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Abstract: In this paper, to match a lightweight digital signing scheme of which the length of 
modulus is between 80 and 160 bits, a lightweight hash function is proposed. It is based on 
MPP and ASPP intractabilities, and regards a short message or a message digest as an input 
which is treated as only one block. The lightweight hash function contains two algorithms: an 
initialization algorithm and a compression algorithm, and converts a string of n bits into 
another of m bits, where 80 ≤ m ≤ n ≤ 4096. The two algorithms are described, and their 
securities are analyzed from several aspects. The analysis shows that the lightweight hash is 
one-way, weakly collision-free, strongly collision-free along a proof, and especially resistant to 
birthday attack and meet-in-the-middle attack with the concrete security of O(2m) at present, 
and its compression algorithm has the time complexity of O(n m2) bit operations. Moreover, the 
lightweight hash with short input and small computation may be used to reform a classical hash 
with output of n bits and security of O(2n / 2) into a compact hash with output of n / 2 bits and 
the equivalent security. Thus, it opens a door to convenience for utilization of lightweight 
digital signing schemes. 

Keywords: Bit long-shadow; Lightweight hash function; Compression algorithm; Birthday 
attack; Multivariate permutation problem; Anomalous subset product problem 

1  Introduction 

In recent years, the ECC-160 digital signing scheme, an analogue of the ElGamal public key 
cryptosystem based on the discrete logarithm problem (DLP) in an ellipse curve group over a finite 
field [1][2], and some lightweight digital signing schemes are utilized for RFID (Radio-Frequency 
Identity) tags or non-RFID (non-Radio-Frequency Identity) tags [3][4][5]. A RFID tag contains an IC 
chip which is used to store signatures and other data, but an non-RFID tag contains no IC chip because 
a short signature from a lightweight or ultra-lightweight signing scheme may be symbolized in short 
length, and printed directly on the paper of a tag. Now, such tags are applied to identification, 
authentication, or anti-forgery of financial-notes, certificates, diplomas, and commodities, particularly 
including food and drug. 

It is well understood that we first need to extract the digest of a message by employing a hash 
function before signing the message. A hash function ordinarily consists of a compression function and 
the Merkle-Damgård iterative structure [6][7]. Let ĥ be a hash function, and generally, it has the 
following properties [8][9]: 

 given a message w, it is very easy to calculate the message digest d = ĥ (w), where d is also called 
a hash output; 

 given any digest d, it is very hard to calculate the message w according to d = ĥ (w), namely ĥ is 
one-way;  

 given any message w, it is computationally infeasible to find another message w′ such that ĥ(w) = 
ĥ(w′), namely ĥ is weakly collision-free; 

 it is computationally infeasible to find any two distinct messages w and w′ such that ĥ(w) = ĥ(w′), 
namely ĥ is strongly collision-free. 

The word “infeasible” means that some problem cannot be solved at least in polynomial time. 
Sometimes,  is optional with some users of a hash function because , , and  are enough for 
most of applications of the users. 

At present, SHA-1, SHA-256, and SHA-384 announced by NIST are among the hash functions 
which are believed to be secure [8][10], though cannot resist birthday attack of which the time 
complexity is approximately O(2 m / 2), where m is the bit-length of a message digest, namely a hash 
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output. The bit-lengths of outputs of these functions are 160, 256, and 384 respectively. When any of 
the three is matched practically with a lightweight signing scheme of which the bit-length of modulus is 
between 80 and 160, the bit-length of output of the hash function must be adapted to the range between 
the bit-length of security and the bit-length of modulus of the singing scheme, where the bit-length of 
security represents the security of the signing scheme by the bit. Take the ECC-160 scheme, its security 
is 280, namely the best algorithm for cracking ECC-160 will need 280 operation steps currently, and 
hence, the bit-length of its security is 80. 

Assume that the bit-length of security and the bit-length of modulus of a lightweight signing scheme 
are both 80. When SHA-1 and the lightweight signing scheme are paired, the bit-length of output of 
SHA-1 must be compressed to 80 while the security of it remains unchanged. Again when SHA-256 
and ECC-160 are paired, the bit-length of output of SHA-256 must be compressed to the range from 80 
to 160 while the security of it should be at least 280. Notice that owing to birthday attack, the securities 
of SHA-1 and SHA-256 are commonly thought to be 280 and 2128 separately, namely the bit-lengths of 
securities of the two functions are 80 and 128 separately. 

Therefore, it is a problem how we compress a short message or a message digest from a classical 
hash function securely in order that we can employ a lightweight signing scheme in practice. We will 
discuss the problem in this paper. 

In Section 2 of the paper, several relevant definitions are given. In Section 3, the two algorithms of a 
lightweight hash function called JUNA are described. In Section 4, the security of the lightweight hash 
function is analyzed. In Section 5, the time complexity of the compression algorithm is dissected. In 
Section 6, the reformation of a classical hash function is illustrated. 

The paper has two dominant novelties:  designing an initialization algorithm which makes the 
lightweight hash be capable of resisting birthday attack;  designing a compression algorithm due to 
which the lightweight hash can resist existent various attacks, especially meet-in-the-middle attack. The 
significance of the paper lies in the thing that a lightweight hash function of which the bit-length of 
output and the bit-length of security may equal each other is first proposed by the authors while the 
bit-length of output of a classical hash function is double the bit-length of security of it, namely when 
the bit-length of output of the lightweight hash function is m, its security is also up to O(2m), but not 
O(2m

 
/

 
2). 

Throughout the paper, unless otherwise specified, an even number n ≥ 80 is the bit-length of a short 
message (or a message digest) or the item-length of a sequence, the sign % denotes “modulo”,  does 
“M – 1” with M prime, lg x denotes a logarithm of x to the base 2, ¬bi does NOT operation of a bit bi, Þ 
does the maximal prime allowed in coprime sequences, |x| does the absolute value of a number x, x 
does the order of x % M, S  does the size of a set S, and gcd(x, y) represents the greatest common 
divisor of two integers x and y. Without ambiguity, “% M ” is usually omitted in expressions. 

2  Several Definitions 

Before the two algorithms of a lightweight hash function are described, three important definitions 
should be presented, although they are already given in [11]. 

2.1  A Coprime Sequence 

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j), either 
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k ≠ i, j ∈ [1, n], these integers 
are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}. 

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence 
whose elements are pairwise coprime is a coprime sequence. 

