next one. At

each step, we only change one element of the game (highlighted by an arrow in Figure 1), to finally reach
the experiment G(4) where the signature scheme does not depend on the identity of the user anymore.

Theorem 2. In the random oracle model, the scheme provides weak anonymity in the sense of Defini-
tion 3 under the LWEq,α assumption. Namely, for any PPT adversary A with advantage ε, there exists an
algorithm B solving the LWEq,α problem with the same advantage.

Proof. We define by G0 the experiment of Definition 3 with b = 0 and by G1 the same experiment with
b = 1. To show the anonymity of the scheme, we prove that G0 and G1 are indistinguishable. We use several

hybrid experiments named G
(1)
b , G

(2)
b , G

(3)
b and G(4) (described in Figure 1), where b is either 0 or 1.

Lemma 7. For each b ∈ {0, 1}, the experiments Gb and G
(1)
b are statistically indistinguishable.

We only change the way we generate (xT1 |xT2 )T , by using the fact that one way to generate it is to first
sample x2 from DZm,σ and then generate x1 from DZm,σ such that (xT1 |xT2 ) · Aidjb

= 0 mod q (by using

the trapdoor TA). This change is purely conceptual and the vector (xT1 |xT2 )T has the same distribution
anyway. The two experiments are thus identical from A’s view and x2 is chosen independently of the
signer’s identity in the challenge phase.

Lemma 8. For each b ∈ {0, 1}, the experiments G
(1)
b and G

(2)
b are statistically indistinguishable.

The differences between the two experiments are simply: Instead of generating the proofs {πOR,i}`i=1

and πK using the witnesses, we simulate them (see Section 2.2).

Lemma 9. For each b ∈ {0, 1}, if the LWEq,α problem is hard, then the experiments G
(2)
b and G

(3)
b are

computationally indistinguishable.

Proof. This proof uses the same principle as the proof of [23, Claim 1]: We use the adversary A to construct

a PTT algorithm B for the LWEq,α problem. We consider an LWE instance (B′, z) ∈ Zm`×(n+1)
q such that

B′ = (B′1, . . . ,B
′
`) and z = (z1, . . . , z`) with B′i ∈ Zm×nq and zi ∈ Zmq . The component z is either uniform

in Zm`q , either of the form z = s ·B′T + e where e is sampled from DZm`,αq.

We construct a modified Keygen algorithm using this LWE instance: It generates the matrix A with
a basis TA of Λ⊥q (A). Instead of generating the Bi’s genuinely, we pick B0 uniformly in Zm×n and set
Bi = B′i for 1 ≤ i ≤ `. For 0 ≤ i ≤ `, we compute (Ai,Ti) ← SuperSamp(1n, 1m, q,Bi,0). Then, for each
j ∈ [1, N − 1], we define Aidj as in the original Keygen algorithm, and compute a trapdoor Tidj using TA.
The adversary A is given gpk and {gskj}j . In the challenge phase, it outputs j0, j1 and a message M .
By [23], this Keygen algorithm and the one in all the experiments are statistically indistinguishable. Then,
the signature is created on behalf of the group member jb. Namely, B first chooses x2 ← DZm,σ and finds x1

such that (xT1 |xT2 )T ·Aidjb
= 0 mod q. Then it chooses s0 ←↩ U(Znq ) and computes c0 = B0 · s0 + x2 ∈ Zmq .
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Experiment Gb

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j
to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. (xT1 |xT2 )T ←↩ GPVSample(Tidjb
, σ);

we have (xT1 |xT2 ) ·Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈ Zmq .
3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq

and compute ci = Bi · s+ p · ei + idjb [i] · x2.
4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(2)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j
to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ ; sample x1 ←↩ DZm,σ ,
conditioned on (xT1 |xT2 ) ·Aidjb

= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,
3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq

and compute ci = Bi · s+ p · ei + idjb [i] · x2.
4. Generate π0.
→ 5. Simulate {πOR,i}i.
→ 6. Simulate πK .

Experiment G
(1)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j
to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:
→ 1. Sample x2 ←↩ DZm,σ and, using TA, sample

x1 ←↩ DZm,σ conditioned on (xT1 |xT2 ) ·Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Znq ), compute c0 = B0 · s0 + x2 ∈ Zmq ,
3. Choose s←↩ U(Znq ), and for i = 1 to `, choose ei ←↩ DZm,αq

and compute ci = Bi · s+ p · ei + idjb [i] · x2.
4. Generate π0.
5. Generate {πOR,i}i.
6. Generate πK .

Experiment G
(3)
b

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j
to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:

1. Sample x2 ←↩ DZm,σ Sample x1 ←↩ DZm,σ

conditioned on (xT1 |xT2 ) ·Aidjb
= 0 mod q.

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,
→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and compute

ci = zi + idjb [i] · x2.
4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Experiment G(4)

• Run Keygen; give gpk = (A, {Ai,Bi}i) and gsk = {Tidj }j
to A.

• A outputs j0, j1 and a message M .
• The signature of user jb is computed as follows:
→ 1. Sample x2 ←↩ DZm,σ .

2. Choose s0 ←↩ U(Znq ) and compute c0 = B0 · s0 + x2 ∈ Zmq ,
→ 3. For i = 1 to `, choose zi ←↩ U(Zmq ) and set ci = zi.
4. Generate π0.
5. Simulate {πOR,i}i.
6. Simulate πK .

Fig. 1. Experiments Gb, G
(1)
b , G

(2)
b ,G

(3)
b and G(4).

Third, it computes ci = p · zi + idjb [i] · x2 (with the zi of the LWE instance). Then it generates π0 and
simulates the πOR,i’s and πK proofs.

We let DLWE denote this experiment when z = s · B′T + e: This experiment is statistically close

to G
(2)
b . Then, we let Drand denote this experiment when z is uniform: It is statistically close to G

(3)
b . As a

consequence, if the adversary A can distinguish between the experiments G
(2)
b and G

(3)
b with non-negligible

advantage, then we can solve the LWEq,α problem with the same advantage.

Lemma 10. For each b ∈ {0, 1}, the experiments G
(3)
b and G(4) are indistinguishable.

Between these two experiments, we change the first and third steps. In the former, we no longer
generate x1 and, in the latter, ci is uniformly sampled in Zmq . These changes are purely conceptual. Indeed,

in experiment G
(3)
b , x1 is not used beyond Step 1. In the same experiment, we also have ci = zi + idjb [i].

Since the zi’s are uniformly sampled in Zmq , the ci’s are also uniformly distributed in Zmq . As a consequence,

the ci’s of G
(3)
b and the ci’s of G(4) have the same distribution. In G

(4)
b , we conclude that A’s view is exactly

the same as in experiments G
(3)
b . Since the experiment G(4) no longer depends on the bit b ∈ {0, 1} that

determines the signer’s identity, the announced result follows. ut

4.2 Traceability

The proof of traceability relies on the technique of [1, 10] and a refinement from [28, 37], which is used in
order to allow for a smaller modulus q.
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A difference with the proof of [23] is that we need to rely on the knowledge extractor of a proof of
knowledge πK . Depending on whether the extracted witnesses {ei,yi}`i=1 of relation (2) satisfy yi = idj [i]x2

for all i or not, we need to distinguish two cases. The strategy of the reduction and the way it uses its
given SISq,β instance will depend on which case is expected to occur.

