
http://eprint.iacr.org/2013/327.pdf

A Lightweight Hash Function Resisting Birthday Attack and
Meet-in-the-middle Attack

*

Shenghui Su 1, 2, Tao Xie 3, and Shuwang Lü 4

1 College of Computers, Beijing University of Technology, Beijing 100124
2 College of Information Engineering, Yangzhou University, Yangzhou 225009

3 School of Computers, National University of Defense Technology, Changsha 410073
4 Graduate School, Chinese Academy of Sciences, Beijing 100039

Abstract: To be paired with a lightweight digital signing scheme of which the modulus length
is between 80 and 160 bits, a new non-Merkle-Damgård structure (non-MDS) hash function is
proposed by the authors based on a multivariate permutation problem (MPP) and an anomalous
subset product problem (ASPP) to which no subexponential time solutions are found so far. It
includes an initialization algorithm and a compression algorithm, and converts a short message
of n bits treated as only a block into a digest of m bits, where 80≤m≤232 and 80≤m≤n≤4096.
Analysis shows that the new hash is one-way, weakly collision-free, and strongly collision-free
along with a proof, and its security against existent attacks such as birthday attack and
meet-in-the- middle attack gets the O(2m) magnitude. Running time of its compression algorithm
is analyzed to be O(nm2) bit operations. A comparison with the Chaum-Heijst-Pfitzmann hash
based on a discrete logarithm problem is made. Especially, the new hash with short input and
small computation may be used to reform a classical hash with an m-bit output and an O(2m/2)
magnitude security into a compact hash with an m / 2-bit output and the same security. Thus, it
opens a door to convenience for utilization of lightweight digital signing schemes.

Keywords: Hash function; Compression algorithm; Merkle-Damgård structure; Provable
security; Birthday attack; Meet-in-the- middle attack

1 Introduction

In recent years, the ECC-160 digital signing scheme, an analogue of the ElGamal digital signing
scheme based on a discrete logarithm problem (DLP) in an elliptic curve group over a finite field [1][2],
and some lightweight digital signing schemes ― the optimized version of the REESSE1+ digital
signing scheme [3] for example have been utilized for RF ID (Radio Frequency Identity) tags or
non-RF ID tags [4][5][6].

While a RF ID tag contains an IC chip which is used to store signatures and other data, an non-RF
ID tag contains no IC chip because a short signature from a lightweight or ultra-lightweight signing
scheme may be symbolized in short length, and printed directly on a papery tag or label. Now, such
tags are applied to the identification, authentication, or anti-forgery of financial-notes, certificates,
diplomas, and commodities, particularly including food and drug.

It is well understood that we first need to extract the digest of a message by employing a hash
function before signing the message. Traditionally, a hash function consists of a compression function
and the Merkle-Damgård structure (MDS) [7][8]. Let ĥ be a hash function, and generally, it has the
following four properties [9][10]:

 given a message , it is very easy to calculate the message digest ḏ = ĥ (), where ḏ is also called
a hash output;

 given a digest ḏ, it is very hard to calculate the message according to ḏ = ĥ (), namely ĥ is
one-way;

 given any arbitrary message , it is computationally infeasible to find another message ′ such
that ĥ() = ĥ(′), namely ĥ is weakly collision-free;

 it is computationally infeasible to find two arbitrary messages ≠ ′ such that ĥ() = ĥ(′),
namely ĥ is strongly collision-free.

The word “infeasible” means that some problem cannot be solved at least in polynomial time.
Sometimes, is optional with some users of a hash function because , , and are enough for
most of applications of the users.

At present, SHA-1, SHA-256, and SHA-384 announced by NIST are among the hash functions that
are believed to be secure [9][11] though they each cannot resist birthday attack of which the time

* This work is supported by MOST with Project 2007CB311100 and 2009AA01Z441. Corresponding email: reesse@126.com.

 1

http://eprint.iacr.org/2013/327.pdf

complexity is O(2 m / 2) that means that the security of each them is nearly the O(2m / 2) magnitude, where
m is the bit-length of a message digest namely a hash output. It is well known that the output
bit-lengths of these three functions are 160, 256, and 384 respectively.

When any of the three is practically paired with a lightweight signing scheme of which the modulus
bit-length is between 80 and 160, its output must be adjusted to the range of the modulus bit-length of
the singing scheme with its security unchanged or corresponding to the signing scheme.

The modulus bit-length of the optimized REESSE1+ signing scheme based on a transcendental
logarithm problem and a polynomial root finding problem is 80 [3], and its security is the 280
magnitude. When SHA-1 is paired with this signing scheme, the output of SHA-1 must be adjusted to
80 bits with its security unchanged. Again when SHA-256 is paired with ECC-160, the output of
SHA-256 must be adjusted to 160 bits with its security being at least the 280 magnitude.

Therefore, it is a problem in practice how to adjust a message digest from a classical hash function to
the range of the modulus bit-length of a host signing scheme and to keep the security of the message
digest being unchanged or corresponding to the host signing scheme.

To settle this problem, the authors design a new non-MDS hash function called JUNA which
includes two algorithms: an initialization algorithm and a compression algorithm, converts a short
message or a message digest of n bits into an output string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤
n ≤ 4096, and moreover ensures that the security of the output string against collision attacks gets the
O(2m) magnitude.

The paper has two dominant novelties: designing the initialization algorithm based on a
multivariate permutation problem which only has an exponential time solution currently, and makes the
new hash function be able to resist a birthday attack; designing the compression algorithm based on
an anomalous subset product problem which also only has an exponential time solution currently, and
makes the new hash function be able to resist other classical attacks, especially including a
meet-in-the-middle attack. The significance of the paper lies in the thing that a new non-MDS hash
function with an m-bit output and the O(2m) magnitude security is first proposed by the authors while a
classical iterative hash function is with an m-bit output and only the O(2m

/

2) magnitude security.

In Section 2 of the paper, several relevant definitions are given. In Section 3, the two algorithms of
the new hash function are described. In Section 4, the security of the new hash function is analyzed. In
Section 5, the running time of the compression algorithm of the new hash is dissected, a comparison
with another non-MDS hash, the Chaum-Heijst-Pfitzmann hash based on a discrete logarithm problem,
is made, and the reformation of a classical hash function is illustrated.

Throughout the paper, unless otherwise specified, an even number n ≥ 80 is the bit-length of a short
message (a message digest) or the item-length of a sequence, the sign % denotes “modulo”, does “M

– 1” with M prime, lg x denotes a logarithm of x to the base 2, ¬bi does NOT operation of a bit bi, Þ
does the maximal prime allowed in a coprime sequence, |x| does the absolute value of a number x, x
does the order of x % M, S does the size of a set S, and gcd(x, y) represents the greatest common
divisor of two integers x and y. Without ambiguity, “% M ” is usually omitted in expressions.

2 Several Definitions

Before the two algorithms of the new non-MDS hash function are described, three relevant
definitions are presented.

2.1 A Coprime Sequence

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai and Aj (i ≠ j), either
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k (≠ i, j) ∈ [1, n], these integers
are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}.

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence
of which the elements are pairwise coprime is a coprime sequence.

For example, {21, 15, 29, 23, 11, 17, 19, 13} and {23, 7, 11, 3, 19, 13, 5, 17} are two coprime
sequences separately.

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select k ∈ [1, n] elements Ax1, …,
Axk from the sequence, then the mapping from a subset {Ax1, …, Axk} to a subset product G = ∏ k

i = 1Axi is
one-to-one, namely the mapping from b1…bn to G = ∏ n

i = 1 Ai
bi is one-to-one, where b1…bn is a bit string.

Refer to [3] for its proof.

 2

http://eprint.iacr.org/2013/327.pdf

2.2 A Bit Shadow and a Bit Long-Shadow

Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḅi with i ∈ [1, n] is called a bit shadow if it comes
from such a rule: ḅi = 0 if bi = 0; ḅi = 1 + the number of successive 0-bits before bi if bi = 1; or ḅi
= 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the rightmost 1-bit
if bi is the leftmost 1-bit.

Notice that (3) of this definition is slightly different from that in [3].
For example, let b1…b8 = 01010110, then ḅ1…ḅ8 = 03020210.
Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then there is ∑

n
i=1 ḅi = n.

Proof:
According to Definition 2, every bit of b1…bn is considered into ∑

k
i=1 ḅxi, where ḅx1, …, ḅxk are 1-bit

shadows in the string ḅ1…ḅn, and there is ∑

k
i=1 ḅxi = n.

On the other hand, there is ∑

n−k
j=1 ḅyj = 0, where ḅy1, …, ḅyn − k are 0-bit shadows.

In total, there is ∑

n
i=1 ḅi = n.

