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Abstract: To be paired with a lightweight digital signing scheme of which the modulus length 
is between 80 and 160 bits, a new non-Merkle-Damgård structure (non-MDS) hash function is 
proposed by the authors based on a multivariate permutation problem (MPP) and an anomalous 
subset product problem (ASPP) to which no subexponential time solutions are found so far. It 
includes an initialization algorithm and a compression algorithm, and converts a short message 
of n bits treated as only a block into a digest of m bits, where 80≤m≤232 and 80≤m≤n≤4096. 
Analysis shows that the new hash is one-way, weakly collision-free, and strongly collision-free 
along with a proof, and its security against existent attacks such as birthday attack and 
meet-in-the- middle attack gets the O(2m) magnitude. Running time of its compression algorithm 
is analyzed to be O(nm2) bit operations. A comparison with the Chaum-Heijst-Pfitzmann hash 
based on a discrete logarithm problem is made. Especially, the new hash with short input and 
small computation may be used to reform a classical hash with an m-bit output and an O(2m/2) 
magnitude security into a compact hash with an m / 2-bit output and the same security. Thus, it 
opens a door to convenience for utilization of lightweight digital signing schemes. 
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1  Introduction 

In recent years, the ECC-160 digital signing scheme, an analogue of the ElGamal digital signing 
scheme based on a discrete logarithm problem (DLP) in an elliptic curve group over a finite field [1][2], 
and some lightweight digital signing schemes ― the optimized version of the REESSE1+ digital 
signing scheme [3] for example have been utilized for RF ID (Radio Frequency Identity) tags or 
non-RF ID tags [4][5][6]. 

While a RF ID tag contains an IC chip which is used to store signatures and other data, an non-RF 
ID tag contains no IC chip because a short signature from a lightweight or ultra-lightweight signing 
scheme may be symbolized in short length, and printed directly on a papery tag or label. Now, such 
tags are applied to the identification, authentication, or anti-forgery of financial-notes, certificates, 
diplomas, and commodities, particularly including food and drug. 

It is well understood that we first need to extract the digest of a message by employing a hash 
function before signing the message. Traditionally, a hash function consists of a compression function 
and the Merkle-Damgård structure (MDS) [7][8]. Let ĥ be a hash function, and generally, it has the 
following four properties [9][10]: 

 given a message , it is very easy to calculate the message digest ḏ = ĥ (), where ḏ is also called 
a hash output; 

 given a digest ḏ, it is very hard to calculate the message  according to ḏ = ĥ (), namely ĥ is 
one-way;  

 given any arbitrary message , it is computationally infeasible to find another message ′ such 
that ĥ() = ĥ(′), namely ĥ is weakly collision-free; 

 it is computationally infeasible to find two arbitrary messages  ≠ ′ such that ĥ() = ĥ(′), 
namely ĥ is strongly collision-free. 

The word “infeasible” means that some problem cannot be solved at least in polynomial time. 
Sometimes,  is optional with some users of a hash function because , , and  are enough for 
most of applications of the users. 

At present, SHA-1, SHA-256, and SHA-384 announced by NIST are among the hash functions that 
are believed to be secure [9][11] though they each cannot resist birthday attack of which the time 
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complexity is O(2 m / 2) that means that the security of each them is nearly the O(2m / 2) magnitude, where 
m is the bit-length of a message digest namely a hash output. It is well known that the output 
bit-lengths of these three functions are 160, 256, and 384 respectively. 

When any of the three is practically paired with a lightweight signing scheme of which the modulus 
bit-length is between 80 and 160, its output must be adjusted to the range of the modulus bit-length of 
the singing scheme with its security unchanged or corresponding to the signing scheme. 

The modulus bit-length of the optimized REESSE1+ signing scheme based on a transcendental 
logarithm problem and a polynomial root finding problem is 80 [3], and its security is the 280 
magnitude. When SHA-1 is paired with this signing scheme, the output of SHA-1 must be adjusted to 
80 bits with its security unchanged. Again when SHA-256 is paired with ECC-160, the output of 
SHA-256 must be adjusted to 160 bits with its security being at least the 280 magnitude. 

Therefore, it is a problem in practice how to adjust a message digest from a classical hash function to 
the range of the modulus bit-length of a host signing scheme and to keep the security of the message 
digest being unchanged or corresponding to the host signing scheme. 

To settle this problem, the authors design a new non-MDS hash function called JUNA which 
includes two algorithms: an initialization algorithm and a compression algorithm, converts a short 
message or a message digest of n bits into an output string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤ 
n ≤ 4096, and moreover ensures that the security of the output string against collision attacks gets the 
O(2m) magnitude. 

The paper has two dominant novelties:  designing the initialization algorithm based on a 
multivariate permutation problem which only has an exponential time solution currently, and makes the 
new hash function be able to resist a birthday attack;  designing the compression algorithm based on 
an anomalous subset product problem which also only has an exponential time solution currently, and 
makes the new hash function be able to resist other classical attacks, especially including a 
meet-in-the-middle attack. The significance of the paper lies in the thing that a new non-MDS hash 
function with an m-bit output and the O(2m) magnitude security is first proposed by the authors while a 
classical iterative hash function is with an m-bit output and only the O(2m

 
/

 
2) magnitude security. 

In Section 2 of the paper, several relevant definitions are given. In Section 3, the two algorithms of 
the new hash function are described. In Section 4, the security of the new hash function is analyzed. In 
Section 5, the running time of the compression algorithm of the new hash is dissected, a comparison 
with another non-MDS hash, the Chaum-Heijst-Pfitzmann hash based on a discrete logarithm problem, 
is made, and the reformation of a classical hash function is illustrated. 

Throughout the paper, unless otherwise specified, an even number n ≥ 80 is the bit-length of a short 
message (a message digest) or the item-length of a sequence, the sign % denotes “modulo”,  does “M 

– 1” with M prime, lg x denotes a logarithm of x to the base 2, ¬bi does NOT operation of a bit bi, Þ 
does the maximal prime allowed in a coprime sequence, |x| does the absolute value of a number x, x 
does the order of x % M, S  does the size of a set S, and gcd(x, y) represents the greatest common 
divisor of two integers x and y. Without ambiguity, “% M ” is usually omitted in expressions. 

2  Several Definitions 

Before the two algorithms of the new non-MDS hash function are described, three relevant 
definitions are presented. 

2.1  A Coprime Sequence 

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai and Aj (i ≠ j), either 
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k (≠ i, j) ∈ [1, n], these integers 
are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}. 

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence 
of which the elements are pairwise coprime is a coprime sequence. 

For example, {21, 15, 29, 23, 11, 17, 19, 13} and {23, 7, 11, 3, 19, 13, 5, 17} are two coprime 
sequences separately. 

Property 1: Let {A1, …, An} be a coprime sequence. If randomly select k ∈ [1, n] elements Ax1, …, 
Axk from the sequence, then the mapping from a subset {Ax1, …, Axk} to a subset product G = ∏ k  

i = 1Axi is 
one-to-one, namely the mapping from b1…bn to G = ∏ n  

i = 1 Ai
bi is one-to-one, where b1…bn is a bit string.  

Refer to [3] for its proof. 
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2.2  A Bit Shadow and a Bit Long-Shadow 

Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḅi with i ∈ [1, n] is called a bit shadow if it comes 
from such a rule:  ḅi = 0 if bi = 0;  ḅi = 1 + the number of successive 0-bits before bi if bi = 1; or  ḅi 
= 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the rightmost 1-bit 
if bi is the leftmost 1-bit. 

Notice that (3) of this definition is slightly different from that in [3]. 
For example, let b1…b8 = 01010110, then ḅ1…ḅ8 = 03020210. 
Fact 1: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then there is ∑ 

n 
i=1 ḅi = n. 

Proof: 
According to Definition 2, every bit of b1…bn is considered into ∑ 

k 
i=1 ḅxi, where ḅx1, …, ḅxk are 1-bit 

shadows in the string ḅ1…ḅn, and there is ∑ 

k 
i=1 ḅxi = n. 

