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Abstract. An increasing number of cryptographic primitives are built
using the ARX operations: addition modulo 2n, bit rotation and XOR.
Because of their very fast performance in software, ARX ciphers are becom-
ing increasingly common. However, not a single ARX cipher has yet been
proven to be secure against one of the most common attacks in symmetric-
key cryptography: differential cryptanalysis. In this paper, we prove that
no differential characteristic exists for 15 rounds of Salsa20 with a higher
probability than 2−130. Thereby, we show that the full 20-round Salsa20
with a 128-bit key is secure against differential cryptanalysis, with a secu-
rity margin of 5 rounds. Our proof holds both in single-key and related-key
settings. Furthermore, our proof technique only involves writing out simple
equations for every addition, rotation and XOR operation in the cipher,
and applying an off-the-shelf SAT solver. To prove that Salsa20 is secure
against differential cryptanalysis requires only about 20 hours of compu-
tation on a single CPU core.
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1 Introduction

ARX ciphers are composed of only three operations: additions modulo 2n,
bit rotations and XORs. We use n to denote the word size, typically n = 32
or n = 64. Recently, many ciphers have appeared that are based on ARX.
Examples are the SHA-3 finalist hash functions BLAKE [2] and Skein [26],
the tweakable block cipher Threefish [26] and the stream cipher Salsa20 [6].
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Although the term ARX was not introduced until 2009,3 the concept
of ARX ciphers is much older, and dates back to at least 1987, when the
block cipher FEAL was published [46].

ARX ciphers are very fast in software. On an Intel Core i7 processor,
the ARX stream cipher Salsa20 reaches a speed of 3.23 cycles/byte [7], com-
pared to 6.92 cycles/byte AES-128 [32]. This last figure corresponds to the
fastest counter-mode AES-128 implementation, that does not make use of
the Intel AES New Instructions (AES-NI) [28]. With AES-NI, AES-128 in
counter mode requires only 1.26 cycles/byte on the same processor [7]. How-
ever, software developers cannot always assume that AES-NI are present,
because these instructions were only introduced very recently. Moreover,
Salsa20 also has an advantage over AES on smartphones and tablets:
Salsa20 runs at only 5.14 cycles/byte on a Qualcomm Snapdragon S4 pro-
cessor, compared to 18.62 cycles/byte for AES-128 in counter mode [7].

In certain applications where encryption speed is the bottleneck, ARX
ciphers offer a critical speed advantage. An example is VMWare View,
which uses PCoIP (PC-over-IP) to transmit computer displays over a net-
work. In VMWare View 4.5 and later, 12-round Salsa20 is used by default
because it supports speeds up to about 20 Mbit/s, whereas AES only sup-
ports speeds up to about 7 Mbit/s [48]. There is currently also an IETF
proposal for the Transport Layer Security (TLS) protocol to support both
12-round and 20-round Salsa20, because of performance issues with cur-
rently included ciphers [29].

A serious problem with ARX ciphers, however, is that their security
is not well understood. To analyze the security of symmetric-key cryp-
tographic primitives, two of the most powerful techniques are differential
cryptanalysis [10] and linear cryptanalysis [36]. Security against these at-
tacks is therefore typically a major design criterion for modern ciphers.
For example, the block cipher AES used the wide-trail design strategy to
provide provable resistance against both linear and differential cryptanal-
ysis [21].

For ARX ciphers, there are currently no proven security bounds against
differential cryptanalysis in existing literature. Because ARX ciphers are
so fast in software compared to compared to ciphers based on substitution-
permutation networks (SPNs), ARX ciphers are typically overdesigned. A
very large number of rounds is used, because the optimal trade-off between
security and efficiency is not understood. Designers of ARX ciphers have
previously attempted to argue the security against differential cryptanaly-
sis by using a variety techniques to search for high-probability differential

3 Although Weinmann initially introduced the term AXR [52], he changed this into
ARX soon afterwards. We use ARX in this paper, because this term has come into
wide acceptance in cryptographic literature.
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characteristics, and explaining that high-probability differential character-
istics could not be found for a sufficient number of rounds [2, 6, 26].

