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Abstract

The security of pairing-based cryptosystems is closely related to the difficulty of the pairing inver-
sion problem. Building on previous works, we provide further contributions on the difficulty of pairing
inversion. In particular, we revisit the approach of Kanayama-Okamoto who modified exponentiation
inversion and Miller inversion by considering an “auxiliary” pairing. First, by generalizing and simplify-
ing Kanayama-Okamoto’s approach, we provide a simpler approach for inverting generalized ate pairings
of Vercauteren. Then we provide a complexity of the modified Miller inversion, showing that the com-
plexity depends on the sum-norm of the integer vector defining the auxiliary pairing. Next, we observe
that the auxiliary pairings (choice of integer vectors) suggested by Kanayama-Okamoto are degenerate
and thus the modified exponentiation inversion is expected to be harder than the original exponentiation
inversion. We provide a sufficient condition on the integer vector, in terms of its max norm, so that the
corresponding auxiliary paring is non-degenerate. Finally, we define an infinite set of curve parameters,
which includes those of typical pairing friendly curves, and we show that, within those parameters, pair-
ing inversion of arbitrarily given generalized ate pairing can be reduced to exponentiation inversion in
polynomial time.

keywords: Ate pairing, elliptic curve, exponentiation inversion, Miller inversion, pairing
inversion

1 Introduction

Pairings on elliptic curves [1, 9, 12, 13, 17, 24, 28] play an important role in cryptography [2, 3, 4, 14, 26].
The security of pairing-based cryptosystems is closely related to the pairing inversion problem (PI). Thus
it is important to investigate the difficult of PI. In this paper, inspired by significant previous works [25,
21, 22, 23, 11, 19, 27, 15, 7], we provide further contributions toward understanding the difficulty of pairing
inversion.

In order to provide the context and the motivation for the main contributions of this paper, we review some
of the previous works [11, 15] on PI by recasting them for the generalized ate pairing of Vercauteren [24],
which currently is one of the most general constructions of cryptographic pairings. For a given integer
vector ε, the generalized ate pairing aε(∙, ∙) takes two points P,Q and produces a value z. It is carried out
in two steps: Miller step (M) [18] and Exponentiation step (E).

1. [Mε] γε = Zε (Q,P )

2. [Eε] z = γL
ε

∗Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, S. Korea. schang@ewha.ac.kr
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA. hong@ncsu.edu
‡Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, S. Korea. ejlee127@ewha.ac.kr
§Department of Mathematics, Ewha Womans University, Seoul 120-750, S. Korea. hsl@ewha.ac.kr

1



where Zε is a certain rational function depending on the integer vector ε and L is a certain natural number.
Depending on the choice of ε, one gets a different pairing (see Section 2.2 for details).

Pairing inversion takes Q, z and produces P . A natural approach for PI is first to invert the exponentiation
step (EI) and then to invert the Miller step (MI).

1. [EIε] Find the “right” γε from the set {γ : z = γL}

2. [MIε] Find P from γε = Zε (Q,P )

By the “right” γε, we mean the one satisfying the condition γε = Zε (Q,P ). This approach has been carefully
investigated in [11] for ate pairings.

In [15], Kanayama-Okamoto proposed an interesting modification of the natural approach for PI, which
amounts to the following:

1. [Choice] Choose an integer vector e (which might be different from ε), giving rise to another generalized
ate pairing, which we will call an auxiliary pairing, which may or may not be non-degenerate.

2. [EIε,e] Find the “right” γe from a certain set defined by exponential relations (See Section 2.3)

3. [MIe] Find P from γe = Ze (Q,P )

Again by the “right” γe, we mean the one satisfying the condition γe = Ze (Q,P ). From now on, we will
call EIε,e and MIe as the modified exponentiation inversion and the modified Miller inversion, respectively.
If e = ε, then EIε,e and MIe are exactly same as EIε and MIε. The key idea is to choose an integer vector e
which may be different from ε, but which may be better for PI. Specifically, Kanayama-Okamoto suggested
that the integer vector e is chosen from either coefficients of cyclotomic polynomials or (1, . . . , 1), because
such e yields Ze of low degree, making MIe easy.

Building upon the previous works, we provide the following contributions toward better understanding
of the difficulty of pairing inversion.

1. In Section 3, we provide another approach for pairing inversion (Approach 1), by simplifying the
step EIε,e of Kanayama-Okamoto’s approach. The simplicity of the proposed approach significantly
facilitates the subsequent investigation. We prove its correctness (Theorem 1), and then prove that
the simpler approach is equivalent to Kanayama-Okamoto’s original approach (Theorem 2).

2. In Section 4, we provide a complexity analysis of MIe (Theorem 3). It essentially says that the com-
plexity is bounded by ||e||21 where ||e||1 stands for the sum norm of the chosen integer vector e. Hence,
in order to reduce the complexity of MIe, one needs to choose e with small sum norm.

3. In Section 5, we provide an incremental result toward the understanding of the complexity of EIε,e. We
begin by observing that the degeneracy of the auxiliary pairing has a potential impact on the difficulty
of EIε,e (Proposition 6 and Remark 3). More precisely, if the auxiliary paring defined by the choice of
e is degenerate, then the exponential relation in EIε,e step becomes independent of the input z, that
is, the exponential relation does not capture any information about the input. As a result, EIε,e is
expected to be harder than EIε, when such e is chosen. If the auxiliary pairing corresponding to e is
non-degenerate, then EIε,e is likely as hard as EIε. Hence, in order to reduce the complexity of EIε,e, one
better choose e such that the auxiliary paring defined by e is non-degenerate. We provide a sufficient
condition on e, in terms of the max norm of e, so that the pairing corresponding to e is non-degenerate
(Theorem 7).

