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Abstract. The Gallant-Lambert-Vanstone (GLV) algorithm uses efficiently computable endomor-
phisms to accelerate the computation of scalar multiplication of points on an abelian variety. Freeman
and Satoh proposed for cryptographic use two families of genus 2 curves defined over Fp which have the
property that the corresponding Jacobians are (2, 2)-isogenous over an extension field to a product of
elliptic curves defined over Fp2 . We exploit the relationship between the endomorphism rings of isoge-
nous abelian varieties to exhibit efficiently computable endomorphisms on both the genus 2 Jacobian
and the elliptic curve. This leads to a four-dimensional GLV method on Freeman and Satoh’s Jacobians
and on two new families of elliptic curves defined over Fp2 .
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1 Introduction

The scalar multiplication of a point on a small dimension abelian variety is one of the most important
operations used in curve-based cryptography. Various techniques were introduced to speed-up the scalar
multiplication. Firstly there exist exponent-recoding techniques such as sliding window and Non-Adjacent-
Form representation [7]. These techniques are valid for generic groups and improved for elliptic curves as the
inversion (or negation in additive notation) is free.

Secondly, in 2001, Gallant, Lambert and Vanstone [11] introduced a method which uses endomorphisms
on the elliptic curve to decompose the scalar multiplication in a 2-dimensional multi-multiplication. Given
an elliptic curve E over a finite field Fp with a fast endomorphism φ and a point P of large prime order r
such that φ(P ) = [λ]P , the computation of [k]P is decomposed as

[k]P = [k1]P + [k2]φ(P ),

with k = k1 + λk2 (mod r) such that |k1|, |k2| '
√
r. Gallant et al. provided examples of curves whose

endomorphism φ is given by complex-multiplication by
√
−1 (j-invariant j = 1728), −1+

√
−3

2 (j = 0),
√
−2 (j = 8000) and 1+

√
−7

2 (j = −3375). In 2009 Galbraith, Lin and Scott [10] presented a method to
construct an efficient endomorphism on elliptic curves E defined over Fp2 which are quadratic twists of
elliptic curves defined over Fp. In this case, a fast endomorphism ψ is obtained by carefully exploiting the
Frobenius endomorphism. This endomorphism verifies the equation ψ2 + 1 = 0 when restricted to points
defined over Fp2 . In 2012, Longa and Sica improved the GLS construction, by showing that a 4-dimensional
decomposition of scalar multiplication is possible, on GLS curves allowing efficient complex multiplication
φ. Let λ, µ denote the eigenvalues of the two endomorphisms φ, ψ. Then we can decompose the scalar k into
k = k0 + k1λ+ k2µ+ k3λµ and compute

[k]P = [k0]P + [k1]φ(P ) + [k2]ψ(P ) + [k3]φ ◦ ψ(P ).

Moreover, Longa and Sica provided an efficient algorithm to compute decompositions of k such that |ki| <
Cr1/4, i = 1, . . . , 4. Note that most curves presented in the literature have particular j-invariants. GLV



curves have j-invariant 0, 1728, 8000, or −3375, while GLS curves have j-invariant in Fp, even though they
are defined over Fp2 .

In 2013, Bos, Costello, Hisil and Lauter proposed in [3] a 4-dimensional GLV technique to speed-up
scalar multiplication in genus 2. They considered the Buhler-Koblitz genus 2 curves y2 = x5 + b and the
Furukawa-Kawazoe-Takahashi curves y2 = x5 + ax. These two curves have a very efficient dimension-4 GLV
technique available.

In this paper we study GLV decompositions on two types of abelian varieties:

– Elliptic curves defined over Fp2 , with j-invariant defined over Fp2 .
– Jacobians of genus 2 curves defined over Fp, which are isogenous over an extension field to a product of

elliptic curves defined over Fp2 .

First, we study a family of elliptic curves whose equation is of the form E1,c(Fp2) : y2 = x3 + 27(10 −
3c)x + 14 − 9c with c ∈ Fp2 \ Fp, c2 ∈ Fp. These curves have an endomorphism Φ satisfying Φ2 ± 2 = 0
for points defined over Fp2 . Nevertheless, the complex multiplication discriminant of the curve is not 2,

but of the form −D = −2D
′
. The second family is given by elliptic curves with equation of the form

E2,c(Fp2) : y2 = x3 + 3(2c− 5)x+ c2 + 14c+ 22 with c ∈ Fp2 \Fp, c2 ∈ Fp. We show that these curves have an
endomorphism Φ such that Φ2 ± 3 = 0 for points defined over Fp2 . The complex multiplication discriminant

of the curve E2,c is of the form −D = −3D
′
. Our construction is a simple and efficient way to exploit the

existence of a p-power Frobenius endomorphism on the Weil restriction of these curves. If the discriminant
D is small, we propose a 4-dimensional GLV algorithm for the E1,c and E2,c families of curves. We use Velu’s
formulas to compute explicitly the endomorphisms on E1,c and E2,c.

At last, we study genus 2 curves whose equations are C1 : Y 2 = X5+aX3+bX and C2 : Y 2 = X6+aX3+b,
with a, b ∈ Fp. The Jacobians of these curves split over an extension field in two isogenous elliptic curves. More
precisely, the Jacobian of C1 is isogenous to E1,c ×E1,c and the Jacobian of C2 is isogenous to E2,c ×E2,−c.
These two Jacobians were proposed for use in cryptography by Satoh [18] and Freeman and Satoh [9], who
showed that they are isogenous over Fp to the Weil restriction of a curve of the form E1,c or E2,c. This
property is exploited to derive fast point counting algorithms and pairing-friendly constructions [18,9,13].
We investigate efficient scalar multiplication via the GLV technique on Satoh and Freeman’s Jacobians. We
give explicit formulæ for the (2, 2)-isogeny between the product of elliptic curves and the Jacobian of the
genus 2 curve. As a consequence, we derive a method to efficiently compute endomorphisms on the Jacobians
of C1 and C2.

This paper is organized as follows. In Section 2 we review the construction of (2, 2)-isogenies between
Jacobians of C1 and C2 and products of elliptic curves. In Section 3 and 4 we give our construction of efficient
endomorphisms on E1,c and E2,c and derive a four-dimensional GLV algorithm on these curves. Section 5
explains how to obtain a four-dimensional GLV method on the Jacobians of C1 and C2. Finally, in Section 6,
our operation count at the 128 bit security level is proof that both elliptic curves defined over Fp2 and Satoh
and Freeman’s Jacobians yield scalar multiplication algorithms competitive with those of Longa and Sica
and Bos et al.