This paper is the first to prove that an ARX cipher is secure against
differential cryptanalysis, by proving an upper bound for the probability for
the best differential characteristic. Our proof relies on a computer program
that finds the best differential characteristics. This program is very easy to
generate, as it only involves writing out simple equations for every addition,
rotation and XOR of the ARX cipher. These equations are then input
into STP [27], a program that converts these equations into a conjunctive
normal form (CNF) formula. A SAT solver then either finds a satisfying
assignment to the CNF formula, or outputs unsatisfiable when it can prove
that no valid assignment exists. Using this framework, we prove after about
20 hours computation that the stream cipher Salsa20 [6] with a 128-bit key
is secure against differential cryptanalysis, both in the single-key and in the
related-key model. In particular, we prove that no differential characteristic
exists for 15 rounds of Salsa20 with a probability of more than 2−130.
Because our techniques are not specific to Salsa20, they can also be applied
to other ARX ciphers. We have released our results as a publicly available
toolkit: http://www.ecrypt.eu.org/tools/salsa20proof

Outline. Notation is defined in Table 1. Section 2 gives an overview of
related work. We define the Salsa20 stream cipher in Sect. 3. In Sect. 4,
we provide a general framework to construct bounds for differential char-
acteristics of ARX ciphers. This framework is applied to Salsa20 in Sect. 5,
where we provide a proof that Salsa20 with 128-bit keys is secure against
differential cryptanalysis. Section 6 provides an in-depth discussion of our
framework, and explains several considerations related to our Salsa20 proof.
We conclude in Sect. 7. For three rounds of Salsa20, there are exactly eight
differential characteristics with a probability of up to 2−18. The construc-
tion of these characteristics is given in App. A.

2 Related Work

Biham and Shamir introduced differential cryptanalysis in [10]. For block
ciphers, it is used to analyze how input differences in the plaintext lead to
output differences in the ciphertext. If this happens in a non-random way,
this can be used to build a distinguisher or even a key-recovery attack for
the block cipher. In the case of hash functions, differential cryptanalysis can
be used to construct a collision attack, as was done for the commonly used
hash functions MD5 [51] and SHA-1 [50]. For stream ciphers, differential
cryptanalysis can be used in the context of a resynchronization attack [20].

To prove the security of ciphers against differential cryptanalysis, Lai
et al. introduced the theory of Markov ciphers [33]. Their paper was the
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Table 1. Notation.

Notation Description

x + y addition of x and y modulo 2n (in text)
x ⊞ y addition of x and y modulo 2n (in figures)
x ≪ s rotation of x to the left by s positions
x≪ s shift of x to the left by s positions
x⊕ y bitwise exclusive OR (XOR) of x and y

x ∧ y bitwise AND of x and y

¬x bitwise NOT of x

:= is defined as
∆x XOR difference of x and x′: ∆x = x⊕ x′

x[i] bit selection: bit at position i of word x,
where i = 0 is the least significant bit

first to make a distinction between a differential and a differential charac-
teristic. A differential is a difference propagation from an input difference
to an output difference. A differential characteristic defines not only the
input and output differences, but also the internal differences after every
round of the iterated cipher. The probability of a differential is equal to the
sum of the probabilities of all differential characteristics that correspond
to this differential. It is commonly assumed that the probability of the
best differential can accurately be estimated by the probability of the best
differential characteristic.

Daemen and Rijmen used this theory of Markov ciphers to prove the
security of AES against differential cryptanalysis [21]. This was done by
proving a lower bound for the probability of the best differential character-
istic. For AES in the single-key setting, such a proof is very straightforward
because of the wide trail design strategy.