Property 1: Let {A1, …, An} be a coprime sequence. If we randomly select m ∈ [1, n] elements from 
{A1, …, An}, and construct a subset {Ax1, …, Axm}, the subset product G = ∏ 

m 
i=1 Axi = Ax1…Axm is 

uniquely determined, namely the mapping from {Ax1, …, Axm} to G is one-to-one.  
Refer to [11] for its proof. 

2.2  A Bit Shadow and a Bit Long-Shadow 

Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḇ i with i ∈ [1, n] is called a bit shadow if it comes 
from such a rule: (1) ḇ i = 0 if bi = 0; (2) ḇ i = 1 + the number of successive 0-bits before bi if bi = 1; or (3) 
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ḇ i = 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the rightmost 
1-bit if bi is the leftmost 1-bit. 

Notice that (3) of this definition is slightly different from that in [11]. 
Fact 1: Let ḇ1…ḇ n be the bit shadow string of b1…bn ≠ 0. Then there is ∑ 

n 
i=1 ḇ i = n. 

Proof. 
According to Definition 2, every bit of b1…bn is considered into ∑ 

k 
i=1 ḇ xi, where ḇ x1, …, ḇ xk are 1-bit 

shadows in the string ḇ 1…ḇ n, and there is ∑ 

k 
i=1 ḇ xi = n. 

On the other hand, there is ∑ 

n−k 
j=1  ḇ yj = 0, where ḇ y1, …, ḇ yn − k are 0-bit shadows. 

In total, there is ∑ 

n 
i=1 ḇ i = n.                                                          

Property 2: Let {A1, …, An} be a coprime sequence, and ḇ1…ḇ n be the bit shadow string of b1…bn ≠ 
0. Then the mapping from b1…bn to G = ∏ 

n 
i=1 Ai 

ḇi is one-to-one. 
Proof. 
Firstly, let b1…bn and b′1…b′n be two different nonzero bit strings, and ḇ1…ḇ n and ḇ′1…ḇ′n be the two 

corresponding bit shadow strings.  
If ḇ1…ḇ n = ḇ′1…ḇ′n, then by Definition 2, there is b1…bn = b′1…b′n.  
In addition, for any arbitrary bit shadow ḇ1…ḇ n, there always exists a preimage b1…bn. Thus, the 

mapping from b1…bn to ḇ1…ḇ n is one-to-one. 
Secondly, obviously the mapping from ḇ 1…ḇ n to ∏ 

n 
i=1 Ai 

ḇi is surjective. 
Presuppose that ∏ 

n 
i=1 Ai 

ḇi = ∏ 

n 
i=1 Ai 

ḇ ′i for ḇ1…ḇ n ≠ ḇ′1…ḇ′n. 
Since {A1, …, An} is a coprime sequence, and Ai 

ḇi either equals 1 with ḇ i = 0 or contains the same 
prime factors as those of Ai with ḇ i ≠ 0, we can obtain ḇ1…ḇ n = ḇ′1…ḇ′n from ∏ 

n 
i=1 Ai 

ḇi = ∏ 

n 
i=1 Ai 

ḇ ′i, which is 
in direct contradiction to ḇ1…ḇ n ≠ ḇ′1…ḇ′n.  

Therefore, the mapping from ḇ 1…ḇ n to ∏ 

n 
i=1 Ai 

ḇi is injective [12]. 
In summary, the mapping from ḇ 1…ḇ n to ∏ 

n 
i=1 Ai 

ḇi is one-to-one, and further the mapping from b1…bn 
to ∏ 

n 
i=1 Ai 

ḇi is also one-to-one.                                                           
Definition 3: Let ḇ 1…ḇ n be a bit shadow string of b1…bn ≠ 0. Then  i = ḇ i 2

 
i with i ∈ [1, n] is called 

a bit long-shadow, where  i = bi + (−1) 
2(i – 1) / n (n / 2) = 0 or 1. 

Fact 2: Let 1… n be a bit long-shadow string of b1…bn ≠ 0. Then there is n ≤ ∑ 

n 
i=1  i ≤ 2n. 

Proof.  
By Definition 3 and Fact 1, we have 

∑ 

n 
i=1  i = ∑ 

n 
i=1 ḇ i 2

 
i and ∑ 

n 
i=1 ḇ i = n. 

If every bi = 1, namely every  i = 1, then 
∑ 

n 
i=1  i = ∑ 

n 
i=1 ḇ i 2

 
i = 2∑ 

n 
i=1 ḇ i = 2n. 

Again, by Definition 3, not every bit of b1…bn is zero. 
If there exists only a nonzero bit in b1…bn ― bx = 1 with x ∈ [1, n] for example, then  

∑ 

n 
i=1  i = ∑ 

n 
i=1 ḇ i 2

 
i = ḇ x 2

 
x = ḇ x = n, 

where  x = bx + (−1) 
2(x – 1) / n (n / 2) = 0 due to bx being the unique nonzero bit. 

Thus, it holds that n ≤ ∑ 

n 
i=1  i ≤ 2n.                                                    

Property 3: Let 1… n be a bit long-shadow string of b1…bn ≠ 0. Then the mapping from b1…bn to 
1… n is one-to-one. 

Proof. 
On one hand, assume that b1…bn ≠ 0 is known. 
It is known from Definition 3 that  i = ḇ i 2

 
i for each i, where  i = bi + (−1) 

2(i – 1) / n (n / 2). 
Because when b1…bn is known, ḇ 1…ḇ n and  1…n are respectively determined, 1… n can also be 

determined uniquely. 
On the other hand, assume that 1… n is known. 
According to  i = ḇ i 2i and  i = 0 with ḇ i = 0, where i = bi + (−1) 

2(i – 1) / n (n / 2), we can determinate bi for i 
= 1, …, n as follows. 

 Case of  i = 0 
If  i = 0, then ḇ i = 0, and set bi = 0. 
 Case of  i ≠ 0 
If  i ≠ 0, then ḇ i ≠ 0, and set bi = 1. 
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In this way, the value of every bi can be determined uniquely. 
In summary, the mapping from b1…bn to 1… n is one-to-one.                               

2.3  A Lever Function 

The coming hash function consists of the two algorithms: initialization algorithm and compression 
algorithm, and employs the concepts of a private key and a public key. 

In the initialization algorithm of the new hash function, Ci ≡ (Ai W 
ℓ

 
(i)) 

δ (% M) for i = 1, …, n is a key 
transform from a private key to a public key, where ℓ(i) is an exponent. 