2 Elliptic curves with a genus 2 cover

In this paper we will work with two examples of genus 2 curves whose Jacobians allow over an extension
field a (2, 2)-isogeny to a product of elliptic curves. We first study the genus 2 curve

C1(Fp) : Y 2 = X5 + aX3 + bX, with a, b 6= 0 ∈ Fp . (1)

It was shown [15,18,9, §2, §3, §4.1 resp.] that the Jacobian of C1 is isogenous to E1,c × E1,c, where

E1,c(Fp[c]) : y2 = (c+ 2)x3 − (3c− 10)x2 + (3c− 10)x− (c+ 2) (2)

with c = a/
√
b. We recall the formulas for the cover maps from C1 to E1,c. The reader is referred to the proof

of Prop. 4.1 in [9] for details of the computations.
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ϕ1 : C1(Fp)→ E1,c(Fp[ 8
√
b]) ϕ2 : C1(Fp)→ E1,c(Fp[ 8

√
b])

(x, y) 7→
((

x+
4√
b

x− 4√
b

)2
, 8y

8√
b

(x− 4√
b)3

)
(x, y) 7→

((
x− 4√

b

x+
4√
b

)2
, 8iy

8√
b

(x+
4√
b)3

)
,

(3)

where i =
√
−1 ∈ Fp or Fp2 . The (2, 2)-isogeny is given by

I : JC1 → E1,c × E1,c

P +Q− 2P∞ 7→ (ϕ1∗(P ) + ϕ1∗(Q), ϕ2∗(P ) + ϕ2∗(Q))
(4)

and its dual is

Î : E1,c × E1,c → JC1

(S1, S2) 7→ ϕ∗1(S1) + ϕ∗2(S2)− 4P∞

with ϕ∗1(S1) =
(√

x1+1√
x1−1

4
√
b, y1

8√
b
5

(
√
x1−1)3

)
+
(
−√x1+1
−√x1−1

4
√
b, y1

8√
b
5

(−√x1−1)3

)
and ϕ∗2(S2) =

(
1+
√
x2

1−√x2

4
√
b, −iy2

8√
b
5

(1−√x2)3

)
+
(

1−√x2

1+
√
x2

4
√
b, −iy2

8√
b
5

(1+
√
x2)3

)
.

Note that I and its dual are defined over an extension field of Fp of degree 1, 2, 4 or 8. One may check

that I ◦ Î = [2] and Î ◦ I = [2]. Since I splits multiplication by 2, an argument similar to [14, Prop. 21]
implies that 2End(JC1) ⊆ End(E1,c × E1,c) and 2End(E1,c × E1,c) ⊆ End(JC1). We will use these inclusions
to exhibit efficiently computable endomorphisms on both JC1 and E1,c.

Secondly, we consider an analogous family of degree 6 curves. These curves were studied by Duursma
and Kiyavash [8] and by Gaudry and Schost [12].

C2(Fp) : Y 2 = X6 + aX3 + b with a, b 6= 0 ∈ Fp . (5)

The Jacobian of the curve denoted JC2 is isogenous to the product of elliptic curves E2,c ×E2,−c, where

E2,c(Fp[c]) : y2 = (c+ 2)x3 + (−3c+ 30)x2 + (3c+ 30)x+ (−c+ 2) (6)

E2,−c(Fp[c]) : y2 = (−c+ 2)x3 + (3c+ 30)x2 + (−3c+ 30)x+ (c+ 2), (7)

with c = a/
√
b. The construction of the isogeny is similar to the one for I. We recall the formulæ for cover

maps from C2 to E2,c and to E2,−c. For detailed computations, the reader is referred to Freeman and Satoh [9,
Prop. 4].

ϕ1 : C2(Fp)→ E2,c(Fp[ 6
√
b]) ϕ2 : C2(Fp)→ E2,−c(Fp[ 6

√
b])

(x, y) 7→
((

x+
6√
b

x− 6√
b

)2
, 8y

(x− 6√
b)3

)
(x, y) 7→

((
x− 6√

b

x+
6√
b

)2
, 8y

(x+
6√
b)3

)
(8)

Note that the isogeny constructed using these cover maps is defined over an extension field of degree 1,2,3
or 6.

3 Four-dimensional GLV on E1,c

In this section, we construct two endomorphisms which may be used to compute scalar multiplication on
E1,c using a 4-dimensional GLV algorithm. We assume that c ∈ Fp2 \ Fp and c2 ∈ Fp.
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3.1 First Endomorphism on E1,c with Vélu’s formulas

We aim to compute a 2-isogeny on E1,c(Fp2). First we reduce the equation (2) of E1,c to

E1,c(Fp2) : y2 = x3 + 27(3c− 10)x− 108(9c− 14) (9)

through the change of variables (x, y) 7→ (3(c+ 2)x− (3c− 10), (c+ 2)y). Note that we can write

E1,c(Fp2) : y2 = (x− 12)(x2 + 12x+ 81c− 126). (10)

Hence there always exists a 2-torsion point P2 = (12, 0) on E1,c(Fp2). We apply Velu’s formulas [20,6,14]
to compute the isogeny whose kernel is generated by P2. We obtain an isogeny from E1,c into Eb : y2 =
x3 + b4x+ b6 with b4 = −22 · 27(3c+ 10), b6 = −22 · 108(14 + 9c). We observe that Eb is isomorphic to the
curve whose equation is

E1,−c(Fp2) : y2 = x3 + 27(−3c− 10)x+ 108(14 + 9c) (11)

through (xb, yb) 7→ (xb/(−2), yb/(−2
√
−2)). Note that

√
−2 ∈ Fp2 and thus this isomorphism is defined over

Fp2 . We define the isogeny

I2 : E1,c(Fp2)→ E1,−c(Fp2)

(x, y) 7→
(
−x
2 + 81(c+2)

−2(x−12) ,
−y

2
√
−2

(
1− 81(c+2)

(x−12)2

))
.

(12)

We show that we can use this isogeny to get an efficiently computable endomorphism on E1,c. Observe
that since c ∈ Fp2 \ Fp and c2 ∈ Fp, we have that

πp(c) = cp = −c, πp(j(E1,c)) = j(E1,−c) (13)

hence the curves E1,c and E1,−c are isogenous over Fp2 via the Frobenius map πp. They are not isomorphic,
because they do not have the same j-invariant.

To sum up, by composing πp ◦ I2, we obtain an efficiently computable endomorphism Φ2 as follows:

Φ2 : E1,c(Fp2)→ E1,c(Fp2)

(x, y) 7→
(
−xp

2
− 81(2− c)

2(xp − 12)
,
−yp

2
√
−2

p

(
1− 81(2− c)

(xp − 12)2

))

=

(
x2p − 12xp + 162− 81c

−2(xp − 12)
, yp

x2p − 24xp − 18 + 81c

−2
√
−2

p
(xp − 12)2

)
.

(14)

If we compute formally3 Φ2
2 then we obtain exactly the formulas to compute πp2 ◦ [−2] on E1,c(Fp2) if√

−2 ∈ Fp or πp2 ◦ [2] if
√
−2 6∈ Fp. This difference occurs because a term

√
−2
√
−2

p
appears in the formula.

If p ≡ 1, 3 mod 8,
√
−2

p
=
√
−2 and if p ≡ 5, 7 mod 8,

√
−2

p
= −
√
−2. Hence Φ2 restricted to points defined

over Fp2 verifies the equation

Φ2
2 ± 2 = 0. (15)

We note that the above construction does not come as a surprise. Since 2End(JC1) ⊆ End(E1,c × E1,c)
and since the Jacobian JC1 is equipped with a p-power Frobenius endomorphism, we deduce that there are
endomorphisms with inseparability degree p on the elliptic curve E1,c. Our construction is simply an explicit
method to compute such an endomorphism.

3 e.g. Verification code with Maple can be found at the address http://www.di.ens.fr/~ionica/

VerificationMaple-Isogeny-2p-E1.maple
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Two-dimensional GLV. By using the endomorphisms Id and Φ2, we get a two-dimensional GLV algorithm
on the curve E1,c. Smith [19] constructs families of 2-dimensional GLV curves by reducing mod p Q-curves
defined over quadratic number fields. Q-curves are curves without complex multiplication with isogenies
towards all their Galois conjugates. Since we are interested into designing a fast higher dimensional algo-
rithm, we will study curves with small complex multiplication discriminant. In this purpose, our curves are
constructed using the complex multiplication method. For a discussion on the advantages of using dimension
2 curves, see [19].