Calculating security bounds for AES against related-key attacks is
more difficult, but is possible with a search program. This was done by
Biryukov and Nikolić [12] by constructing a dedicated search program for
byte-oriented ciphers, and by Mouha et al. using Mixed-Integer Linear Pro-
gramming (MILP) [37,38]. For other ciphers with S-boxes, security bounds
against differential cryptanalysis can also be proven by use of search pro-
grams. See for example the security proofs for Generalized Feistel Struc-
tures (GFSs) [13,14,31,45].

For ciphers without S-boxes, not many ciphers have a proof of security
against differential cryptanalysis. We mention the following notable results:

– To prove the security of differential attacks based on local collisions,
Jutla and Patthak introduced SHA1-IME [30], a variant of SHA-1 with
an improved different message expansion. Bouillaguet et al. constructed
a similar proof for SIMD [15]. However, they give more power to the
adversary than in the proof for SHA1-IME.
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– Rivest et al. submitted the hash function MD6 [42] to the NIST SHA-3
competition [40]. The only data operations used in MD6 are AND,
XOR, left and right shifts. MD6 came was submitted with a proof
of resistance against differential cryptanalysis. However, NIST stated
that MD6 was not a competitive algorithm in the SHA-3 competition
because it is much slower than the SHA-2 family of hash functions. In
response, Rivest et al. tried to speed up MD6 while still retaining a
proof of security, but their attempts were unsuccessful [43].

– The hash function Keccak [8] was selected as the winner of the SHA-3
competition. All its data operations are linear in GF(2), except for the
AND function in the χ mapping. Keccak comes with a proof of security
against differential cryptanalysis.

– The stream cipher Trivium [23, 25] is a finalist of the eSTREAM com-
petition, and uses only AND and XOR functions. Recently, Trivium
was standardized as ISO/IEC 29192-3. Trivium comes with a proof of
security against differential cryptanalysis. The block ciphers KATAN
and KTANTAN [24] are based on Trivium, and come with a similar
proof against differential cryptanalysis.

In existing literature, not a single ARX cipher has yet been proven
secure against differential cryptanalysis. This paper is the first to provide
such a proof, more specifically for the stream cipher Salsa20.

3 Description of Salsa20

Salsa20 is a stream cipher designed by Bernstein [6]. The originally pro-
posed Salsa20 consists of R = 20 rounds. Later, Bernstein proposed two
reduced-round variants: Salsa20/8 and Salsa20/12, consisting of 8 and 12
rounds respectively [4]. For the sake of clarity, the 20-round Salsa20 is
sometimes referred to as Salsa20/20.

The Salsa20 stream cipher was submitted to the ECRYPT eSTREAM
competition, where the cipher has been very successful. At the end of the
competition, the Salsa20/12 cipher was included in the eSTREAM portfo-
lio. Although an attack was shown on Salsa20/8 [1], there are currently no
known attacks either Salsa20/12 or Salsa20/20.

Although eSTREAM has standardized Salsa20 with 12 rounds, Bern-
stein is more conservative and recommends choosing R = 20 for typical
cryptographic applications [6].

Salsa20 supports both 128-bit and 256-bit keys. In this paper, we will
only consider 128-bit keys. Salsa20 operates on 32-bit words. The Salsa20
core function converts a 128-bit key (k0, k1, k2, k3), a 64-bit counter (t0, t1),
a 64-bit nonce (v0, v1), and four 32-bit constants (c0, c1, c2, c3) into a 256-
bit output. The inputs are mapped to a two-dimensional square matrix as
follows:
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x0
0 x0

1 x0
2 x0

3

x0
4 x0

5 x0
6 x0

7

x0
8 x0

9 x0
10 x0

11

x0
12 x0

13 x0
14 x0

15









←









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k0

k1 k2 k3 c3









. (1)

A Salsa20-round consists of four parallel quarterround functions, defined
in Fig. 1:
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followed by a matrix transposition:

∀i, j : 0 ≤ i < 4, 0 ≤ j < 4 : xr+1

4i+j ← yr
4j+i . (6)

After R rounds, the output is calculated by a feed-forward operation:

∀i : 0 ≤ i < 16 : zi ← x0
i + xR

i mod 232 . (7)

Note that Salsa20 specification [6] defines both a columnround and a
rowround function. In this paper, we include a matrix transposition as
part of every round function. This simplifies the analysis: because of our
definitions, every round of Salsa20 is identical.