4. In Section 6, we discuss when pairing inversion can be reduced to exponentiation inversion. The
question was originally addressed by Kanayama-Okamoto [15]. They showed that, if the integer vector e
is chosen from either coefficients of cyclotomic polynomials or (1, . . . , 1), then MIe can be carried out
in polynomial time, reducing PI to the modified exponentiation inversion EIε,e. However according to
Corollary 6 of Vercauteren [24], such e makes the corresponding auxiliary pairing degenerate. Hence the
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modified exponentiation inversion EIε,e is expected to be harder than the exponentiation inversion EIε
and thus it is not clear that such choices of e allows the reduction of pairing inversion to exponentiation
inversion. In order to reduce pairing inversion to exponentiation inversion, it is safer to find e such that
it is small and the corresponding auxiliary pairing is non-degenerate. In this section, we investigate
the existence of such e in various cases. In particular, we define an infinite set of curve parameters
(Definition 1), which includes those of typical pairing friendly curves as in Table 1 of [10] and show
that, within those parameters, pairing inversion of an arbitrarily given pairing can be reduced to
exponentiation inversion in polynomial time (Theorem 9). We furthermore provide tighter upper
bounds on the number of bit operations needed by such reductions for several concrete cases (Table 1).

2 Preliminaries

In this section, we briefly review elliptic curves, the generalized ate pairings due to Vercauteren [24] and an
approach to pairing inversion due to Kanayama-Okamoto [15]. We encourage all the readers to skim through
them, as the notations and the assumptions therein will be extensively used throughout the subsequent
sections.

2.1 Elliptic curves

We fix the basic notations for elliptic curves. Let q be a power of a prime and let r be a prime such that
gcd(q, r) = 1. Let k be the embedding degree defined as the multiplicative order of q in F∗r , denoted by
k = ordr (q) , and L = (qk − 1)/r. Let E be an elliptic curve defined over Fq such that r | #E(Fq). Let
G1 = E[r] ∩ ker(πq − [1]) and G2 = E[r] ∩ ker(πq − [q]) where πq : E → E denotes the q-power Frobenius
endomorphism.

2.2 Vercauteren’s generalized ate pairings

We review the generalized ate pairings due to Vercauteren [24]. Let μr =
{

u ∈ F×
qk : ur = 1

}
. Let fn,Q, lP,Q

and vP be the normalized functions with divisors n (Q)−([n] Q)−(n− 1) (O) , (P )+(Q)+(−(P + Q))−3 (O)
and (P ) + (−P )− 2 (O) respectively, where O denotes the identity element of the group E. Let

g (X) = Xk − 1

λε (X) =
k−1∑

j=0

εjX
j

Wε(X) = det

(
g (X) λε(X)
g′ (X) λ′

ε(X)

)

for ε = (ε0, . . . , εk−1) ∈ Zk. Vercauteren [24] defined a map aε : G2×G1 → μr such that, for all P ∈ G1, Q ∈
G2,

aε(Q,P ) = Zε (Q,P )L
, where

Zε (Q,P ) =
k−1∏

j=0

fεj ,qjQ(P )
k−2∏

j=0

lεjqjQ, (εj+1qj+1+∙∙∙+εk−1qk−1)Q

v(εjqj+∙∙∙+εk−1qk−1)Q

(P )

and showed that it is a well-defined bilinear map if r | λε (q), r2 - λε(q) and r2 - g (q). He also showed that
aε is non-degenerate if and only if r2 - Wε(q).

From now on, we will assume r | λε (q) , r2 - λε(q), r2 - g (q) and r2 - Wε(q), so that aε is a non-
degenerate pairing. We will also assume, without losing generality, that gcd (ε0, . . . , εk−1) = 1 because the
vector ε is selected as small as possible for faster pairing computation. In summary, Vercauteren proposed
the following approach for pairings.
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In: P ∈ G1, Q ∈ G2

Out: z = aε(Q,P )

1. [Mε] γε ← Zε (P,Q)

2. [Eε] z ← γL
ε

2.3 Kanayama-Okamoto’s approach to pairing inversion

We review an approach for pairing inversion due to Kanayama-Okamoto [15]. They proposed the following
approach and proved its correctness.

In: Q ∈ G2, z ∈ μr

Out: P ∈ G1 such that z = aε(Q,P ).

1. [Choice] Choose e ∈ Zk such that r | λe(q) and gcd (e0, . . . , ek−1) = 1.

2. [EIε,e] Find γe by carrying out the following.

(a) Tj ← rem
(
qj , r

)
, the remainder of qj modulo r

(b) aj ← ordr(Tj)

(c) nj ←
T

aj
j −1

r

(d) Nj ← gcd(T aj

j − 1, qk − 1)

(e) dj ←
∑aj−1

h=0 T
aj−1−h
j qjh

(f) cj ← rem(dj , Nj)

(g) c′j ← c−1
j mod r.

(h) Ue ← 1
r

∑k−1
j=0 ejTj

(i) ψε ← Uε −
∑k−1

j=0 εjc
′
jnj

(j) Find the “right” γe from the set Θε,e,z =

{
τUe

∏k−1
j=0 α

ej
j

: ∃τ, αj ∈ F
×
qk α

Lcj

j = τLnj ∧ τLψε = z

}

3. [MIe] Find P from γe = Ze (P,Q) .