Definition 4: The secret parameter ℓ(i) in the key transform of a public key cryptosystem or a hash 
function over the prime field (M) is called a lever function, if it has the following features: 

 ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {1, …, }; 
 the mapping between i and ℓ(i) is established randomly without an analytical expression; 
 an attacker has to be faced with all the permutations of elements in Ω when inferring a related 
private key from a public key; 
 the owner of the private key only need to considers the accumulative sum of elements in Ω when 
recovering a related plaintext from a ciphertext through the cryptosystem. 

Feature  and  make it clear that if n is large enough, it is infeasible for the attacker to search all 
the permutations of elements in Ω exhaustively while the decryption of a normal ciphertext is feasible 
in time being polynomial in n. Thus, the amount of calculation on ℓ(.) at “a public terminal” is large, 
and the amount of calculation on ℓ(.) at “a private terminal” is small. 

Notice that in the REESSE1+ cryptosystem [11], a public key is used for encryption, and a private 
key is used for decryption. 

Property 4 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ Ai W ℓ 
(i) (% M) for i = 1, …, n, where ℓ(i) ∈ Ω 

= {5, …, n + 4} and Ai ∈ Λ = {2, …, Þ}. Then ∀ W ∈ [1, ] with W  ≠ , and ∀ x, y, z ∈ [1, n] with z 
≠ x, y, 

 when ℓ(x) + ℓ(y) = ℓ(z), there is 
ℓ(x) + W  + ℓ(y) + W  ≠ ℓ(z) + W  (% ); 

 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist 
Cx ≡ A′x W ′ ℓ′(x 

), Cy ≡ A′y W ′ ℓ′(y 

), and Cz ≡ A′z W ′ ℓ′(z 

) (% M) 
such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (% ) with A′z ≤ Þ. 

Proof. 
 It is easy to understand that  

W 
ℓ(x

 

) ≡ W 
ℓ(x

 

)
 
+

 
W

 

, W 
ℓ(y

 

) ≡ W 
ℓ(y

 

)
 
+

 
W

 

, and W 
ℓ(z

 

) ≡ W 
ℓ(z

 

)
 
+

 
W

 

 (% M). 
Due to W  ≠ , 2W  ≠ W , and ℓ(x) + ℓ(y) = ℓ(z), it follows that  

ℓ(x) + W  + ℓ(y) + W  ≠ ℓ(z) + W  (% ). 
However, it should be noted that when W  = , there is ℓ(x) + W  + ℓ(y) + W  ≡ ℓ(z) + W  (% ). 

 Let Ōd be an oracle on solving a discrete logarithm problem. 
Suppose that W ′ ∈ [1, ] is a generator of ( * 

M , ·). 
In light of group theories, ∀ A′z ∈ {2, …, Þ}, the congruence 

Cz ≡ A′z W ′ ℓ′ (z 

) (% M) 
has a solution. Then, ℓ′(z) may be taken through Ōd. 
∀ ℓ′(x) ∈ [1, ], and let ℓ′(y) ≡ ℓ′(z) – ℓ′(x) (% ). 
Further, from the congruences Cx ≡ A′x W ′ ℓ′ (x 

) (% M) and Cy ≡ A′y W ′ ℓ′ (y 

) (% M), we can obtain many 
distinct pairs (A′x, A′y), where A′x, A′y ∈ (1, M), and ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (% ). 

In this way, Property 4.2 is proven.                                                    
Notice that letting Ω = {5, …, n + 4}, namely every ℓ(i) ≥ 5 makes seeking W from W ℓ 

(i) ≡ Ai
–1

 Ci (% 
M) face an unsolvable Galois group when Ai is guessed [13], and especially when Ω is any subset 
containing n elements of {1, …, }, Property 4 still holds. 

Property 4 manifests that continued fraction attack on Ci ≡ Ai W 
ℓ

 
(i) (% M) by theorem 12.19 in 

Section 12.3 of [14] will be utterly ineffectual as long as Ω are fitly selected [15]. 

3  Design of a Lightweight Hash Function 

Assume that the bit-length of modulus of a lightweight signing scheme is m, the bit-length of a short 
message or a message digest from a classical hash function is n, and there is 80 ≤ m ≤ n ≤ 4096. 
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There does not exist the unified or standard definition of a lightweight hash function, and therefore, 
we say that a hash function is regarded as lightweight if it has short input, short output, and small 
computation simultaneously.  

For example, the Chaum-van Heijst-Pfitzmann hash function, which is based on a discrete logarithm 
problem, and believed to be strongly collision-free presently (however, should be nonresistant to 
birthday attack because the security will be less than 2lg p / 2), may be regarded as lightweight [16]. It is 
defined as follows: 

ĥ: w1, w2  ĥ(w1, w2) = αw1 β w2 % p  ({0, ..., q − 1}2 → p − {0}), 
where w1 and w2 are the two complementary parts of a short message, p and q = (p − 1) / 2 are two big 
primes, and α and β are two primitives of p. Evidently, it is difficult to know the value of logα β. 

The JUNA lightweight hash function contains two algorithms of which the securities are expected to 
be each O(2m) magnitude. 

3.1  Initialization Algorithm 

Let Λ′ = {2, 3, …, Þ | Þ ≥ 218}. 
Again let Ω ′ ⊂ {±5, ±7, …, ±(2n + 3)} and subjected to x + y ≠ 0 ∀ x, y ∈ Ω ′ with Ω ′  = n, where 

“±x” means the coexistence of “+x” and “−x”, which indicates that Ω ′ is one of 2n potential sets. 
This algorithm is employed by an authoritative third party or a digital signer, and only needs to be 

executed one time. 
S1: Randomly generate a coprime sequence {A1, …, An} with Ai ∈ Λ′. 
S2: Find a prime M with lg M = m such that 

gcd(q,  / 2) = 1 ∀ q ∈ [1, 8n(n + 1)]. 
S3: Pick W, δ ∈ (1,  ) making gcd(δ,  ) = 1, W  ≥ 2m – 18. 
S4: Randomly produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω ′. 
S5: Compute Ci ← (Ai W ℓ

 

(i))δ % M for i = 1, …, n. 
At last, ({Ci}, M) is regarded as the initial value of a compression algorithm, and public to people. 