On the other hand, there is ∑ 

n−k 
j=1  ḅyj = 0, where ḅy1, …, ḅyn − k are 0-bit shadows. 

In total, there is ∑ 

n 
i=1 ḅi = n.                                                          

Property 2: Let {A1, …, An} be a coprime sequence, and ḅ1…ḅn be the bit shadow string of b1…bn ≠ 
0. Then the mapping from b1…bn to G = ∏ 

n 
i=1 Ai

ḅi is one-to-one. 
Proof: 
Step 1. 
Let b1…bn and b′1…b′n be two different nonzero bit strings, and ḅ1…ḅn and ḅ′1…ḅ′n be the two 

corresponding bit shadow strings. 
If ḅ1…ḅn = ḅ′1…ḅ′n, then by Definition 2, there is b1…bn = b′1…b′n. 
In addition, for any arbitrary bit shadow string ḅ1…ḅn, there always exists a preimage b1…bn. Thus, 

the mapping from b1…bn to ḅ1…ḅn is one-to-one. 
Step 2.  
Obviously the mapping from ḅ1…ḅn to ∏ 

n 
i=1 Ai 

ḅi is surjective. 
Again presuppose that ∏ 

n 
i=1 Ai 

ḅi = ∏ 

n 
i=1 Ai 

ḅ′i for ḅ1…ḅn ≠ ḅ′1…ḅ′n. 
Since {A1, …, An} is a coprime sequence, and Ai 

ḅi either equals 1 with ḅi = 0 or contains the same 
prime factors as those of Ai with ḅi ≠ 0, we can obtain ḅ1…ḅn = ḅ′1…ḅ′n from ∏ 

n 
i=1 Ai 

ḅi = ∏ 

n 
i=1 Ai 

ḅ′i, which 
is in direct contradiction to ḅ1…ḅn ≠ ḅ′1…ḅ′n.  

Therefore, the mapping from ḅ1…ḅn to ∏ 

n 
i=1 Ai 

ḅi is injective [12]. 
In summary, the mapping from ḅ1…ḅn to ∏ 

n 
i=1 Ai 

ḅi is one-to-one, and further the mapping from b1…bn 
to ∏ 

n 
i=1 Ai 

ḅi is also one-to-one.                                                           
Definition 3: Let ḅ1…ḅn be the bit shadow string of b1…bn ≠ 0. Then ḇi = ḅi 2

i with i ∈ [1, n] is 
called a bit long-shadow, where  i = bi + (−1) 

2(i – 1) / n (n / 2) = 0 or 1. 
According to Definition 3, it is not difficult to understand that for every ḇi, there is 0 ≤ ḇi ≤ n when 

b1…bn ≠ 0. 
For example, let b1…b8 = 01010110, then ḇ1…ḇ8 = 06020410. 
Fact 2: Let ḇ1…ḇn be the bit long-shadow string of b1…bn ≠ 0. Then there is n ≤ ∑ 

n 
i=1 ḇ i ≤ 2n. 

Proof:  
By Definition 3 and Fact 1, we have 

∑ 

n 
i=1 ḇ i = ∑ 

n 
i=1 ḅi 2

i and ∑ 

n 
i=1 ḅi = n. 

If every bi = 1, namely every  i = 1, then 
∑ 

n 
i=1 ḇ i = ∑ 

n 
i=1 ḅi 2

i = 2∑ 

n 
i=1 ḅi = 2n. 

Again, by Definition 3, not all the bits of b1…bn are zero. 
If there exists only one nonzero bit in b1…bn ― bx = 1 with x ∈ [1, n] for example, then  

∑ 

n 
i=1 ḇ i = ∑ 

n 
i=1 ḅi 2

i = ḅx 2
x = ḅx = n, 

where  x = bx + (−1) 
2(x – 1) / n (n / 2) = 0 due to bx being the unique nonzero bit. 

Thus, it holds that n ≤ ∑ 

n 
i=1 ḇ i ≤ 2n.                                                    

Property 3: Let ḇ1…ḇn be the bit long-shadow string of b1…bn ≠ 0. Then the mapping from b1…bn 
to ḇ1…ḇn is one-to-one. 

Proof: 
On one hand, assume that a bit string b1…bn ≠ 0 is known. 
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It is understood from Definition 3 that ḇi = ḅi 2
i for each i, where  i = bi + (−1) 

2(i – 1) / n (n / 2). 
Because when b1…bn is known, ḅ1…ḅn and  1…n are respectively determined, ḇ 1…ḇ n can also be 

determined uniquely. 
On the other hand, assume that a bit long-shadow string ḇ 1…ḇ n is known. 
According to ḇi = ḅi 2

i and ḇi = 0 with ḅi = 0, where i = bi + (−1) 
2(i – 1) / n (n / 2), we can determinate bi for i 

= 1, …, n as follows. 
 Case of ḇi = 0 
If ḇi = 0, then ḅi = 0, and set bi = 0. 
 Case of ḇi ≠ 0 
If ḇi ≠ 0, then ḅi ≠ 0, and set bi = 1. 

In this way, the value of every bi can be determined uniquely. 
In summary, the mapping from b1…bn to ḇ1…ḇn is one-to-one.                               

2.3  A Lever Function 

The designing of the initialization algorithm of the new hash function is based on the hard problem 
Ci ≡ (Ai W 

ℓ
 
(i)) 

δ (% M) for i = 1, …, n which is first used for the REESSE1+ asymmetric cryptosystem, 
where the exponent ℓ(i) is called a lever function [3]. 

In the paper, we still borrow the concept of the lever function but a public key is regarded as an 
initial value, and a private key (parameter) is only used for the generation of the initial value, not for 
decryption. 

Definition 4: The secret parameter ℓ(i) in the transform of a non-MDS hash function is called a lever 
function, if it has the following features: 

 ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, }, where  is large; 
 the mapping between i and ℓ(i) is established randomly without an analytical expression; 
 an attacker has to be faced with all the permutations of elements in Ω when inferring a related 
private parameter from an initial value; 
 the owner of the private parameter only need to consider the polynomial arithmetic of elements in 
Ω when doing a certain computation. 

Feature  and  make it clear that if n is large enough, it is infeasible for the attacker to search all 
the permutations of elements in Ω exhaustively while the computation by the owner of the private 
parameter is feasible in polynomial time in n. Thus, the amount of calculation on ℓ(.) is large at “a 
public terminal”, and is small at “a private terminal”. 

Notice that the number of all the elements of Ω, namely the size of Ω is not less than n. 
Property 4 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ (Ai W ℓ 

(i))δ (% M) with ℓ(i) ∈ Ω = {5, …, n + 4} 
and Ai ∈ Λ = {2, …, Þ | 863 ≤ Þ ≤ 1201} for i = 1, …, n. Then ∀ W (W  ≠ ) ∈ (1, ), and ∀ x, y, z (x 
≠ y ≠ z) ∈ [1, n], 

 when ℓ(x) + ℓ(y) = ℓ(z), there is 
ℓ(x) + W  + ℓ(y) + W  ≠ ℓ(z) + W  (% ); 

 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist 
Cx ≡ A′x W′ ℓ′(x) (% M), Cy ≡ A′y W′ ℓ′(y) (% M), and Cz ≡ A′z W′ ℓ′(z) (% M) 

such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (% ) with A′z ≤ Þ. 
Proof: 

 It is easy to understand that  
W 

ℓ(x
 

) ≡ W 
ℓ(x

 

)
 
+

 
W

 

, W 
ℓ(y

 

) ≡ W 
ℓ(y

 

)
 
+

 
W

 

, and W 
ℓ(z

 

) ≡ W 
ℓ(z

 

)
 
+

 
W

 

 (% M). 
Due to W  ≠ , 2W  ≠ W , and ℓ(x) + ℓ(y) = ℓ(z), it follows that  

ℓ(x) + W  + ℓ(y) + W  ≠ ℓ(z) + W  (% ). 
However, it should be noted that when W  = , there is ℓ(x) + W  + ℓ(y) + W  ≡ ℓ(z) + W  (% ). 