By the “right” γe, we mean the one satisfying the condition γe = Ze (Q,P ).

Remark 1. The above description is a bit different from the original one by Kanayama-Okamoto [15] in
three ways.

• They used the quantity
∏k−1

j=0 α
ej
j

τUe
for γe, which is the reciprocal of the quantity shown above. We

changed it in the current form, because it is more consistent with the notation used in Vercauteren’s
generalized pairings [24].

• They elaborated their idea for atei pairing (corresponding to a particular class of ε) and indicated that
it could be extended to the generalized ate pairing of Vercauteren [24] (corresponding to a general class
of ε). Indeed, such an extension is straightforward. The above description allows arbitrary ε.

• They elaborated their idea for particular choices of e such as coefficients of cyclotomic polynomials
or (1, . . . , 1). The extension to arbitrary e is also straightforward. The above description allows
arbitrary e.
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3 A Simpler Approach for Paring Inversion

In this section, we describe an approach for inverting the generalized ate pairing of Vacauteren (Approach 1).
We will use the notations introduced in Section 2.2. Comparing to Kanayama-Okamoto’s approach (See
Section 2.3), one sees that the modified exponentiation inversion step EIε,e is simplified. The simplicity of
the proposed approach facilitates the subsequent investigation. We prove its correctness (Theorem 1). Then
we prove that the simpler approach is equivalent to Kanayama-Okamoto’s original approach (Theorem 2).
We let a ≡n b abbreviate a ≡ b (mod n) for simplicity.

Approach 1. Pairing Inversion

In: Q ∈ G2, z ∈ μr

Out: P ∈ G1 such that z = aε(Q,P ).

1. [Choice] Choose e ∈ Zk such that r | λe(q) and gcd (e0, . . . , ek−1) = 1.

2. [EIε,e] Find the “right” γe from Γε,e,z =
{

γ ∈ F×
qk : γL = zδε,e

}
, where δε,e ≡r we/wε and wη =

1
r Wη (q).

3. [MIe] Find P from γe = Ze (P,Q) .

Theorem 1 (Correctness). If γe = Ze (Q,P ), then γL
e = zδε,e .

Proof. Recall that γL
e = ae(Q,P ) and z = aε(Q,P ). Hence we need to show that

ae(Q,P ) = aε(Q,P )δε,e .

Recall, from the proof of Theorem 4 in [24], that

fq,Q(P )L
λe(q)

r g′(q)( g(q)
r )−1

= fq,Q(P )Lλ′
e(q) ∙ ae(Q,P ),

and thus

ae(Q,P ) = fq,Q(P )
L
(

λe(q)
r g′(q)( g(q)

r )−1
−λ′

e(q)
)

= fq,Q(P )
L
(
−( g(q)

r )−1
we

)

.

Similarly, one gets

aε(Q,P ) = fq,Q(P )
L
(
−( g(q)

r )−1
wε

)

.

Thus,

ae(Q,P ) = fq,Q(P )
L
(
−( g(q)

r )−1
we

)

= aε(Q,P )wew−1
ε = aε(Q,P )δε,e .

We claim that the above approach is equivalent to that of Kanayama-Okamoto. Since the only difference
is in EIε,e step, we only need to show the equivalence for the step. Since EIε,e is essentially a search problem,
we need to show that the search spaces Γε,e,z and Θε,e,z are the same.

Theorem 2 (Equivalence to Kanayama-Okamoto’s approach). We have

Γε,e,z = Θε,e,z.

Proof. We will prove the inclusion in both directions.
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Claim 1: Θε,e,z ⊂ Γε,e,z

Let τ ∈ F×
qk and αj ∈ F

×
qk be such that α

Lcj

j = τLnj and τLψε = z. Let θ = τUe
∏k−1

j=0 α
ej
j

. We need to show

that θL = zδε,e . Note

θL =

(
τUe

∏k−1
j=0 α

ej

j

)L

=
τLUe

∏k−1
j=0 α

Lej

j

=
τLUe

∏k−1
j=0 τLejc′jnj

= τL(Ue−
∑k−1

j=0 ejc′jnj) = τLψe

As z = τLψε , we have θL = zψeψ′
ε where ψ′

ε ≡r 1/ψε. Since Ze (Q,P ) ∈ Θe,z as [15] showed, we also

have Ze (Q,P )L = zψeψ′
ε . Recall Ze (Q,P )L = aε (Q,P )wew′

ε = zwew′
ε . Thus,

θL = zψeψ′
ε = Ze (Q,P )L = aε (Q,P )wew′

ε = zwew′
ε = zδε,e .

Claim 2: Γε,e,z ⊂ Θε,e,z

Let γ ∈ F×
qk be such that γL = zδε,e . We need to find τ and αj such that α

Lcj

j = τLnj , τLψε = z

and γ = τUe
∏k−1

j=0 α
ej
j

. Let P ∈ G1 and Q ∈ G2 be such that z = aε(Q,P ). Such P,Q exist because the

map G1 → μr, P 7→ aε(Q,P ) is bijective if Q ∈ G2 − {O}. Let τ̃ = fr,Q(P ) and α̃j = fTj ,Q(P ) and

γ̃ = τ̃Ue
∏k−1

j=1 α̃
ej
j

. Let h ∈ Zk be such that
∑k−1

j=0 hjej = 1. Such h exists because gcd (e0, . . . , ek−1) = 1.