3.2 Efficient complex multiplication on E1,c(Fp2)

We suppose that the complex multiplication discriminant D of the curve E1,c is small. A natural way to
obtain an efficiently computable endomorphism is to take ΦD the generator for the endomorphism ring (i.e.√
−D). Guillevic and Vergnaud [13, proof of Th. 1 (4.) §2.2] showed that D = 2D′, for some integer D′. Let

tp2 be the trace of E1,c(Fp2). The equation of the complex multiplication is then

(tp2)2 − 4p2 = −2D′γ2, (16)

for some γ ∈ Z. We prove that there is an endomorphism on E1,c whose degree of separability is D′. In order
to do that, we will need to compute first the general equation of Φ2 (given by (14)).

Lemma 1. There are integers m and n such that if p ≡ 1, 3 (mod 8), then

tp2 + 2p = D
′
m2 and tp2 − 2p = −2n2 (17)

and if p ≡ 5, 7 (mod 8), then

tp2 + 2p = 2n2 and tp2 − 2p = −D
′
m2. (18)

Moreover, the characteristic equation of Φ2 is

Φ2
2 − 2n Φ2 + 2p Id = 0 . (19)

The endomorphism Φ2 corresponds to the root 2n−m
√
−D

2 if p ≡ 1, 3 mod 8 and to the root 2n+m
√
−D

2 if
p ≡ 5, 7 mod 8.

Proof. We have that Tr(Φ2
2)−Tr2(Φ2)+2 deg(Φ2) = 0. We know that deg(Φ2) = 2p because Φ2 = πp ◦I2 and

deg(πp) = p,deg(I2) = 2, so Tr2(Φ2) = Tr(Φ2
2) + 4p. Now, if p ≡ 1, 3 mod 8, Tr(Φ2

2) = Tr(πp2 ◦ [−2]) = −2tp2

and we get Tr2(Φ2) = −2tp2 + 4p = −2(tp2 − 2p). We may thus write tp2 − 2p = −2n2, for some integer

n. If p ≡ 5, 7 mod 8, Tr(Φ2
2) = Tr(πp2 ◦ [2]) = 2tp2 and we get Tr2(Φ2) = 2tp2 + 4p = 2(tp2 + 2p). Hence

tp2 + 2p = 2n2 again. Using the complex multiplication equation (16), we have that there is an integer m
such that tp2 +2p = D′m2, if p ≡ 1, 3 (mod 8) and tp2−2p = −D′m2, if p ≡ 5, 7 (mod 8). As a consequence,

p = 2n2+D
′
m2

4 ; tp2 = −2n2+D
′
m2

2 if p ≡ 1, 3 mod 8 and tp2 = 2n2−D
′
m2

2 if p ≡ 5, 7 mod 8. Using these
notations, the characteristic equation of Φ2 is

Φ2
2 − 2n Φ2 + 2p Id = 0 .

We compute the two roots of the polynomial χ2−2nχ+2p = 0. We start with ∆ = 4n2−8p = 2(2n2−4p)
and inject 4p = D

′
m2 + 2n2 in the expression to cancel the terms in n2. Then ∆ = −2D

′
m2 and the two

roots are 2n±
√
−2D′m
2 . We know that Φ2

2 = [−2] ◦ πp2 if p ≡ 1, 3 mod 8 and Φ2
2 = [2] ◦ πp2 if p ≡ 5, 7 mod 8,

with πp2 =
tp2+n·m

√
−D

2 . We compute

Φ2
2 ↔

(
2n±

√
−2D′m

2

)2

=
2n2 −D′

m2

2
± n ·m

√
−2D′ .
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With the expression of tp2 , we conclude thatΦ2 corresponds to 2n−m
√
−2D′

2 if p ≡ 1, 3 mod 8,

Φ2 corresponds to 2n+m
√
−2D′

2 if p ≡ 5, 7 mod 8.
(20)

Theorem 1. Let E1,c be an elliptic curve given by equation (10), defined over Fp2 . Let −D be the complex
multiplication discriminant and consider D′ such that D = 2D′. There is an endomorphism ΦD′ of E1,c with
degree of separability D′. The characteristic equation of this endomorphism is

Φ2
D′ +D

′
m ΦD′ +D

′
p Id = 0 . (21)

Proof. Since D = 2D′, we have that ΦD is the composition of a horizontal isogeny of degree 2 with a
horizontal4 isogeny of degree D′. We denote by I2 : E1,c → E1,−c the isogeny given by equation (12). Note
that I2 is a horizontal isogeny of degree 2. Indeed, since πp : E1,−c → E1,c, it follows that (End(E1,c))2 '
(End(E1,−c))2. Since 2|D, there is a unique horizontal isogeny of degree 2 starting from E1,c. Hence the
complex multiplication endomorphism on E1,c is ΦD = ID′ ◦ I2, with ID′ : E1,−c → E1,c a horizontal
isogeny of degree D′. We define ΦD′ = ID′ ◦ π′p, with π′p : E1,c → E1,−c. To compute the characteristic
polynomial of ΦD′ , we observe that

ΦD′ ◦ Φ2 = ΦD ◦ πp2 . (22)

By using equation (19), we obtained in Lem. 1 that Φ2 seen as an algebraic integer in Z[
√
−D] is 2n−m

√
−2D′

2 if

p ≡ 1, 3 mod 8 and 2n+m
√
−2D′

2 if p ≡ 5, 7 mod 8. Secondly ΦD corresponds to
√
−D and πp2 to

tp2+n·m
√
−D

2 .

We then solve the equality (22) and conclude that ΦD′ seen as algebraic integer in Z[
√
−D] is −D

′m−n
√
−2D′

2

if p ≡ 1, 3 mod 8 and −D
′m+n

√
−2D′

2 if p ≡ 5, 7 mod 8. Hence we have Φ2
D′ +D

′
m ΦD′ +D

′
p Id = 0.

We remark that if p ≡ 1, 3 mod 8 then Φ2
D′ = [D

′
] ◦ πp2 and if p ≡ 5, 7 mod 8 then Φ2

D′ = [−D′
] ◦ πp2 as

expected.
The endomorphism ΦD′ constructed in Theorem 1 is computed as the composition of a horizontal isogeny

with the p-power of the Frobenius. Since computing the p-power Frobenius for extension fields of degree 2
costs one negation, we conclude that ΦD′ may be computed with Vélu’s formulæ with half the operations
needed to compute ΦD over Fp2 .

Four-dimensional GLV algorithm. Assume that E1,c is such that #E1,c(Fp2) is divisible by a large
prime of cryptographic size. Let Ψ = ΦD′ and Φ = Φ2. We observe Φ and Ψ viewed as algebraic integers

are represented by 2n±m
√
−D

2 and −D
′
m±n

√
−D

2 . These two numbers are linear combinations of
√
−D (the

Complex Multiplication). However the dependancy contains large coefficients: n,m with log n ∼ logm ∼
1
2 log p ∼ 1

4 log r hence there are large enough. Consequently, one may use 1, Φ, Ψ, ΦΨ to compute the scalar
multiple [k]P of a point P ∈ E1,c(Fp2) using a four-dimensional GLV algorithm. We do not give here the
details of the algorithm which computes decompositions

k = k1 + k2λ+ k3µ+ k4λµ,

with λ and µ the eigenvalues of Φ and Ψ and |ki| < Cr1/4. Such an algorithm is obtained by working over
Z[Φ, Ψ ], using a similar analysis to the one proposed by Longa and Sica [16].