The private key ({Ai}, {ℓ(i)}, W, δ) may be discarded, but must not be divulged. 
By Definition 3, if there exists only a nonzero bit in b1…bn, there is ∑ 

n 
i=1  i = n. If there exists only 

two nonzero bits ― bx = by = 1 with x, y ∈ [1, n] and y = x + n / 2 for example, there are 
∑ 

n 
i=1  i =  x +  y = ḇ x 2 

x + ḇ y 2 

y = 2(ḇ x + ḇ y) = 2n 
and  

∑ 

n 
i=1  i ℓ(i) =  x ℓ(x) +  y ℓ(y) ≤  x(2n + 3) +  y(2n − 1) 

< ( x +  y)(2n + 3) = 2n(2n + 3). 
Hence at S2, the product 8n(n + 1) is obtained (see Section 4.4.3) according to  

ḵ − ḵ  ′ = ∑ 

n 
i=1  i ℓ(i) − ∑ 

n 
i=1  ′i ℓ(i) < 2n(2n + 3) + 2n(2n + 1) = 8n(n + 1). 

Definition 5: Given the sequence {Ci} and the prime M, seeking the original {Ai}, {ℓ(i)}, W, δ from 
Ci ≡ (Ai W 

ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | Þ ≥ 218} and ℓ(i) ∈ {±5, ±7, …, ±(2n + 3)} for i = 1, …, n 
(but ℓ(x) + ℓ(y) ≠ 0 ∀ x, y ∈ [1 ,  n ] ) is referred as the multivariate permutation problem, shortly MPP. 

Property 5: The MPP Ci ≡ (Ai W 
ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | Þ ≥ 218} and ℓ(i) ∈ {±5, ±7, …, 

±(2n + 3)} for i = 1, …, n (but ℓ(x) + ℓ(y) ≠ 0 ∀ x, y ∈ [1 ,  n ] ) is computationally at least equivalent to 
DLP in the same prime field. 

See Section 4.1 for its proof. 

3.2  Compression Algorithm 

Let b1…bn ≠ 0 be a short message or a message digest from a classical hash function ĥ. 
Assume that ({C1, …, Cn}, M) is an initial value, where M is a prime whose bit-length is m with 80 ≤ 

m ≤ n ≤ 4096. 
S1: Set k ← 0, i ← 1. 
S2: If bi = 0, 

S2.1: let k ← k + 1, ḇ i ← 0; 
else 

S2.2: if i = k + 1, let s ← i; 
S2.3: let ḇ i ← k + 1, k ← 0. 

S3: Let i ← i + 1. 
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If i ≤ n, go to S2. 
S4: Compute ḇ s ← ḇ s + k. 
S5: Compute ḏ ← ∏ 

n 
i=1 Ci

i % M, 
where  i = ḇ i 2 

i with  i = bi + (−1) 
2(i – 1) / n (n / 2). 

So, the digest ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) of m bits is obtained. 
It is not difficult to understand that there exists max(1, …,  n) ≤ n since b1…bn is a nonzero bit 

string, and there is  i = ḇ i 2
 
i with  i = bi + (−1) 

2(i – 1) / n (n / 2) = 0 or 1. 
Definition 6: Given the digest ḏ and the prime M, seeking the original 1… n from ḏ ≡ ∏ 

n 
i=1 Ci

i (% 

M), where  i = ḇ i 2 

i with  i = bi + (−1) 
2(i – 1) / n (n / 2) and ḇ i being a bit shadow is referred as the anomalous 

subset product problem, shortly ASPP. 
Property 6: The ASPP ḏ ≡ ∏ 

n 
i=1 Ci

i (% M), where  i = ḇ i 2 

i with  i = bi + (−1) 
2(i – 1) / n (n / 2) and ḇ i being a 

bit shadow is computationally at least equivalent to DLP in the same prime field. 
See Section 4.3 for its proof. 

4  Security Analysis of the Lightweight Hash Function 

Because a hash function must be one-way, weakly collision-free, and sometimes required to be 
strongly collision-free, the lightweight hash function of a round of iteration should also be at least 
one-way and weakly collision-free. 

It is should be noted that lg M = m, but not n, is the security dominant parameter of the lightweight 
hash function. 

Definition 7: Let A and B be two computational problems. A is said to reduce to B in polynomial 
time, written as A ≤ 

P 
T  B, if there is an algorithm for solving Α which calls, as a subroutine, a 

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm 
for solving B [8][17]. 

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter 
what the running time of the oracle is, it does not influence the result of the comparison. 

A ≤ 

P 
T  B means that the difficulty of A is not greater than that of B, namely the running time of the 

fastest algorithm for solving A is not greater than that of the fastest algorithm for solving B when all 
polynomial times are treated as being pairwise equivalent. Concretely speaking, if A cannot be solved 
in polynomial or subexponential time, correspondingly B cannot also be solved in polynomial or 
subexponential time; and if B can be solved in polynomial or subexponential time, correspondingly A 
can also be solved in polynomial or subexponential time. 

Obviously, Definition 7 gives a partial order relation among the complexities or hardnesses of 
problems [18]. 

In addition, for convenience sake, let Ĥ(y = f(x)) represent the complexity or hardness of solving a 
problem y = f(x) for x [19]. 

4.1  Proof of Property 5 on MPP 

In Section 3.1, MPP is defined as Ci ≡ (Ai W 
ℓ (i))δ (% M) with Ai ∈ Λ′ = {2, 3, …, Þ | Þ ≥ 218} and ℓ(i) 

∈ Ω ′ ⊂ {±5, ±7, …, ±(2n + 3)} for i = 1, …, n. Considering that Ω ′ ⊂ {±5, ±7, …, ±(2n + 3)} is 
indeterminate and different from Ω = {5, 7, …, 2n + 3} in [11], and the value of Þ is larger than the old 
one in [11], we specially give the proof of property 5. 

Proof.  
Firstly, systematically consider Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n. 
Assume that each gi ≡ Ai W ℓ (i) (% M) is a constant, where ℓ(i) ∈ {±5, ±7, …, ±(2n + 3)} with ℓ(x) + 

ℓ(y) ≠ 0 ∀ x, y ∈ [1 ,  n ] . 
Let 

gi ≡ g 

xi (% M), and zi ≡ δ xi (% ), 
where g ∈ * 

M be a generator. 
Then, there is 

Ci ≡ gi 

δ ≡ g 
δ

 
xi (% M) for i = 1, …, n. 