Property 2: Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow string of b1…bn ≠
0. Then the mapping from b1…bn to G = ∏

n
i=1 Ai

ḅi is one-to-one.
Proof:
Step 1.
Let b1…bn and b′1…b′n be two different nonzero bit strings, and ḅ1…ḅn and ḅ′1…ḅ′n be the two

corresponding bit shadow strings.
If ḅ1…ḅn = ḅ′1…ḅ′n, then by Definition 2, there is b1…bn = b′1…b′n.
In addition, for any arbitrary bit shadow string ḅ1…ḅn, there always exists a preimage b1…bn. Thus,

the mapping from b1…bn to ḅ1…ḅn is one-to-one.
Step 2.
Obviously the mapping from ḅ1…ḅn to ∏

n
i=1 Ai

ḅi is surjective.
Again presuppose that ∏

n
i=1 Ai

ḅi = ∏

n
i=1 Ai

ḅ′i for ḅ1…ḅn ≠ ḅ′1…ḅ′n.
Since {A1, …, An} is a coprime sequence, and Ai

ḅi either equals 1 with ḅi = 0 or contains the same
prime factors as those of Ai with ḅi ≠ 0, we can obtain ḅ1…ḅn = ḅ′1…ḅ′n from ∏

n
i=1 Ai

ḅi = ∏

n
i=1 Ai

ḅ′i, which
is in direct contradiction to ḅ1…ḅn ≠ ḅ′1…ḅ′n.

Therefore, the mapping from ḅ1…ḅn to ∏

n
i=1 Ai

ḅi is injective [12].
In summary, the mapping from ḅ1…ḅn to ∏

n
i=1 Ai

ḅi is one-to-one, and further the mapping from b1…bn
to ∏

n
i=1 Ai

ḅi is also one-to-one.
Definition 3: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then ḇi = ḅi 2

i with i ∈ [1, n] is
called a bit long-shadow, where i = bi + (−1)

2(i – 1) / n (n / 2) = 0 or 1.
According to Definition 3, it is not difficult to understand that for every ḇi, there is 0 ≤ ḇi ≤ n when

b1…bn ≠ 0.
For example, let b1…b8 = 01010110, then ḇ1…ḇ8 = 06020410.
Fact 2: Let ḇ1…ḇn be the bit long-shadow string of b1…bn ≠ 0. Then there is n ≤ ∑

n
i=1 ḇ i ≤ 2n.

Proof:
By Definition 3 and Fact 1, we have

∑

n
i=1 ḇ i = ∑

n
i=1 ḅi 2

i and ∑

n
i=1 ḅi = n.

If every bi = 1, namely every i = 1, then
∑

n
i=1 ḇ i = ∑

n
i=1 ḅi 2

i = 2∑

n
i=1 ḅi = 2n.

Again, by Definition 3, not all the bits of b1…bn are zero.
If there exists only one nonzero bit in b1…bn ― bx = 1 with x ∈ [1, n] for example, then

∑

n
i=1 ḇ i = ∑

n
i=1 ḅi 2

i = ḅx 2
x = ḅx = n,

where x = bx + (−1)
2(x – 1) / n (n / 2) = 0 due to bx being the unique nonzero bit.

Thus, it holds that n ≤ ∑

n
i=1 ḇ i ≤ 2n.

Property 3: Let ḇ1…ḇn be the bit long-shadow string of b1…bn ≠ 0. Then the mapping from b1…bn
to ḇ1…ḇn is one-to-one.

Proof:
On one hand, assume that a bit string b1…bn ≠ 0 is known.

 3

http://eprint.iacr.org/2013/327.pdf

It is understood from Definition 3 that ḇi = ḅi 2
i for each i, where i = bi + (−1)

2(i – 1) / n (n / 2).
Because when b1…bn is known, ḅ1…ḅn and 1…n are respectively determined, ḇ 1…ḇ n can also be

determined uniquely.
On the other hand, assume that a bit long-shadow string ḇ 1…ḇ n is known.
According to ḇi = ḅi 2

i and ḇi = 0 with ḅi = 0, where i = bi + (−1)
2(i – 1) / n (n / 2), we can determinate bi for i

= 1, …, n as follows.
 Case of ḇi = 0
If ḇi = 0, then ḅi = 0, and set bi = 0.
 Case of ḇi ≠ 0
If ḇi ≠ 0, then ḅi ≠ 0, and set bi = 1.

In this way, the value of every bi can be determined uniquely.
In summary, the mapping from b1…bn to ḇ1…ḇn is one-to-one.

2.3 A Lever Function

The designing of the initialization algorithm of the new hash function is based on the hard problem
Ci ≡ (Ai W

ℓ

(i))

δ (% M) for i = 1, …, n which is first used for the REESSE1+ asymmetric cryptosystem,
where the exponent ℓ(i) is called a lever function [3].

In the paper, we still borrow the concept of the lever function but a public key is regarded as an
initial value, and a private key (parameter) is only used for the generation of the initial value, not for
decryption.

Definition 4: The secret parameter ℓ(i) in the transform of a non-MDS hash function is called a lever
function, if it has the following features:

 ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, }, where is large;
 the mapping between i and ℓ(i) is established randomly without an analytical expression;
 an attacker has to be faced with all the permutations of elements in Ω when inferring a related
private parameter from an initial value;
 the owner of the private parameter only need to consider the polynomial arithmetic of elements in
Ω when doing a certain computation.

Feature and make it clear that if n is large enough, it is infeasible for the attacker to search all
the permutations of elements in Ω exhaustively while the computation by the owner of the private
parameter is feasible in polynomial time in n. Thus, the amount of calculation on ℓ(.) is large at “a
public terminal”, and is small at “a private terminal”.

Notice that the number of all the elements of Ω, namely the size of Ω is not less than n.
Property 4 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ (Ai W ℓ

(i))δ (% M) with ℓ(i) ∈ Ω = {5, …, n + 4}
and Ai ∈ Λ = {2, …, Þ | 863 ≤ Þ ≤ 1201} for i = 1, …, n. Then ∀ W (W ≠) ∈ (1,), and ∀ x, y, z (x
≠ y ≠ z) ∈ [1, n],

 when ℓ(x) + ℓ(y) = ℓ(z), there is
ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%);

 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist
Cx ≡ A′x W′ ℓ′(x) (% M), Cy ≡ A′y W′ ℓ′(y) (% M), and Cz ≡ A′z W′ ℓ′(z) (% M)

such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%) with A′z ≤ Þ.
Proof:

 It is easy to understand that
W

ℓ(x

) ≡ W
ℓ(x

)

+

W

, W
ℓ(y

) ≡ W
ℓ(y

)

+

W

, and W
ℓ(z

) ≡ W
ℓ(z

)

+

W

 (% M).
Due to W ≠ , 2W ≠ W , and ℓ(x) + ℓ(y) = ℓ(z), it follows that

ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%).
However, it should be noted that when W = , there is ℓ(x) + W + ℓ(y) + W ≡ ℓ(z) + W (%).

 Let Ōd be an oracle on solving a discrete logarithm problem.
Suppose that W ′ ∈ [1,] is a generator of (*

M , ·).
In light of group theories, ∀ A′z ∈ {2, …, Þ}, the congruence

Cz ≡ A′z W ′ ℓ′ (z

) (% M)
has a solution. Then, ℓ′(z) may be taken through Ōd.
∀ ℓ′(x) ∈ [1,], and let

ℓ′(y) ≡ ℓ′(z) – ℓ′(x) (%).
Further, from the congruences Cx ≡ A′x W ′ ℓ

(x

)′ (% M) and Cy ≡ A′y W ′ ℓ

(y

)′ (% M), we can obtain many

 4

http://eprint.iacr.org/2013/327.pdf

distinct pairs (A′x, A′y), where A′x, A′y ∈ (1, M), and ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%).
In this way, Property 4.2 is proven.
Notice that letting Ω = {5, …, n + 4}, namely every ℓ(i) ≥ 5 makes seeking W from W ℓ

(i) ≡ Ai
–1

 Ci (%
M) face an unsolvable Galois group when the value of Ai ≤ Þ is guessed [13], and moreover Property 4
still holds when Ω is any subset containing n elements from {1, …, }.

Property 4 manifests that will continued fraction attack on Ci ≡ Ai W
ℓ

(i) (% M) by Theorem 12.19 in

Section 12.3 of [14] be utterly ineffectual only if elements in Ω are fitly selected [15].

3 Design of the New Non-MDS Hash Function

The Chaum-Heijst-Pfitzmann hash function, a non-MDS one, is appreciable. It is based on a discrete
logarithm problem, and proved to be strongly collision-free [16].