Theorem 3. Assume that q > logN , p ≥ Ω((αq + σ)m5/2) and β ≥ Ω(σm7/2
√

logN + pαqm5/2). Then
for any PPT traceability adversary A with success probability ε, there exists a PPT algorithm B solving
SISm,q,β with probability ε′′ ≥ ε′

2N · (
ε′

qH
− 2−t) + ε′

2 logN , where ε′ = ε− 2−t − 2−Ω(n) and qH is the number

of queries to the random oracle H : {0, 1}∗ → {0, 1}t.

Proof. Let A be a PPT adversary that can defeat the traceability of the scheme with non-negligible success
probability ε in the game of Definition 4. We construct a PPT algorithm B that emulates A’s challenger
and attacks SISq,β: It takes as input Ā ∈ Zm×nq with the task of finding v ∈ Λ⊥q (Ā) with 0 < ‖v‖ ≤ β.

Initialization. Before starting its interaction with A, algorithm B samples coin←↩ U({0, 1}). Depending
on the latter, the group public key is prepared in two different ways.

• If coin = 0, algorithm B first calls TrapGen(1n, 1m, q) to obtain C ∈ Zm×nq and a basis TC of Λ⊥q (C)

with ‖T̃C‖ ≤ O(
√
n log q). Then, it samples ` + 1 matrices Qk ∈ Zm×m, with each matrix entry sampled

independently from DZ,
√
m (as in [10, Th. 25], with a larger standard deviation to get exponentially small

statistical distances later on). Also, algorithm B samples j? ←↩ U([0, N − 1]), a guess that A’s forgery will
open to user j?. Let idj? = idj? [1] . . . idj? [`] ∈ {0, 1}` denote the binary expansion of idj? . The reduction B
defines the matrices {Ai}`i=0 as{

A0 = Q0 · Ā + (
∑`

i=1 idj? [i]) ·C
Ai = Qi · Ā + (−1)idj? [i] ·C, for i ∈ [1, `].

It also sets A = Ā. Next, it runs SuperSamp(1n, 1m, q,Ai,0) to obtain Bi ∈ Zm×nq along with short bases

S′i of Λ⊥q (Bi), and then computes Si ← RandBasis(S′i, Ω(
√
mn log q logm)), as in Step 2 of the genuine key

generation algorithm. The group public key gpk =
(
A, {Ai,Bi}`i=0

)
is finally given to A.

We note that, for each j 6= j?, we have

Aidj =

[
Ā

A0 +
∑`

i=1 idj [i]Ai

]
=

[
Ā

(Q0 +
∑`

i=1 idj [i]Qi) · Ā + (
∑`

i=1 idj? [i] + (−1)idj? [i]idj [i]) ·C

]
=

[
Ā

(Q0 +
∑`

i=1 idj [i]Qi) · Ā + hidj ·C

]
where hidj ∈ [1, `] stands for the Hamming distance between the identifiers idj and idj? . Since q > `, we
have hidj 6= 0 mod q whenever idj 6= idj? , so that algorithm B is able to compute (see [1, Se. 4.2], using

the basis TC of Λ⊥q (C) and the refined GPVSample of Lemma 2) a basis T′idj of Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤
Ω(m

√
`n log q). Then algorithm B runs Tidj

← RandBasis(T′idj , Ω(m
√
`n log q logm)). Algorithm B is thus

able to compute a trapdoor Tidj for each j 6= j?. In contrast, algorithm B lacks a trapdoor for Aidj? as the

latter only depends on A and {Qk}`k=0.
Observe that since the rows of the Qk’s are sampled fromDZm,

√
m, the matrices A,A0, . . . ,A` are within

statistical distance 2−Ω(m) of U(Zm×nq ) (this is a consequence of [22, Le. 5.2]). Further, by Lemma 3, the
distribution of the Tidj ’s generated by B is statistically close to that of the real scheme.

• If coin = 1, algorithm B samples i? ←↩ U([1, `]) and embeds its SISq,β instance in the matrix Ai?

that will be part of gpk. It calls TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq and a basis TA of Λ⊥q (A)

with ‖T̃A‖ ≤ O(
√
n log q). Next, it independently samples A0, . . . ,Ai?−1,Ai?+1, . . . ,A` ←↩ U(Zm×nq )

and defines Ai? = Ā. Then, algorithm B computes (Bi,S
′
i) ← SuperSamp(1n, 1m, q,Ai,0) and Si ←

RandBasis(S′i, Ω(
√
mn log q logm)), as in Step 2 of Keygen. The group public key gpk =

(
A, {Ai,Bi}`i=0

)
,

which is distributed as in the real scheme, is given to the adversary A. Since it knows TA, algorithm B is
able to sample a trapdoor Tidj for all users, with exactly the same distribution as in the real scheme.

In either case, B runs the adversary A on inputs gpk =
(
A, {Ai,Bi}`i=0

)
and gmsk = {Si}`i=0.
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Queries. Algorithm B then starts interacting with A and handles A’s queries depending on coin.

• If coin = 0, it aborts in the event thatA queries the unavailable secret key gsk[j?]. WhenA queries a secret
key gsk[j] for j 6= j?, algorithm B reveals the short basis Tidj that was computed in the initialization phase.
When it comes to answer signing queries, algorithm B faithfully runs the signing algorithm whenever the
involved user j differs from j?. As for signing queries involving the expected target user j?, the reduction B
samples s0, s←↩ U(Znq ), x2 ←↩ DZm,σ and ei ←↩ DZm,αq for each i ∈ [1, `]. It then computes c0 = B0 ·s0 +x2

as well as ci = Bi · s + p · ei + idj? [i]x2 for each i ∈ [1, `]. The proof π0 is then generated using the actual
witness x2 whereas the other non-interactive proofs {πOR,i}`i=1 and πK are simulated using the appropriate

NIZK simulator (exactly as in experiment G
(2)
b in the proof of anonymity). By the statistical zero-knowledge

property of the simulator, the signature Σ will be statistically indistinguishable from a genuine signature.

• If coin = 1, algorithm B knows TA and can answer A’s queries by running the real signing algorithm or
returning the queried secret keys gsk[j] (all of which are available).

Regardless of the value of coin, queries to the random oracle H are handled by returning a uniformly
chosen value in {0, 1}t. For each κ ≤ qH , we let rκ denote the answer to the κ-th H-query. Of course, if the
adversary makes a given query more than once, then B consistently returns the previously defined value.

Forgery. When A terminates, it outputs a signature Σ? =
(
(c?i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`, π

?
K

)
on some mes-

sage M? with probability ≥ ε − 2−Ω(n). If we parse π?K as (Comm?
K ,Chall

?
K ,Resp

?
K), with overwhelming

probability, the adversary A must have queried H on the input (M?,Comm?
K , (c

?
i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`).