Again let δ xi ≡ zi (% ). Then 
Ci ≡ g 

zi (% M) for i = 1, …, n. 
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The above expression corresponds to the fact that in the ElGamal cryptosystem with many users 
sharing a modulus and a key generator, User 1 acquires a private key z1 and a public key C1, …, User n 
acquires a private key zn and a public key Cn. It is well known that in this case, the attack of adversaries 
is still faced with DLP, namely seeking zi from Ci ≡ g 

zi (% M) for i = 1, …, n is equivalent to DLP [8]. 
Thus, when every gi is weakened to a constant, seeking δ from Ci ≡ gi 

δ (% M) for i = 1, …, n is 
equivalent to DLP, which indicates that when every gi is not a constant, seeking gi and δ from Ci ≡ gi 

δ 
(% M) for i = 1, …, n is at least equivalent to DLP. 

Secondly, singly consider a certain Ci, where the subscript i is designated. 
Assume that Ōm(Ci, M, Ṟ) is an oracle on solving Ci ≡ gi 

δ (% M) for gi and δ, where i is in {1, …, n}, 
and Ṟ is a constraint on gi such that the original gi and δ can be found. 

Let y ≡ g 
x (% M) be of DLP. Then, by calling Ōm(y, M, g), x can be obtained. 

According to Definition 7, there is 
Ĥ(y ≡ g 

x (% M)) ≤ 

P 
T  Ĥ(Ci ≡ gi 

δ (% M)), 
which means that when only a certain gi is known, seeking gi and δ from Ci ≡ gi 

δ (% M) is at least 
equivalent to DLP. 

Integrally, seeking the original {Ai}, {ℓ(i)}, W, and δ from Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n is 
computationally at least equivalent to DLP in the same prime field.                             

The above proof illuminates that the distinctness of elements in the sets Ω  and Ω ′ and the enlarging 
of value of Þ do not influence the correctness of Property 5. 

4.2  Security of the Initialization Algorithm 

Clearly, the security of the initialization algorithm depends on the security of the MPP Ci ≡ (Ai W 
ℓ (i))δ 

(% M) with Ai ∈ Λ′ = {2, 3, …, Þ | Þ ≥ 218} and ℓ(i) ∈ Ω ′ ⊂ {±5, ±7, …, ±(2n + 3)} for i = 1, …, n. 
In [11], we analyze the security of the MPP Ci ≡ (Ai W 

ℓ (i))δ (% M) with Ai ∈ Λ = {2, 3, …, Þ | Þ ≤ 
1201} and ℓ(i) ∈ Ω  = {5, 7, …, (2n + 3)} for i = 1, …, n from the three aspects, discover no 
subexponential time solution to it, and contrarily, find some evidence which inclines people to believe 
that MPP is computationally harder than DLP. 

Likewise, considering that Ω ′ is different from Ω in [11], and the value of Þ is larger than the old one 
in [11], we will analyze the security of Ci ≡ (Ai W 

ℓ (i))δ (% M) with Ai ∈ Λ′ and ℓ(i) ∈ Ω ′, which is a 
supplement to the analysis in [11]. The supplemental analysis and the existent analysis tell us that Ci ≡ 
(Ai W 

ℓ (i))δ (% M) with Ai ∈ Λ′ and ℓ(i) ∈ Ω ′ has also no subexponential time solution at present. 

4.2.1  Suppose that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) 

An adversary may eliminate W through judging ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2). 
Because of Ω ′ ⊂ {±5, ±7, …, ±(2n + 3)} and being subjected to x + y ≠ 0 ∀ x, y ∈ Ω ′, when the 

absolute values |ℓ(x1)|, |ℓ(x2)|, |ℓ(y1)|, |ℓ(y2)| are deterministic, the value ℓ(x1) + ℓ(x2) − (ℓ(y1) + ℓ(y2)) has 
24 = 16 possible cases, which implies that there exists indeterminacy in the judgment of ℓ(x1) + ℓ(x2) = 
ℓ(y1) + ℓ(y2) that interlaps with the indeterminacy of the lever function ℓ(i). 

Refer to Section 4.2.1 of [11] for the rest of the analysis. 
The running time of such an attack task is about 2n [11], and it is not less than 2m. 

4.2.2  Suppose that W Is Guessed 
An adversary may eliminate W through the W -th power. 
Raising either side of Ci ≡ (Ai W ℓ

 
(i))δ (% M) to the W-th power yields 

Ci 

W ≡ (Ai)δ W % M. 
Suppose that the value of Ai is guessed, or the possible values of Ai are traversed. 
Let Ci ≡ g 

u
 
i (% M), and Ai ≡ g 

vi (% M), where g is a generator of ( * 
M , ·). Then 

ui W ≡ vi W δ (% ) 
for i = 1, …, n. Notice that ui ≠ vi δ (% ), and {v1, …, vn} is not a super increasing sequence. 

Obviously, if the adversary guesses the value of vi, the equation ui W ≡ vi W δ (% ) can be solved 
for δ. However the number of all the potential values of δ will be up 2m due to W  ≥ 2m – 18 and Ai ∈ Λ′ 
= {2, 3, …, Þ | Þ ≥ 218}. 

Refer to Section 4.2.2 of [11] for the rest of the analysis. 
The running time of such an attack task is greater than 2n [11], and it is not less than 2m. 
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4.3  Proof of Property 6 on ASPP 

In Section 3.2, ASPP is defined as ḏ ≡ ∏ 

n 
i=1 Ci

i (% M), where  i = ḇ i 2 

i with  i = bi + (−1)2(i – 1) / n (n / 2) and 
ḇ i a bit shadow. Considering that a bit long-shadow  i is different from a bit shadow ḇ i [11], we 
specially give the proof of Property 6 in Section 3.2. 

Proof. 
Assume that Ōa(ḏ, C1, …, Cn, M) is an oracle on solving ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) for 1… n, where 1… n 
is the bit long-shadow string of b1…bn. 

Particularly, when C1 = … = Cn = C, define  
ḏ ≡ ∏ 

n 
i=1 C 

(n + 1)n − i
 
i ≡ ∏ 

n 
i=1 (C 

(n + 1)n − i)i (% M) 
due to max(1, …,  n) ≤ n, and then define the above oracle as Ōa(ḏ, C 

(n + 1)n − 1, …, C 
(n + 1)0, M). 