The new non-MDS hash function is composed of two algorithms which contain two main parameters
m and n, where m denotes the bit-length of a modulus used in the new hash, n denotes the bit-length of
a short message or a message digest from a classical hash function, and there are 80 ≤ m ≤ 232 with 80
≤ m ≤ n ≤ 4096.

Additionally, Λ and Ω are two integral sets, and their lengths should be selected in conformity to the
values of m and n such that 2n5Ω Λ5 ≥ 2m with 210 ≤ Λ ≤ 232 and n ≤ ñ ≤ 232 (see Section 4.2.1),
where ñ = Ω , and 210 ≤ Λ ≤ 232 means 10 ≤ lgÞ ≤ 32.

For example, as m = 80 ≤ n, there should be Λ = 210 and Ω = n; as m = 96 ≤ n, should Λ = 212 and
Ω = n; as m = 112 ≤ n, should Λ = 214 and Ω = n; as m = 128 ≤ n, should Λ = 216 and Ω = 212; as m
= 232 ≤ n, should Λ = 232 and Ω = 232.

Notice that in the arithmetic modulo , −x represents – x.

3.1 Initialization Algorithm

This algorithm is employed by an authoritative third party or the owner of a key pair, and only needs
to be executed one time.

INPUT: the bit-length m of a modulus with 80 ≤ m ≤ 232;
the item-length n of a sequence with 80 ≤ m ≤ n ≤ 4096;
the maximal prime Þ with 10 ≤ lgÞ ≤ 32;
the size ñ of the set Ω with 2ñn5Þ 5 ≥ 2m and n ≤ ñ ≤ 232.

S1: Produce Λ ← {2, 3, …, Þ}.
Produce a random coprime sequence {A1, …, An | Ai ∈ Λ}.

S2: Find a prime M with lg M = m such that / 2 is a prime,
or the least prime factor of / 2 > 4n(2ñ + 3).

S3: Pick W ∈ (1,) making W ≥ 2m – lgÞ.
Pick δ ∈ (1,) making gcd(δ,) = 1.

S4: Randomly yield Ω ← {+/−5, +/−7, …, +/−(2ñ + 3)}.
Randomly select a distinct ℓ(i) ∈ Ω for i = 1, …, n.

S5: Compute Ci ← (Ai W ℓ

(i))δ % M for i = 1, …, n.
OUTPUT: an initial value ({Ci}, M) which is public to the people.
A private parameter ({Ai}, {ℓ(i)}, W, δ) may be discarded, but must not be divulged.
Assume that there is Ci = Cj with i ≠ j. Then (AiW ℓ

(i))δ ≡ (AjW ℓ

(j))δ (% M), and W ℓ

(i) − ℓ

(j)
 ≡ Aj Ai

−1
 (% M).

Because of / 2 = a prime or the least prime factor of / 2 > 4n(2ñ + 3), the probability that the case
W ℓ

(i) − ℓ

(j) ≡ Aj Ai
−1 (% M), namely Ci = Cj occurs is 1 / 2m.

At S3, to seek W, let W ≡ g / F (% M), where g is a generator of (*
M , ·) obtained through Algorithm

4.80 in Section 4.6 of [9], and F < 2lg Þ is a factor of .
At S4, Ω = {+/−5, +/−7, …, +/−(2ñ + 3)} indicates that Ω is one of 2ñ potential sets, indeterminate,

and unknown to the public, where “+/−” means the selection of the “+” or “−” sign.
Definition 5: Given ({Ci}, M), seeking the original ({Ai}, {ℓ(i)}, W, δ) from Ci ≡ (Ai W

ℓ (i))δ (% M)
with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i =
1, …, n is referred to as a multivariate permutation problem, shortly MPP [3].

Property 5: The MPP Ci ≡ (Ai W
ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈

{+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n is computationally at least equivalent to the

 5

http://eprint.iacr.org/2013/327.pdf

DLP in the same prime field.
See Section 4.1 for its proof.

3.2 Compression Algorithm

This algorithm is employed by a person who wants to obtain a short message digest.
INPUT: an initial value ({C1, …, Cn}, M), where lg M = m with 80 ≤ m ≤ n ≤ 4096;

a short message (or a message digest from a classical hash function) b1…bn ≠ 0.
S1: Set k ← 0, i ← 1.
S2: If bi = 0 then

S2.1: let k ← k + 1, ḅi ← 0
else

S2.2: if i = k + 1 then let ← i;
S2.3: let ḅi ← k + 1, k ← 0.

S3: Let i ← i + 1.
If i ≤ n then go to S2.

S4: Compute ḅ ← ḅ + k.
S5: Compute ḏ ← ∏

n
i=1 Ci

ḇi % M,
where ḇi = ḅi 2

i with i = bi + (−1)
2(i – 1) / n (n / 2).

OUTPUT: a digest ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) of which the bit-length is m.
It is easily known from Definition 3 that the max of {ḇ1, …, ḇn} is less than or equal to n when

b1…bn ≠ 0.
Definition 6: Given (ḏ, M), seeking the original ḇ1…ḇn from ḏ ≡ ∏

n
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i

with i = bi + (−1)
2(i – 1) / n (n / 2) and ḅi being a bit shadow is referred to as an anomalous subset product

problem, shortly ASPP [3].
Property 6: The ASPP ḏ ≡ ∏

n
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2) and ḅi being a
bit shadow is computationally at least equivalent to the DLP in the same prime field.

See Section 4.3 for its proof.

4 Security Analysis of the New Non-MDS Hash Function

Because a hash function must be one-way, weakly collision-free, and sometimes required to be
strongly collision-free, the new non-MDS hash function should also be at least one-way and weakly
collision-free.

It is should be noted that lg M = m, but not n, is the security dominant parameter of the new
non-MDS hash function.

Definition 7: Let A and B be two computational problems. A is said to reduce to B in polynomial
time, written as A ≤

P
T B, if there is an algorithm for solving Α which calls, as a subroutine, a

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm
for solving B [9][17].

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter
what the time complexity of the oracle is, it does not influence the result of the comparison.

A ≤

P
T B means that the difficulty of A is not greater than that of B, namely the time complexity of the

fastest algorithm for solving A is not greater than that of the fastest algorithm for solving B when all
polynomial times are treated as the identical magnitude. Concretely speaking, if A cannot be solved in
polynomial or subexponential time, correspondingly B cannot also be solved in polynomial or
subexponential time; and if B can be solved in polynomial or subexponential time, correspondingly A
can also be solved in polynomial or subexponential time.

Definition 8: Let A and B be two computational problems. If A ≤

P
T B and B ≤

P
T A, then A and B are

said to be computationally equivalent, written as A =

P
T B [9][17].

A =

P
T B means that either if A is a intractability with a certain complexity on a condition that its

dominant variable approaches a large number, B is also a intractability with the same complexity on the
identical condition; or both A and B can be solved in linear or polynomial time.

Obviously, Definition 7 and 8 gives a partial order relation among the complexities or difficulties of
computational problems [18], and suggest a reductive proof method called polynomial time Turing

 6

http://eprint.iacr.org/2013/327.pdf

reduction (PTR) [17].
In addition, for convenience sake, let Ĥ(y = f(x)) represent the complexity or difficulty of the problem

of solving y = f(x) for x [19].

4.1 Proof of Property 5

In Section 3.1, the MPP is defined as Ci ≡ (Ai W
ℓ (i))δ (% M) with Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤

32} and ℓ(i) ∈ Ω = {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n. What follows is the proof
of Property 5, a property of the MPP.

Proof:
Firstly, systematically consider Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n.
Assume that each gi ≡ Ai W ℓ (i) (% M) with ℓ(i) ∈ {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} is a

constant.
Let

gi ≡ g

xi (% M), and zi ≡ δ xi (%),
where g ∈ *

M be a generator.
Then, there is

Ci ≡ gi

δ ≡ g
δ

xi (% M) for i = 1, …, n.

Again let δ xi ≡ zi (%). Then
Ci ≡ g

zi (% M) for i = 1, …, n.
The above expression corresponds to the fact that in the ElGamal cryptosystem where many users

share the modulus and a key generator, User 1 acquires a private key z1 and a public key C1, …, and
User n acquires a private key zn and a public key Cn. It is well known that in this case, the attack of an
adversary is still faced with the DLP, namely seeking zi from the simultaneous equation Ci ≡ g

zi (% M)
for i = 1, …, n is computationally equivalent to the DLP [9].

Thus, when every gi is weakened to a constant, seeking δ from Ci ≡ gi

δ (% M) for i = 1, …, n is
computationally equivalent to the DLP, which indicates that when every gi is not a constant, seeking gi
and δ from Ci ≡ gi

δ (% M) for i = 1, …, n is computationally at least equivalent to the DLP.
Secondly, singly consider a certain Ci, where the subscript i is designated.
Assume that Ōm(Ci, M, Ṟ) is an oracle on solving Ci ≡ gi

δ (% M) for gi and δ, where i is in {1, …, n},
and Ṟ is a constraint on gi such that the original gi and δ can be found.