 Let Ōd be an oracle on solving a discrete logarithm problem. 
Suppose that W ′ ∈ [1, ] is a generator of ( * 

M , ·). 
In light of group theories, ∀ A′z ∈ {2, …, Þ}, the congruence 

Cz ≡ A′z W ′ ℓ′ (z 

) (% M) 
has a solution. Then, ℓ′(z) may be taken through Ōd. 
∀ ℓ′(x) ∈ [1, ], and let  

ℓ′(y) ≡ ℓ′(z) – ℓ′(x) (% ). 
Further, from the congruences Cx ≡ A′x W ′ ℓ  

(x
 

)′  (% M) and Cy ≡ A′y W ′ ℓ  

(y
 

)′  (% M), we can obtain many 
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distinct pairs (A′x, A′y), where A′x, A′y ∈ (1, M), and ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (% ). 
In this way, Property 4.2 is proven.                                                    
Notice that letting Ω = {5, …, n + 4}, namely every ℓ(i) ≥ 5 makes seeking W from W ℓ 

(i) ≡ Ai
–1

 Ci (% 
M) face an unsolvable Galois group when the value of Ai ≤ Þ is guessed [13], and moreover Property 4 
still holds when Ω is any subset containing n elements from {1, …, }. 

Property 4 manifests that will continued fraction attack on Ci ≡ Ai W 
ℓ

 
(i) (% M) by Theorem 12.19 in 

Section 12.3 of [14] be utterly ineffectual only if elements in Ω are fitly selected [15]. 

3  Design of the New Non-MDS Hash Function 

The Chaum-Heijst-Pfitzmann hash function, a non-MDS one, is appreciable. It is based on a discrete 
logarithm problem, and proved to be strongly collision-free [16]. 

The new non-MDS hash function is composed of two algorithms which contain two main parameters 
m and n, where m denotes the bit-length of a modulus used in the new hash, n denotes the bit-length of 
a short message or a message digest from a classical hash function, and there are 80 ≤ m ≤ 232 with 80 
≤ m ≤ n ≤ 4096. 

Additionally, Λ and Ω  are two integral sets, and their lengths should be selected in conformity to the 
values of m and n such that 2n5Ω Λ5 ≥ 2m with 210 ≤ Λ ≤ 232 and n ≤ ñ ≤ 232 (see Section 4.2.1), 
where ñ = Ω , and 210 ≤ Λ ≤ 232 means 10 ≤ lgÞ ≤ 32. 

For example, as m = 80 ≤ n, there should be Λ = 210 and Ω  = n; as m = 96 ≤ n, should Λ = 212 and 
Ω  = n; as m = 112 ≤ n, should Λ = 214 and Ω  = n; as m = 128 ≤ n, should Λ = 216 and Ω  = 212; as m 
= 232 ≤ n, should Λ = 232 and Ω  = 232. 

Notice that in the arithmetic modulo , −x represents  – x. 

3.1  Initialization Algorithm 

This algorithm is employed by an authoritative third party or the owner of a key pair, and only needs 
to be executed one time. 

INPUT: the bit-length m of a modulus with 80 ≤ m ≤ 232; 
the item-length n of a sequence with 80 ≤ m ≤ n ≤ 4096; 
the maximal prime Þ with 10 ≤ lgÞ ≤ 32; 
the size ñ of the set Ω  with 2ñn5Þ 5 ≥ 2m and n ≤ ñ ≤ 232. 

S1: Produce Λ ← {2, 3, …, Þ}. 
Produce a random coprime sequence {A1, …, An | Ai ∈ Λ}. 

S2: Find a prime M with lg M = m such that  / 2 is a prime, 
or the least prime factor of  / 2 > 4n(2ñ + 3). 

S3: Pick W ∈ (1,  ) making W  ≥ 2m – lgÞ. 
Pick δ ∈ (1,  ) making gcd(δ,  ) = 1. 

S4: Randomly yield Ω  ← {+/−5, +/−7, …, +/−(2ñ + 3)}. 
Randomly select a distinct ℓ(i) ∈ Ω  for i = 1, …, n. 

S5: Compute Ci ← (Ai W ℓ
 

(i))δ % M for i = 1, …, n. 
OUTPUT: an initial value ({Ci}, M) which is public to the people. 
A private parameter ({Ai}, {ℓ(i)}, W, δ) may be discarded, but must not be divulged. 
Assume that there is Ci = Cj with i ≠ j. Then (AiW ℓ

 

(i))δ ≡ (AjW ℓ
 

(j))δ (% M), and W ℓ
 

(i) − ℓ
 

(j)
 ≡ Aj  Ai

−1
 (% M). 

Because of  / 2 = a prime or the least prime factor of  / 2 > 4n(2ñ + 3), the probability that the case 
W ℓ

 

(i) − ℓ
 

(j) ≡ Aj Ai
−1 (% M), namely Ci = Cj occurs is 1 / 2m. 

At S3, to seek W, let W ≡ g / F (% M), where g is a generator of ( *  
M , ·) obtained through Algorithm 

4.80 in Section 4.6 of [9], and F < 2lg Þ is a factor of . 
At S4, Ω  = {+/−5, +/−7, …, +/−(2ñ + 3)} indicates that Ω  is one of 2ñ potential sets, indeterminate, 

and unknown to the public, where “+/−” means the selection of the “+” or “−” sign. 
Definition 5: Given ({Ci}, M), seeking the original ({Ai}, {ℓ(i)}, W, δ) from Ci ≡ (Ai W 

ℓ (i))δ (% M) 
with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 
1, …, n is referred to as a multivariate permutation problem, shortly MPP [3]. 

Property 5: The MPP Ci ≡ (Ai W 
ℓ (i))δ (% M) with Ai ∈ {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ 

{+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n is computationally at least equivalent to the 
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DLP in the same prime field. 
See Section 4.1 for its proof. 

3.2  Compression Algorithm 

This algorithm is employed by a person who wants to obtain a short message digest. 
INPUT: an initial value ({C1, …, Cn}, M), where lg M = m with 80 ≤ m ≤ n ≤ 4096;  

a short message (or a message digest from a classical hash function) b1…bn ≠ 0. 
S1: Set k ← 0, i ← 1. 
S2: If bi = 0 then 

S2.1: let k ← k + 1, ḅi ← 0 
else 

S2.2: if i = k + 1 then let  ← i; 
S2.3: let ḅi ← k + 1, k ← 0. 

S3: Let i ← i + 1. 
If i ≤ n then go to S2. 

S4: Compute ḅ ← ḅ + k. 
S5: Compute ḏ ← ∏ 

n 
i=1 Ci

ḇi % M, 
where ḇi = ḅi 2

i with  i = bi + (−1) 
2(i – 1) / n (n / 2). 

OUTPUT: a digest ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) of which the bit-length is m. 
It is easily known from Definition 3 that the max of {ḇ1, …, ḇn} is less than or equal to n when 

b1…bn ≠ 0. 
Definition 6: Given (ḏ, M), seeking the original ḇ1…ḇn from ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i 

with  i = bi + (−1) 
2(i – 1) / n (n / 2) and ḅi being a bit shadow is referred to as an anomalous subset product 

problem, shortly ASPP [3]. 
Property 6: The ASPP ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i with  i = bi + (−1) 

2(i – 1) / n (n / 2) and ḅi being a 
bit shadow is computationally at least equivalent to the DLP in the same prime field. 

See Section 4.3 for its proof. 

4  Security Analysis of the New Non-MDS Hash Function 

Because a hash function must be one-way, weakly collision-free, and sometimes required to be 
strongly collision-free, the new non-MDS hash function should also be at least one-way and weakly 
collision-free. 

It is should be noted that lg M = m, but not n, is the security dominant parameter of the new 
non-MDS hash function. 

Definition 7: Let A and B be two computational problems. A is said to reduce to B in polynomial 
time, written as A ≤ 

P 
T  B, if there is an algorithm for solving Α which calls, as a subroutine, a 

hypothetical algorithm for solving B, and runs in polynomial time, excluding the time of the algorithm 
for solving B [9][17]. 