Let Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M) be of the subset product problem, shortly SPP [11][20][21]. 
Since there is 0 ≤ bi ≤  i, and the mapping from 1… n to b1…bn is one-to-one, by calling Ōa(Ḡ1, C1, 

…, Cn, M), b1…bn can be found. 
By Definition 7, there is  

Ĥ(Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M)) ≤ 

P 
T  Ĥ(ḏ ≡ ∏ 

n 
i=1 Ci

i (% M)). 
In terms of Property 5 in [11], there is 

Ĥ(y ≡ g 
x (% M)) ≤ 

P 
T  Ĥ(Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M)). 
Further by transitivity, there is  

Ĥ(y ≡ g 
x (% M)) ≤ 

P 
T  Ĥ(ḏ ≡ ∏ 

n 
i=1 Ci

i (% M)). 
Therefore, solving ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) for 1… n is at least equivalent to DLP in the same prime field 
in computational complexity.                                                           

4.4  Security of the Compression Algorithm 

Because the lightweight hash function contains only a round of iteration, the compression algorithm 
is the main body of it. Clearly, the security of the compression algorithm depends on the security of the 
ASPP ḏ ≡ ∏ 

n 
i=1 Ci

i (% M), where  i = ḇ i 2 

i with  i = bi + (−1)2(i – 1) / n (n / 2) and ḇ i a bit shadow. 
In [11], we analyze the security of the ASPP Ḡ ≡ ∏ 

n 
i=1 Ci 

ḇi (% M) from the three aspects, discover no 
subexponential time solution to it, and contrarily, find some evidence which inclines people to believe 
that Ḡ ≡ ∏ 

n 
i=1 Ci 

ḇi (% M) is computationally harder than DLP. Due to  i = ḇ i 2 

i ≥ ḇ i, the security 
conclusion about Ḡ ≡ ∏ 

n 
i=1 Ci 

ḇi (% M) is also suitable for ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) which is just another form 
of ASPP, namely ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) has no subexponential time solution at present. 
In what follows, we specially analyze whether the compression formula ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) satisfies 
the four properties of a hash function, and resists the three classical attacks. 

4.4.1  Lightweight Hash Is Computationally One-way 

According to Section 3.2, apparently, given a short message b1…bn ≠ 0, it is easy to calculate a 
related digest ḏ ≡ ∏ 

n 
i=1 Ci

i (% M). Then see the contrary. 
Let C1 ≡ g 

u1 (% M), …, Cn ≡ g 
un (% M), ḏ ≡ g 

v (% M), where g is a generator of the group ( * 
M, ·), 

and is easily found when lg M < 1024. 
Then, solving ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) for 1… n, namely b1…bn, is equivalent to solving 
1 u1 + … +  n un ≡ v (%  ), 

which is called the anomalous subset sum problem, shortly ASSP [11], and computationally at least 
equivalent to the subset sum problem due to  i = ḇ i 2 

i ≥ ḇ i ≥ bi ∈ [0, 1]. 
It has been proved that SSP is NP-complete in its feasibility recognition form, and the computational 

version, especially the high-density version, is NP-hard [8][22]. Hence, solving ASSP is at least 
NP-hard. 

 Moreover in the lightweight hash function, there is n ≥ m = lg M and n ≥  i ≥ bi ∈ [0, 1]. The 
knapsack density relevant to the ASSP 1 u1 + … +  n un ≡ v (%  ) roughly equals  

∑ 

n 
i=1 lg n / lg M = n lg n / m > lg n > 1, 

which means that there exists many solutions to 1 u1 + … +  n un ≡ v (%  ), namely the original 
solution cannot be determined, or will not occur in the reduced lattice base. 
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Hence, the L3 lattice base reduction attack on ASSP [23][24] is utterly ineffectual, which illustrates 
that even although DLP with the bit-length of the modulus less than 1024 can be solved, the original 
1… n cannot be found yet in DLP subexponential time, namely ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) is computationally 
one-way. 

4.4.2  Lightweight Hash Is Weakly Collision-free 

Assume that b1…bn is a short message or an output of a hash function which contains at least two 
nonzero bits. Consequently, we easily understand that  i = ḇ i 2 

i ≤ n ∀i ∈ [1, n]. 
Let b1…bn be a given short message, and b′1…b′n be another short message to need to be found. 
Let ḇ 1…ḇ n be the bit shadow string of b1…bn, and ḇ ′1…ḇ ′n be the bit shadow string of b′1…b′n. 
Let lĥ be the compression algorithm of the lightweight hash function described in Section 3.2. Hence, 

we have 
ḏ = lĥ(b1…bn) = ∏ 

n 
i=1 Ci

i % M,  
and 

ḏ ′ = lĥ(b′1…b′n) = ∏ 

n 
i=1 Ci

′i % M, 
where  i = ḇ i 2 

i with  i = bi + (−1) 
2(i – 1) / n (n / 2), and  ′i = ḇ ′i 2 

′i with  ′i = b′i + (−1) 
2(i – 1) / n (n / 2). 

If ḏ = ḏ ′, there is ∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M). 
Firstly, observe an extreme case. 
Let C1 = … = Cn = C. 
Presume that ḏ = ḏ ′. Then according to Section 4.3, max(1, …,  n) ≤ n, and max( ′1, …,  ′n) ≤ n, 

∏ 

n 
i=1 C 

(n + 1)n – i
 
i ≡ ∏ 

n 
i=1 C 

(n + 1)n – i
 
′i (% M), 

namely 
C ∑

 

n  

i
 
=

 
1 

(n + 1)n – i
 i ≡ C ∑

 

n  

i
 
=

 
1 

(n + 1)n – i
 ′i (% M). 

Let z ≡ ∑ 

n 
i=1  i (n + 1)n – i (% ), and z′ ≡ ∑ 

n 
i=1  ′i (n + 1)n – i (% ). 

Correspondingly, 
C z ≡ C z′ (% M). 

We need to solve the above equation for z′. 
If the order C is known, then let z′ = z + kC, where k ≥ 1 is an integer, and there will be C z ≡ C z

 

′ 
(% M). However, seeking C is the integer factorization problem (IFP) at present because the prime 
factors of  must be known. 

In practice, it is completely possible to make C1, …, Cn be pairwise unequal when C1, …, Cn are 
generated through the algorithm in Section 3.1, which implies that for any given short message b1…bn, 
seeking another short message b′1…b′n such that ∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M) is harder than IFP in 
computational complexity, namely b′1…b′n for lĥ(b1…bn) = lĥ(b′1…b′n) cannot be found in IFP 
subexponential time. 

Therefore, we say that the lightweight hash function is weakly collision-free. 
Similarly, the lightweight hash function is resistant to single-block differential attack [25]. 

4.4.3  Lightweight Hash Can Resist Birthday Attack 
Birthday attack is widely exploited in finding a collision w′ of a message w such that ĥ(w) = ĥ(w′), 

where ĥ is a hash function, ĥ(w) is a related digest [26]. If the bit-length of the digest is m, an adversary 
can find the collision w′ with non-negligible probability by using the birthday attack in roughly 1.25 × 
2m / 2 running steps [27]. 