Let y ≡ g
x (% M) be of the DLP. Then, by calling Ōm(y, M, g), x can be obtained.

According to Definition 7, there is
Ĥ(y ≡ g

x (% M)) ≤

P
T Ĥ(Ci ≡ gi

δ (% M)),
which indicates that when only a certain gi is known, seeking gi and δ from Ci ≡ gi

δ (% M) is
computationally at least equivalent to the DLP.

Integrally, seeking the original {Ai}, {ℓ(i)}, W, and δ from Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n is
computationally at least equivalent to the DLP in the same prime field.

4.2 Security of the Initialization Algorithm

Clearly, the security of the initialization algorithm depends on the security of the MPP Ci ≡ (Ai W ℓ(i))δ
(% M) with Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ Ω = {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ
≤ 232} for i = 1, …, n.

In [3], we analyze the security of the MPP Ci ≡ (Ai W ℓ(i))δ (% M) with Ai ∈ {2, 3, …, Þ | 863 ≤ Þ ≤
1201} and ℓ(i) ∈ {5, 7, …, (2n + 3)} for i = 1, …, n from the three aspects, discover no subexponential
time solution to it, and contrarily, find some evidence which inclines people to believe that the MPP is
computationally harder than the DLP.

Considering that the set Ω is different from the old in [3], and the range of Þ is larger than the old in
[3], we will analyze the security of the MPP with different restrictions additionally.

4.2.1 Ineffectualness of Presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

Because of Ω = {+/−5, +/−7, …, +/−(2ñ + 3)}, when the absolute values |ℓ(x1)|, |ℓ(x2)|, |ℓ(y1)|, |ℓ(y2)|
are determined, the value ℓ(x1) + ℓ(x2) − (ℓ(y1) + ℓ(y2)) has 24 = 16 possible cases, which enhances the
indeterminacy of the lever function, and increases the complexity of an attack task for cracking the
MPP to some extent.

 7

http://eprint.iacr.org/2013/327.pdf

Adversaries may try to eliminate W through judging ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
∀ x1, x2, y1, y2 ∈ [1, n], presuppose that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) holds.
Let Gz ≡ Cx1Cx2(Cy1Cy2)

–1 (% M), namely
Gz ≡ (Ax1Ax2(Ay1Ay2)

–1)δ (% M).
If the adversaries divine the values of Ax1, Ax2, Ay1, Ay2, and compute u, vx1, vx2, vy1, vy2 in at least

LM [1 /3, 1.923] time such that
Gz ≡ gu, Ax1 ≡ gvx1, Ax2 ≡ gvx2, Ay1 ≡ gvy1, Ay2 ≡ gvy2 (% M),

where g is a generator of (*
M , ·), then

u ≡ (vx1 + vx2 – vy1 – vy2)δ (%).
If gcd(vx1 + vx2 – vy1 – vy2,) | u, the congruence in δ has solutions. Because each of Ax1, Ax2, Ay1, Ay2

may traverse the interval Λ, and the subscripts x1, x2, y1, y2 are unfixed, the number of potential values
of δ is about n4

 Λ4. Notice that the number of non-repeated values of δ will be less than 2m.
In succession, need to seek W. Now, the most effectual approach to seeking W is that for every i, the

adversaries fix a value of δ, divine Ai and ℓ(i), and find the set i according to Ci ≡ (Ai W ℓ
(i))δ (% M),

where i is the set of possible values of W meeting Ci ≡ (Ai W ℓ
(i))δ (% M) for i = 1, …, n. If there exist

W1 ∈ 1, …, Wn ∈ n being pairwise equal, the divination of δ, {Ai}, and {ℓ(i)} is thought right; else
fix another value of δ, repeat the above process.

Notice that due to / 2 = a prime or the least prime factor of / 2 > 4n(2ñ + 3), W ℓ
(i) ≡ Ci

δ−1Ai
−1 (%

M) can be solved in polynomial time, and besides letting W = g

µ % M is unnecessary.
It is not difficulty to understand that the size of every i is about (2Ω)Λ.
In summary, the time complexity of the above attack task is

Ŧ = (n + Λ)LM [1 / 3, 1.923] + (n4Λ4) + (n4Λ4)(2Ω Λ)n
≈ 2n5Ω Λ5.

Concretely speaking,
For m = n = 80 with Λ = 210 & Ω = 80, Ŧ > 2(26.3)5(26.3)(210)5 = 288 > 2m.
For m = n = 96 with Λ = 212 & Ω = 96, Ŧ > 2(26.5)5(26.5)(212)5 = 2100 > 2m.
For m = n = 112 with Λ = 214 & Ω = 112, Ŧ > 2(26.8)5(26.8)(214)5 = 2112 = 2m.
For m = n = 128 with Λ = 216 & Ω = 212, Ŧ > 2(27)5(212)(216)5 = 2128 = 2m.
For m = n = 232 with Λ = 232 & Ω = 232, Ŧ > 2(27.8)5(232)(232)5 = 2232 = 2m.
Thus, the time complexity of the attack by presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) is not less than

O(2m) when Λ and Ω are chosen suitably.

4.2.2 Ineffectualness of Guessing W

Owing to 80 ≤ lgM ≤ 232, can be factorized in tolerable subexponential time, and further a
value of W can be guessed.

Adversaries may try to eliminate W through W W ≡ 1 (% M).
Raising either side of every equation Ci ≡ (Ai W ℓ

(i))δ (% M) to the W-th power yields

Ci

W ≡ (Ai)δ W % M.
Suppose that the value of every Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} is guessed, or the possible

values of every Ai are traversed.
Let Ci ≡ gu

i (% M), and Ai ≡ gvi (% M), where g is a generator of (*

M , ·). Then
ui W ≡ vi W δ (%) (i = 1, …, n).

Notice that ui ≠ vi δ (%), and {v1, …, vn} is not a super increasing sequence.
The above congruence is seemingly the MH transform [20]. Actually, {v1 W , …, vn W } is not a

super increasing sequence, and moreover there is not necessarily lg (ui W) = lg .
Because vi W ∈ [1,] is stochastic, the inverse δ–1 % not need be close to the minimum

 / (ui W), 2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ–1 may lie at any integral position of
the interval [k / (ui W), (k + 1) / (ui W)], where k = 0, 1, …, ui W – 1, which illustrates that the
accumulation points of minima do not exist. Further observing, in this case, when i traverses the
interval [2, n], the number of intersections of the intervals containing δ–1 is likely the max of {u1 W , …,
un W } which is promisingly close to . Therefore, the Shamir attack by the accumulation point of
minima is fully ineffectual [21].

Even if find out δ

–1 through the Shamir attack method, because each of { v1, …, vn} has W solutions,
the number of potential sequences {gv1, …, gvn} is up to W

n. Because of needing to verify whether

 8

http://eprint.iacr.org/2013/327.pdf

{gv1, …, gvn} is a coprime sequence for each different sequence {v1, …, vn}, the number of possible
coprime sequences is in proportion to W

n. Hence, the initial {A1, …, An} cannot be determined in
subexponential time. Further, the value of W cannot be computed, and the values of W and δ–1 cannot
be verified, which indicates that the MPP can also be resistant to the Shamir attack by the accumulation
point of minima.

Additionally, the adversaries may divine the value of Ai in about O(Λ) time with i ∈ [1, n], and
compute δ by vi W ≡ ui W δ (%). However, because of W | , the equation will have W
solutions. Therefore, the time complexity of finding the original δ is at least

Ŧ = (n + Λ)LM [1 / 3, 1.923] + ΛW
≥ (n + Λ)LM [1 / 3, 1.923] + 2lgÞ2m – lgÞ
> 2 m.

It is also not less than O(2m).

4.3 Proof of Property 6

In Section 3.2, the ASPP is defined as ḏ ≡ ∏

n
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2)
and ḅi being a bit shadow. What follows is the proof of Property 6, a property of the ASPP.

Proof:
Assume that Ōa(ḏ, C1, …, Cn, M) is an oracle on solving ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) for ḇ1…ḇn, where ḇ1…ḇn
is the bit long-shadow string of b1…bn.

Particularly, when C1 = … = Cn = C, define
ḏ ≡ ∏

n
i=1 C

(n + 1)n − i

ḇi ≡ ∏

n
i=1 (C

(n + 1)n − i) ḇi (% M)
with 0 ≤ ḇi ≤ n, and define the corresponding oracle as Ōa(ḏ, C

(n + 1)n − 1, …, C
(n + 1)0, M).