4 A Framework to Construct Bounds for Differential

Characteristics of ARX Ciphers

4.1 Calculating Differential Probabilities

Given a differential characteristic, we want to calculate the probability with
which it holds. Throughout this paper, we always use XOR differences. We
say that a differential is valid if it occurs with non-zero probability. The
bit rotation and XOR operations are linear in GF(2). Therefore, for every
input difference, there is only one valid output difference.

In [35], Lipmaa and Moriai study the differential properties of addition.
Let xdp+(α, β → γ) be the XOR-differential probability of addition modulo
2n, with input differences α and β and output difference γ. Lipmaa and
Moriai prove that the differential (α, β → γ) is valid if and only if:

eq(α≪ 1, β ≪ 1, γ ≪ 1) ∧ (α⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0 , (8)

where
eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z) . (9)
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≪ 7
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≪ 13

≪ 18

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 1. The Salsa20 quarterround function is defined as: (b0, b1, b2, b3) ←

quarterround(a0, a1, a2, a3)

For every valid differential (α, β → γ), we define the weight w(α, β → γ)
of the differential as follows:

w(α, β → γ) := − log2(xdp+(α, β → γ)) . (10)

The weight of a valid differential can then be calculated as:

w(α, β → γ) := h∗(¬eq(x, y, z)) , (11)

where h∗(x) denotes the number of non-zero bits in x, not counting x[31].

In our analysis, we assume that the probability of a valid differential
characteristic is equal to the multiplication of the probabilities of each
addition operation. Put differently, we calculate the weight of a valid dif-
ferential characteristic as the sum of the weights of each addition operation.
In Sect. 6, we will revisit this assumption and explain why it is valid for
our Salsa20 proof.
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4.2 Searching for Differential Characteristics

In this paper, we will use a SAT solver to find differential characteristics
up to a certain weight W . If a complete SAT solver returns unsatisfiable,
this proves that no such differential characteristics exists. Our goal will be
to make W sufficiently small, so that the search space is limited and the
SAT solver terminates within a reasonable time. However, W should also
be large enough to derive a useful security bound.

The first problem that we encounter, is that the input of typical SAT
solvers must be in conjunctive normal form (CNF). This corresponds to a
product-of-sums form of binary variables. The expressions that we will use,
however, involve Boolean functions and additions on n-bit words, where
n = 32 in the case of Salsa20. To overcome this problem, will make use
of STP [27]. STP converts equations using n-bit words into CNF, and
then invokes a SAT solver. If a satisfying solution exists, STP converts the
solution back into a solution for the original n-bit words.

To search for differential characteristics, we proceed with the following
steps:

– For every pair of n-bit input words (x, x′) of the cipher, we use one
n-bit word ∆x in STP to represent the XOR differences between the
corresponding inputs ∆x = x⊕ x′.

– Additional n-bit variables may be needed to represent the XOR differ-
ences of the outputs of the addition, XOR and rotate operations. These
are introduced when required.

– For every XOR and every bit rotation in the ARX cipher, we apply the
same XOR and bit rotation to the XOR differences. These hold with
probability one, and are therefore not included in the weight calculation.

– For every addition modulo 2n in the ARX cipher, we use (8) and (9)
to ensure that the input and output differences correspond to valid
differentials of the addition modulo 2n. These equations ensure that
either all differentials are valid, or SAT solver will output unsatisfiable.

– Additionally for every addition modulo 2n, we include (11) to calcu-
late the weight of the differential. This formula only applies to valid
differentials, but this is ensured by the previous equations.

– The weights of all these differentials are summed together. We specify
that the corresponding sum is at most W , which is the maximum weight
of the differentials that are considered by our search program.