Eigenvalue computation. From equation (15), we deduce that the eigenvalue of Φ2 is
√
−2 if p ≡ 1, 3 mod

8 and
√

2 if p ≡ 5, 7 mod 8. We explain how to compute this eigenvalue mod #E1,c(Fp2). We will use the
formulas (17) and (18).

4 An isogeny I : E → E′ of degree ` is called horizontal if (End(E))` ' (End(E′))`.
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If p ≡ 1, 3 mod 8, we obtain

#E1,c(Fp2) = (p+ 1)2 −D′
m2 →

√
D′ ≡ (p+ 1)/m

= (p− 1)2 + 2n2 →
√
−2 ≡ (p− 1)/n,

= (1− tp2/2)2 + 2D
′
(nm/2)2 →

√
−2D′ ≡ (2− tp2)/(nm) .

(23)

If p ≡ 5, 7 mod 8, we obtain

#E1,c(Fp2) = (p− 1)2 +D
′
m2 →

√
−D′ ≡ (p− 1)/m

= (p+ 1)2 − 2n2 →
√

2 ≡ (p+ 1)/n,

= (1− tp2/2)2 + 2D
′
(nm/2)2 →

√
−2D′ ≡ (2− tp2)/(nm) .

(24)

The eigenvalue of Φ2 on E1,c(Fp2) is
√
−2 ≡ (p − 1)/n mod #E1,c(Fp2) if p ≡ 1, 3 mod 8 or

√
2 ≡

(p+ 1)/n mod #E1,c(Fp2) if p ≡ 5, 7 mod 8.

The eigenvalue of ΦD′ on E1,c(Fp2) is
√
D′ ≡ (p + 1)/m mod #E1,c(Fp2) if p ≡ 1, 3 mod 8 or

√
−D′ ≡

(p− 1)/m mod #E1,c(Fp2) if p ≡ 5, 7 mod 8.

Remark 1. There is no ambiguity on the endomorphism ring of E1,c(Fp2). Note that the curve is ordinary.
Its endomorphism ring is End(E1,c) ⊗ Q = Q[

√
−D] with the complex multiplication corresponding to the

endomorphism ΦD of eigenvalue
√
−D. We obtained two other endomorphisms Φ2, ΦD′ with eigenvalue

√
2

and
√
−D′ if p ≡ 1, 3 mod 8, resp.

√
−2 and

√
D′ if p ≡ 5, 7 mod 8 (with −D = −2D

′
) but these eigenvalues

are expressions modulo #E1,c(Fp2). Proof of Th. 1 tells that Φ2 corresponds to (2n±m
√
−2D′)/2 and ΦD′

corresponds to (−mD′ ± n
√
−2D′)/2. For clarity, we explicit the relation between these generic eigenvalues

and
√
±2,
√
±D′ obtained in another way in eqs. (23) and (24).

If p ≡ 1, 3 mod 8 then tp2 = (−2n2 + D
′
m2)/2 according to eq. (17) of Lemma 1. Moreover,

√
−D =√

−2D′ ≡ (2− tp2)/(nm) mod #E1,c(Fp2) from eq. (23). We obtain that Φ2 has eigenvalue

(2n−m
√
−2D′)/2 ≡ 1

2

(
2n−m 2−tp2

nm

)
≡ (2n2 − 4 +D

′
m2)/(4n)

≡ (p− 1)/n ≡
√
−2 mod #E1,c(Fp2) from (23).

(25)

Secondly if p ≡ 5, 7 mod 8 then the trace is tp2 = (2n2 −D′
m2)/2 (eq. (18) Lem. 1) and we obtain this

time

(2n+m
√
−2D′)/2 ≡ 1

2

(
2n+m

2−tp2
nm

)
≡ (2n2 + 4 +D

′
m2)/(4n)

≡ (p+ 1)/n ≡
√

2 mod #E1,c(Fp2) from (24).

(26)

We conclude that Φ2 has eigenvalue

Φ2 : λΦ2
=

{
2n−m

√
−D

2 ≡
√
−2 mod #E1,c(Fp2) if p ≡ 1, 3 mod 8,

2n+m
√
−D

2 ≡
√

2 mod #E1,c(Fp2) if p ≡ 5, 7 mod 8 .
(27)

We can do the same for the second endomorphism ΦD′ . We obtain that ΦD′ has eigenvalue

ΦD′ : λΦ
D

′ =

{
−D

′
m−n

√
−D

2 ≡ −
√
D′ mod #E1,c(Fp2) if p ≡ 1, 3 mod 8,

−D
′
m+n

√
−D

2 ≡ −
√
−D′ mod #E1,c(Fp2) if p ≡ 5, 7 mod 8 .

(28)

3.3 Curve construction and examples

We construct curves E1,c with good cryptographic properties (i.e. a large prime divides the number of points
of E1,c over Fp2) by using the complex multiplication algorithm. More precisely, we look for prime numbers
p such that the complex multiplication equation

4p = 2n2 +D′m2
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is verified. Once p is found, we compute the roots of the Hilbert polynomial in Fp2 to get the j-invariant

of the curve j(E1,c). We finally get the value of c by solving j(E1,c) = 26 (3c−10)3
(c−2)(c+2)2 in Fp2 and choosing a

solution satisfying c2 ∈ Fp.
We note that for a bunch of discriminants (such as −20,−24,−36 etc.), Hilbert polynomial precomputa-

tion may be avoided by using parameterizations computed by Quer [17]:

Ct : y2 = x3 − 6(5 + 3
√
t)x+ 8(7 + 9

√
t), (29)

for some t ∈ Q. For instance t = 5
4 for D = −20, t = 8

9 for D = −24 etc. Once p is found, one may directly
reduce mod p the curve given by equation 29. Curves given by equation (29) are Q-curves and for these
discriminants, we obtain the same curves as in [19].

Complex multiplication algorithms may not be avoided in certain cryptographic frames, such as pairing-
friendly constructions. One advantage of the construction is that one has the liberty to choose the value r
of the large prime number dividing the curve group order. This helps in preventing certain attacks, such as
Cheon’s attack [4] on the q-DH assumption. On the negative side, we cannot construct curves with fixed p
(such as the attractive 2127 − 1).

Using Magma, we computed an example with p ≡ 5 mod 8, D = 40, D
′

= 20.

Example 1. We first search 63-bit numbers n,m such that p = (2n2 + 20m2)/4 is prime and #E1,c(Fp2) is
almost prime. We can expect an order of the form 4r, with r prime. In a few seconds, we find the following
parameters.
n = 0x55d23edfa6a1f7e4
m = 0x549906b3eca27851
tp2 = - 0xfaca844b264dfaa353355300f9ce9d3a
p = 0x9a2a8c914e2d05c3f2616cade9b911ad
r = 0x1735ce0c4fbac46c2245c3ce9d8da0244f9059ae9ae4784d6b2f65b29c444309
c2 = 0x40b634aec52905949ea0fe36099cb21a
with r, p prime and #E1,c(Fp2) = 4r.