However, to the lightweight hash, the result will be utterly dissimilar. 
Let b1…bn and b′1…b′n be two arbitrary different short messages, and  1… n and  ′1… ′n be two 

related bit long-shadow strings. 
Suppose that ḏ = ḏ ′, namely ∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M). 
Then, there is 

∏ 

n 
i=1 (Ai W ℓ 

(i))δi ≡ ∏ 

n 
i=1 (Ai W ℓ 

(i))δ′i (% M). 
Further, there is 

W ḵ δ ∏ 

n 
i=1(Ai)δi ≡ W ḵ ′ δ ∏ 

n 
i=1(Ai)δ′i (% M), 

where ḵ = ∑ 

n 
i=1  i ℓ(i), and ḵ ′ = ∑ 

n 
i=1  ′i ℓ(i) % . 

Raising either side of the above congruence to the δ 

–1-th power yields 
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W ḵ ∏ 

n 
i=1 Ai

i ≡ W ḵ 
′
 ∏ 

n 
i=1 Ai

′i (% M). 
Without loss of generality, let ḵ ≥ ḵ ′. Because ( * 

M , ·) is an Abelian group, we have 
W ḵ – ḵ

 
′ ≡ ∏ 

n 
i=1 Ai

′i (∏ 

n 
i=1 Ai

i)–1 (% M). 
Due to gcd(q,  / 2) = 1 ∀q ∈ [1, 8n(n + 1)] and ḵ − ḵ ′ ≤ 8n(n + 1), there is 

W ≡ (∏ 

n 
i=1 Ai

′i (∏ 

n 
i=1 Ai

i)–1)(ḵ – ḵ
 
′)–1 (% M),                      (1) 

or 
W 2k ≡ (∏ 

n 
i=1 Ai

′i (∏ 

n 
i=1 Ai

i)–1)((ḵ – ḵ
 
′) / 2k)–1 (% M),                    (2) 

where k ≥ 1 is a positive integer. Since  contains only one 2-factor, (2) has only two solutions. 
Therefore, if  1… n and  ′1… ′n satisfy (1) or (2), there will be ḏ = ḏ ′. 

Nevertheless, because W ∈ (1,  ) as a component of a private key is determinate, and b1…bn and 
b′1…b′n, namely  1… n and  ′1… ′n are arbitrarily picked, the probability that  1… n and  ′1… ′n 
nicely satisfy (1) or (2) is only 1 / 2m, but not 1 / 2m / 2 or so. 

Moreover, because a private key ({Ai}, {ℓ(i)}, W, δ) is unknown for an adversary, and MPP is 
one-way, it is also impossible that the adversary finds specific b1…bn and b′1…b′n satisfying (1) or (2) 
by utilizing the private key. 

The above analysis shows that the lightweight hash is resistant to the birthday attack. 

4.4.4  Lightweight Hash Can Resist Meet-in-the-middle Attack 
Meet-in-the-middle dichotomy was first developed as an attack on an intended expansion of a block 

cipher by Diffie and Hellman in 1977 [28]. Section 3.10 of [8] brings forth a meet-in-the-middle attack 
algorithm for solving the subset sum problem. 

INPUT: a set of positive integers {C1, C2, …, Cn} and a positive integer s. 
OUTPUT: bi ∈ {0, 1}, 1 ≤ i ≤ n, such that ∑ 

n 
i=1 Ci bi = s, provided such bi exist. 

S1: Set t ← n / 2. 
S2: Construct a table with entries (∑ 

t 
i=1 Ci bi, (b1, b2, …, bt)) for (b1, b2, …, bt) ∈ (  2)t.  

Sort this table by the first component. 
S3: For each (bt + 1, bt + 2, …, bn) ∈ (  2)n − t, do the following: 

S3.1: Compute r = s − ∑ 

n    
i=t +1 Ci bi and check, using a binary search, 

whether r is the first component of some entry in the table; 
S3.2: If r = ∑ 

t 
i=1 Ci bi, then return (a solution is (b1, b2, …, bn)). 

S4: Return (no solution exists). 
It is not difficult to understand that the time complexity of the above algorithm is O(n2n / 2). 
Let b1…bn be a short message, its digest be ḏ ≡ ∏ 

n 
i=1 Ci

i (% M). 
If n = m, and bn / 2 = bn = 1 (thus, any bit shadow on the left of the middle has no relation with bits on 

the right), an adversary may attempt to attack the ASPP ḏ ≡ ∏ 

n 
i=1 Ci

i (% M) by the meet-in-the-middle 
method. 

However, owing to  i = ḇ i 2 

i with  i = bi + (−1) 
2(i – 1) / n (n / 2) for every i ∈ [1, n], when i is from 1 to n / 2, 

there exists 
 1… n / 2 = (ḇ 1 2b1 + n / 2)…(ḇ n / 2 2bn), 

which involves all the bits of the short message, namely a reasonable middle does not exist. 
If a fork is selected in proportion to (n / 3 : 2n / 3) or (n / 4 : 3n / 4), the right of the fork substantially 

still involves all the bits b1, …, bn.  
For instance, let n = 12, a short message (a bit string) = b1…b12, and a fork be to (4 : 8), then 

 5… 12 = (ḇ 5 2b11)(ḇ 6 2b12)(ḇ 7 2b1) (ḇ 8 2b2)(ḇ 9 2b3)(ḇ 10 2b4)(ḇ 11 2b5)(ḇ 12 2b6) 
involves all the bits b1, …, b12. 

The above dissection manifests that the meet-in-the-middle attack is essentially ineffectual on the 
lightweight hash function. Therefore, even if n = m, namely the input length = the output length of the 
function, the time complexity of the attack task is still O(2m) at present, but not O(m2m / 2). 

Besides, unlike ∑ 

n 
i=1 Ci = ∑ 

n 
i=1 bi Ci + ∑ 

n 
i=1 ¬bi Ci in SSP, there is not 

∏ 

n 
i=1 Ci = ∏ 

n 
i=1 Ci

i ∏ 

n 
i=1 Ci

¬i (% M) 
in ASPP, where ¬ i is the bit long-shadow of ¬bi, which implies there does not exist an easy relation 
between ASPP and dichotomy. 
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4.4.5  Lightweight Hash Can Resist Multi-block Differential Attack 
 [29] and [30] show multi-block near differential attack is effective on the classical hash functions 

MD5, SHA-0, SHA-1 etc which have the Merkle-Damgård iterative structure [6][7]. 
It is well known that MD5, SHA-0, and SHA-1 separately contain a quantity of rounds of inner 

iteration on each block, and each round consists of such linear or simple arithmetics as addition, shift, 
and logic operators. 