Let Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M) be of the subset product problem (SPP) [3][22][23].
Since there is 0 ≤ bi ≤ ḇi, and the mapping from ḇ1…ḇn to b1…bn is one-to-one, by calling Ōa(Ḡ1, C1,

…, Cn, M), we can find b1…bn.
By Definition 7, there is

Ĥ(Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M)) ≤

P
T Ĥ(ḏ ≡ ∏

n
i=1 Ci

ḇi (% M)).
By Property 5 in [3], there is

Ĥ(y ≡ g
x (% M)) ≤

P
T Ĥ(Ḡ1 ≡ ∏

n
i=1 Ci

bi (% M)).
Further, by transitivity, there is

Ĥ(y ≡ g
x (% M)) ≤

P
T Ĥ(ḏ ≡ ∏

n
i=1 Ci

ḇi (% M)).
Therefore, solving ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) for ḇ1…ḇn is at least equivalent to the DLP in the same prime
field in computational complexity.

4.4 Security of the Compression Algorithm

The compression algorithm of which the input message is treated as only a block is the main body of
the new non-MDS hash function, and thus, through it the four natural properties of the new hash
function are embodied dominantly.

Clearly, the security of the compression algorithm depends on the security of the ASPP ḏ ≡ ∏

n
i=1 Ci

ḇi
(% M), where ḇi = ḅi 2

i with i = bi + (−1)
2(i – 1) / n (n / 2) and ḅi being a bit shadow.

In [3], we analyze the security of the ASPP Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) from the three aspects, discover no
subexponential time solution to it, and contrarily, find some evidence which inclines people to believe
that Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) is computationally harder than the DLP. Due to ḇi = ḅi 2
i ≥ ḅi, the security

conclusion about Ḡ ≡ ∏

n
i=1 Ci

ḅi (% M) is also suitable for ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) which is just another form
of the ASPP. Hence ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) has no subexponential time solution at present.
In what follows, we will analyze whether the compression formula ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) satisfies the
four natural properties of a hash function, and especially resists the three classical attacks or not.

In terms of Section 3.2, given the initial value ({Ci}, M) and a short message b1…bn, it is
transparently easy to calculate the digest ḏ ≡ ∏

n
i=1 Ci

ḇi (% M).

 9

http://eprint.iacr.org/2013/327.pdf

4.4.1 Compression Algorithm Is Computationally One-way

Let C1 ≡ g
u1 (% M), …, Cn ≡ g

un (% M), ḏ ≡ g
v (% M), where g is a generator of the group (*

M, ·),
and easily found when lg M < 1024.

Then, solving ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) for ḇ1…ḇn, namely b1…bn, is equivalent to solving
ḇ1 u1 + … + ḇn un ≡ v (%),

which is called an anomalous subset sum problem, shortly ASSP [3], and computationally at least
equivalent to a subset sum problem (SSP) due to ḇi = ḅi 2

i ≥ ḅi ≥ bi ∈ [0, 1].
The SSP has been proved to be NP-complete in its feasibility recognition form, and its computational

version, especially the high-density or big-length version, is NP-hard [9][24]. Hence, solving ASSP is
at least NP-hard.

Moreover in the non-MDS hash function, there is n ≥ m = lg M and n ≥ ḇi ≥ bi ∈ [0, 1]. The
knapsack density relevant to the ASSP ḇ1 u1 + … + ḇn un ≡ v (%) roughly equals

D = ∑

n
i=1 lg n / lg M = n lg n / m > lg n > 1,

which means that there exists many solutions to ḇ1 u1 + … + ḇn un ≡ v (%), namely the original
solution cannot be determined, or will not occur in a reduced lattice base defined by LLL [25]. Notice
that only such a 〈ḇ1, …, ḇn〉 from which a right bit string can be deduced will be a reasonable solution
vector. Experiments show that when D > 1, the probability that the original solution or a reasonable
solution is found through LLL lattice base reduction is almost zero [26].

Hence, LLL lattice base reduction attack on ASSP [25][27] is utterly ineffectual, which illustrates
that even although a DLP with the modulus bit-length less than 1024 can be solved, the original or a
reasonable ḇ1…ḇn cannot be found yet in DLP subexponential time, namely ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) is
computationally one-way.

4.4.2 Compression Algorithm Is Weakly Collision-free

Assume that b1…bn ≠ 0 is a short message or a message digest from a classical hash function. By
Definition 3, we easily understand that ḇi = ḅi 2

i ≤ n ∀i ∈ [1, n].
Given a short message b1…bn ≠ 0, and let b′1…b′n ≠ 0 be another short message to need to be found.
Let ḇ1…ḇn be the bit long-shadow string of b1…bn, and ḇ′1…ḇ′n be the bit long-shadow string of

b′1…b′n.
Let lĥ be the compression algorithm of the new non-MDS hash function described in Section 3.2.

Hence, we have
ḏ = lĥ(b1…bn) = ∏

n
i=1 Ci

ḇi % M,
and

ḏ ′ = lĥ(b′1…b′n) = ∏

n
i=1 Ci

ḇ′i % M,
where ḇi = ḅi 2

i with i = bi + (−1)
2(i – 1) / n (n / 2), and ḇ′i = ḅ′i 2

′i with ′i = b′i + (−1)
2(i – 1) / n (n / 2).

If ḏ = ḏ ′, there is ∏

n
i=1 Ci

ḇi ≡ ∏

n
i=1 Ci

ḇ′i (% M).
Observe an extreme case.
Assume that C1 = … = Cn = C.
Owing to the max of 0 ≤ ḇi ≤ n, we define logically

∏ n
i=1 C ḇi ≡ ∏ n

i = 1 C (n + 1)n – iḇi (% M).
Under the circumstances, if ḏ = ḏ ′, then there is

∏

n
i=1 C

(n + 1)n – iḇi ≡ ∏

n
i=1 C

(n + 1)n – iḇ′i (% M),
namely

C ∑

n

i

=

1

(n + 1)n – iḇi ≡ C ∑

n

i

=

1

(n + 1)n – iḇ′i (% M).
Let z ≡ ∑

n
i=1 ḇi (n + 1)n – i (%), and z′ ≡ ∑

n
i=1 ḇ′i (n + 1)n – i (%).

Correspondingly,
C z ≡ C z′ (% M).

We need to solve the above equation for z′.
If the order C is known, let z′ = z + kC, where k ≥ 1 is an integer. Once a fit k is found, there will

be C z ≡ C z

′ (% M), and a bit string can be inferred from ḇ′1…ḇ′n. However, seeking C is of the integer
factorization problem (IFP) at present because the prime factors of must be known.

In practice, C1, …, Cn that are produced through the algorithm in Section 3.1 are pairwise unequal,
which implies that for any given short message b1…bn, seeking another short message b′1…b′n such that

 10

http://eprint.iacr.org/2013/327.pdf

∏

n
i=1 Ci

ḇi ≡ ∏

n
i=1 Ci

ḇ′i (% M) is harder than the IFP in computational complexity, namely b′1…b′n for
lĥ(b1…bn) = lĥ(b′1…b′n) cannot be found in IFP subexponential time.

Therefore, we say that the new non-MDS hash function is weakly collision-free.
Again because the new hash function is non-MDS, and based on the intractabilities, like the

Chaum-Heijst-Pfitzmann hash function, it is resistant to single-block differential attack [28].

4.4.3 Compression Algorithm Is Resistant to Birthday Attack
First, observe an example of whether any two students in a class have the same birthday.
Suppose that the class has 23 students. If a teacher specifies a day (say February 12), then the chance

that at least one student is born on that day is (1 – (364 / 365)23) ≈ 6.11 %. However, the probability
that at least one student has the same birthday as any other student is around (1 – (365×…×343 / 36523))
≈ 50.73 %, which prompts birthday attack on hash functions.

Birthday attack is widely exploited for finding any two messages and ′ such that ĥ() = ĥ(′),
namely (, ′) is a collision, where ĥ is a hash function [29]. If the bit-length of a message digest is m,
an adversary can find a collision (, ′) such that ĥ() = ĥ(′) with probability 50% in roughly
1.1774 × 2m / 2 time, namely with input of 1.1774 × 2m / 2 random messages [30].

However, to the new non-MDS hash, a collision is transformed into a mapping.
Theorem 1: The new non-MDS hash function is resistant to birthday attack on the assumption that

the MPP and ASPP have only exponential time solutions.
Proof:
Let b1…bn and b′1…b′n be two arbitrary different short messages, and ḇ1…ḇn and ḇ′1…ḇ′n be two

related bit long-shadow strings.
Suppose that ḏ = ḏ ′, namely ∏ n

i=1 Ci
ḇi ≡ ∏ n

i=1 Ci
ḇ′i (% M).