We use Vélu’s formulas to compute a degree-5 isogeny from E1,c into Eb,5. We find a 5-torsion point
P5(X5, Y5) on E1,c(Fp8). The function IsogenyFromKernel in Magma evaluated at (E1,c(Fp8), (X−XP5)(X−
X2P5)) outputs a curve Eb,5 : y2b = x3b − 25 · 27(3c+ 10)xb + 125 · 108(9c+ 14). The curve Eb is isomorphic
to E1,−c over Fp2 through i√5 : (xb, yb) 7→ (xb/5, yb/(5

√
5)). The above function outputs also the desired

isogeny with coefficients in Fp2 :

I5 : E1,c(Fp2)→ Eb,5(Fp2)

(x, y) 7→
(
x+

2·33( 3
5 (13c+40)x+4(27c+28))
x2+ 27

2 cx−
81
10 c+162

+
−23·34((9c+16)x2+ 2

5 11(27c+64)x+ 2
5 3

3(53c+80)

(x2+ 27
2 cx−

81
10 c+162)2

,

y

(
1 +

−24·34((9c+16)x3+ 3
5 11(27c+64)x2+ 2

5 3
4(53c+80)x+ 2

52
32(4419c+13360))

(x2+ 27
2 cx−

81
10 c+162)3

+
2·33( 3

5 (13c+40)x2+23(27c+28)x+2 3
5 (369c+1768))

(x2+ 27
2 cx−

81
10 c+162)2

))
(30)

We finally obtain a second computable endomorphism on E1,c in this example by composing πp ◦ i√5 ◦ I5.

4 Four-dimensional GLV on E2,c(Fp2)

The construction of two efficiently computable endomorphisms on E2,c, with degree of inseparability p, is
similar to the one we gave for E1,c.

8



We consider the elliptic curve given by eq. (6) in the reduced form:

E2,c(Fp2) : y2 = x3 + 3(2c− 5)x+ c2 − 14c+ 22 . (31)

We assume that c ∈ Fp2 \ Fp, c2 ∈ Fp, c is not a cube in Fp2 . In this case the isogeny (8) between JC2
and E2,c × E2,−c is defined over Fp6 . The 3-torsion subgroup E2,c(Fp2)[3] contains the order 3 subgroup
{O, (3, c + 2), (3,−c − 2)}. We compute an isogeny whose kernel is this 3-torsion subgroup. With Vélu’s
formulas we obtain the curve Eb : y2 = x3 − 27(2c+ 5)x− 27(c2 + 14c+ 22). The curve Eb is isomorphic to
E2,−c : (Fp2) : y2 = x3− 3(2c+ 5)x+ c2 + 14c+ 22, via the isomorphism (x, y) 7→

(
x/(−3), y/(−3

√
−3)

)
. We

define the isogeny

I3 : E2,c(Fp2)→ E2,−c(Fp2)

(x, y) 7→
(
−1
3

(
x+ 12(c+2)

x−3 + 4(c+2)2

(x−3)2

)
, −y
3
√
−3

(
1− 12(c+2)

(x−3)2 −
8(c+2)2

(x−3)3

))
.

Finally, we observe that πp(c) = −c and πp(j(E2,c)) = j(E2,−c). This implies that E2,c and E2,−c are
isogenous through the Frobenius map πp. We obtain the isogeny Φ3 = I3 ◦πp which is given by the following
formula:

Φ3 : E2,c(Fp2)→ E2,c(Fp2)

(x, y) 7→
(
−1
3

(
xp + 12(2−c)

xp−3 + 4(2−c)2
(xp−3)2

)
, yp

−3
√
−3p

(
1− 12(2−c)

(xp−3)2 −
8(2−c)2
(xp−3)3

))
.

(32)

We compute formally Φ2
3 and obtain Φ2

3 = πp2 ◦ [±3]. There is a term
√
−3
√
−3

p
in the y-side of Φ2

3. We

observe that if p ≡ 1 mod 3, then
(
−3
p

)
= 1,

√
−3
√
−3

p
= −3 and Φ2

3 = πp2 ◦ [−3]. Similarly, if p ≡ 2 mod 3,

then Φ2
3 = πp2 ◦ [3]. We conclude that for points defined over Fp2 , we have

Φ2
3 ± 3 = 0 .

Guillevic and Vergnaud [13, Theorem 2] showed that the complex multiplication discriminant is of the
form −D = −3D′. With the same arguments as for E1,c, we deduce this lemma.

Lemma 2. There are integers m and n such that if p ≡ 1 (mod 3), then

tp2 + 2p = D
′
m2 and tp2 − 2p = −3n2

and if p ≡ 2 (mod 3), then

tp2 + 2p = 3n2 and tp2 − 2p = −D
′
m2 .

The endomorphism Φ3 has characteristic equation

Φ2
3 − 3n Φ3 + 3p Id = 0 (33)

and corresponds to the number 3n−m
√
−D

2 if p ≡ 1 mod 3 and 3n+m
√
−D

2 if p ≡ 2 mod 3.

Proof. We start again from Φ2
3−Tr(Φ3)Φ3 + deg(Φ3)Id = 0. We have that Tr(Φ2

3)−Tr2(Φ3) + 2 deg(Φ3) = 0.
We know that deg(Φ3) = 3p since Φ3 = πp ◦ I3 with deg(πp) = p and deg(I3) = 3. Then the equation is
Tr2(Φ3) = Tr(Φ2

3) + 6p. Now if p ≡ 1 mod 3 then Tr(Φ2
3) = Tr(πp2 ◦ [−3]) = −3tp2 and we get Tr2(Φ3) =

−3tp2 + 6p = −3(tp2 − 2p). We may thus write tp2 − 2p = −3n2, for some integer n. Secondly if p ≡ 2 mod 3

then Tr(Φ2
3) = Tr(πp2 ◦ [3]) = 3tp2 and we get Tr2(Φ3) = 3tp2 + 6p = 3(tp2 + 2p). We obtain tp2 + 2p = 3n2,

for some integer n. Using the complex multiplication equation (tp2)2 − 4p2 = −3D
′
γ2, there is an integer m

such that tp2 + 2p = D
′
m2 if p ≡ 1 mod 3 or tp2 − 2p = −D′

m2 if p ≡ 2 mod 3. As a consequence, we can

write 4p = 3n2 +D
′
m2 and 2tp2 = −3n2 +D

′
m2 if p ≡ 1 mod 3, 2tp2 = 3n2 −D′

m2 if p ≡ 2 mod 3.
The characteristic equation of Φ3 is

Φ2
3 − 3n Φ3 + 3p Id = 0 .

9



We also compute formally the two roots of the characteristic equation of Φ3. We start with ∆ = 9n2−12p =
3(3n2− 4p) and inject 4p = D

′
m2 + 3n2 in the expression to cancel the terms in n2. Then ∆ = −3D

′
m2 and

the two roots of χ2 − 3nχ+ 3p are 3n±m
√
−3D′

2 = 3n±m
√
−D

2 . We know that Φ2
3 = [−3] ◦ πp2 if p ≡ 1 mod 3

and Φ2
3 = [3] ◦ πp2 if p ≡ 2 mod 3, with πp2 = (tp2 + n ·m

√
−D)/2. We compute(

3n±
√
−3D′m

2

)2

=
3

2

(
3n2 −D′

m2

2
± n ·m

√
−3D′

)
.

With the expression of tp2 , we conclude thatΦ3 corresponds to 3n−m
√
−3D′

2 if p ≡ 1 mod 3,

Φ3 corresponds to 3n+m
√
−3D′

2 if p ≡ 2 mod 3.
(34)

As a consequence, we have the following theorem, whose proof is similar to the proof of Th. 1.