Indeed, otherwise, the probability to have the equality ch?K = H(M?,Comm?
K , (c

?
i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`) is

at most 2−t. With probability ≥ ε′ := ε− 2−t− 2−Ω(n), the tuple (M?,Comm?
K , (c

?
i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`)

thus coincides with the κ?-th hash query for some κ? ≤ qH .
At this stage, the reduction B runs a second execution of the adversary A with the same random

tape and input as in the original execution. All queries are answered as previously with only one dif-
ference in the treatment of random oracle queries. Namely, the first κ? − 1 hash queries – which are
identical to those of the first execution since A is run with the same random tape as before – receive the
same answers r1, . . . , rκ?−1 as in the initial run. This implies that the κ?-th query will involve the tuple
(M?,Comm?

K , (c
?
i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`) as in the first execution. However, from the κ?-th query onwards,

A obtains fresh random oracle values r′κ? , . . . , r
′
qH

which depart from the sequence of answers in the first
execution. The General Forking Lemma of [6] implies that, with probability ≥ ε′(ε′/qH − 2−t), A’s forgery
also involves (M?,Comm?

K , (c
?
i )0≤i≤`, π

?
0, (π

?
OR,i)1≤i≤`) in the second run and we also have r′κ? 6= rκ? . In

this case, using Extract, algorithm B can obtain vectors e1, . . . , e`,x1,y1, . . . ,y` ∈ Zm satisfying

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi (pAi) and eTi
(
pAi

)
+ yTi Ai = cTi Ai ∀i ∈ [1, `] (4)

with ‖ei‖, ‖yi‖, ‖x1‖ ≤ O((αq + σ)m5/2) for all i ∈ [1, `] (see Section 2.2).
The reduction B then opens one of the two forgeries using {Si}`i=0 (note that both signatures necessarily

open to the same identity id). At this point, B aborts and reports failure if the opening algorithm does not
point to user j?. However, with probability ≥ 1/N , B’s initial choice for j? turns out to be correct and the
opening algorithm reveals idj? .

We now assume that Σ? indeed traces to user j?. We let x2 ∈ Zm denote the vector obtained by
decrypting c?0 using S0. Algorithm B considers the following two situations:

• If yi = idj? [i]x2 for all i ∈ [1, `], then B aborts if coin = 1 and continues if coin = 0. The relations (4)
and the fact that c?0 is of the form c?0 = B0 ·s0 +x2 mod q with BT

0 ·A0 = 0 mod q imply that (modulo q):

0 = xT1 A + c?0
TA0 +

∑̀
i=1

idj? [i]x
T
2 ·Ai = (xT1 |xT2 ) ·

[
A

A0 +
∑`

i=1 idj? [i]Ai

]
= (xT1 |xT2 ) ·

[
Ā

(Q0 +
∑`

i=1 idj? [i]Qi) · Ā

]
,

by construction of the matrices A,A0, . . . ,A`. It comes that vT = xT1 +xT2 ·
(
Q0+

∑`
i=1 idj? [i]Qi

)
∈ Λ⊥(Ā).

The same analysis as in [10] shows that 0 < ‖v‖ ≤ O((αq+ σ)m7/2
√
`) holds with probability 1− 2−Ω(m).
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• If there exists i ∈ [1, `] such that yi 6= idj? [i]x2, then B aborts if coin = 0 and continues if coin = 1. The
non-interactive proofs π0 and πOR,i imply that ci = Bi · s + p · e′i + idj? [i]x2 mod q for some s0, s ∈ Znq and

x2, e
′
i ∈ Zm such that ‖x2‖ ≤ O(σm5/2) and ‖e′i‖ ≤ O(αqm5/2). If we multiply cTi by Ai, we find

cTi Ai = pe′i
T ·Ai + idj? [i]x

T
2 ·Ai.

By subtracting the latter equation from the second equation of (4), we find (still modulo q):(
p(eTi − e′i

T ) + (yTi − idj? [i]x
T
2 )
)
·Ai = 0.

If p(ei − e′i) + (yi − idj? [i]x2) 6= 0, it is a non-zero vector in Λ⊥(Ai) of norm ≤ O((σ + pαq)m5/2). Given
that we have Ai = Ā with probability 1/`, we solved the given SIS instance with the same probability.
Finally, if p(ei − e′i) + (yi − idj? [i]x2) = 0, the relative norms of the vectors ei, e

′
i,yi,x2 with respect to p

imply ei = e′i and yi = idj? [i]x2 (over the integers), which is in contradiction with yi 6= idj? [i]x2.
The lower bound on B’s advantage is obtained by combining the probability of obtaining a successful

forking, the fact that B’s choice for j? ∈ U([0, N − 1]) is independent of A’s view when coin = 0 and the
observation that B’s choice for coin is also independent of A’s view. ut

5 A Variant with Full (CCA-)Anonymity

We modify in the sequel our basic group signature scheme to reach the strongest possible anonymity
level (detailed in Definition 3 of Appendix A), in which the attacker is authorized to query an opening
oracle. This implies the simulation of an oracle which opens adversarially-chosen signatures in the proof of
anonymity. To this end, we essentially replace each Bi from our previous scheme by a matrix Bi,VK that
depends on the verification key VK of a strongly unforgeable one-time signature. The reduction will be
able to compute a trapdoor for all these matrices, except for one specific verification key VK? that will
be used in the challenge phase. This will provide the reduction with a backdoor allowing it to open all
adversarially-generated signatures.

It is assumed that the one-time verification keys VK belong to Znq (note that this condition can always
be enforced by hashing VK). Following Agrawal et al. [1], we rely on a full-rank difference function Hvk :
Znq → Zn×nq such that, for any two distinct u,v ∈ Znq , the difference Hvk(u)−Hvk(v) is a full rank matrix.
This function Hvk can be obtained as in [1, Se. 5]. Below is the description of our new scheme.

Keygen(1n, 1N ): given a security parameter n > 0 and the desired number of members N = 2` ∈ poly(n),
choose parameters as in Section 3 and make them public. Choose a hash function H : {0, 1}∗ → {0, 1}t,
that will be seen as a random oracle, and the specification of a one-time signature Πots = (G,S,V).
Then, proceed as follows.
1. Run TrapGen(1n, 1m, q) to get A ∈ Zm×nq with a short basis TA ∈ Zm×m of Λ⊥q (A).
2. For i = 0 to `, repeat the following steps.

a. Choose uniformly random matrices Ai,1,Bi,0,Bi,1 ∈ Zm×nq .

b. Compute (Ai,2,Ti,2) ← SuperSamp(1n, 1m, q,Bi,1, 0
n×n) such that BT

i,1 · Ai,2 = 0 mod q and

discard Ti,2, which will not be needed. Define Ai =

[
Ai,1

Ai,2

]
∈ Z2m×n

q .

c. Run (Bi,−1,S
′
i) ← SuperSamp(1n, 1m, q,Ai,1,−AT

i,2 · Bi,0) to obtain Bi,−1 ∈ Zm×nq such that

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q.
d. Finally, compute a re-randomized trapdoor Si ← RandBasis(S′i) for Bi,−1.

For any string VK, if the matrix Hvk(VK) is used to define Bi,VK =

[
Bi,−1

Bi,0 + Bi,1Hvk(VK)

]
∈ Z2m×n

q ,

we have BT
i,VK ·Ai = 0 mod q for all i.