– We specify that at least one XOR input differences is non-zero. Oth-
erwise, we would find the following trivial differential: if there is no
difference in the inputs, there is no difference in the outputs with prob-
ability one.

The STP program will be generated by a small script, that processes
the addition operation in a special way to generate the corresponding equa-

8



tions. Note that using this method, the input to our script corresponds
almost exactly to the C source code of the ARX algorithm. This greatly
simplifies the task of the cryptanalyst, and minimizes the possibility that
human errors are made.

5 A Proof that Salsa20 is Secure Against Differential

Cryptanalysis

5.1 Applying the Framework to Salsa20

Salsa20 has 16 input variables: x0
0, x0

1,..., x0
15. For each of these, we introduce

a 32-bit variable to represent the XOR difference in STP. We can then
straightforwardly apply the framework of Sect. 4 find differentials for any
number of rounds of Salsa20. However, there is one additional issue that
should be taken into account.

For any number of rounds of Salsa20, differential characteristics exist
with probability one. In particular, if ∀i : 0 ≤ i < 16 : xr

i [31] are flipped,
then ∀i : 0 ≤ i < 16 : xr+1

i [31] will be flipped as well with probability one.
This property was noted by several cryptographers, including Robshaw [5],
Wagner [49] and Hernandez-Castro et al. [18].

As pointed out by Bernstein [5], the use of the four 32-bit constants
(c0, c1, c2, c3) ensures that these probability-one characteristics will never
occur as an input to the Salsa20 round function. To avoid finding these
probability-one characteristics in our search program, we arbitrarily specify
that ∆x0

0[31] = 0.

5.2 Results for Salsa20

In order to prove the security of Salsa20 against differential cryptanalysis,
we first prove the following lemmata.

Lemma 1. For three rounds of Salsa20, no differential characteristic ex-
ists with a weight of less than 18.

Proof. We include equations for three rounds of Salsa20, and specify that
we want to find all differential characteristics up to weight W = 17. We
solve this problem using STP. The default SAT solver of STP, Crypto-
MiniSat2 [47], is used as a back end. The system that we will use for all
our experiments, is a 3.4 GHz Intel Core i7-2600 processor. After 23 min-
utes and 38 seconds of computation, the SAT solver outputs unsatisfiable,
thereby proving that no differential characteristics with a weight of less
than 18. ⊓⊔

Lemma 2. For three rounds of Salsa20, there are exactly eight differential
characteristics with a weight of 18.
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Proof. We proceed in a similar way as in Lemma 1, but now use W = 18
as a bound. We are interested in finding not just one, but all differential
characteristics. Because this not supported by STP, we tell STP to display
the CNF formula and exit.

We input this CNF formula into a SAT solver. For every solution that
we find, we generate an extra clause that blocks this solution, and then
run the SAT solver again. This is repeated until the SAT solver returns
unsatisfiable, which tells us that no more solutions exist.

If we use an incremental SAT solver, the SAT solver not does start again
from scratch when we add a new clause, but instead retains previously
learned information. CryptoMiniSat2 is an incremental SAT solver, and
can be used to find all solutions using the blocking clauses method with
the --maxsolutions flag. After 26 minutes and 22 seconds, we find four
differential characteristics before CryptoMiniSat2 returns unsatisfiable.

These four characteristics satisfy ∆x0
0[31] = 0, as explained earlier. By

flipping the MSB of every XOR word difference, the other four differential
characteristics of weight 18 can be constructed. The differential character-
istics are shown in App. A. Note that four characteristics identical except
for a reordering of the input XOR differences. This is a result of the sym-
metry of the Salsa20 core function, as already pointed out in the original
design document [3, 5]. ⊓⊔

Lemma 3. For three rounds of Salsa20, many differential characteristics
exist with a weight up to 25. For differentials with ∆x0

0[31] = 0, there are
exactly 286 possible input differences for the third round (∆x2

0, ∆x2
1,...,

∆x2
15).