Because the ASPP has only exponential time solutions, we cannot directly solve ḏ ≡ ∏ n
i=1 Ci

ḇ′i (% M)
for ḇ′1…ḇ′n.

Then, there is
∏ n

i=1 (Ai W ℓ
(i))δ

ḇi ≡ ∏ n
i=1 (Ai W ℓ

(i))δ
ḇ′i (% M).

Further,
W ḵ δ ∏

n
i=1(Ai)δ

ḇi ≡ W ḵ ′ δ ∏

n
i=1(Ai)δ

ḇ′i (% M),
where ḵ = ∑

n
i=1 ḇi ℓ(i), ḵ ′ = ∑

n
i=1 ḇ′i ℓ(i) % , and ḵ − ḵ ′ < 4n(2ñ + 3).

Raising either side of the above congruence to the δ

–1-th power yields
W ḵ ∏ n

i=1 Ai
ḇ i ≡ W ḵ ′ ∏ n

i=1 Ai
ḇ ′i (% M).

Without loss of generality, let ḵ ≥ ḵ ′. Because (*
M , ·) is an Abelian group, we have

W ḵ – ḵ ′ ≡ ∏ n
i=1 Ai

ḇ′i(∏ n
i=1 Ai

ḇi)–1 (% M).
Due to / 2 = a prime or the least prime factor of / 2 > 4n(2ñ + 3), there is

W 2k ≡ (∏ n
i=1 Ai

ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M), (1)
where k ∈ [0, 46) is a small integer, (ḵ − ḵ ′) / 2k is a prime, and W ∈ (1,) as a component of a private
key is determinate, which manifests that if ḇ1…ḇn and ḇ′1…ḇ′n satisfy (1), there will be ḏ = ḏ ′.

For clear explanation, (1) is written as the form of a function:
x 2k ≡ (∏ n

i=1 Ai
ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M). (2)

Since contains only one 2-factor, (2) has only two solutions when k ≠ 0.
In other words, we may define a mapping from {0, 1}n × {0, 1}n to {1, …, }:

Ψ (b1…bn, b′1…b′n) ≡ (∏ n
i=1Ai

ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M),
where ḇi = ḅi 2

i, ḇ′i = ḅ′i 2
i, ḵ = ∑

n
i=1 ḇi ℓ(i), ḵ′ = ∑

n
i=1 ḇ′i ℓ(i) % , k ∈ [0, 46) is a integer, and (ḵ − ḵ ′) / 2k

is a prime.
Therefore, only if Ψ (b1…bn, b′1…b′n) = W 2k with k ∈ [0, 46), can there exists ḏ = ḏ ′. Obviously, ∀

(b1…bn, b′1…b′n) ∈ {0, 1}n × {0, 1}n, the probability that Ψ (b1…bn, b′1…b′n) = W 2k is nearly 1 /2m.
Further, let ṉ be the number of needed inputs (b1…bn, b′1…b′n)′s to find at least a (b1…bn, b′1…b′n)

such that Ψ(b1…bn, b′1…b′n) = W 2k with probability 50%, which is equivalent to finding any two
messages b1…bn and b′1…b′n such that lĥ(b1…bn) = lĥ(b′1…b′n) with probability 50%. Then ṉ satisfies
1–((2m–k) /2m)ṉ = 50%. Through computation, find that ṉ is nearly 2m – 1 with k ∈ [0, 46).

The 2m – 1 is far larger than the threshold 1.1774 × 2m / 2 for the effective birthday attack. The reason is

 11

http://eprint.iacr.org/2013/327.pdf

that a hidden restriction is imposed on the input (b1…bn, b′1…b′n), which is easily understood as the
number of students of the class needs to be increased for finding with probability 50% any two students
who have both the same birthday and the same gender.

Additionally, because a private key ({Ai}, {ℓ(i)}, W, δ) is unknown for the adversary, and the MPP is
intractable, it is also infeasible that the adversary finds specific b1…bn and b′1…b′n such that (1) holds
by utilizing the private key.

Therefore, the new non-MDS hash can be resistant to the birthday attack, and at present, its security
is nearly the O(2m) magnitude, but not O(2m / 2).

4.4.4 Compression Algorithm Is Resistant to Meet-in-the-middle Attack
Meet-in-the-middle dichotomy used for attack on an intended expansion of a block cipher was first

developed by Diffie and Hellman in 1977 [31]. Section 3.10 of [9] brings forth a meet-in-the-middle
attack algorithm for solving a subset sum problem.

INPUT: a set of positive integers {c1, c2, …, cn} and a positive integer s.
S1: Set t ← n / 2.
S2: Construct a table with entries (∑

t
i=1 ci bi, (b1, b2, …, bt)) for (b1, b2, …, bt) ∈ (2)t.

Sort this table by the first component.
S3: For each (bt + 1, bt + 2, …, bn) ∈ (2)n - t, do the following:

S3.1: Compute r ← s − ∑

n
i=t +1 ci bi and check, using a binary search,

whether r is the first component of some entry in the table;
S3.2: If r = ∑

t
i=1 ci bi, then return (a solution is (b1, b2, …, bn)).

S4: Return (no solution exists).
OUTPUT: bi ∈ {0, 1}, 1 ≤ i ≤ n, such that ∑

n
i=1 ci bi = s, provided such bi exist.

It is not difficult to understand that the time complexity of the above algorithm is O(n2n / 2).
Let b1…bn be a short message, and its digest be ḏ ≡ ∏

n
i=1 Ci

ḇi (% M).
If bn / 2 = bn = 1 (thus, any bit shadow on the left of the middle point has no relation with bits on the

right), an adversary may attempt to attack the ASPP ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) by the meet-in-the-middle
method.

However, owing to ḇi = ḅi 2
i with i = bi + (−1)

2(i – 1) / n (n / 2) for every i ∈ [1, n], when i is from 1 to n / 2,
there exists

ḇ1…ḇn / 2 = (ḅ1 2b1 + n / 2)…(ḅn / 2 2bn),
which involves all the bits of the short message, namely a reasonable middle point does not exist.

If a fork is selected in proportion to (n / 3 : 2n / 3) or (n / 4 : 3n / 4), the right of the fork substantially
still involves all the bits b1, …, bn.

For instance, let n = 12, a short message (a bit string) = b1…b12, and a fork be to (4 : 8), then
ḇ5…ḇ12 = (ḅ5 2b11)(ḅ6 2b12)(ḅ7 2b1) (ḅ8 2b2)(ḅ9 2b3)(ḅ10 2b4)(ḅ11 2b5)(ḅ12 2b6)

involves all the bits b1, …, b12.
The above dissection manifests that the meet-in-the-middle attack is essentially ineffectual on the

new non-MDS hash function. Therefore, even if n = m, namely the input length = the output length of
the function, the time complexity of the attack task is still O(2m) at present, but not O(m2m / 2).

Besides, unlike ∑

n
i=1 ci = ∑

n
i=1 bi ci + ∑

n
i=1 ¬bi ci in the SSP, there is not

∏

n
i=1 Ci = ∏

n
i=1 Ci

ḇi ∏

n
i=1 Ci

¬ḇi (% M)
in the ASPP, where ¬ḇi is the bit long-shadow of ¬bi, which implies there does not exist an easy relation
between the ASPP ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) and the dichotomy.

4.4.5 Compression Algorithm Is Resistant to Multi-block Differential Attack
 The [32] and [33] show that multi-block near differential attack is effective on the iterative hash

functions MD5, SHA-0, SHA-1, and SHA-256 which have multiple block-inputs and the Merkle-

Damgård-Iteration structure [7][8].
It is well known that MD5, SHA-0, or SHA-1 will execute a number of rounds of inner iteration for

each input block, and each round of the inner iteration consists of linear arithmetics and logic operators
such as addition, shift, exclusive or etc.

The input of the new non-MDS hash function is a short message which may be treated as only one
block. Its inner iteration consists of at most 2n modular multiplications which is nonlinear and intricate,

 12

http://eprint.iacr.org/2013/327.pdf

which indicates that the differential analysis of ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) loses a basis.
Furthermore, in the new non-MDS hash, the inner nonlinear iteration leads to the fierce snowslide

effect and strong noninvertibility (see Section 4.4.1), and makes it impossible to derive a set of
sufficient conditions which ensure that the collision differential characteristics hold for two short
messages which are expected to produce a collision.

Therefore, the new non-MDS hash is substantially distinct from the classical hashes MD5, SHA-0,
SHA-1 etc, and the multi-block near differential attack suitable for the classical hashes will be utterly
ineffective on the new non-MDS hash function.