Let

τ = τ̃

αj = α̃j

(
γ̃

γ

)hj

Then we have

• τLψε = z : Note
τLψε = τ̃Lψε = z

• α
Lcj

j = τLnj : Note

α
Lcj

j =

(

α̃j

(
γ̃

γ

)hj
)Lcj

= α̃
Lcj

j

(
γ̃

γ

)Lhjcj

= α̃
Lcj

j

(
zδε,e

zδε,e

)hjcj

= τ̃Lnj = τLnj .

• γ = τUe
∏k−1

j=0 α
ej
j

: Note

γ = γ̃
γ

γ̃
=

τ̃Ue

∏k−1
j=0 α̃

ej

j

k−1∏

j=0

(
γ

γ̃

)hjej

=
τ̃Ue

∏k−1
j=0

(

α̃j

(
γ̃
γ

)hj
)ej

=
τUe

∏k−1
j=1 α

ej

j

.

4 Complexity of Modified Miller Inversion

In this section, we provide a bit-complexity of the modified Miller inversion step MIe. It essentially says
that, when q and k are fixed, the complexity is bounded by ||e||21 where ||e||1 stands for the sum norm of
the integer vector e. Hence in order to reduce the complexity of MIe, one needs to choose e with small sum
norm.
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Theorem 3 (Complexity of MIe). There exists an algorithm for MIe requiring at most

28 ||e||21 k2 (log2 q)3

bit operations.

Remark 2. Even though the above theorem is stated for the modified Miller inversion, it is in fact the
complexity of the Miller inversion for the generalized ate paring aη defined by arbitrary given integer vector η.

In the remainder of this section, we will prove Theorem 3. We will divide the proof into several lemmas
that are interesting on their own. We begin with a slight reformulation of the expression for the generalized
ate pairing [24], because it greatly simplifies the derivation of the above upper bound.

Lemma 4. Let e(+), e(−) ∈ Zk be

e
(+)
i =

{
ei if ei > 0
0 else

e
(−)
j =

{
ej if ej < 0
0 else

Then, for all Q ∈ G2 and all P ∈ G1, we have

Ze (Q,P ) =
Ze(+) (Q,P )
Z−e(−) (Q,P )

Proof. Let em1 , . . . , ems
> 0 and en1 , . . . , ent

< 0 and all other components of e are zero. Then we have

e(+)
mi

= emi

e(−)
nj

= enj

and all other components of e(+) and e(−) are zero. Note

Uer − en1q
n1 − ∙ ∙ ∙ − entq

nt = em1q
m1 + ∙ ∙ ∙+ emsq

ms

Thus

fem1qm1+∙∙∙+ems qms ,Q

=
s∏

i=1

femi
qmi ,Q

s−1∏

i=1

lemi
qmi Q,(emi+1qmi+1+∙∙∙+ems qms)Q

v(emi
qmi+∙∙∙+ems qms)Q

=
s∏

i=1

f
emi

qmi ,Q

s∏

i=1

femi
,qmi Q

s−1∏

i=1

lemi
qmi Q,(emi+1qmi+1+∙∙∙+ems qms)Q

v(emi
qmi+∙∙∙+ems qms)Q

=
s∏

i=1

f
emi

qmi ,Q(P ) ∙ Ze(+)(Q,P )
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fUer−en1qn1−∙∙∙−ent qnt ,Q

= fUer,Q

lUerQ,(−en1qn1−∙∙∙−ent qnt)Q

v(Uer−en1qn1−∙∙∙−ent qnt)Q

t∏

j=1

f−enj
qnj ,Q

t−1∏

j=1

l−enj
qnj Q,(−enj+1qnj+1−∙∙∙−ent qnt)Q

v(−enj+1qnj+1−∙∙∙−ent qnt)Q

= fUer,Q

t∏

j=1

f−enj
qnj ,Q

t−1∏

j=1

l−enj
qnj Q,(−enj+1qnj+1−∙∙∙−ent qnt)Q

v(−enj+1qnj+1−∙∙∙−ent qnt)Q

= fUe

r,QfUe,rQ

t∏

j=1

f
−enj

qnj ,Q

t∏

j=1

f−enj
,qnj Q

t−1∏

j=1

l−enj
qnj Q,(−enj+1qnj+1−∙∙∙−ent qnt)Q

v(−enj+1qnj+1−∙∙∙−ent qnt)Q

= fUe

r,Q(P )
t∏

j=1

f
−enj

qnj ,Q
(P ) ∙ Z−e(−)(Q,P )

Hence

fUe

r,Q(P )
t∏

j=1

f
−enj

qnj ,Q
(P ) ∙ Z−e(−)(Q,P )

=
s∏

i=1

f
emi

qmi ,Q ∙ Ze(+)(Q,P )

equivalently,
fUe

r,Q (P )
∏k−1

i=0 fei

qi,Q (P )
=

Ze(+)(Q,P )
Z−e(−)(Q,P )

From [24], we have

Ze (Q,P ) =
fUe

r,Q (P )
∏k−1

i=0 fei

qi,Q (P )
,

Hence we have

Ze (Q,P ) =
Ze(+)(Q,P )
Z−e(−)(Q,P )

Lemma 5. For every Q ∈ G2, θ ∈ F∗qk and e ∈ Z`, there exists a bivariate polynomial h over Fqk such that

(a) ∀(x, y) ∈ G1 θ = Ze(Q, (x, y)) =⇒ h(x, y) = 0

(b) degX (h) ≤ ||e||1

(c) degY (h) ≤ 2max{s, t}, where s := #{j : ej > 0} and t := #{j : ej < 0}.