The hypothetical algorithm for solving B is called an oracle. It is easy to understand that no matter 
what the time complexity of the oracle is, it does not influence the result of the comparison. 

A ≤ 

P 
T  B means that the difficulty of A is not greater than that of B, namely the time complexity of the 

fastest algorithm for solving A is not greater than that of the fastest algorithm for solving B when all 
polynomial times are treated as the identical magnitude. Concretely speaking, if A cannot be solved in 
polynomial or subexponential time, correspondingly B cannot also be solved in polynomial or 
subexponential time; and if B can be solved in polynomial or subexponential time, correspondingly A 
can also be solved in polynomial or subexponential time. 

Definition 8: Let A and B be two computational problems. If A ≤ 

P 
T  B and B ≤ 

P 
T  A, then A and B are 

said to be computationally equivalent, written as A = 

P 
T  B [9][17]. 

A = 

P 
T  B means that either if A is a intractability with a certain complexity on a condition that its 

dominant variable approaches a large number, B is also a intractability with the same complexity on the 
identical condition; or both A and B can be solved in linear or polynomial time. 

Obviously, Definition 7 and 8 gives a partial order relation among the complexities or difficulties of 
computational problems [18], and suggest a reductive proof method called polynomial time Turing 
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reduction (PTR) [17]. 
In addition, for convenience sake, let Ĥ(y = f(x)) represent the complexity or difficulty of the problem 

of solving y = f(x) for x [19]. 

4.1  Proof of Property 5 

In Section 3.1, the MPP is defined as Ci ≡ (Ai W 
ℓ (i))δ (% M) with Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 

32} and ℓ(i) ∈ Ω  = {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} for i = 1, …, n. What follows is the proof 
of Property 5, a property of the MPP. 

Proof:  
Firstly, systematically consider Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n. 
Assume that each gi ≡ Ai W ℓ (i) (% M) with ℓ(i) ∈ {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ ≤ 232} is a 

constant. 
Let 

gi ≡ g 

xi (% M), and zi ≡ δ xi (% ), 
where g ∈ * 

M be a generator. 
Then, there is 

Ci ≡ gi 

δ ≡ g 
δ

 
xi (% M) for i = 1, …, n. 

Again let δ xi ≡ zi (% ). Then 
Ci ≡ g 

zi (% M) for i = 1, …, n. 
The above expression corresponds to the fact that in the ElGamal cryptosystem where many users 

share the modulus and a key generator, User 1 acquires a private key z1 and a public key C1, …, and 
User n acquires a private key zn and a public key Cn. It is well known that in this case, the attack of an 
adversary is still faced with the DLP, namely seeking zi from the simultaneous equation Ci ≡ g 

zi (% M) 
for i = 1, …, n is computationally equivalent to the DLP [9]. 

Thus, when every gi is weakened to a constant, seeking δ from Ci ≡ gi 

δ (% M) for i = 1, …, n is 
computationally equivalent to the DLP, which indicates that when every gi is not a constant, seeking gi 
and δ from Ci ≡ gi

δ (% M) for i = 1, …, n is computationally at least equivalent to the DLP. 
Secondly, singly consider a certain Ci, where the subscript i is designated. 
Assume that Ōm(Ci, M, Ṟ) is an oracle on solving Ci ≡ gi 

δ (% M) for gi and δ, where i is in {1, …, n}, 
and Ṟ is a constraint on gi such that the original gi and δ can be found. 

Let y ≡ g 
x (% M) be of the DLP. Then, by calling Ōm(y, M, g), x can be obtained. 

According to Definition 7, there is 
Ĥ(y ≡ g 

x (% M)) ≤ 

P 
T  Ĥ(Ci ≡ gi 

δ (% M)), 
which indicates that when only a certain gi is known, seeking gi and δ from Ci ≡ gi 

δ (% M) is 
computationally at least equivalent to the DLP. 

Integrally, seeking the original {Ai}, {ℓ(i)}, W, and δ from Ci ≡ (Ai W ℓ (i))δ (% M) for i = 1, …, n is 
computationally at least equivalent to the DLP in the same prime field.                          

4.2  Security of the Initialization Algorithm 

Clearly, the security of the initialization algorithm depends on the security of the MPP Ci ≡ (Ai W ℓ(i))δ 
(% M) with Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} and ℓ(i) ∈ Ω  = {+/−5, +/−7, …, +/−(2ñ + 3) | n ≤ ñ 
≤ 232} for i = 1, …, n. 

In [3], we analyze the security of the MPP Ci ≡ (Ai W ℓ(i))δ (% M) with Ai ∈ {2, 3, …, Þ | 863 ≤ Þ ≤ 
1201} and ℓ(i) ∈ {5, 7, …, (2n + 3)} for i = 1, …, n from the three aspects, discover no subexponential 
time solution to it, and contrarily, find some evidence which inclines people to believe that the MPP is 
computationally harder than the DLP. 

Considering that the set Ω  is different from the old in [3], and the range of Þ is larger than the old in 
[3], we will analyze the security of the MPP with different restrictions additionally. 

4.2.1  Ineffectualness of Presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) 

Because of Ω  = {+/−5, +/−7, …, +/−(2ñ + 3)}, when the absolute values |ℓ(x1)|, |ℓ(x2)|, |ℓ(y1)|, |ℓ(y2)| 
are determined, the value ℓ(x1) + ℓ(x2) − (ℓ(y1) + ℓ(y2)) has 24 = 16 possible cases, which enhances the 
indeterminacy of the lever function, and increases the complexity of an attack task for cracking the 
MPP to some extent. 
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Adversaries may try to eliminate W through judging ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2). 
∀ x1, x2, y1, y2 ∈ [1, n], presuppose that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) holds. 
Let Gz ≡ Cx1Cx2(Cy1Cy2)

–1 (% M), namely 
Gz ≡ (Ax1Ax2(Ay1Ay2)

–1)δ (% M). 
If the adversaries divine the values of Ax1, Ax2, Ay1, Ay2, and compute u, vx1, vx2, vy1, vy2 in at least 

LM [1 /3, 1.923] time such that 
Gz ≡ gu, Ax1 ≡ gvx1, Ax2 ≡ gvx2, Ay1 ≡ gvy1, Ay2 ≡ gvy2 (% M), 

where g is a generator of ( * 
M , ·), then 

u ≡ (vx1 + vx2 – vy1 – vy2)δ (%  ). 
If gcd(vx1 + vx2 – vy1 – vy2,  ) | u, the congruence in δ has solutions. Because each of Ax1, Ax2, Ay1, Ay2 

may traverse the interval Λ, and the subscripts x1, x2, y1, y2 are unfixed, the number of potential values 
of δ is about n4

 Λ4. Notice that the number of non-repeated values of δ will be less than 2m. 
In succession, need to seek W. Now, the most effectual approach to seeking W is that for every i, the 

adversaries fix a value of δ, divine Ai and ℓ(i), and find the set i according to Ci ≡ (Ai W ℓ 
(i))δ (% M), 

where i is the set of possible values of W meeting Ci ≡ (Ai W ℓ 
(i))δ (% M) for i = 1, …, n. If there exist 

W1 ∈ 1, …, Wn ∈ n being pairwise equal, the divination of δ, {Ai}, and {ℓ(i)} is thought right; else 
fix another value of δ, repeat the above process. 

Notice that due to  / 2 = a prime or the least prime factor of  / 2 > 4n(2ñ + 3), W ℓ 
(i) ≡ Ci

δ−1Ai
−1 (% 

M) can be solved in polynomial time, and besides letting W = g 

µ % M is unnecessary. 
It is not difficulty to understand that the size of every i is about (2Ω )Λ. 
In summary, the time complexity of the above attack task is 

Ŧ = (n + Λ)LM [1 / 3, 1.923] + (n4Λ4) + (n4Λ4)(2Ω Λ)n 
≈ 2n5Ω Λ5. 