Theorem 2. Let E2,c be an elliptic curve given by equation (31), defined over Fp2 . Let −D be the complex
multiplication discriminant and consider D′ such that −D = −3D′. There is an endomorphism ΦD′ of E2,c

with degree of separability D′. The characteristic equation of this endomorphism is

Φ2
D′ +D

′
m ΦD′ +D

′
p Id = 0 . (35)

Remark 2. The eigenvalue of Φ3 is
√
−3 and the eigenvalue of ΦD′ is

√
D′ when p ≡ 1 mod 3, resp.

√
3,
√
−D′

when p ≡ 2 mod 3. However these values are expressed modulo the elliptic curve order #E(Fp2). To obtain
the general expression, we compute the algebraic integer in End(E2,c) ⊗ Q = Q[

√
−D] to which Φ3 and

ΦD′ correspond, from their characteristic equation. We obtain that Φ3 corresponds to 3n−m
√
−3D′

2 ≡
√
−3

(mod #E2,c(Fp2)) if p ≡ 1 mod 3 and 3n+m
√
−3D′

2 ≡
√

3 if p ≡ 2 mod 3. In the same way, ΦD′ corresponds

to −mD
′
−n
√
−3D′

2 ≡ −
√
D′ if p ≡ 1 mod 3 and −mD

′
+n
√
−3D′

2 ≡ −
√
−D′ if p ≡ 2 mod 3.

The two endomorphisms seen as algebraic integers do not generate an additional dimension of the endo-
morphism ring. However the coefficients m,n involved in their expression in term of ΦD are large enough
so that the lattice reduction algorithm will succeed in the GLV-decomposition step. We obtain a four-
dimensional GLV algorithm on E2,c.

5 Four-dimensional GLV on JC1 and JC2

The first endomorphism Ψ on JC1 is induced by the curve automorphism (x, y)→ (−x, iy), with i a square root
of −1. The characteristic polynomial is χ2 + 1 = 0. On JC2 we consider Ψ the endomorphism induced by the
curve automorphism (x, y)→ (ζ3x, y). Its characteristic equation is χ2+χ+1 = 0. The second endomorphism
is constructed as Φ = Î(ΦD′ , ΦD′)I, where ΦD′ is the elliptic curve endomorphism constructed in Theorem 1.
In order to compute the characteristic equation for Φ, we follow the lines of the proof of Theorem 1 in [10].
We reproduce the computation for the Jacobian of C1.

Theorem 3. Let C1 : y2 = x5 + ax3 + bx (with a, b 6= 0 ∈ Fp, b not a square in Fp) be a hyperelliptic
curve defined over Fp with ordinary Jacobian and let r a prime number such that r||#JC1(Fp). Let I : JC1 →
E1,c×E1,c the (2, 2)-isogeny defined by equation (4) and assume I is defined over an extension field of degree

k > 1. We define Φ = Î ◦ (ΦD′ × ΦD′) ◦ I, where ΦD′ is the endomorphism defined in Theorem 1. Then

1. For D ∈ JC1 [r](Fp), we have Φ(D) = [λ]D, with λ ∈ Z.

2. The characteristic equation of Φ is Φ2 + 2D
′
m Φ+ 4D

′
p Id = 0.
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Proof. 1. Note that End(JC1) is commutative, and Φ is defined over Fp (see [2, Prop. III.1.3]). Hence, for
D ∈ JC1(Fp), we have that πp(Φ(D)) = Φ(πp(D)) = Φ(D). Since there is only one subgroup of order r in
JC1(Fp), we obtain that Φ(D) = [λ]D.

2. Since Î ◦ I = [2] then

Φ2 = Î ◦ (ΦD′ × ΦD′) ◦ I ◦ Î ◦ (ΦD′ × ΦD′) ◦ I = [2] ◦ Î ◦ (Φ2
D′ , Φ2

D′) ◦ I. (36)

Since ΦD′ verifies the equation

Φ2
D′ +D

′
m ΦD′ +D

′
p Id = 0, (37)

we have

2Î((Φ2
D′ , Φ2

D′) +D
′
m (ΦD′ , ΦD′ ) +D

′
p (Id, Id))I = OJC1

Using equation (36), we conclude that Φ2 + 2D
′
m Φ+ 4D

′
p Id = 0.

Remark 3. We compute the eigenvalue of this endomorphism Φ = Î ◦ (ΦD′ , ΦD′ ) ◦ I. The two roots of the

polynomial χ2 + 2D
′
mχ + 4D

′
p (Th. 3 (2)) are (−D′

m ± n
√
−D). Note that the endomorphism ΦD′ on

E1,c(Fp2) has eigenvalue (−D′
m± n

√
−D)/2 (see (28)). The eigenvalue of Φ is then twice the eigenvalue of

ΦD′ .

We can also compute these values modulo the Jacobian order. It was shown in [13] hat when p ≡ 1 mod 4
and b (in the curve equation C5) is not a square then the Jacobian order is equal to p2 + 1± 2n(p+ 1) + 2n2

[13, Th. 1 (4.) §2.2] with n such that tp2 + 2p = 2n2 (this happens if p ≡ 5 mod 8) or tp2 − 2p = −2n2

(if p ≡ 1 mod 8). To simplify, we put the sign ± in n ∈ Z, then #JC5(Fp) = p2 + 1 + 2n(p + 1) + 2n2.
We will compute the eigenvalue of the endomorphisms whose characteristic equations are χ2 + 1 = 0 and
χ2 + 2D

′
mχ+ 4D

′
p = 0. We know that 4p = 2n2 +D

′
m2.

#JC5(Fp) = (p+ n)2 + (n+ 1)2 →
√
−1 ≡ p+ n

n+ 1
mod #JC5(Fp),

= (p+ n+ 1)2 − 2D
′
m2/4 →

√
2D′ ≡ 2

p+ n+ 1

m
,

= (−p+ n2 + n+ 1)2 + 2D
′
(m(n+ 1)/2)2 →

√
−2D′ ≡ 2

−p+ n2 + n+ 1

m(n+ 1)
.

(38)

Hence the eigenvalue of Φ−1 is
√
−1 = p+n

n+1 . We can also compute the eigenvalue of Φ, modulo #JC5(Fq) with
the values above in (38).

5.1 Computing I on JC1(Fp).

We show first how to compute stately the (2, 2)-isogeny on JC1(Fp) with only a small number of operations
over extension fields of Fp.

Let D be a divisor in JC1(Fp) given by its Mumford coordinates

D = [U, V ] = [T 2 + u1T + u0, v1T + v0], u0, u1, v0, v1 ∈ Fp .

It corresponds to two points P1(X1, Y1), P2(X2, Y2) ∈ C1(Fp) or C1(Fp2). We have

u1 = −(X1 +X2), u0 = X1X2, v1 =
Y2 − Y1
X2 −X1

, v0 =
X1Y2 −X2Y1
X1 −X2

.
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Explicit formula to compute ϕ1∗(P1) + ϕ1∗(P2). Let ϕ1∗(P1) = (x1,1, y1,1) and ϕ1∗(P2) = (x2,1, y2,1) In the
following we give the formulas to compute S1(x3,1, y3,1) = ϕ1∗(P1) + ϕ1∗(P2).

x3,1 =
λ2
1

c+2 − (x1,1 + x2,1) + 3c−10
c+2 with

λ1 = 2
8√
b

[
(v0u1−v1u0)u1−v0u0

]
+
[
3(v0u1−v1u0)

]
4√
b+
[
3v0

]√
b+
[
v1

]
4√
b
3[

u2
0−b
]
+
[
u0u1

]
4√
b+
[
−u1

]√
b

.