Proof. Let Q ∈ G2, θ ∈ F∗qk and e ∈ Z`. We will construct a witness for the existentially quantified h. From
Lemma 14 of [11], we have

fμ, νQ (X,Y ) =

{
1 μ = 1

fμ,ν,1(X)+Y fμ,ν,2(X)
vμνQ

μ > 1

where fμ,ν,1, fμ,ν,2 ∈ Fqk [X] such that

deg(fμ,ν,1) ≤

⌊
μ + 1

2

⌋

deg(fμ,ν,2) ≤
⌊μ

2
− 1
⌋

8



From Lemma 4, we have

Ze (Q, (x, y)) =
Ze(+)(x, y)
Z−e(−)(x, y)

=:
A(x, y)
B(x, y)

for all (x, y) ∈ G1

where

A =
∏

1≤i≤s
emi

≥2

(
femi

,qmi ,1 + Y femi
,qmi ,2

) ∏

1≤j≤t
enj

≤−2

v−enj
qnj Q

s−1∏

i=1

lemi
qmi Q,(emi+1qmi+1+∙∙∙+ems qms)Q

t−1∏

j=1

v(−enj+1qnj+1−∙∙∙−ent qnt)Q

B =
∏

1≤j≤t
enj

≤−2

(
f−enj

,qnj ,1 + Y f−enj
,qnj ,2

) ∏

1≤i≤s
emi

≥2

vemi
qmi Q

t−1∏

j=1

l−enj
qnj Q,(−enj+1qnj+1−∙∙∙−ent qnt)Q

s−1∏

i=1

v(emi
qmi+∙∙∙+ems qms)Q

Finally, we propose the following h as a witness for the existential quantification:

h = A− θB.

We will show that h is indeed a witness satisfying the three conditions.

(a) ∀(x, y) ∈ G1, Ze(Q, (x, y)) = θ =⇒ h(x, y) = 0.

proof: Let (x, y) ∈ G1. Assume that θ = Ze(Q, (x, y)). Then Obviously θ = A(x,y)
B(x,y) . Thus h(x, y) =

A(x, y)− θB(x, y) = 0.

(b) degX (h) ≤ ||e||1
Proof: Note

degX(A) ≤
∑

ei≥2

⌊
ei + 1

2

⌋

+
∑

ei≤−2

1 +
∑

ei≥1

1 +
∑

ei≤−1

1

=
∑

ei≥2

⌊
ei + 1

2

⌋

+
∑

ei≤−2

1 +
∑

ei≥2

1 +
∑

ei=1

1 +
∑

ei=−1

1 +
∑

ei≤−2

1

=
∑

ei≥2

⌊
ei + 3

2

⌋

+
∑

ei≤−2

2 +
∑

ei=1

1 +
∑

ei=−1

1

≤
∑

ei≥2

|ei|+
∑

ei≤−2

|ei| +
∑

ei=1

|ei|+
∑

ei=−1

|ei|

= ||e||1

degX (B) ≤
∑

ei≤−2

⌊
−ei + 1

2

⌋

+
∑

ei≥2

1 +
∑

ei≤−1

1 +
∑

ei≥1

1

=
∑

ei≤−2

⌊
−ei + 1

2

⌋

+
∑

ei≥2

1 +
∑

ei≤−2

1 +
∑

ei=−1

1 +
∑

ei≥2

1 +
∑

ei=1

1

=
∑

ei≤−2

⌊
−ei + 3

2

⌋

+
∑

ei≥2

2 +
∑

ei=−1

1 +
∑

ei=1

1

≤
∑

ei≤−2

|ei|+
∑

ei≥2

|ei| +
∑

ei=−1

|ei|+
∑

ei=1

|ei|

= ||e||1
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Hence degX(h) ≤ ||e||1.

(c) degY (h) ≤ 2max{s, t}.
proof: Note

degY (A) ≤ s + s ≤ 2s

degY (B) ≤ t + t ≤ 2t

Hence degY (h) ≤ 2max{s, t}.

Proof of Theorem 3. To solve MIe for given Q ∈ G2 and e ∈ Z`, we have to find P = (x, y) ∈ G1 such that

θ = Ze(Q, (x, y))

y2 = x3 + ax + b (1)

From Lemma 5, there exists a bivariate polynomial h over Fqk such that

∀(x, y) ∈ G1 θ = Ze(Q, (x, y)) =⇒ h (x, y) = 0

degX (h) ≤ ||e||1
degY (h) ≤ 2max{s, t} ≤ 2||e||1.

Let
F (X,Y ) = Y 2 −X3 − aX − b

and let
u (X) = resY (h (X,Y ) , F (X,Y )) .

Then for all (x, y) ∈ G1, if θ = Ze(Q, (x, y)) then u (x) = 0 and

deg u ≤ degY F degX h + degY h degX F

≤ 2 ∙ ||e||1 + 2||e||1 ∙ 3

= 8 ||e||1 .

From [11], there exists an algorithm for solving a polynomial of degree d in Fq whose complexity is O(d2k2 (log q)3).
In fact, a more detailed analysis shows that the algorithm requires at most

4 d2 k2 (log2 q)3

bit operations. Since solving u(X) = 0 is enough to solve the system of equations (1), we see that MIe can
be solved within

4 (8 ||e||1)
2
k2 (log2 q)3 = 28 ||e||21 k2 (log2 q)3 .

bit operations.