Concretely speaking, 
For m = n = 80 with Λ = 210 & Ω  = 80, Ŧ > 2(26.3)5(26.3)(210)5 = 288 > 2m. 
For m = n = 96 with Λ = 212 & Ω  = 96, Ŧ > 2(26.5)5(26.5)(212)5 = 2100 > 2m. 
For m = n = 112 with Λ = 214 & Ω  = 112, Ŧ > 2(26.8)5(26.8)(214)5 = 2112 = 2m. 
For m = n = 128 with Λ = 216 & Ω  = 212, Ŧ > 2(27)5(212)(216)5 = 2128 = 2m. 
For m = n = 232 with Λ = 232 & Ω  = 232, Ŧ > 2(27.8)5(232)(232)5 = 2232 = 2m. 
Thus, the time complexity of the attack by presupposing ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2) is not less than 

O(2m) when Λ and Ω  are chosen suitably. 

4.2.2  Ineffectualness of Guessing W  

Owing to 80 ≤ lgM ≤ 232,  can be factorized in tolerable subexponential time, and further a 
value of W can be guessed. 

Adversaries may try to eliminate W through W W  ≡ 1 (% M). 
Raising either side of every equation Ci ≡ (Ai W ℓ

 
(i))δ (% M) to the W-th power yields 

Ci 

W  ≡ (Ai)δ W  % M. 
Suppose that the value of every Ai ∈ Λ = {2, 3, …, Þ | 10 ≤ lgÞ ≤ 32} is guessed, or the possible 

values of every Ai are traversed. 
Let Ci ≡ gu

 
i (% M), and Ai ≡ gvi (% M), where g is a generator of ( * 

M , ·). Then 
ui W  ≡ vi W  δ (%  ) (i = 1, …, n). 

Notice that ui ≠ vi δ (%  ), and {v1, …, vn} is not a super increasing sequence. 
The above congruence is seemingly the MH transform [20]. Actually, {v1 W , …, vn W } is not a 

super increasing sequence, and moreover there is not necessarily lg (ui W ) = lg . 
Because vi W  ∈ [1,  ] is stochastic, the inverse δ–1 %  not need be close to the minimum 

 / (ui W ), 2 / (ui W ), …, or (ui W  – 1) / (ui W ). Namely δ–1 may lie at any integral position of 
the interval [k / (ui W ), (k + 1) / (ui W )], where k = 0, 1, …, ui W  – 1, which illustrates that the 
accumulation points of minima do not exist. Further observing, in this case, when i traverses the 
interval [2, n], the number of intersections of the intervals containing δ–1 is likely the max of {u1 W , …, 
un W } which is promisingly close to . Therefore, the Shamir attack by the accumulation point of 
minima is fully ineffectual [21]. 

Even if find out δ 

–1 through the Shamir attack method, because each of { v1, …, vn} has W  solutions, 
the number of potential sequences {gv1, …, gvn} is up to W  

n. Because of needing to verify whether 
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{gv1, …, gvn} is a coprime sequence for each different sequence {v1, …, vn}, the number of possible 
coprime sequences is in proportion to W  

n. Hence, the initial {A1, …, An} cannot be determined in 
subexponential time. Further, the value of W cannot be computed, and the values of W  and δ–1 cannot 
be verified, which indicates that the MPP can also be resistant to the Shamir attack by the accumulation 
point of minima. 

Additionally, the adversaries may divine the value of Ai in about O(Λ) time with i ∈ [1, n], and 
compute δ by vi W  ≡ ui W δ (%  ). However, because of W  | , the equation will have W  
solutions. Therefore, the time complexity of finding the original δ is at least 

Ŧ = (n + Λ)LM [1 / 3, 1.923] + ΛW  
≥ (n + Λ)LM [1 / 3, 1.923] + 2lgÞ2m – lgÞ 
> 2 m. 

It is also not less than O(2m). 

4.3  Proof of Property 6 

In Section 3.2, the ASPP is defined as ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M), where ḇi = ḅi 2
i with  i = bi + (−1) 

2(i – 1) / n (n / 2) 
and ḅi being a bit shadow. What follows is the proof of Property 6, a property of the ASPP. 

Proof: 
Assume that Ōa(ḏ, C1, …, Cn, M) is an oracle on solving ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) for ḇ1…ḇn, where ḇ1…ḇn 
is the bit long-shadow string of b1…bn. 

Particularly, when C1 = … = Cn = C, define  
ḏ ≡ ∏ 

n 
i=1 C 

(n + 1)n − i
 
ḇi ≡ ∏ 

n 
i=1 (C 

(n + 1)n − i) ḇi (% M) 
with 0 ≤ ḇi ≤ n, and define the corresponding oracle as Ōa(ḏ, C 

(n + 1)n − 1, …, C 
(n + 1)0, M). 

Let Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M) be of the subset product problem (SPP) [3][22][23]. 
Since there is 0 ≤ bi ≤ ḇi, and the mapping from ḇ1…ḇn to b1…bn is one-to-one, by calling Ōa(Ḡ1, C1, 

…, Cn, M), we can find b1…bn. 
By Definition 7, there is  

Ĥ(Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M)) ≤ 

P 
T  Ĥ(ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M)). 
By Property 5 in [3], there is 

Ĥ(y ≡ g 
x (% M)) ≤ 

P 
T  Ĥ(Ḡ1 ≡ ∏ 

n 
i=1 Ci

bi (% M)). 
Further, by transitivity, there is  

Ĥ(y ≡ g 
x (% M)) ≤ 

P 
T  Ĥ(ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M)). 
Therefore, solving ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) for ḇ1…ḇn is at least equivalent to the DLP in the same prime 
field in computational complexity.                                                      

4.4  Security of the Compression Algorithm 

The compression algorithm of which the input message is treated as only a block is the main body of 
the new non-MDS hash function, and thus, through it the four natural properties of the new hash 
function are embodied dominantly. 

Clearly, the security of the compression algorithm depends on the security of the ASPP ḏ ≡ ∏ 

n 
i=1 Ci

ḇi 
(% M), where ḇi = ḅi 2

i with  i = bi + (−1) 
2(i – 1) / n (n / 2) and ḅi being a bit shadow. 

In [3], we analyze the security of the ASPP Ḡ ≡ ∏ 

n 
i=1 Ci 

ḅi (% M) from the three aspects, discover no 
subexponential time solution to it, and contrarily, find some evidence which inclines people to believe 
that Ḡ ≡ ∏ 

n 
i=1 Ci 

ḅi (% M) is computationally harder than the DLP. Due to ḇi = ḅi 2
i ≥ ḅi, the security 

conclusion about Ḡ ≡ ∏ 

n 
i=1 Ci 

ḅi (% M) is also suitable for ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) which is just another form 
of the ASPP. Hence ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) has no subexponential time solution at present. 
In what follows, we will analyze whether the compression formula ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) satisfies the 
four natural properties of a hash function, and especially resists the three classical attacks or not. 

In terms of Section 3.2, given the initial value ({Ci}, M) and a short message b1…bn, it is 
transparently easy to calculate the digest ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M). 
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4.4.1  Compression Algorithm Is Computationally One-way 

Let C1 ≡ g 
u1 (% M), …, Cn ≡ g 

un (% M), ḏ ≡ g 
v (% M), where g is a generator of the group ( * 

M, ·), 
and easily found when lg M < 1024. 

Then, solving ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) for ḇ1…ḇn, namely b1…bn, is equivalent to solving 
ḇ1 u1 + … + ḇn un ≡ v (%  ), 

which is called an anomalous subset sum problem, shortly ASSP [3], and computationally at least 
equivalent to a subset sum problem (SSP) due to ḇi = ḅi 2

i ≥ ḅi ≥ bi ∈ [0, 1]. 
The SSP has been proved to be NP-complete in its feasibility recognition form, and its computational 

version, especially the high-density or big-length version, is NP-hard [9][24]. Hence, solving ASSP is 
at least NP-hard. 