We denote λ1 = Λ1/
8
√
b. The computation of the numerator of Λ1 costs 4Mp and the denominator costs

Sp +Mp. We will use the Jacobian coordinates for S1: x3,1 = X3,1/Z
2
3,1, y3,1 = Y3,1/Z

3
3,1 to avoid inversion

in Fp4 . We continue with

x1,1 + x2,1 = 2

([
u2
0+b
]
+
[
u2
1−6u0

]√
b
)([

u2
0+b]+

[
−2u0

]√
b
)([

u2
0−b
]
+
[
u0u1

]
4√
b+
[
−u1

]√
b
)2

As u20 was already computed in Λ1, this costs one square (u21) and a multiplication in Fp2 , hence Sp +Mp2 .
The denominator is the same as the one of Λ2

1, that is, Z2
3 .

Then
x3,1 =

Λ2
1

4√
b(c+2)

− (x1,1 + x2,1) + 3c−10
c+2

=
4√
bΛ2

1

(a+2
√
b)
− (x1,1 + x2,1) + 3a−10

√
b

a+2
√
b
.

To avoid tedious computations, it is preferable to precompute both 1/(a+ 2
√
b) and (3a− 10

√
b)/(a+ 2

√
b)

with one inversion in Fp2 and one multiplication in Fp2 .

Computing 4
√
bΛ2

1 is done by shifting to the right coefficients and costs one multiplication by b (as Λ2
1 ∈ Fp4).

Then 4
√
bΛ2

1 · (a+ 2
√
b)−1 costs 2Mp2 . Finally we need to compute 3a−10

√
b

a+2
√
b
·Z2

3 which costs Sp4 + 2Mp2 . The

total cost of X3,1, Z3,1 and Z2
3,1 is 6Mp + 2Sp + 5Mp2 + Sp4 .

Computing y3,1 is quite complicated because we deal with divisors so we do not have directly the coefficients
of the two points. We use this trick:

y3,1 = λ1(x1,1 − x3,1)− y1,1
y3,1 = λ1(x2,1 − x3,1)− y2,1

2y3,1 = λ1(x1,1 + x2,1 − 2x3,1)− (y1,1 + y2,1)

Since x1,1 +x2,1 was already computed for x3,1, getting (x1,1 +x2,1−2x3,1) costs only additions. We multiply
the numerators of λ1 and (x1,1 + x2,1 − 2x3,1) which costs 1Mp4 . The denominator is Z3

3,1 and as Z2
3,1 is

already computed, this costs 1Mp4 . The numerator of (y1,1+y2,1) contains products of u0, u1, v0, v1 previously
computed and its denominator is simply Z3

3 . The total cost of y3,1 is then 2Mp4 . Finally, computing (x3,1, y3,1)
costs

6Mp + 2Sp + 5Mp2 + Sp4 + 2Mp4 .

Now we show that computing S2(x3,2, y3,2) is free of cost. We notice that

ϕ1(Xj , Yj) = ϕ2(−Xj , iYj)

with i such that i2 = −1 and j ∈ {1, 2}. Rewriting this equation in terms of divisors, we derive that

S2(x3,2, y3,2) = ϕ1∗([−u1, u0,−iv1, iv0]) .

We can simply compute S2 with ϕ1∗:

x3,2 = x3,1([−u1, u0,−iv1, iv0]) with
λ2 = λ1([−u1, u0,−iv1, iv0])

= 2i
8√
b

(v0u1−v1u0)(u1−3 4√
b)−v0u0+3

√
bv0− 4√

b
3
v1

(u0−
√
b)(u0− 4√

bu1+
√
b)

= πp2(λ1)
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and
(x1,1 + x2,1)([−u1, u0,−iv1, iv0]) = 2

u2
0+
√
bu2

1−6
√
bu0+b

(u0− 4√
bu1+

√
b)2

= πp2(x1,1 + x2,1) .

We deduce that x3,2 = πp2(x3,1), y3,2 = πp2(y3,1) and

ϕ2∗(D) = ϕ2∗(P1) + ϕ2∗(P2) = πp2(ϕ1∗(P1) + ϕ1∗(P2)) .

Computing (x3,2, y3,2) costs two Frobenius πp2 which are performed with four negations on Fp2 .

5.2 Computing endomorphisms on E1,c

Here we apply the endomorphism ΦD′ on S1(x3,1, y3,1). As ΦD′ is defined over Fp2 , it commutes with πp2
hence ΦD′ (x3,2) = πp2(ΦD′ (x3,1)) is free. Unfortunately S1 has coefficients in Fp4 hence we need to perform

some multiplications in Fp4 . More precisely, y3,1 is of the form 8
√
by′3,1 with y′3,1 ∈ Fp4 . As the endomorphism

is of the form ΦD′ (x, y) = (ΦD′ ,x(x), yΦD′ ,y(x)) the 8
√
by′3,1 term is not involved in the endomorphism

computation.

5.3 Computing Î on JC1(Fp).

Then we go back to JC1 . We compute the divisor of these two points (with ±√x3,1) on JC1 and get

ϕ∗1(x3,1, y3,1) = T 2 − 2
4
√
b
x3,1+1
x3,1−1T +

√
b,
√
by3,1

2(x3,1−1)

(
x3,1+3
x3,1−1T −

4
√
b
)
.

If (x3,1, y3,1) is in Jacobian coordinates (X3,1, Y3,1, Z3,1) then we compute
x3,1+1
x3,1−1 =

X3,1+Z
2
3,1

X3,1−Z2
3,1

.

A similar computation gives

ϕ∗2(x3,2, y3,2) = T 2+2
4
√
b
x3,2+1
x3,2−1T +

√
b,
√
by3,2

2(x3,2−1)

(
x3,2+3
x3,2−1T+

4
√
b
)
.

Since x3,2 = πp2(x3,1) and y3,2 = πp2(y3,1), we have

ϕ∗2(x3,2, y3,2) = T 2+2 4
√
b
πp2 (x3,1)+1

πp2 (x3,1)−1T +
√
b,
√
bπp2 (y3,1)

2(πp2 (x3,1)−1)

(
πp2 (x3,1)+3

πp2 (x3,1)−1T+ 4
√
b
)
.

Hence ϕ∗2(x3,2, y3,2) = πp2(ϕ∗1(x3,1, y3,1)).
Finally, we have

ϕ∗2(ϕ2∗(P1) + ϕ2∗(P2)) = πp2(ϕ∗1((ϕ1∗(P1) + ϕ1∗(P2)))) .

and, with similar arguments,

ϕ∗2(ΦD′ (ϕ2∗(P1) + ϕ2∗(P2))) = πp2(ϕ∗1(ΦD′ ((ϕ1∗(P1) + ϕ1∗(P2))))) .

The computation of the sum ϕ∗1(ΦD′ (ϕ1∗(D))) + πp2 ◦ϕ∗1(ΦD′ (ϕ1∗(D))) involves terms in Fp4 but thanks
to its special form, we need to perform the operations in Fp2 only. We give the table of computations in
Appendix A and show that most multiplications are performed over Fp2 . We have followed computations for
a multiplication in Mumford coordinates provided in [5].

We conclude that applying ϕ1∗(P1) + ϕ1∗(P2) costs roughly as much as an addition on JC1 over Fp,
ϕ2∗(P1) + ϕ2∗(P2) is cost free. Computing ΦD′ depends on the size of D′ and costs few multiplications over
Fp4 . Finally adding ϕ∗1 + ϕ∗2 costs roughly an addition of divisors over Fp2 .