3. For j = 0 to N − 1, let idj = idj [1] . . . idj [`] ∈ {0, 1}` be the binary representation of idj and define:

Aidj =

[
A

A0 +
∑`

i=1 idj [i]Ai

]
∈ Z3m×n

q .

Then run Tidj ← ExtBasis(TA,Aidj ) to get a short delegated basis Tidj ∈ Z3m×3m of Λ⊥q (Aidj ) and
define gsk[j] := Tidj .
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4. Define gpk :=
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, H, Π

ots
)

and gmsk := {Si}`i=0. The algorithm out-

puts
(
gpk, gmsk, {gsk[j]}N−1j=0

)
.

Sign(gpk, gsk[j],M): To sign a message M ∈ {0, 1}∗ using the private key gsk[j] = Tidj , generate a one-
time signature key pair (VK,SK)← G(1n) for Πots and proceed as follows.

1. Run GPVSample(Tidj , σ) to obtain a vector (xT1 |xT2 )T ∈ Λ⊥q (Aidj ) of norm ≤ σ
√

3m.

2. Sample s0 ←↩ U(Znq ) and encrypt x2 ∈ Z2m
q by computing c0 = B0,VK · s0 + x2 ∈ Z2m

q .

3. Sample s ←↩ U(Znq ). For i = 1 to `, sample ei ← DZm,αq and a random matrix Ri ∈ Zm×m whose

columns are sampled from DZm,σ. Then, compute ci = Bi,VK · s + p ·
[
ei ei ·Ri

]
+ idj [i] · x2, which

encrypts x2 ∈ Z2m
q (resp. 02m) if idj [i] = 1 (resp. idj [i] = 0).

4. Generate a NIZKPoK π0 of s0 so that (B0, c0,
√

2σ/q; s0) ∈ RLWE (see Section 2.2).

5. For i = 1 to `, generate a NIZKPoK πOR,i of s and s0 so that either:

(i) ((Bi,VK|B0,VK), p−1(ci−c0),
√

2α; (sT |−sT0 )T ) ∈ RLWE (the vectors ci and c0 encrypt the same x2,
so that p−1(ci − c0) is close to the Zq-span of (Bi,VK|B0,VK));

(ii) or (BT
i,VK, p

−1ci, α; s) ∈ RLWE (ci encrypts 0, so that p−1ci is close to the Zq-span of BT
i,VK).

6. For i = 1 to `, set yi = idj [i]x2 ∈ Z2m and generate a NIZKPoK πK of (ei)1≤i≤`, (yi)1≤i≤` , x1 s.t:

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai, for i ∈ {1, . . . , `} (5)

with ||x1|| ≤ σ
√
m and ||yi|| ≤ σ

√
2m for all i. This is achieved using ProveISIS, producing a triple

(CommK ,ChallK ,RespK), where ChallK = H(M,CommK , (ci)0≤i≤`, π0, (πOR,i)1≤i≤`).

7. Compute a one-time signature sig = S(SK, (ci)0≤i≤`, π0, (πOR,i)1≤i≤`, πK)).

The signature consists of

Σ =
(
VK, (ci)0≤i≤`, π0, (πOR,i)1≤i≤`, πK , sig

)
. (6)

Verify(gpk,M,Σ): Parse Σ as in (6). Return 0 if V(VK, sig, (ci)0≤i≤`, π0, (πOR,i)1≤i≤`, πK)) = 0. Then,
return 1 if all proofs π0, (πOR,i)1≤i≤`, πK properly verify. Otherwise, return 0.

Open(gpk, gmsk,M,Σ): Parse gmsk as {Si}`i=0 and Σ as in (6). For i = 0 to `, compute a trapdoor
Si,VK ← ExtBasis(Si,Bi,VK) for Bi,VK. Using the delegated basis S0,VK ∈ Z2m×2m (for which we have
S0,VK ·B0,VK = 0 mod q), compute x2 by decrypting c0. Then, using Si,VK ∈ Z2m×2m, determine which
vector among p−1ci mod q and p−1(ci − x2) mod q is close to the Zq-span of Bi,VK. Set id[i] = 0 in the
former case and id[i] = 1 in the latter case. Eventually, output id = id[1] . . . id[`].

In Appendix D, we prove the following theorems which provide evidence that the above scheme provides
full anonymity and full traceability in the random oracle model.

Theorem 4. The scheme provides full anonymity in the random oracle model if the LWEq,α assumption
holds and if the one-time signature is strongly unforgeable.

Theorem 5. Assuming that q > logN , the scheme is fully traceable in the random oracle model under the
SISq,β assumption. More precisely, for any PPT traceability adversary A with success probability ε, there

exists an algorithm B solving the SISq,β problem with probability at least 1
2N ·

(
ε− 1

2t

)
·
(
ε−1/2t
qH
− 1

2t

)
, where

qH is the number of queries to H : {0, 1}∗ → {0, 1}t and N stands for the maximal number of users.
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A Security Definitions for Group Signatures

Bellare et al. [5] gave a unified security model for group signatures in static groups. The two main security
requirements are called anonymity and traceability.

Expanon-b
GS,A(n,N)

(gpk, gmsk,gsk)← Keygen(1n, 1N )
(st, j0, j1,M)← A(choose, gpk,gsk)
Σ? ← Sign(gpk, gsk[jb],M)
b′ ← A(guess, st, Σ?)
Return b′

Exptrace
GS,A(n,N)

(gpk, gmsk,gsk)← Keygen(1n, 1N )
st← (gmsk, gpk)
C ← ∅ ; K ← ε ; Cont← true

while (Cont = true) do
(Cont, st, j)← AGS.Sign(gsk[·],·)(choose, st,K)
if Cont = true then C ← C ∪ {j} ; K ← gsk[j] end if

end while
(M?, Σ?)← AGS.Sign(gsk[·],·)(guess, st)
if Verify(gpk,M?, Σ?) = 0 then Return 0
if Open(gmsk,M?, Σ?) =⊥ then Return 1
if ∃j? ∈ [N ] such that

(Open(gmsk,M?, Σ?) = j?) ∧ (j? /∈ C) ∧ ((j?,M?) not queried by A)
then Return 1
else Return 0

Fig. 2. Random experiments for anonymity and full traceability

Anonymity. Anonymity requires that an adversary who does not know the group manager secret key
cannot recognize the identity of a user given its signature. More formally, the attacker, modeled as a two-
stage adversary (choose and guess), is engaged in the first random experiment depicted in Figure 2. The
advantage of such an adversary A against a group signature GS with N members is defined as

Advanon
GS,A(n,N) =

∣∣Pr[Expanon-1
GS,A (n,N) = 1]− Pr[Expanon-0

GS,A (n,N) = 1]
∣∣ .

In our first scheme, we consider a weak anonymity scenario in which the adversary is not allowed to query
an opening oracle. This relaxed model is precisely the one considered in [23], and was firstly introduced
in [9]. Nonetheless, we provide in Section 5 a variant of our scheme enjoying chosen-ciphertext security.
The adversary is then granted an access to an opening oracle that can be called on any string except the
challenge signature Σ?.