Moreover in the non-MDS hash function, there is n ≥ m = lg M and n ≥ ḇi ≥ bi ∈ [0, 1]. The 
knapsack density relevant to the ASSP ḇ1 u1 + … + ḇn un ≡ v (%  ) roughly equals  

D = ∑ 

n 
i=1 lg n / lg M = n lg n / m > lg n > 1, 

which means that there exists many solutions to ḇ1 u1 + … + ḇn un ≡ v (%  ), namely the original 
solution cannot be determined, or will not occur in a reduced lattice base defined by LLL [25]. Notice 
that only such a 〈ḇ1, …, ḇn〉 from which a right bit string can be deduced will be a reasonable solution 
vector. Experiments show that when D > 1, the probability that the original solution or a reasonable 
solution is found through LLL lattice base reduction is almost zero [26]. 

Hence, LLL lattice base reduction attack on ASSP [25][27] is utterly ineffectual, which illustrates 
that even although a DLP with the modulus bit-length less than 1024 can be solved, the original or a 
reasonable ḇ1…ḇn cannot be found yet in DLP subexponential time, namely ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) is 
computationally one-way. 

4.4.2  Compression Algorithm Is Weakly Collision-free 

Assume that b1…bn ≠ 0 is a short message or a message digest from a classical hash function. By 
Definition 3, we easily understand that ḇi = ḅi 2

i ≤ n ∀i ∈ [1, n]. 
Given a short message b1…bn ≠ 0, and let b′1…b′n ≠ 0 be another short message to need to be found. 
Let ḇ1…ḇn be the bit long-shadow string of b1…bn, and ḇ′1…ḇ′n be the bit long-shadow string of 

b′1…b′n. 
Let lĥ be the compression algorithm of the new non-MDS hash function described in Section 3.2. 

Hence, we have 
ḏ = lĥ(b1…bn) = ∏ 

n 
i=1 Ci

ḇi % M,  
and 

ḏ ′ = lĥ(b′1…b′n) = ∏ 

n 
i=1 Ci

ḇ′i % M, 
where ḇi = ḅi 2

i with  i = bi + (−1) 
2(i – 1) / n (n / 2), and ḇ′i = ḅ′i 2 

′i with  ′i = b′i + (−1) 
2(i – 1) / n (n / 2). 

If ḏ = ḏ ′, there is ∏ 

n 
i=1 Ci

ḇi ≡ ∏ 

n 
i=1 Ci

ḇ′i (% M). 
Observe an extreme case. 
Assume that C1 = … = Cn = C. 
Owing to the max of 0 ≤ ḇi ≤ n, we define logically 

∏ n  
i=1 C ḇi ≡ ∏ n  

i = 1 C (n + 1)n – iḇi (% M). 
Under the circumstances, if ḏ = ḏ ′, then there is 

∏ 

n 
i=1 C 

(n + 1)n – iḇi ≡ ∏ 

n 
i=1 C 

(n + 1)n – iḇ′i (% M), 
namely 

C ∑
 

n  

i
 
=

 
1 

(n + 1)n – iḇi ≡ C ∑
 

n  

i
 
=

 
1 

(n + 1)n – iḇ′i (% M). 
Let z ≡ ∑ 

n 
i=1 ḇi (n + 1)n – i (% ), and z′ ≡ ∑ 

n 
i=1 ḇ′i (n + 1)n – i (% ). 

Correspondingly, 
C z ≡ C z′ (% M). 

We need to solve the above equation for z′. 
If the order C is known, let z′ = z + kC, where k ≥ 1 is an integer. Once a fit k is found, there will 

be C z ≡ C z
 

′ (% M), and a bit string can be inferred from ḇ′1…ḇ′n. However, seeking C is of the integer 
factorization problem (IFP) at present because the prime factors of  must be known. 

In practice, C1, …, Cn that are produced through the algorithm in Section 3.1 are pairwise unequal, 
which implies that for any given short message b1…bn, seeking another short message b′1…b′n such that 
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∏ 

n 
i=1 Ci

ḇi ≡ ∏ 

n 
i=1 Ci

ḇ′i (% M) is harder than the IFP in computational complexity, namely b′1…b′n for 
lĥ(b1…bn) = lĥ(b′1…b′n) cannot be found in IFP subexponential time. 

Therefore, we say that the new non-MDS hash function is weakly collision-free. 
Again because the new hash function is non-MDS, and based on the intractabilities, like the 

Chaum-Heijst-Pfitzmann hash function, it is resistant to single-block differential attack [28]. 

4.4.3  Compression Algorithm Is Resistant to Birthday Attack 
First, observe an example of whether any two students in a class have the same birthday. 
Suppose that the class has 23 students. If a teacher specifies a day (say February 12), then the chance 

that at least one student is born on that day is (1 – (364 / 365)23) ≈ 6.11 %. However, the probability 
that at least one student has the same birthday as any other student is around (1 – (365×…×343 / 36523)) 
≈ 50.73 %, which prompts birthday attack on hash functions. 

Birthday attack is widely exploited for finding any two messages  and ′ such that ĥ() = ĥ(′), 
namely (, ′) is a collision, where ĥ is a hash function [29]. If the bit-length of a message digest is m, 
an adversary can find a collision (, ′) such that ĥ() = ĥ(′) with probability 50% in roughly 
1.1774 × 2m / 2 time, namely with input of 1.1774 × 2m / 2 random messages [30]. 

However, to the new non-MDS hash, a collision is transformed into a mapping. 
Theorem 1: The new non-MDS hash function is resistant to birthday attack on the assumption that 

the MPP and ASPP have only exponential time solutions. 
Proof: 
Let b1…bn and b′1…b′n be two arbitrary different short messages, and ḇ1…ḇn and ḇ′1…ḇ′n be two 

related bit long-shadow strings. 
Suppose that ḏ = ḏ ′, namely ∏ n 

i=1 Ci
ḇi ≡ ∏ n 

i=1 Ci
ḇ′i (% M). 

Because the ASPP has only exponential time solutions, we cannot directly solve ḏ ≡ ∏ n 
i=1 Ci

ḇ′i (% M) 
for ḇ′1…ḇ′n. 

Then, there is 
∏ n 

i=1 (Ai W ℓ 
(i))δ 

ḇi ≡ ∏ n 
i=1 (Ai W ℓ 

(i))δ 
ḇ′i (% M). 

Further, 
W ḵ δ ∏ 

n 
i=1(Ai)δ 

ḇi ≡ W ḵ ′ δ ∏ 

n 
i=1(Ai)δ 

ḇ′i (% M), 
where ḵ = ∑ 

n 
i=1 ḇi ℓ(i), ḵ ′ = ∑ 

n 
i=1 ḇ′i ℓ(i) % , and ḵ − ḵ ′ < 4n(2ñ + 3). 

Raising either side of the above congruence to the δ 

–1-th power yields 
W ḵ ∏ n 

i=1 Ai
ḇ i ≡ W ḵ ′ ∏ n 

i=1 Ai
ḇ ′i (% M). 

Without loss of generality, let ḵ ≥ ḵ ′. Because ( * 
M , ·) is an Abelian group, we have 

W ḵ – ḵ ′ ≡ ∏ n 
i=1 Ai

ḇ′i(∏ n 
i=1 Ai

ḇi)–1 (% M). 
Due to  / 2 = a prime or the least prime factor of  / 2 > 4n(2ñ + 3), there is 

W 2k ≡ (∏ n 
i=1 Ai

ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M),                         (1) 
where k ∈ [0, 46) is a small integer, (ḵ − ḵ ′) / 2k is a prime, and W ∈ (1,  ) as a component of a private 
key is determinate, which manifests that if ḇ1…ḇn and ḇ′1…ḇ′n satisfy (1), there will be ḏ = ḏ ′. 