4.4.6 Compression Algorithm Is Strongly Collision-free
Firstly, it is known from Section 4.4.2 that the new non-MDS hash function lĥ is weakly

collision-free.
Secondly, for any arbitrary short message b1…bn, if want to find another short message b′1…b′n such

that lĥ(b1…bn) = lĥ(b′1…b′n), adversaries must take ḇ′1…ḇ′n from
∏

n
i=1 Ci

ḇi ≡ ∏

n
i=1 Ci

ḇ′i (% M),
and further acquire the bit string b′1…b′n. It is known from Section 4.4.2 that such a collision problem is
computationally harder than IFP at present.

Thirdly, the new non-MDS hash is resistant to classical or efficient attacks in common use ― the
birthday attack, meet-in-the-middle attack, and multi-block differential attack for example.

Lastly, any subexponential time algorithm for solving the ASPP ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) is not found yet
[34], and the most efficient method of solving ḏ ≡ ∏

n
i=1 Ci

ḇi (% M) is brute force attack so far. The
analysis manifests that the security of the new non-MDS hash gets the O(2m) magnitude at present.

In sum, the new hash function is strongly collision-free. Further, we give a related theorem.
Theorem 2: If any arbitrary collision of the new non-MDS hash function can be found in

subexponential time, the ASPP ∏

n
i=1 Ci

i ≡ 1 (% M) can be solved efficiently, where i ∈ [−n, n] is the
difference of two bit long-shadows at the same position.

Proof:
According to Definition 3，it is easy to understand that for every ḇi, there is 0 ≤ ḇi ≤ n.
Let b1…bn ≠ b′1…b′n ≠ 0 be two arbitrary bit strings, ḇ1…ḇn and ḇ′1…ḇ′n be respectively two

corresponding bit long-shadow strings.
Again let i = ḇi − ḇ′i, and then there is i ∈ [−n, n].
Since the interval [−n, n] is wider than [0, n], similar to ḏ ≡ ∏

n
i=1 Ci

ḇi (% M), the ASPP ∏

n
i=1 Ci

i ≡ 1
(% M) with i ∈ [−n, n] has no subexponential time solution [34], and is only faced with brute force
attack.

Assume that ∏

n
i=1 Ci

ḇi ≡ ∏

n
i=1 Ci

ḇ′i (% M) is a found collision between two arbitrary bit strings b1…bn
and b′1…b′n in subexponential time.

From ∏

n
i=1 Ci

ḇi ≡ ∏

n
i=1 Ci

ḇ′i (% M), we have
∏

n
i=1 Ci

ḇi − ḇ′i ≡ 1 (% M).
Let i ≡ ḇi − ḇ′i ∈ [−n, n], and then

∏

n
i=1 Ci

i ≡ 1 (% M),
which means that the ASPP ∏

n
i=1 Ci

i ≡ 1 (% M) can be solved efficiently in subexponential time. It is in
direct contradiction to the fact.

Therefore, the new non-MDS hash function is strongly collision-free.

5 Applicability of the New Non-MDS Hash Function

The new non-MDS hash function may be applied in practice, which can be seen from three aspects.

5.1 Running Time of the Compression Algorithm

Suppose that running time is measured in the number of bit operations. Then it is easy to understand
that the running time of a modular multiplication is O(2 lg2

 M) bit operations.
The initialization algorithm in Section 3.1 is one-shot, and not real-time, and thus it is unnecessary to

care about its running time.

 13

http://eprint.iacr.org/2013/327.pdf

In what follows, we consider the running time of the compression algorithm in Section 3.2.
Because of n ≤ ∑

n
i=1 ḇi ≤ 2n for a nonzero bit string b1…bn, the compression algorithm takes at most

2n modular multiplications, namely the running time of the compression algorithm is O((2n)2 lg2
 M) =

O(4n m2) bit operations which is relatively small.

5.2 Comparison with the Chaum-Heijst-Pfitzmann Hash

The Chaum-Heijst-Pfitzmann hash function is provably secure, and defined as follows [16]:
ĥ: w1, w2 ĥ(w1, w2) = αw1 β w2 % p ({0, ..., q − 1}2 → p − {0}),

where w1 and w2 are the two complementary parts of a short message, p and q (= (p − 1) / 2) are two big
primes, and α and β are two generators of the group (*

p , ·). Hence, the Chaum-Heijst-Pfitzmann
function based on the difficulty of the DLP β = α x % p compresses a short message of 2(lg p − 1) bits
into a digest of lg p bits.

Let lg p = 1024, and then the time complexity of computing logα β % p is 280 according to the
subexponential time Lp[1 /3, 1.923] [9], which means that the security of the Chaum-Heijst- Pfitzmann
hash is the 280 magnitude when lg p = 1024.

Let lg M = 80, and then the time complexity of solving the ASPP ḏ = ∏ n
i=1Ci

ḇi % M for ḇ1, …, ḇn is
also 280 since the ASPP only has an exponential time solution at present [34], which means that the
security of the new non-MDS hash is also the 280 magnitude when lg M = 80. Besides, let the
bit-length n = 2046 of a short message (w1, w2) = (b1…b1023, b1024…b2046) = b1…bn ≠ 0.

Under the same security, may draw a comparison between the new non-MDS hash and the
Chaum-Heijst-Pfitzmann hash.

 Running time of the compression algorithm
The Chaum-Heijst-Pfitzmann hash: 2(4lg p3) = 2(4(1024)3) = 8 589 934 592 bit operations.
The new non-MDS hash: 4nm2 = 4(2048)802 = 52 428 800 bit operations.

 Compression rate
The Chaum-Heijst-Pfitzmann hash: 1024 / 2046 ≈ 50.05%.
The new non-MDS hash: 80 / 2046 ≈ 3.91%.

 Resisting birthday attack
The number of inputs (w1, w2)′s needed by birthday attack on ĥ(w1, w2) ≡ αw1 β w2 (% p) is about

2lg p / 2 = 2512, larger than 280 which is the security magnitude of the DLP β = α x % p, and thus the
Chaum-Heijst-Pfitzmann hash function cannot resist the birthday attack.

The number of inputs b1…bn′s needed by birthday attack on lĥ(b1…bn) = ∏ n
i=1Ci

ḇi % M is about
2lg M / 2 = 240, smaller than 280 which is the security magnitude of the ASPP ḏ = ∏ n

i=1Ci
ḇi % M, and thus

the new non-MDS hash function can resist the birthday attack.
 Provable security

On the assumption that the DLP has a subexponential time solution, the Chaum-Heijst-Pfitzmann
hash function is proved to be strongly collision-free in subexponential time.

Likewise, on the assumption that the ASPP has an exponential time solution, the new non-MDS hash
function is also proved to be strongly collision-free in exponential time.

In summary, the new non-MDS hash has some advantages over the Chaum-Heijst-Pfitzmann one,
and relatively the former may be regarded as lightweight.

5.3 Reformation of a Classical Hash Function

Because the new non-MDS hash function is resistant to birthday attack and meet-in-the-middle
attack, a classical hash function of which the output is m bits, and the security is intended to be the
O(2m / 2) magnitude may be reformed into a compact hash function of which the output is m / 2 bits, and
the security is still equivalent to the O(2m / 2) magnitude [35].

For example, let b1…b128 be the output of MD5 [36], ḇ1…ḇ128 be its bit long-shadow string, and
lg M = 64. Then, regard ḏ = ∏

128
i=1 Ci

ḇi % M as the 64-bit output of the reformed MD5 with the
equivalent security, where Ci = (Ai W ℓ

(i))δ % M which is produced by the algorithm in Section 3.1.
Again for example, let b1…b160 be the output of SHA-1, ḇ1… ḇ160 be its bit long-shadow string, and

lg M = 80. Then, regard ḏ = ∏

160
i=1 Ci

ḇi % M as the 80-bit output of the reformed SHA-1 with the
equivalent security.

 14

http://eprint.iacr.org/2013/327.pdf

The above two examples indicate that we may exchange time for space when the related security
remains unchanged.

6 Conclusion

In the paper, the authors propose a new non-MDS hash function which contains the initialization
algorithm and the compression algorithm, and converts a short message or a message digest of n bits
into a string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤ n ≤ 4096.

The authors prove that both the MPP and the ASPP are computationally at least equivalent to the
DLP in the same prime field, and analyze the security of the new non-MDS hash function. The analysis
shows that the new non-MDS hash is computationally one-way, weakly collision-free, and strongly
collision-free. Moreover, at present, any subexponential time algorithm for attacking the new non-MDS
hash is not found, and its security gets be the O(2m) magnitude.

Especially, the analysis illustrates that the new non-MDS hash function is resistant to birthday attack
and meet-in-the-middle attack. By utilizing this characteristic, one can reform a classical hash function
with an m-bit output and an O(2m / 2) magnitude security into a compact hash function with an m / 2 bit
output and the equivalent security.