5 Toward Complexity of Modified Exponentiation Inversion

It would be nice to have a complexity estimate for the modified exponentiation inversion EIε,e, just as for the
modified Miller inversion MIe (Theorem 3). Unfortunately, we do not have a result on it. We are not aware
of any results in the literature either. We expect it to be a very non-trivial task, most likely requiring patient
and long arduous efforts of many researchers, each making an incremental contribution. In this section, we
report on an incremental finding toward complexity of EIε,e.

Recall that EIε,e asks to find the “right” γe from the search space Γε,e,z . Hence it is reasonable to begin
with the study of the relationship between the search space Γε,e,z and the chosen vector e.

10



Proposition 6. We have

1. If the auxiliary pairing ae is degenerate, then Γε,e,z = Γε,ε,1 = μL.

2. If the auxiliary pairing ae is non-degenerate, then Γε,e,z = Γε,ε,zδε,e .

Proof. Note that δε,ε = 1. Recall that δε,e ≡r we/wε and we = 1
r We(q) ∈ Z. Therefore we have

ae is degenerate ⇐⇒ r2|We(q) ⇐⇒ we ≡r 0 ⇐⇒ δε,e ≡r 0

If ae is degenerate, then we have

Γε,e,z =
{

γ ∈ F×
qk : γL = z0

}
=
{

γ ∈ F×
qk : γL = 1

}
=
{

γ ∈ F×
qk : γL = 1δε,ε

}
= Γε,ε,1 = μL

If ae is non-degenerate, then we have

Γε,e,z =
{

γ ∈ F×
qk : γL = zδε,e

}
=
{

γ ∈ F×
qk : γL =

(
zδε,e

)δε,ε
}

= Γε,ε,zδε,e

Remark 3. From the above proposition, we observe the followings:

• If ae is degenerate then the search space of EIε,e is independent of the input z, that is, the exponential
relation in EIε,e does not capture any information about the input. Thus the modified exponentiation
inversion EIε,e will be most likely harder when ae is degenerate than when ae is non-degenerate.

• If ae is non-degenerate then the search space of EIε,e for an input z is the same as that of EIε for
another input zδε,e . Thus the modified exponentiation inversion EIε,e is likely as hard as the original
exponentiation inversion EIε.

Therefore, as a first step toward finding an efficient method for EIε,e, we better ensure that ae is non-
degenerate. The following theorem gives a sufficient condition on e, in terms of the max norm of e, for the
non-degeneracy of ae.

Theorem 7. Let e ∈ Zk be such that r | λe(q) and Φk(X) - λe(X). Let me = [Q(ζk) : Q(λe(ζk))]. If

||e||∞ <
r2me/ϕ(k)

ϕ(k)

then ae is non-degenerate.

Proof. We will prove the contra-positive. Assume that ae is degenerate. We need to prove

||e||∞ ≥
r2me/ϕ(k)

ϕ(k)
.

Let s ∈ Z be such that s ≡ q (mod r) and ordr2(s) = k. If we let s = q + ιr where ι = qk−1
r ∙ (−kqk−1)′,

then we have the desired s:

(q + ιr)k ≡r2 qk + kqk−1ιr

= qk + kqk−1 qk − 1
r

(−kqk−1)′r

= qk + kqk−1(−kqk−1)′(qk − 1)

= qk + (−1 + rD)(qk − 1) for some D ∈ Z

= 1 + r2D
qk − 1

r
≡r2 1

11



If (q + ιr)d ≡r2 1 for some d < k, then

r2 | qd + dqd−1ιr − 1

⇒ r | qd + dqd−1ιr − 1

⇒ r | qd − 1

This contradicts the fact k = ordr(q). Thus we have ordr2(s) = k.
Now, to prove our claim, we will use the fact that ae is degenerate if and only if r2 | λe(s); see [12]. Note

r2 | (sk − 1) =
∏

d|k Φd(s). Since r | Φd(s) = Φd(q + ιr) implies r | Φd(q), r divides only Φk(s) and r - Φd(s)
for all d < k. Therefore, r2 | Φk(s).

Let μe(X) = rem(λe(X), Φk(X)) and ζk ∈ C be a primitive k-th root of unity. Note that μe 6= 0 from
the assumption. Let v(X) ∈ Q[X] be the minimal polynomial of μe(ζk) over Q. Note that v(x) ∈ Z[x] as
μe(ζk) ∈ Z[ζk], the ring of integers of Q(ζk). Since v(μe(X)) is zero at ζk and Φk(x) is monic, we have

v(μe(X)) = Φk(X)h(X) for some h(X) ∈ Z[X].

From r2 | λe(s) and r2 | Φk(s), we have r2 | μe(s) and

v(0) ≡r2 v(μe(s))

≡r2 Φk(s)h(s)

≡r2 0

Therefore, we have either v(0) = 0 or |v(0)| ≥ r2. Noting that, by [6, Proposition 4.3.2] and the fact that v
is monic,

|v(0)| = |Norm(μe(ζk))| =
∣
∣NormQ(ζk)/Q(μe(ζk))

∣
∣1/me =

∣
∣
∣
∣
∣
∣

∏

gcd(j,k)=1

μe(ζ
j
k)

∣
∣
∣
∣
∣
∣

1/me

,

we conclude that v(0) 6= 0. Indeed if v(0) = 0, then Φk | λe, a contradiction to μe 6= 0. Thus, we have

r2 ≤ |v(0)|

=

∣
∣
∣
∣
∣
∣

∏

gcd(j,k)=1

μe(ζ
j
k)

∣
∣
∣
∣
∣
∣

1/me

≤




∏

gcd(j,k)=1

ϕ(k)||e||∞





1/me

= (ϕ(k)||e||∞)ϕ(k)/me ,

Therefore, we finally have
r2me/ϕ(k)

ϕ(k)
≤ ||e||∞.