For clear explanation, (1) is written as the form of a function: 
x 2k ≡ (∏ n 

i=1 Ai
ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M).                         (2) 

Since  contains only one 2-factor, (2) has only two solutions when k ≠ 0. 
In other words, we may define a mapping from {0, 1}n × {0, 1}n to {1, …, }: 

Ψ (b1…bn, b′1…b′n) ≡ (∏ n 
i=1Ai

ḇ′i – ḇ)((ḵ – ḵ ′) / 2k)–1 (% M), 
where ḇi = ḅi 2

i, ḇ′i = ḅ′i 2
i, ḵ = ∑ 

n 
i=1 ḇi ℓ(i), ḵ′ = ∑ 

n 
i=1 ḇ′i ℓ(i) % , k ∈ [0, 46) is a integer, and (ḵ − ḵ ′) / 2k 

is a prime. 
Therefore, only if Ψ (b1…bn, b′1…b′n) = W 2k with k ∈ [0, 46), can there exists ḏ = ḏ ′. Obviously, ∀ 

(b1…bn, b′1…b′n) ∈ {0, 1}n × {0, 1}n, the probability that Ψ (b1…bn, b′1…b′n) = W 2k is nearly 1 /2m. 
Further, let ṉ be the number of needed inputs (b1…bn, b′1…b′n)′s to find at least a (b1…bn, b′1…b′n) 

such that Ψ(b1…bn, b′1…b′n) = W 2k with probability 50%, which is equivalent to finding any two 
messages b1…bn and b′1…b′n such that lĥ(b1…bn) = lĥ(b′1…b′n) with probability 50%. Then ṉ satisfies 
1–((2m–k) /2m)ṉ = 50%. Through computation, find that ṉ is nearly 2m – 1 with k ∈ [0, 46). 

The 2m – 1 is far larger than the threshold 1.1774 × 2m / 2 for the effective birthday attack. The reason is 
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that a hidden restriction is imposed on the input (b1…bn, b′1…b′n), which is easily understood as the 
number of students of the class needs to be increased for finding with probability 50% any two students 
who have both the same birthday and the same gender. 

Additionally, because a private key ({Ai}, {ℓ(i)}, W, δ) is unknown for the adversary, and the MPP is 
intractable, it is also infeasible that the adversary finds specific b1…bn and b′1…b′n such that (1) holds 
by utilizing the private key. 

Therefore, the new non-MDS hash can be resistant to the birthday attack, and at present, its security 
is nearly the O(2m) magnitude, but not O(2m / 2).                                     

4.4.4  Compression Algorithm Is Resistant to Meet-in-the-middle Attack 
Meet-in-the-middle dichotomy used for attack on an intended expansion of a block cipher was first 

developed by Diffie and Hellman in 1977 [31]. Section 3.10 of [9] brings forth a meet-in-the-middle 
attack algorithm for solving a subset sum problem. 

INPUT: a set of positive integers {c1, c2, …, cn} and a positive integer s. 
S1: Set t ← n / 2. 
S2: Construct a table with entries (∑ 

t 
i=1 ci bi, (b1, b2, …, bt)) for (b1, b2, …, bt) ∈ (  2)t.  

Sort this table by the first component. 
S3: For each (bt + 1, bt + 2, …, bn) ∈ (  2)n - t, do the following: 

S3.1: Compute r ← s − ∑ 

n    
i=t +1 ci bi and check, using a binary search, 

whether r is the first component of some entry in the table; 
S3.2: If r = ∑ 

t 
i=1 ci bi, then return (a solution is (b1, b2, …, bn)). 

S4: Return (no solution exists). 
OUTPUT: bi ∈ {0, 1}, 1 ≤ i ≤ n, such that ∑ 

n 
i=1 ci bi = s, provided such bi exist. 

It is not difficult to understand that the time complexity of the above algorithm is O(n2n / 2). 
Let b1…bn be a short message, and its digest be ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M). 
If bn / 2 = bn = 1 (thus, any bit shadow on the left of the middle point has no relation with bits on the 

right), an adversary may attempt to attack the ASPP ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) by the meet-in-the-middle 
method. 

However, owing to ḇi = ḅi 2
i with  i = bi + (−1) 

2(i – 1) / n (n / 2) for every i ∈ [1, n], when i is from 1 to n / 2, 
there exists 

ḇ1…ḇn / 2 = (ḅ1 2b1 + n / 2)…(ḅn / 2 2bn), 
which involves all the bits of the short message, namely a reasonable middle point does not exist. 

If a fork is selected in proportion to (n / 3 : 2n / 3) or (n / 4 : 3n / 4), the right of the fork substantially 
still involves all the bits b1, …, bn.  

For instance, let n = 12, a short message (a bit string) = b1…b12, and a fork be to (4 : 8), then 
ḇ5…ḇ12 = (ḅ5 2b11)(ḅ6 2b12)(ḅ7 2b1) (ḅ8 2b2)(ḅ9 2b3)(ḅ10 2b4)(ḅ11 2b5)(ḅ12 2b6) 

involves all the bits b1, …, b12. 
The above dissection manifests that the meet-in-the-middle attack is essentially ineffectual on the 

new non-MDS hash function. Therefore, even if n = m, namely the input length = the output length of 
the function, the time complexity of the attack task is still O(2m) at present, but not O(m2m / 2). 

Besides, unlike ∑ 

n 
i=1 ci = ∑ 

n 
i=1 bi ci + ∑ 

n 
i=1 ¬bi ci in the SSP, there is not 

∏ 

n 
i=1 Ci = ∏ 

n 
i=1 Ci

ḇi ∏ 

n 
i=1 Ci

¬ḇi (% M) 
in the ASPP, where ¬ḇi is the bit long-shadow of ¬bi, which implies there does not exist an easy relation 
between the ASPP ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) and the dichotomy. 

4.4.5  Compression Algorithm Is Resistant to Multi-block Differential Attack 
 The [32] and [33] show that multi-block near differential attack is effective on the iterative hash 

functions MD5, SHA-0, SHA-1, and SHA-256 which have multiple block-inputs and the Merkle- 

Damgård-Iteration structure [7][8]. 
It is well known that MD5, SHA-0, or SHA-1 will execute a number of rounds of inner iteration for 

each input block, and each round of the inner iteration consists of linear arithmetics and logic operators 
such as addition, shift, exclusive or etc. 

The input of the new non-MDS hash function is a short message which may be treated as only one 
block. Its inner iteration consists of at most 2n modular multiplications which is nonlinear and intricate, 
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which indicates that the differential analysis of ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) loses a basis. 
Furthermore, in the new non-MDS hash, the inner nonlinear iteration leads to the fierce snowslide 

effect and strong noninvertibility (see Section 4.4.1), and makes it impossible to derive a set of 
sufficient conditions which ensure that the collision differential characteristics hold for two short 
messages which are expected to produce a collision. 

Therefore, the new non-MDS hash is substantially distinct from the classical hashes MD5, SHA-0, 
SHA-1 etc, and the multi-block near differential attack suitable for the classical hashes will be utterly 
ineffective on the new non-MDS hash function. 

4.4.6  Compression Algorithm Is Strongly Collision-free 
Firstly, it is known from Section 4.4.2 that the new non-MDS hash function lĥ is weakly 

collision-free. 
Secondly, for any arbitrary short message b1…bn, if want to find another short message b′1…b′n such 

that lĥ(b1…bn) = lĥ(b′1…b′n), adversaries must take ḇ′1…ḇ′n from 
∏ 

n 
i=1 Ci

ḇi ≡ ∏ 

n 
i=1 Ci

ḇ′i (% M), 
and further acquire the bit string b′1…b′n. It is known from Section 4.4.2 that such a collision problem is 
computationally harder than IFP at present. 

Thirdly, the new non-MDS hash is resistant to classical or efficient attacks in common use ― the 
birthday attack, meet-in-the-middle attack, and multi-block differential attack for example. 

Lastly, any subexponential time algorithm for solving the ASPP ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) is not found yet 
[34], and the most efficient method of solving ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M) is brute force attack so far. The 
analysis manifests that the security of the new non-MDS hash gets the O(2m) magnitude at present. 

In sum, the new hash function is strongly collision-free. Further, we give a related theorem. 
Theorem 2: If any arbitrary collision of the new non-MDS hash function can be found in 

subexponential time, the ASPP ∏ 

n 
i=1 Ci

i ≡ 1 (% M) can be solved efficiently, where i ∈ [−n, n] is the 
difference of two bit long-shadows at the same position. 