Definition 3 (Weak and full anonymity, [5, 9]). A group signature scheme GS is said to be weakly
anonymous (resp. fully anonymous) if for all polynomial N(·) and all PPT adversaries A (resp. PPT adver-
saries A with access to an opening oracle except for the challenge signature), its advantage AdvanonGS,A(n,N)
is negligible in the security parameter n.
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Full traceability. Full traceability ensures that all signatures, even those created by a coalition of users and
the group manager, pooling their secret keys together, can be traced to a member of the forging coalition.
Once again, the attacker is modeled as a two-stage adversary who is run within the second experiment
described in Figure 2. Its success probability against GS is defined as

SucctraceGS,A(n,N) = Pr[Exptrace
GS,A(n,N) = 1].

Definition 4 (Full traceability, [5]). A group signature scheme GS is said to be fully traceable if for
all polynomial N(·) and all PPT adversaries A, its success probability SucctraceGS,A(n,N) is negligible in the
security parameter n.

B Proof of Theorem 1

Proof. Setting m = Ω(n log q) allows us to use algorithms TrapGen and SuperSamp from Lemmas 4 and 5,
at Steps 1 and 2 of algorithm Keygen. Also, the rows of the matrix A sampled at Step 1 span Znq with

probability ≥ 1−2−Ω(n). At Steps 2 and 3, the second inputs to the calls to RandBasis are sufficiently large
for the assumption of Lemma 3 to hold (note that in the second case, it is much larger than needed, but this
choice is important for the simulation in the traceability proof). At the end of the execution of Keygen, we

have ‖S̃i‖ ≤ O(m logm
√
n log q) for all i ∈ [0, `] and ‖T̃idj‖ ≤ O(m3/2

√
`n log q logm) for all j ∈ [0, N −1].

At Step 1 of algorithm Sign, the parameter σ is sufficiently large for applying Lemma 2 and obtain a
distribution within statistical distance 2−Ω(n) from DΛ⊥q (Aidj

),σ. The same holds for all ei’s of Step 3.

Correctness of algorithm Verify follows the completeness property of the underlying proof systems. Now,
consider algorithm Open. We have S0 ·c0 = S0 ·x2 mod q. But on the other hand ‖S0 ·x2‖ ≤

√
m‖S0‖‖x2‖ ≤

m‖S̃0‖‖x2‖, which is itself O(σm5/2 logm
√
n log q) with probability ≥ 1− 2−Ω(n), by Lemma 1. As q has

been set sufficiently large, we obtain that S0 · x2 is known over the integers: Multiplying by S−10 over
the rationals allows the group manager to recover x2. The argument is similar for the other ci’s, except
that ‖Si · ci mod q‖ ≤ O(pαqm5/2 logm

√
n log q). Again, α has been set sufficiently small to allow the

group manager to recover p · ei + idj [i] · x2.
Finally, the total bit-size of all proofs is O(`tm log q). The same bound holds for the ciphertexts. ut

C Proof of Lemma 5

The algorithm is a simple extension of the one in [23]. It first partitions B into matrices B1 ∈ Zm1×n
q and

B2 ∈ Zn×nq , with m1 = m− n, such that B2 is invertible over Zq and BT = [BT
1 |BT

2 ]. Such a partition can
always be found by re-arranging the rows of B if necessary. The execution of GenSuperSamp(1n, 1m, q,B,C)
then proceeds with the following steps.

1. Generate (A1,T1)← TrapGen(1n, 1m1 , q). Return ⊥ if the rows of A1 ∈ Zm1×n
q do not span Znq .

2. Compute A2 = B−T2 · (C−BT
1 ·A1) mod q. Note that A =

[
A1

A2

]
satisfies BT ·A = C mod q.

3. Extend T1 ∈ Zm1×m1 to have a basis T ∈ Zm×m for A using the basis delegation algorithm from
Lemma 6. Then, re-randomize T′ to obtain T′′ using the basis randomization algorithm RandBasis.

The rest of the proof is exactly identical to the proof of Lemma 4 in [23]. ut

D Security Proofs for the Fully Anonymous Construction

D.1 Proof of Theorem 4 (full anonymity)

We now prove the full anonymity of the scheme in an attack game which is exactly the one of Definition 3
with the difference that the adversary is granted access to a signature opening oracle. Namely, before and
after the challenge phase, the latter oracle can be invoked for adversarially-chosen signatures as long as
these do not coincide with the challenge signature Σ?. The proof of Theorem 4 relies on the all-but-one
simulation technique [8] in the same way as in the Agrawal-Boneh-Boyen IBE [1].
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Proof. Like the proof of Theorem 2, the proof proceeds via a sequence of hybrid experiments. For each i,

we define Wi to be the event that experiment G
(b)
i outputs 1.

Experiment G
(b)
0 . This experiment if the real attack game. Namely, the challenger performs the setup

of the system by following the specification of the Keygen algorithm. The adversary A is given gpk and
{gsk[j]}N−1j=0 at the beginning of the game. All opening queries are answered faithfully, by returning the

uncovered identity id ∈ {0, 1}`. At the challenge phase, the adversary chooses a messageM as well as indexes
j0, j1 ∈ {0, . . . , N − 1} and obtains a challenge Σ? =

(
VK?, c?0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`, π

?
K , sig

?
)
←

Sign(gpk, gsk[jb],M). The experiment ends with the adversary A outputting a bit b′ ∈ {0, 1}. At this point,
the experiment returns 1 if b′ = b and 0 otherwise. The probability Pr[W0] is thus the probability to have
b′ = b.

Experiment G
(b)
1 . We make a simple conceptual change to the generation of the challenge signature Σ?.

Namely, instead of sampling (xT1 |xT2 )T ∈ Z3m in Λ⊥(Aid), Experiment G
(b)
1 first samples x2 ←↩ DZ2m,σ

and uses the trapdoor TA to compute x1 ∈ DZm,σ such that (xT1 |xT2 ) · Aid = 0 mod q. This change is
purely conceptual since the vector (xT1 |xT2 )T has the same distribution either way. Clearly, it holds that
Pr[W1] = Pr[W2].

Experiment G
(b)
2 . We introduce a slight modification w.r.t. Experiment G

(b)
1 . At the outset of the game,

the challenger generates a one-time signature key pair (VK?, SK?) ← G(1n). If A queries the opening
oracle with a valid signature Σ =

(
VK, c0, c1, . . . , c`, π0, πOR,1, . . . , πOR,`, πK , sig

)
such that VK = VK?, the

experiment halts and outputs a random bit. The assumed strong security of the one-time signature implies

that Experiment G
(b)
2 cannot depart from Experiment G

(b)
1 . Indeed, if a valid opening query is made after

the challenge phase, the adversary is able to break the strong unforgeability of the one-time signature (the
proof is straightforward and omitted). Moreover, before the challenge phase, the one-time verification key
VK? is independent of A’s view. As long as no one-time verification key is produced by the one-time key
generation algorithm with too high probability (which is implied by the strong unforgeability property),
the chance of VK? to show up in a valid pre-challenge opening query is negligible. There thus exists a PPT
forger Bots against the one-time signature for which |Pr[W2]−Pr[W1]| ≤ Advsuf-ots(Bots). In the following,
we henceforth assume that no opening query involves VK?.