Simultaneously, the authors dissect the running time of compression algorithm of the new non-MDS
hash function, and it is O(n m2) bit operations.

The new non-MDS hash function opens a door to convenience for the utilization of a lightweight
digital signing scheme of which the modulus length is not greater than 160 bits.

Acknowledgment
The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou, Jianhua Zheng, Changxiang Shen, Zhengyao Wei,

Binxing Fang, Guangnan Ni, Andrew C. Yao, and Xicheng Lu for their important guidance, suggestions, and helps.
The authors also would like to thank the Professors Dingyi Pei, Dengguo Feng, Jie Wang, Ronald L. Rivest, Moti Yung, Adi

Shamir, Dingzhu Du, Mulan Liu, Huanguo Zhang, Yixian Yang, Maozhi Xu, Xuejia Lai, Yongfei Han, Yupu Hu, Dongdai Lin,
Chuankun Wu, Rongquan Feng, Ping Luo, Jianfeng Ma, Zhenfu Cao, Lusheng Chen, Chao Li, Wenbao Han, Bogang Lin, Qibin
Zhai, Hong Zhu, Renji Tao, Bingru Yang, Zhiying Wang, Quanyuan Wu, and Zhichang Qi for their important advice,
suggestions, and corrections.

References
[1] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, Cambridge, UK,

1999, ch. 3-5.
[2] T. ElGamal, A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Transactions on

Information Theory, vol. 31(4), 1985, pp. 469-472.
[3] S. Su and S. Lü, A Public Key Cryptosystem Based on Three New Provable Problems, Theoretical Computer Science, vol.

426-427, Apr. 2012, pp. 91-117.
[4] D. C. Ranasinghe, Lightweight Cryptography for Low Cost RFID, Networked RFID Systems and Lightweight Cryptography,

Springer-Verlag, 2007, pp. 311-346.
[5] H.-Y. Chien, SASI: A new ultralightweight rfid authentication protocol providing strong authentication and strong integrity,

IEEE Transactions on Dependable and Secure Computing, vol. 4(4), 2007, pp. 337-340.
[6] A. Shamir, SQUASH - A New MAC with Provable Security Properties for Highly Constrained Devices Such as RFID Tags,

Proc. of FSE′ 08, 2008.
[7] R. Merkle, One way hash functions and DES, Proc. of Advances in Cryptology: CRYPTO 89, Springer-Verlag, 1989, pp.

428-446.
[8] I. Damgard, A design principle for hash functions, Proc. of Advances in Cryptology: CRYPTO 89, Springer-Verlag, 1989,

pp. 416-427.
[9] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, London, UK, 1997, ch. 2,

3, 5.
[10] W. Stallings, Cryptography and Network Security: Principles and Practice (2nd ed.), Prentice-Hall, New Jersey, 1999, ch.

8, 9.
[11] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd ed.), John Wiley & Sons, New

York, 1996, ch. 18.
[12] S. Y. Yan, Number Theory for Computing (2nd ed.), Springer-Verlag, New York, 2002, ch. 1.
[13] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1998, ch. 1-3.
[14] K. H. Rosen, Elementary Number Theory and Its Applications (5th ed.), Addison-Wesley, Boston, 2005, ch. 12.
[15] M.J. Wiener, Cryptanalysis of Short RSA Secret Exponents, IEEE Transactions on Information Theory, vol. 36(3), 1990, pp.

553-558.
[16] D. Chaum, E. Van Heijst, and B. Pfitzmann, Cryptographically strong undeniable signatures, unconditionally secure for the

signer, Proc. of Advances in Cryptology: CRYPTO ′91 (LNCS 576), Springer-Verlag, 1992, pp. 470-484.
[17] D. Z. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons, New York, 2000, ch. 3-4.
[18] B. Schröder, Ordered Sets: An Introduction, Birkhäuser, Boston, 2003, ch. 3-4.

 15

http://eprint.iacr.org/2013/327.pdf

[19] M. Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions,
Dover Publications, Mineola, 2004, ch. 2-4.

[20] R. C. Merkle and M. E. Hellman, Hiding information and Signatures in Trapdoor Knapsacks, IEEE Transactions on
Information Theory, vol. 24(5), 1978, pp. 525-530.

[21] A. Shamir, A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem, Proc. of the 23th IEEE
Symposium on the Foundations of Computer Science, IEEE, 1982, pp. 145-152.

[22] D. Naccache and J. Stern, A new public key cryptosystem, Proc. of Advances in Cryptology: EUROCRYPT ′97,
Springer-Verlag, 1997, pp. 27-36.

[23] S. Su, S. Lü, and X. Fan, Asymptotic Granularity Reduction and Its Application, Theoretical Computer Science, vol.
412(39), Sep. 2011, pp. 5374-5386.

[24] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cambridge, UK, 2001, ch. 1-2.
[25] E. F. Brickell, Solving Low Density Knapsacks, Proc. of Advance in Cryptology: CRYPTO ′83, Plenum Press, New York,

1984, pp. 25-37.
[26] T. Li and S. Su, Analysis of Success Rate of Attacking Knapsacks from JUNA Cryptosystem by LLL Lattice Basis

Reduction, Proc. of 2013 Int. Conf. on Comput. Intelligence and Security, IEEE Computer, Dec. 2013, pp. 454-458.
[27] M. J. Coster, A. Joux, B. A. LaMacchia etc, Improved Low-Density Subset Sum Algorithms, Computational Complexity,

vol. 2(2), 1992, pp. 111-128.
[28] T. Xie and D. Feng, Construct MD5 Collisions Using Just A Single Block Of Message, Cryptology ePrint Archive,

http://eprint.iacr.org/2010/643, Dec. 2010.
[29] M. Bellare and T. Kohno, Hash Function Balance and Its Impact on Birthday Attacks, Proc. of Advances in Cryptology:

EURO CRYPT ′04, Springer-Verlag, 2004, pp. 401-418.
[30] M. Girault, R. Cohen, and M. Campana, A Generalized Birthday Attack, Proc. of Advances in Cryptology: EUROCRYPT

′88 (LNCS 330), Springer-Verlag, 1988, pp. 129-156.
[31] W. Diffie and M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryption Standard, Computer, vol. 10 (6), 1977,

pp. 74-84.
[32] E. Biham, R. Chen, A. Joux etc, Collisions of SHA-0 and Reduced SHA-1, Proc. of Advances in Cryptology: EUROCRYPT

′05, Springer-Verlag, 2005, pp. 36-57.
[33] X. Wang, Y. L. Yin, and H. Yu, Finding collisions in the full SHA-1, Proc. of Advances in Cryptology: CRYPTO ′05,

Springer-Verlag, 2005, pp. 17-36.
[34] S. Su and S. Lü, REESSE1+ · Reward · Proof by Experiment · A New Approach to Proof of P != NP, Cornell University

Library, http://arxiv.org/pdf/0908.0482, Aug. 2009 (revised Aug. 2014).
[35] M. Bellare and D. Micciancio, A New Paradigm for Collision-free Hashing: Incrementality at Reduced Cost, Proc.of

Advances in Cryptology: EUROCRYPT '97, Springer-Verlag, 1997, pp. 163-192.
[36] R. L. Rivest, The MD5 Message Digest Algorithm, RFC 1321, Apr. 1992.

 16

	1 Introduction
	2 Several Definitions
	2.1 A Coprime Sequence
	2.2 A Bit Shadow and a Bit Long-Shadow
	2.3 A Lever Function

	3 Design of the New Non-MDS Hash Function
	3.1 Initialization Algorithm
	3.2 Compression Algorithm

	4 Security Analysis of the New Non-MDS Hash Function
	4.1 Proof of Property 5
	4.2 Security of the Initialization Algorithm
	4.2.1 Ineffectualness of Presupposing ?(x1) + ?(x2) = ?(y1) + ?(y2)
	4.2.2 Ineffectualness of Guessing (W(

	4.3 Proof of Property 6
	4.4 Security of the Compression Algorithm
	4.4.1 Compression Algorithm Is Computationally One-way
	4.4.2 Compression Algorithm Is Weakly Collision-free
	4.4.3 Compression Algorithm Is Resistant to Birthday Attack
	4.4.4 Compression Algorithm Is Resistant to Meet-in-the-middle Attack
	4.4.5 Compression Algorithm Is Resistant to Multi-block Differential Attack
	4.4.6 Compression Algorithm Is Strongly Collision-free

	5 Applicability of the New Non-MDS Hash Function
	5.1 Running Time of the Compression Algorithm
	5.2 Comparison with the Chaum-Heijst-Pfitzmann Hash
	5.3 Reformation of a Classical Hash Function

	6 Conclusion
	References