6 Complexity analysis and comparison to GLS-GLV curves

We explain that our construction is valid for GLS curves with discriminants −3 and −4. These curves are
particularly interesting for cryptography, because their simple equation forms result into simple and efficient
point additions. A four-dimensional GLV algorithm on these curves was proposed by Longa and Sica [16].
Although the endomorphisms we construct do not allow to derive a higher dimension algorithm, they offer
an alternative to Longa and Sica’s construction.
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The case D = −4. We consider a curve with CM discriminant D = −4, defined over Fp2 , with p ≡ 1 mod 8.
Assume that the curve is of the form Eα(Fp2) : y2 = x3 + αx with α ∈ Fp2 . A 2-torsion point is P2(0, 0).
Using Vélu’s formulas, we get the isogeny with kernel generated by P2, whose equation is

(x, y) 7→
(
x+

α

x
, y − y α

x2

)
.

This isogeny sends points on Eα on the curve Eb : y2 = x3 − 4αx. We use the same trick as previously. If
α ∈ Fp2 is such that πp(α) = αp = −α (this is the case for example if α =

√
a with a ∈ Fp a non-square) then

by composing with (xb, yb) 7→
(
xpb/(−2), ypb/(−2

√
−2)

)
, we get an endomorphism Φ2. Note that

√
−1 ∈ Fp

since p ≡ 1 mod 8. We obtain

Φ2 : Eα(Fp2)→ Eα(Fp2)

(x, y) 7→

{
O if (x, y) = (0, 0),(

(xp)2+α
2xp , yp

2
√
2

(
1− α

(xp)2

))
otherwise.

We obtained an endomorphism Φ2 such that Φ2
2 − 2 = 0, when restricted to points defined over Fp2 . The

complex multiplication endomorphism Φ on Eα is (x, y)→ (−x, iy) and verifies the equation Φ2 +1 = 0. The
4-dimensional GLV algorithm of Longa and Sica on this curve uses an endomorphism Ψ such that Ψ4+1 = 0.
With our method we obtain two distinct endomorphisms, but the three ones Ψ, Φ2, Φ are not “independent”
on the subgroup E(Fp2) \ E[2]. Indeed, we have Φ2 + Φ Φ2 = 2Ψ .

Note that in this case the corresponding Jacobian splits into two isogenous elliptic curves over Fp, namely
the two quartic twists defined over Fp of E1,c.

The case D = −3. We consider the curve Eβ whose Weierstrass equation is

y2 = x3 + β, (39)

where β2 ∈ Fp. Our construction yields the following efficiently computable endomorphism

Φ3(x, y) =

(
1

3

(
xp +

4βp

x2p

)
,
yp√

3

(
1 +

8βp

x3p

))
.

When restricted to points defined over Fp2 , this endomorphism verifies the equation Φ2
3 − 3 = 0, while the

complex multiplication endomorphism Φ has characteristic equation Φ2 + Φ + 1 = 0. Longa and Sica’s al-
gorithm uses the complex multiplication Φ and an endomorphism Ψ verifying Ψ2 + 1 = 0 for points defined
over Fp2 . We observe that 2Φ3 Ψ − 1 = 2Φ.

We give in Table 6 the operation count of a computation of one scalar multiplication using two-dimensional
and four-dimensional GLV on E and Eβ given by equation (39). We denote by m, s and by M,S the cost
of multiplication and squaring over Fp and over Fp2 , respectively. We denote by c the cost of multiplication
by a constant in Fp2 . In order to give global estimates, we will assume that m ∼ s and that M ∼ 3m
and S ∼ 3s. Additions in Fp are not completely negligible compared to multiplications, but we do not
count additions here. We counted operations by using formulæ from Bernstein and Lange’s database [1] for
addition and doubling in projective coordinates. On the curve E1,c addition costs 12M + 2S, while doubling
costs 5S + 6M + 1c. For Eβ , addition costs 12M + 2S, while doubling is 3M + 5S + 1c. Note that by
using Montgomery’s simultaneous inversion method, we could also obtain all points in the look-up table
in affine coordinates and use mixed additions for the addition step of the scalar multiplication algorithm.
This variant adds one inversion and 3(n− 1) multiplications, where n is the length of the look-up table. We
believe this is interesting for implementations of cryptographic applications which need to perform several
scalar multiplications. For genus 2 arithmetic on curves of the form y2 = x5 + ax3 + bx, we used formulæ
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Table 1. Total cost of scalar multiplication at a 128-bit security level.

Curve Method Operation count Global estimation

E1,c 4-GLV, 16 pts. 1168M + 440S 4797m

Eβ 4-GLV, 16 pts. 976M + 440S 4248m

E1,c 2-GLV, 4 pts. 2048M + 832S 8640m

Eβ 2-GLV, 4 pts. 1664M + 832S 7488m

JC1 4-GLV, 16 pts. 4500m + 816s 5316m

JC1 2-GLV, 4 pts. 7968m + 1536s 9504m

FKT [3] 4-GLV, 16 pts. 4500m + 816s 5316m

Kummer [3] – 3328m + 2304s 5632m

given by Costello and Lauter [5] in projective coordinates. An addition costs 43M + 4S and a doubling costs
30M + 9S.

The practical gain of the 4-dimensional GLV on E1,c, when compared to the 2-dimensional GLV method,
is of 44%. Curves with discriminant −3, defined over Fp2 , which belong both to the family of curves we propose
and to the one proposed by Longa and Sica, offer a 12% speed-up, thanks to their efficient arithmetic.

7 Conclusion

We have studied two families of elliptic curves defined over Fp2 which have the property that the Weil
restriction is isogenous over Fp to the Jacobian of a genus 2 curve. We have proposed a four dimensional
GLV algorithm on these families of elliptic curves and on the corresponding Jacobians of genus 2 curves.
Our complexity estimates show that these abelian varieties offer efficient scalar multiplication, competitive
to GLV algorithms on other families in the literature, having two efficiently computable and “independent”
endomorphisms.
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A Appendix 1

Following [5], we explain here the step addition of two divisors in the isogeny computation in Section 5.3.
We denote by mn and sn the cost of multiplication and squaring, respectively, in an extension field Fpn .

σ1 = u1 + πp2(u1), ∆0 = v0 − πp2(v0), ∆1 = v1 − πp2(v1), U1 = u21 (1m4)

M1 = u21 − πp2(u21) ,M2 =
√
b(πp2(u1)− u1), M3 = u1 − πp2(u1);

l2 = 2(M2 ·∆1 +∆0 ·M1); l3 = ∆0 ·M3; d = −2M2 ·M3; (4m2)
A = 1/(d · l3); B = d ·A; C = d ·B; D = l2 ·B; (3m2+1m4)
E = l23 ·A; CC = C2; u′′1 = 2 ·D − CC − σ1 (1m2+2s2)
u′′0 = D2 + C · (v1 + πp2(v1))− ((u′′1 − CC) · σ1 + (U1 + πp2(U1)))/2 (2m2+1s4)

U ′′0 = πp2(u1) · u′′0 ; v′′1 = D · (u1 − u′′1) + u2
′′

1 − u′′0 − U1; (2m4+1s1)
v′′0 = D · (u0 − u′′0) + U ′′0 ;v′′1 = −(E · v′′1 + v1); v′′0 = −(E · v′′0 + v0); (3m4)
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