Experiment G
(b)
3 . We bring a first modification to the generation of the group public key gpk in the setup

phase. Namely, for each i ∈ {0, . . . , `}, the experiment first runs (Bi,1,Ti,1)← TrapGen(1n, 1m, q) to obtain
a matrix Bi,1 ∈ Zm×nq with a short basis Ti,1 ∈ Zm×m. Note that the distribution of Bi,1 is statistically
close to the uniform distribution over Zm×nq . Next, the experiment sets Bi,0 = Ri ·Bi,−1−Bi,1 ·Hvk(VK

?),
where Ri ∈ Zm×m is a matrix whose rows are vectors sampled from the distribution DZm,σ. The result
of [22, Lemma 5.2] implies that matrices {Bi,0}`i=0 will be statistically close to the uniformly distributed
matrices produced by the real key generation algorithm. We can write |Pr[W3]− Pr[W2]| ∈ negl(1n).

Experiment G
(b)
4 . In this experiment, we modify the signature opening oracle in the following way. Recall

that, due to the modification introduced in Experiment G
(b)
2 , each opening query involves a signature

Σ =
(
VK, c0, c1, . . . , c`, π0, πOR,1, . . . , πOR,`, πK , sig

)
for which VK 6= VK? unless the one-time signature is

not strongly unforgeable. For this reason, each matrix Bi,VK can be written as

Bi,VK =

[
Bi,−1

Bi,0 + Bi,1Hvk(VK)

]
=

[
Bi,−1

Ri ·Bi,−1 + Bi,1 ·
(
Hvk(VK)−Hvk(VK

?)
)] ,

where Hvk(VK)−Hvk(VK
?) is a non-singular n× n matrix over Zq. This implies that the trapdoor Ti,1 ∈

Zm×m of Bi,1 – which was defined in Experiment G
(b)
3 – can be used to generate a short basis for the

lattice Λ⊥(Bi,VK) as in step 2 of the SampleRight algorithm of [1, Section 4.2]. The obtained short basis
Ti,VK ∈ Z2m×2m satisfies Ti,VK ∈ Z2m×2m ·Bi,VK = 0 mod q and it can be used exactly in the same way as
the delegated bases Si,VK of the actual opening algorithm to identify the signer. This modification is thus
purely conceptual and we thus have Pr[W4] = Pr[W3]. We remark that, in this experiment, the trapdoors
{Si}`i=0 of matrices {Bi,−1}`i=0 are not used any longer.

Experiment G
(b)
5 . This experiment is identical to Experiment G

(b)
4 but we slightly modify the setup

phase in step c of the key generation algorithm. Recall that Experiment G
(b)
4 generates (Bi,−1,S

′
i) ←
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SuperSamp(1n, 1m, q,Ai,1,−AT
i,2 ·Bi,0) so as to obtain a matrix Bi,−1 ∈ Zm×nq satisfying the equality

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q (7)

at step c of Keygen. In contrast, Experiment G
(b)
5 proceeds by generating (Bi,1,Ti,1)← TrapGen(1n, 1m, q)

and choosing Bi,−1,Bi,0 uniformly in Zm×nq . Then, it generates

(Ai,1,T
′
i)← SuperSamp(1n, 1m, q,Bi,−1,−BT

i,0 ·Ai,2),
which satisfies (7). The same arguments as in [23, Lemma 5] imply that {Bi,−1,Bi,0,Bi,1,Ai}`i=0 have

a distribution which is negligibly far apart from their distribution in Experiment G
(b)
4 .

The setup phase is completed by using TA to compute group member’s private keys {gsk[j]}N−1j=0 . Since
A’s view is not noticeably affected by this modification, we have |Pr[W5]− Pr[W4]| ∈ negl(1n).

Experiment G
(b)
6 . Here, we modify the generation of the challenge signature Σ? as follows. At step 5 of

the signing algorithm, instead of computing the NIZK proofs {π?OR,i}`i=1 using the actual witnesses, the
experiment generates a simulated non-interactive proof by programming the random oracle. The statistical
zero-knowledge property of the Micciancio-Vadhan proof system [38] guarantees that the distribution of
{π?OR,i}`i=1 remains statistically unchanged (note that {π?OR,i}`i=1 are simulated proofs for true statements).
Therefore it comes that |Pr[W6]−Pr[W5]| ∈ negl(1n). Note that negl(1n) incorporates the small probability
that the NIZK simulator fails because it accidentally has to program the random oracle on an input where
it was previously defined.

Experiment G
(b)
7 . In this experiment, we bring a new modification to the generation of Σ?. The real proof

of knowledge π?K is replaced by a simulated proof which is obtained by programming the random oracle H
at step 6 of the signing algorithm. Similarly to the previous transition, we can write |Pr[W7]− Pr[W6]| ∈
negl(1n), where negl(1n) encompasses the tiny probability that the NIZK simulator fails.

Experiment G
(b)
8 . We introduce yet another change in the generation of Σ?. For each i ∈ {1, . . . , `},

instead of computing c?i = Bi,VK? · s + p · ei + id[jb]x2, where x2 ∈ Z2m is the vector encrypted by c0, the
experiment sets c?i = zi + id[jb] · x2 for a randomly drawn zi ←↩ U(Z2m

q ). Under the LWEq,α assumption,
we argue that this change should not significantly affect A’s view. Concretely, assuming that an adversary

can distinguish Experiment G
(b)
8 from Experiment G

(b)
7 , we can build a distinguisher Blwe for the LWEq,α.

The latter distinguisher is described in the proof of Lemma 11 for completeness. For this reason, we find
|Pr[W8]− Pr[W7]| ≤ AdvLWEq,α(Blwe).
Experiment G

(b)
9 . As a final change in the generation of Σ?, we choose c?i at random in U(Z2m

q ) for i = 1

to `. This is just a conceptual change since {c?i }`i=1 have exactly the same distribution as in Experiment

G
(b)
8 . This implies Pr[W9] = Pr[W8]. Moreover, in Experiment G

(b)
9 , it is obvious that Pr[W9] = 1/2 since

Σ? is completely independent of the random bit b ∈R {0, 1}.

To conclude the proof, we prove the indistinguishability of Experiment G
(b)
8 and Experiment G

(b)
7 .

Lemma 11. Under the LWEq,α assumption, no PPT adversary can distinguish Experiment G
(b)
8 and Ex-

periment G
(b)
7 .

Proof. Towards a contradiction, suppose that an adversary A can tell the two experiments apart with non-
negligible advantage. We build the following LWE distinguisher Blwe. It takes as input a LWEq,α instance
{(B′i, zi)}`i=1, where B′i ∈ Zm×nq and zi ∈ Zmq for each i ∈ {1, . . . , `}. Each component zi is either uniform
in Zmq or of the form zi = B′i · s + ei, where ei is sampled from DZm`,αq.