The input of the lightweight hash function is a short message which is treated only as a block, and 
the number of rounds of inner iteration is at most n. The iteration consists of modular multiplication of 
the  i power of Ci with i ∈ [1, n] which is nonlinear and intricate. Thus, differential analysis loses a 
basis. Furthermore, the iteration leads to the fierce snowslide effect and the noninvertibility (see 
Section 4.4.1), and makes it impossible to derive a set of sufficient conditions which ensure that the 
collision differential characteristics hold for two messages which are expected to produce a collision 
through the lightweight hash [29][30]. 

Therefore, the lightweight hash is substantially distinct from the classical hashes MD5, SHA-0, 
SHA-1 etc, and the multi-block near differential attack suitable for the classical hashes will be utterly 
ineffective on the lightweight hash function. 

4.4.6  Lightweight Hash Is Strongly Collision-free 
Firstly, it is known from Section 4.4.2 that the lightweight hash function lĥ is weakly collision-free. 
Secondly, for any arbitrary short message b1…bn, if want to find another short message b′1…b′n such 

that lĥ(b1…bn) = lĥ(b′1…b′n), an adversary must take  ′1… ′n from 
∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M), 
and further compute the bit string b′1…b′n. It is known from Section 4.4.2 that such a collision problem 
is computationally harder than IFP at present. 

Thirdly, the lightweight hash is resistant to the birthday attack, the meet-in-the-middle attack, and 
the multi-block differential attack, and its security is up to O(2m). 

Lastly, people do not find any subexponential time algorithm for solving ASPP, and the best method 
of solving ASSP is the force attack so far, which indicates that the subexponential time solution for any 
ASPP, including ∏ 

n 
i=1 Ci

i ≡ 1 (% M), is not found now. 
The above analysis manifests that the lightweight hash function is strongly collision-free. 
Theorem 1: If a collision of the JUNA lightweight hash function can be found, the ASPP ∏ 

n 
i=1 Ci

i ≡ 
1 (% M) can be solved efficiently. 

Proof. 
Assume that b1…bn ≠ b′1…b′n are two arbitrary bit strings, 1…n and ′1…′n are two corresponding 

bit long-shadow strings, and ∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M) is a collision. 
From ∏ 

n 
i=1 Ci

i ≡ ∏ 

n 
i=1 Ci

′i (% M), we have 
∏ 

n 
i=1 Ci

i − ′i ≡ 1 (% M). 
Let i ≡ i − ′i (% ), and then 

∏ 

n 
i=1 Ci

i ≡ 1 (% M), 
which means that the ASPP ∏ 

n 
i=1 Ci

i ≡ 1 (% M) can be solved efficiently. 
Therefore, the JUNA lightweight hash function is strongly collision-free.                     

5  Time Complexity of the Lightweight Hash 

Assume that time complexity is measured in the number of bit operations. Again we know that the 
time complexity of a modular multiplication is O(2 lg2

 M). 
The initialization algorithm in Section 3.1 is one-shot, and not real-time; thus it is unnecessary to 

care about its time complexity. 
In what follows, we consider the time complexity of the compression algorithm in Section 3.2. 
Due to n ≤ ∑ 

n 
i=1  i ≤ 2n for a nonzero bit string b1…bn, the compression algorithm takes at most (2n − 

1) modular multiplications, which means that the time complexity of the compression algorithm is 
O(2(2n – 1) lg2

 M) = O(n m2). 
For instance, when m = 80 and n = 80, the time complexity of the lightweight hash function is 80 × 

6400 = 512000 bit operations which is equivalent to that of SHA-1 with 20 rounds of outer iteration, 
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and less than that of SHA-1 with the number of rounds of outer iteration > 20. We know that the time 
complexity of SHA-1 with one round of outer iteration is about 32 × 10 × 80 = 25600 bit operations. 
Thereby, the computation of the lightweight hash function for a single block is relatively small. 

6  Reformation of a Classical Hash Function 

Because the lightweight hash function is resistant to the birthday attack and the meet-in-the-middle 
attack, a classical hash function of which the output is n bits, and the security is intended to be O(2n / 2) 
may be reformed into a compact hash function of which the output is n / 2 bits, and the security is 
equivalent to O(2n / 2). 

For example, let b1…b128 be an output of MD5 [31],  1… 128 be a related bit long-shadow string, 
and lg M = 64. Then, regard ḏ = ∏ 

128 
i=1 Ci

i % M as the 64-bit output of the reformed MD5 with the 
equivalent security, where Ci = (Ai W ℓ

 

(i))δ % M which is produced by the algorithm in Section 3.1.  
Again for example, let b1…b160 be an output of SHA-1,  1… 160 be a related bit long-shadow string, 

and lg M = 80. Then, regard ḏ = ∏ 

160 
i=1 Ci

i % M as the 80-bit output of the reformed SHA-1 with the 
equivalent security. 

The above two examples indicate that we may exchange time for space when the related security 
remains unchanged. 

7  Conclusion 

In the paper, the authors propose a lightweight hash function which contains the initialization 
algorithm and the compression algorithm, and converts a short message or a message digest of n bits 
into a string of m bits, where 80 ≤ m ≤ n ≤ 4096. 

The authors prove that both MPP and ASPP are at least equivalent to DLP in complexity, and 
analyze the security of the lightweight hash function. The analysis shows that the lightweight hash is 
computationally one-way, weakly collision-free, and strongly collision-free. Moreover, at present, any 
subexponential time algorithm for attacking the lightweight hash is not found, and its security is 
expected to be O(2m) magnitude. 

Especially, the analysis illustrates that the lightweight hash function is resistant to the birthday attack 
and the meet-in-the-middle attack. By utilizing this characteristic, one can reform a classical hash 
function with the output of n bits and the security of O(2n / 2) into a compact hash function with the 
output of n / 2 bits and the equivalent security. 

Simultaneously, the authors dissect the time complexity of compression algorithm of the lightweight 
hash function which is O(n m2) bit operations. 

The lightweight hash function opens a door to convenience for the utilization of a lightweight digital 
signing scheme of which the length of modulus is not greater than 160 bits. 
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