6 Reducing Paring Inversion to Exponentiation Inversion

In this section, we discuss when pairing inversion can be reduced to exponentiation inversion. The question
was initiated and addressed by Kanayama-Okamoto [15]. They showed that, if the integer vector e is chosen
from either coefficients of cyclotomic polynomials or (1, . . . , 1), then MIe can be carried out in polynomial time
in log2 r and PI is reduced to the modified exponentiation inversion EIε,e. However according to Corollary 6
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of Vercauteren [24], such e makes the corresponding auxiliary pairing degenerate. Hence, from Proposition 6,
the modified exponentiation inversion EIε,e is expected to be harder than the exponentiation inversion EIε
and thus it is not clear that such choices of e allows the reduction of pairing inversion to exponentiation
inversion. In order to reduce pairing inversion to exponentiation inversion, it is safer to find e such that it is
small and the corresponding auxiliary pairing is non-degenerate. In this section, we investigate the existence
of such e in various cases (Theorem 9 and the subsequent examples in Table 1).

Definition 1. Let Cα be the set of all (r, k) ∈ Z2
>0 satisfying

C1: r1/ϕ(k) > ϕ (k)

C2: r1/ϕ(k) ≤ (log2 r)α

Remark 4. In the following figure, the bottom curve is from the condition C1 in Definition 1 and the top
curve is from the condition C2 when α = 10. Thus, the regions between the two curves is the set C10, The
black dots represent typical pairing friendly curves from Table 1 in [10]. Note that the parameters for the
typical pairing friendly curves belong to C10.

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35
ϕ(k)

log2 r

Lemma 8. If α > 1, then Cα is an infinite set.

Proof. We first observe that r = 9 and ϕ (k) = 2 satisfy the above two conditions. We will show that the
two curves defined by

r1/ϕ(k) = ϕ (k)

r1/ϕ(k) = (log2 r)α

do not meet when ϕ (k) > 2. The above system is equivalent to

r1/ϕ(k) = ϕ (k)

(log2 r)α = ϕ (k)

The first equation is equivalent to
log2 r = ϕ (k) log2 ϕ (k)

By substituting it into the second equation, we have

ϕ (k)α (log2 ϕ (k))α = ϕ (k) ,

which does not have a solution when ϕ (k) > 2. Thus the above two curves do not meet when ϕ (k) > 2.
Therefore, we conclude that Cα is an infinite set.

13



Theorem 9. Let α > 1, (r, k) ∈ Cα and r ≥
√

q. Then the inversion of every generalized ate pairing can
be reduced to exponentiation inversion in polynomial time in log2 r. Specifically, there exists e such that the
auxiliary pairing ae is non-degenerate and MIe can be carried out in at most

213 (log2 r)8α+3

bit operations.

Proof. Let (q, r) ∈ Cα and r ≥
√

q. We need to find a “witness” e such that ae is non-degenerate and MIe
can be carried out in the claimed number of bit operations.. From Minkowski’s theorem (see III.C of [24]),
there exists e ∈ Zk with r | λe(q) such that the last k − ϕ(k) elements of e are zero and

||e||∞ ≤ r1/ϕ(k)

We will take it as the witness.
First we show that ae is non-degenerate. Since the last k − ϕ(k) elements of e are zero, we have

λe(X) - Φk(X). From the condition that r1/ϕ(k) > ϕ (k), we have

r(2me−1)/ϕ(k)

ϕ(k)
≥

r1/ϕ(k)

ϕ(k)
> 1

and thus

||e||∞ ≤ r1/ϕ(k) < r1/ϕ(k) r
(2me−1)/ϕ(k)

ϕ(k)
=

r2me/ϕ(k)

ϕ(k)

Therefore, by Theorem 7, ae is non-degenerate.
Next we show that MIe can be carried out in the claimed number of bit operations. Let N be the

number of bit operations for MIe. Note that ||e||1 ≤ ϕ(k) ||e||∞ . Hence ||e||1 ≤ ϕ(k)r1/ϕ(k). Therefore, from
Theorem 3, we have

N ≤ 28
(
ϕ(k)r1/ϕ(k)

)2

k2 (log2 q)3

From the condition r ≥
√

q, we have

N ≤ 28
(
ϕ(k)r1/ϕ(k)

)2

k2 (2 log2 r)3 = 211 ϕ(k)2 r2/ϕ(k) k2 (log2 r)3

Since
√

k ≤
√

2ϕ(k), we have

N ≤ 211 ϕ(k)2 r2/ϕ(k) 4 ϕ(k)2 (log2 r)3

Since r1/ϕ(k) > ϕ (k) , we have

N < 211 r2/ϕ(k) r2/ϕ(k) 4 r4/ϕ(k) (log2 r)3 = 213 r8/ϕ(k) (log2 r)3

Since r1/ϕ(k) ≤ (log2 r)α
, we have

N < 213 (log2 r)8α (log2 r)3 = 213 (log2 r)8α+3

The upper bound in Theorem 9 is not tight. In Table 1, we provide tighter upper bounds for several
examples. For each example, the first row of the table shows k, ϕ(k), log2 r, α with which we can estimate
an upper bound of the bit complexity for reducing PI to EI, using Theorem 9. The next rows show actual
parameters q, r and a vector e ∈ Zϕ(k). The vector e is the one with smallest sum norm among the LLL
reduced vectors for the lattice with respect to q, r, k [24]. The vector e is verified to yield non-degenerate ae.
For the vector e, the last row has been calculated using Theorem 3, which estimates the bit complexity of
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Table 1: Estimates on time needed for reducing pairing inversion to exponentiation inversion
BN1 k, ϕ(k), log2 r, α 12, 4, 638, 18