In order to prepare the group public key gpk, algorithm Blwe defines Bi,−1 = B′i for i = 1 to `.
For each i ∈ {1, . . . , `}, it also generates Bi,1 by running (Bi,1,Ti,1) ← TrapGen(1n, 1m, q) and also sets

Bi,0 = Ri ·Bi,−1 −Bi,1Hvk(VK
?) as in Experiment G

(b)
7 . By doing so, Blwe is able to answer all signature

opening queries using the trapdoor Ti,1 of Bi,1 unless the failure event introduced in Experiment G
(b)
2

occurs.
During the challenge phase, Blwe samples x2 in DZ2m,σ and defines

c?i =

[
p · zi

Ri · (p · zi)

]
+ id[jb] · x2, for i ∈ {1, . . . , `},
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while c?0 is obtained by faithfully encrypting x2. The proof π?0 is generated as a real proof whereas {π?OR,i}`i=1

and π?K are obtained from their respective NIZK simulators.
After the challenge phase, A is granted further access to the opening oracle and its opening queries are

handled as in the first phase. At the end of the experiment, A outputs a random bit b′ and Blwe outputs 1
if and only if b′ = b.

We note that each Bi,VK? is such that Bi,VK? =

[
Bi,−1

Ri ·Bi,−1

]
for i = 1 to `. If each zi is such that

zi = B′i ·s+ei, where ei ∈ DZm`,αq, then {c?i }`i=1 are distributed as in Experiment G
(b)
7 . Indeed, the matrices

{Ri}`i=1 introduced in Experiment G
(b)
3 are statistically independent of A’s view until the challenge phase

because the product Ri · Bi,−1 is statistically close to the uniform distribution over Zm×nq . In this case,

the reduction Blwe is running Experiment G
(b)
7 with A. Now, if each zi is uniform in Zmq , we are clearly in

Experiment G
(b)
8 . ut

D.2 Proof of Theorem 5 (full traceability)

The traceability property is proved in the same way as in the proof of Theorem 3.

Proof. For the sake of contradiction, let us assume that a full traceability adversary A has non-negligible
success probability ε in the model of Definition 4. In the random oracle model, we build an algorithm B
that solves a given SISq,β instance with non-negligible probability. Algorithm B receives as input a matrix

Â ∈ Z2m×n
q and has to find a vector v ∈ Z2m in Λ⊥q (Â) such that 0 < ‖v‖ ≤ β. Let Ā ∈ Zm×nq be the

matrix consisting of the first m rows of Â.

Initialization. As in the proof of Theorem 3, algorithm B first flips a fair coin coin←↩ U({0, 1}) that will
determine its strategy and the way to set up the group public key. If coin = 0, B will try to find a non-zero
short vector of Λ⊥(Ā) and pad it with zeroes to obtain a short non-zero vector in Λ⊥(Â). If coin = 1, B
will embed the entire input matrix Â in one of the {Ai}`i=1.

• If coin = 0, B first runs TrapGen(1n, 12m, q) to generate C ∈ Z2m×n
q with a basis TC ∈ Z2m×2m of Λ⊥q (C)

with ‖T̃C‖ ≤ O(
√
n log q). Next, B samples a collection of ` + 1 matrices Q0, . . . ,Q` ∈ Z2m×m, where

each matrix entry sampled independently in DZ,ω(
√
logn). Then, B draws j? ←↩ U([0, N − 1]), hoping that

user j? will be the one whose identity idj? = idj? [1] . . . idj? [`] ∈ {0, 1}` will be uncovered by the opening

algorithm for A’s forgery at the end of the game. Also, B defines A0 = Q0 · Ā + (
∑`

i=1 idj? [i]) · C and
Ai = Qi · Ā + (−1)idj? [i] ·C for each i ∈ [1, `]. It also sets A = Ā.

Then, for each i ∈ {0, . . . , `}, B chooses Bi,0 ←↩ U(Zm×nq ) and parses the matrix Ai ∈ Z2m×n
q as

AT
i =

[
AT
i,1 AT

i,2

]
, where Ai,1,Ai,2 ∈ Zm×nq . It runs (Bi,1,TBi,1)← SuperSamp(1n, 1m, q,Ai,2,0) to obtain

a matrix Bi,1 ∈ Zm×nq such that AT
i,2 ·Bi,1 = 0 mod q. It erases TBi,1 , that will not be needed, and generates

(Bi,−1,S
′
i)← SuperSamp(1n, 1m, q,Ai,1,−BT

i,0 ·Ai,2) which will satisfy

BT
i,−1 ·Ai,1 + BT

i,0 ·Ai,2 = 0 mod q,

as desired. Finally, B re-randomizes each S′i as Si ← RandBasis(S′i) for i = 0 to `. We observe that B notably
departs from the real key generation algorithm in that Bi,1 is generated from Ai,2 (whereas Keygen proceeds
the other way around at step 2) using SuperSamp. However, by Lemma 4 in [23], the distribution of the
resulting matrices is statistically the same either way.

The group public key gpk =
(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
is finally given to A. As in the proof of

Theorem 3, for each j 6= j?, we have

Aidj =

[
Ā

A0 +
∑`

i=1 idj [i]Ai

]
=

[
Ā

(Q0 +
∑`

i=1 idj [i]Qi) · Ā + hidj ·C

]
∈ Z2m×n

q ,

where hidj ∈ [1, `] denotes the Hamming distance between idj and idj? . As in the proof of Theorem 3, for

each identifier idj 6= idj? , B is able to compute a basis T′idj of Λ⊥q (Aidj ) with ‖T̃′idj‖ ≤ ω(
√

2mn log q log n)
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from the basis TC of Λ⊥q (C). The obtained bases {T′idj}idj 6=idj? are then re-rerandomized as Tidj
←

RandBasis(T′idj , ω(
√

2mn log q log n)). However, the reduction B is unable to compute a trapdoor for the
matrix Aidj? corresponding to the expected target group member j?. Fortunately, B can derive a trap-
door Tidj for each j 6= j?.

Since the rows of each Qk are sampled from DZm,ω(
√
logn), the matrices A0, . . . ,A` ∈ Z2m×n

q have
a distribution which is statistically close to that of independent and uniformly random matrices over
Z2×n
q , which are also statistically independent of A. . Also, by Lemma 3, the distribution of {Tidj}j 6=j? is

statistically close to that of the real system.

• If coin = 1, the reduction B chooses i? ←↩ U([1, `]) and defines Â to be the matrix Ai? ∈ Z2m×n
q

that will be part of gpk. It runs TrapGen(1n, 1m, q) to obtain A ∈ Zm×nq with a basis TA of Λ⊥q (A) such

that ‖T̃A‖ ≤ O(
√
n log q). Next, it independently samples A0, . . . ,Ai?−1,Ai?+1, . . . ,A` ←↩ U(Z2m×n

q ) and

sets Ai? = Â. Finally, B computes {(Bi,−1,Bi,0,Bi,1)}`i=0 in the same way as in the case coin = 0. As
in the previous case, B thus knows a trapdoor Si for Bi,−1 for each i ∈ {0, . . . , `}. The group public key
gpk =

(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0

)
, which is distributed (statistically) as in the real system, is given as

input to A. Using TA, the reduction B is able to compute a delegated basis Tidj for all users j ∈ [0, N −1]
exactly as in the real scheme.