Proof: 
According to Definition 3，it is easy to understand that for every ḇi, there is 0 ≤ ḇi ≤ n. 
Let b1…bn ≠ b′1…b′n ≠ 0 be two arbitrary bit strings, ḇ1…ḇn and ḇ′1…ḇ′n be respectively two 

corresponding bit long-shadow strings. 
Again let i = ḇi − ḇ′i, and then there is i ∈ [−n, n]. 
Since the interval [−n, n] is wider than [0, n], similar to ḏ ≡ ∏ 

n 
i=1 Ci

ḇi (% M), the ASPP ∏ 

n 
i=1 Ci

i ≡ 1 
(% M) with i ∈ [−n, n] has no subexponential time solution [34], and is only faced with brute force 
attack. 

Assume that ∏ 

n 
i=1 Ci

ḇi ≡ ∏ 

n 
i=1 Ci

ḇ′i (% M) is a found collision between two arbitrary bit strings b1…bn 
and b′1…b′n in subexponential time. 

From ∏ 

n 
i=1 Ci

ḇi ≡ ∏ 

n 
i=1 Ci

ḇ′i (% M), we have 
∏ 

n 
i=1 Ci

ḇi − ḇ′i ≡ 1 (% M). 
Let i ≡ ḇi − ḇ′i ∈ [−n, n], and then 

∏ 

n 
i=1 Ci

i ≡ 1 (% M), 
which means that the ASPP ∏ 

n 
i=1 Ci

i ≡ 1 (% M) can be solved efficiently in subexponential time. It is in 
direct contradiction to the fact. 

Therefore, the new non-MDS hash function is strongly collision-free.                      

5  Applicability of the New Non-MDS Hash Function 

The new non-MDS hash function may be applied in practice, which can be seen from three aspects. 

5.1  Running Time of the Compression Algorithm 

Suppose that running time is measured in the number of bit operations. Then it is easy to understand 
that the running time of a modular multiplication is O(2 lg2

 M) bit operations. 
The initialization algorithm in Section 3.1 is one-shot, and not real-time, and thus it is unnecessary to 

care about its running time. 
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In what follows, we consider the running time of the compression algorithm in Section 3.2. 
Because of n ≤ ∑ 

n 
i=1 ḇi ≤ 2n for a nonzero bit string b1…bn, the compression algorithm takes at most 

2n modular multiplications, namely the running time of the compression algorithm is O((2n)2 lg2
 M) = 

O(4n m2) bit operations which is relatively small. 

5.2  Comparison with the Chaum-Heijst-Pfitzmann Hash 

The Chaum-Heijst-Pfitzmann hash function is provably secure, and defined as follows [16]: 
ĥ: w1, w2  ĥ(w1, w2) = αw1 β w2 % p  ({0, ..., q − 1}2 → p − {0}), 

where w1 and w2 are the two complementary parts of a short message, p and q (= (p − 1) / 2) are two big 
primes, and α and β are two generators of the group ( * 

p , ·). Hence, the Chaum-Heijst-Pfitzmann 
function based on the difficulty of the DLP β = α x % p compresses a short message of 2(lg p − 1) bits 
into a digest of lg p bits. 

Let lg p = 1024, and then the time complexity of computing logα β % p is 280 according to the 
subexponential time Lp[1 /3, 1.923] [9], which means that the security of the Chaum-Heijst- Pfitzmann 
hash is the 280 magnitude when lg p = 1024. 

Let lg M = 80, and then the time complexity of solving the ASPP ḏ = ∏ n 
i=1Ci

ḇi % M for ḇ1, …, ḇn is 
also 280 since the ASPP only has an exponential time solution at present [34], which means that the 
security of the new non-MDS hash is also the 280 magnitude when lg M = 80. Besides, let the 
bit-length n = 2046 of a short message (w1, w2) = (b1…b1023, b1024…b2046) = b1…bn ≠ 0. 

Under the same security, may draw a comparison between the new non-MDS hash and the 
Chaum-Heijst-Pfitzmann hash. 

 Running time of the compression algorithm 
The Chaum-Heijst-Pfitzmann hash: 2(4lg p3) = 2(4(1024)3) = 8 589 934 592 bit operations. 
The new non-MDS hash: 4nm2 = 4(2048)802 = 52 428 800 bit operations. 

 Compression rate 
The Chaum-Heijst-Pfitzmann hash: 1024 / 2046 ≈ 50.05%. 
The new non-MDS hash: 80 / 2046 ≈ 3.91%. 

 Resisting birthday attack 
The number of inputs (w1, w2)′s needed by birthday attack on ĥ(w1, w2) ≡ αw1 β w2 (% p) is about 

2lg p / 2 = 2512, larger than 280 which is the security magnitude of the DLP β = α x % p, and thus the 
Chaum-Heijst-Pfitzmann hash function cannot resist the birthday attack. 

The number of inputs b1…bn′s needed by birthday attack on lĥ(b1…bn) = ∏ n 
i=1Ci

ḇi % M is about 
2lg M / 2 = 240, smaller than 280 which is the security magnitude of the ASPP ḏ = ∏ n 

i=1Ci
ḇi % M, and thus 

the new non-MDS hash function can resist the birthday attack. 
 Provable security 

On the assumption that the DLP has a subexponential time solution, the Chaum-Heijst-Pfitzmann 
hash function is proved to be strongly collision-free in subexponential time. 

Likewise, on the assumption that the ASPP has an exponential time solution, the new non-MDS hash 
function is also proved to be strongly collision-free in exponential time. 

In summary, the new non-MDS hash has some advantages over the Chaum-Heijst-Pfitzmann one, 
and relatively the former may be regarded as lightweight. 

5.3  Reformation of a Classical Hash Function 

Because the new non-MDS hash function is resistant to birthday attack and meet-in-the-middle 
attack, a classical hash function of which the output is m bits, and the security is intended to be the 
O(2m / 2) magnitude may be reformed into a compact hash function of which the output is m / 2 bits, and 
the security is still equivalent to the O(2m / 2) magnitude [35]. 

For example, let b1…b128 be the output of MD5 [36], ḇ1…ḇ128 be its bit long-shadow string, and 
lg M = 64. Then, regard ḏ = ∏ 

128 
i=1 Ci

ḇi % M as the 64-bit output of the reformed MD5 with the 
equivalent security, where Ci = (Ai W ℓ

 

(i))δ % M which is produced by the algorithm in Section 3.1. 
Again for example, let b1…b160 be the output of SHA-1, ḇ1… ḇ160 be its bit long-shadow string, and 

lg M = 80. Then, regard ḏ = ∏ 

160 
i=1 Ci

ḇi % M as the 80-bit output of the reformed SHA-1 with the 
equivalent security. 
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The above two examples indicate that we may exchange time for space when the related security 
remains unchanged. 

6  Conclusion 

In the paper, the authors propose a new non-MDS hash function which contains the initialization 
algorithm and the compression algorithm, and converts a short message or a message digest of n bits 
into a string of m bits, where 80 ≤ m ≤ 232 and 80 ≤ m ≤ n ≤ 4096. 

The authors prove that both the MPP and the ASPP are computationally at least equivalent to the 
DLP in the same prime field, and analyze the security of the new non-MDS hash function. The analysis 
shows that the new non-MDS hash is computationally one-way, weakly collision-free, and strongly 
collision-free. Moreover, at present, any subexponential time algorithm for attacking the new non-MDS 
hash is not found, and its security gets be the O(2m) magnitude. 

Especially, the analysis illustrates that the new non-MDS hash function is resistant to birthday attack 
and meet-in-the-middle attack. By utilizing this characteristic, one can reform a classical hash function 
with an m-bit output and an O(2m / 2) magnitude security into a compact hash function with an m / 2 bit 
output and the equivalent security. 

Simultaneously, the authors dissect the running time of compression algorithm of the new non-MDS 
hash function, and it is O(n m2) bit operations. 

The new non-MDS hash function opens a door to convenience for the utilization of a lightweight 
digital signing scheme of which the modulus length is not greater than 160 bits. 
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