q 641593209463000238284923228689168801117629789043238356871360716989515584497239494051781991794253
619096481315470262367432019698642631650152075067922231951354925301839708740457083469793717125223

r 641593209463000238284923228689168801117629789043238356871360716989515584497239494051781991794252
818101344337098690003906272221387599391201666378807960583525233832645565592955122034352630792289

e [730750817984886725259965488841096484605724196867, 0, 730750817984886725259965488841096484605724196
866, 1]

||e1|| ≈ 2160

bit ops < 2364 ≈ 3.67 × 1082 years

BN2 k, ϕ(k), log2 r, α 12, 4, 158, 6

q 206327671360737302491015800744139033450591027219

r 206327671360737302491015346511080613560608358413

e [−550292684801, 0, −550292684802, 1]

||e1|| ≈ 241

bit ops < 2118 ≈ 3.13 × 108 years

KSS1 k, ϕ(k), log2 r, α 40, 16, 270, 3

q 178326709713245217260627572968724387343855332468581993976702897877627553783690964596151952604627
17384342962017722458889

r 1033360998958592639176333946764816221704441278553743659647994766150169434118209921

e [−89353, −1, 0, 0, 0, 0, 0, 0, 0, 0, −178706]

||e1|| ≈ 219

bit ops < 281 ≈ 2 days

KSS2 k, ϕ(k), log2 r, α 36, 12, 169, 2

q 27515431606313682600546511947515923267058275939278041592973834669

r 705708527028528420873135632253194587092728456673193

e [644, 966, 2899, −2255, 8697, 10307, 12562, −2577, 5798, 0, 6120, 2577]

||e1|| ≈ 216

bit ops < 274 ≈ 10 minutes

CP1 k, ϕ(k), log2 r, α 23, 22, 257, 2

q 145811957602744608340173404592073971131183909622716668761512762300485126800359788580000631375404
5399948707280439848940248906689382680399441035897388657793

r 171162823577658908923577123057263396229244166914410717458536445501121285956693

e [−196, −527, −851, −89, −648, 115, 1086, −14, 547, −1053, 409, −611, 680, −1368, −891, −1808, −3226, −166
4, 577, 22, 213, 15, 0]

||e1|| ≈ 215

bit ops < 273 ≈ 5 minutes

C6.6 k, ϕ(k), log2 r, α 33, 20, 265, 2

q 171560529093254543159492466399817736252453023032471929261478201236234936574795328339355710502059

r 57482237782367522519498203534411140773179333661921340353191781776555783843120129

e [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, −9727, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

||e1|| ≈ 214

bit ops < 270 ≈ 48 seconds

CP2 k, ϕ(k), log2 r, α 37, 36, 180, 1

q 680636298409565134719382266884377703639421309150423676134085574745224265663903130936241446716295
581618258151

r 899466048605063172720901741349859664476910393125914353

e [12, −1, −26, 8, 2, 15, 15, 17, 7, −6, 31, −6, −5, 21, 4, 4, 14, 4, 3, 23, −12, 6, −9, 0, 4, 2, 15, −8, 0, −3, −2, 11, 17,
7, 1, 1, 0]

||e1|| ≈ 29

bit ops < 261 ≈ 1 seconds
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MIe on the curve more precisely. The estimated upper bounds on the computing times are based on the
assumption that one uses the currently fastest super-computer [8], which can perform about

17.59 ∙ 1015 flops × 1000
bops
flops

= 264bops

(bit operations per second).
First two examples BN1 and BN2 are the biggest and the smallest values respectively taken from Table 1

in [20]. Since ϕ(k) for the BN curves [5] are small (ϕ(k) = 4), they easily satisfy the condition C1 in
Definition 1 but large α values are needed to satisfy C2. Therefore, from Theorem 9, we expect that it will
be difficult to reduce PI to EI for BN curves. The tighter upper bound on the bit operations on the last row,
based on Theorem 3, supports the observation.

Next two examples are the KSS curves described in Example 4.6 and Example 4.7 in [16]. The parameters
are obtained by evaluating the polynomials in the Examples in [16] at x0 = −188 for KSS1 and x0 = 107 for
KSS2. The example CP1 is constructed by Cocks-Pinch method to have small α and “typical” parameters
(k, log2 r) in Table 1 in [10]. The example C6.6 is obtained from evaluating the polynomials in Construction
6.6 with k = 33 in [10] at x0 = −9727, which is also a pairing-friendly curve (Definition 2.3 in [10]). The ϕ(k)
for these curves are small enough to satisfy C1, and big enough for small α values to satisfy C2. Therefore,
from Theorem 9, we expect that it will be relatively easy to reduce PI to EI for these curves. The tighter
upper bound on the bit operations on the last row, based on Theorem 3, supports the observation.

The last example CP2 is constructed by Cocks-Pinch method for big ϕ(k) and α = 1. The curve does
not satisfy the condition C1 and thus we cannot use Theorem 9. However the tighter upper bound on the
bit ops on the last row, based on Theorem 3, shows that it will be easy to reduce PI to EI for the curve.
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