Regardless of the value of coin ∈ {0, 1}, the adversary A is run on input of gmsk := {Si}`i=0 and
gpk :=

(
A, {Ai, (Bi,−1,Bi,0,Bi,1)}`i=0, H, Π

ots, p
)
.

Queries. Algorithm B starts interacting with adversary A whose queries are handled in a way that depends
on coin ∈ {0, 1}.
• If coin = 0, B aborts if A ever queries the private key gsk[j?] of user j?. When A queries a private key
gsk[j] for j ∈ {0, . . . , N − 1}\{j?}, B reveals the previously computed short basis Tidj . When A queries
the signing oracle, B faithfully runs the signing algorithm whenever the involved user j is not j?. For each
signing query involving the expected target user j?, B samples x2 ←↩ DZ2m,σ and s0, s←↩ U(Znq ). Then, it
computes c0 = B0 · s0 + x2 as well as ci = Bi,VK · s + p · [ei|ei ·Ri] + idj? [i

?] · x2 for each i ∈ [1, `]. The
proof π0 is computed as a real proof (i.e., using the witness x2), whereas all other non-interactive proofs
{πOR,i}`i=1 and πK are simulated using the appropriate NIZK simulator, by programming the random oracle.
Since the simulator is statistically zero-knowledge property, the resulting signature Σ will be statistically
indistinguishable from a real signature.

• If coin = 1, B has all private keys {gsk[j]}N−1j=0 at disposal since it knows TA. It can thus perfectly
answer A’s queries by running the actual signing algorithm or returning the queried private keys gsk[j].

For each coin ∈ {0, 1}, queries to the random oracle H are handled by returning a uniformly chosen
value in {0, 1}t. For each κ ∈ {1, . . . , qH}, rκ will stand for the answer to the κ-th H-query. As usual, if a
given random oracle query occurs more than once, B responds by returning the previously defined value.

Forgery. Eventually, A outputs a signature Σ? =
(
c?0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`, π

?
K

)
on some message

M? with probability ε. If we parse the proof of knowledge π?K as (Comm?
K ,Chall

?
K ,Resp

?
K), w.h.p., A

must have queried H on the input (M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`). Indeed, otherwise,

the probability to have Chall?K = H(M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`) is at most 1/2t. With

probability ε − 1/2t, the tuple (M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`) was the input of the κ-th

random oracle query for some κ? ∈ {1, . . . , qH}.
Now, B starts a second execution of the adversary A with the same random tape and input as in the

first run. All queries are answered as in the latter with a difference in the treatment of random oracle
queries. Namely, the first κ? − 1 hash queries – which are necessarily the same as in the first execution
because A’s random tape has not changed – receive the same answers r1, . . . , rκ?−1 as in the first run.
Consequently, the κ?-th query will involve the tuple (M?,Comm?

K , c
?
0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`) as in

the first execution. However, a forking occurs as, from this point forward, A obtains fresh random oracle
values r′κ? , . . . , r

′
qH

which are independent of the subsequence of answers in the first execution. The General

Forking Lemma of Bellare and Neven [6] implies that, with probability at least
(
ε − 1

2t

)(
ε−1/2t
qH

− 1
2t

)
, it

holds that: (1) A’s forgery also pertains to (M?,Comm?
K , c

?
0, c

?
1, . . . , c

?
` , π

?
0, π

?
OR,1, . . . , π

?
OR,`) in the second
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run; (2) we also have r′κ? 6= rκ? . Hence, using the knowledge extractor of the proof of knowledge π?K , B
extracts vectors e1, . . . , e` ∈ DZ2m,αq and x1 ∈ Zm, y1, . . . ,y` ∈ Z2m satisfying

xT1 A +
∑̀
i=0

cTi Ai =
∑̀
i=1

eTi
(
p ·Ai

)
and eTi

(
p ·Ai

)
+ yTi Ai = cTi Ai, for i ∈ {1, . . . , `} (8)

with ||x1|| ≤ σ
√
m and ||yi|| ≤ σ

√
2m for each i ∈ {1, . . . , `}.

The reduction B then opens either of the two forgeries using {Si}`i=0 (note that both signatures neces-
sarily open to the same identity id as they involve the same {c?i }`i=1). At this point, B aborts and declares
failure if the opening does not unveil user j?’s identity. Still, with probability at least 1/N , B’s was fortu-
nate in its random choice for j? and the opening algorithm reveals idj? .

If this desirable event occurs, B considers the following situations.

- If yi = idj? [i] · x2 for each i ∈ {1, . . . , `}, where x2 ∈ Z2m is the vector encrypted by c?0, B aborts if
coin = 1. Otherwise, relations (8) guarantee that

xT1 ·A + cT0 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai = xT1 ·A + xT2 ·A0 +
∑̀
i=1

idj? [i] · xT2 ·Ai

= (xT1 |xT2 ) ·
[

A

A0 +
∑`

i=1 idj? [i] ·Ai

]
= (xT1 |xT2 ) ·

[
Ā

(Q0 +
∑`

i=1 idj? [i]Qi) · Ā

]
= 0 mod q,

where the first equality follows from the fact that BT
0 ·A0 = 0 mod q and c?0 is of the form c?0 = B0·s0+x2.

This implies that v = x1 + x2 ·
(
Q0 +

∑`
i=1 idj? [i]Qi

)
is a vector of Λ⊥(Ā). A similar analysis to [10]

shows that v is both short and non-zero with overwhelming probability. As a consequence, B outputs
(x2 0m)T which is a short non-zero vector such that (x2 0m)T · Â = 0 mod q.

- If there exists i ∈ {1, . . . , `} such that yi 6= idj? [i] · x2, where x2 ∈ Z2m is the vector obtained by
decrypting c?0 using S0, then B aborts if coin = 0. Otherwise, the non-interactive proofs {π?OR,i}i imply

that c?i = Bi · s + p · e′i + idj? [i] · x2 for some x2, e
′
1, . . . , e

′
` ∈ Z2m and s0, s ∈ Znq . By multiplying the

latter expression of c?i
T by Ai, we find

cTi ·Ai = p · (e′i
T ·Ai) + idj? [i] · xT2 Ai.

Subtracting the latter equation from the second equation of (8), we find(
p · (eTi − e′i

T
) + (yTi − idj? [i] · xT2 )

)
·Ai = 0 mod q.

If p · (eTi − e′i
T ) + (yTi − idj? [i] · x2T ) 6= 0 mod q, it is a short non-zero vector in Λ⊥(Ai). Given that

Ai = Â with probability 1/`, we solved the given SIS instance with the same probability. Finally, if

p · (eTi − e′i
T

) + (yTi − idj? [i] · xT2 ) = 0 mod q,

the relative lengths of vectors ei, e
′
i,yi,x2 with respect to p implies ei = e′i and yi = idj? [i] · x2, which

contradicts the assumption that yi 6= idj? [i] · x2.

The lower bound on the reduction’s probability of success is assessed exactly in the same way as in the
proof of Theorem 3. ut
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