Proof. For three rounds of Salsa20, an incomplete search revealed that at
least hundreds of thousands of characteristics exist with a weight of up to
25. Adding blocking clauses for each of these solutions greatly increases the
number of clauses that the SAT solver has to deal with. This causes the
SAT solver to run out of memory.

However, we have noticed that although a very large number of char-
acteristics exist with a weight up to 25, many of these characteristics share
the same internal differences. We have constructed an STP program to
find characteristics up to W = 25, with ∆x0

0[31] = 0. STP generates a
CNF program, which we again solve with CryptoMiniSat2. However, for
every characteristic that we find, we add a blocking clause that contains
only ∆x2

0, ∆x2
1,..., ∆x2

15. After 19 hours, 23 minutes and 8 seconds, the
SAT solver has found all 286 possible values for the input difference to the
third round. ⊓⊔

Lemma 4. We consider six rounds of Salsa20. The weight of the first three
rounds and the last three rounds are respectively denoted by w1 and w2. For
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valid characteristics, if w1 ≤ 25, then 2w1+w2 ≥ 78. Similarly, if w2 ≤ 25,
then w1 + 2w2 ≥ 78.

Proof. We now construct an STP program to find Salsa20 characteristics
for six rounds. If w1 ≤ 25 and ∆x0

0[31] = 0, then we proved in Lemma 3 that
there are 286 possible values for ∆x2

1,..., ∆x2
15. With these values, we use

STP to search for characteristics where 2w1+w2 < 78. After 10 minutes and
55 seconds, the SAT solver proves that no such characteristics exist. The
requirement ∆x0

0[31] = 0 is again arbitrary: the weight of the characteristics
does not change if we flip the MSB of all XOR word differences. Therefore,
there are also no characteristics with ∆x0

0[31] = 1 that satisfy the given
criteria.

We similarly prove the case where w2 ≤ 25 and ∆x3
0[31] = 0. After

9 minutes and 43 seconds, the SAT solver proves that if w2 ≤ 25, then
w1 + 2w2 ≥ 78. ⊓⊔

Theorem 1. For 15 rounds of Salsa20, no differential characteristic exists
with a weight of less than 130.

Proof. A 15-round Salsa20 characteristic can be split into five parts of three
rounds. Let us denote their respective weights by w1, w2, . . ., w5.

For every pair of weights (wi,wi+1) with 1 ≤ i < 5, we can apply
Lemma 4 to obtain lower bounds on the weights of differential character-
istics.

We input each of these bounds into STP. If we set w1 +w2 +w3 +w4 +
w5 < 130, the program finds after less than a second of computation that no
solution exists. This proves that there is no 15-round Salsa20 characteristic
with a weight of less than 130. ⊓⊔

Salsa20 consists of 20 rounds, and Theorem 1 proves that the probabil-
ity of any 15-round differential characteristic is at most 2−130. Therefore,
Salsa20 with 128-bit keys is secure against differential cryptanalysis with
a security margin of 5 rounds. Our security statement is similar to that of
AES, where it was proven that the probability of any four-round differential
characteristic is at most 2−150 [21].

Because we take into account that differences may be introduced in the
key values, our security proof holds both in the single-key and related-key
settings.

According to Lemma 3, Lemma 4 and Theorem 1, a 15-round Salsa20
characteristic with weight 130 (w1 = w2 = . . . = w5 = 26) could exist.
However, we have not found such a characteristic. Our bound is likely not
tight, which means that the security margin of Salsa20 may be even more
than five rounds.
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6 Considerations

In this section, we explain several considerations that we have taken into
account in our research.

Verification of the Search Program. Using our framework to search
for differential characteristics, very little programming is required. This
significantly reduces the possibility that a human error has been made.
Furthermore, we have taken additional several steps to verify our results.

Firstly, we have used two different tools to convert our search programs
to CNF format: STP [27] and C32SAT [16]. Both the input languages to
these tools, as well as the engines that perform the CNF conversion, differ
significantly. Secondly, we have used two different SAT solvers to solve the
resulting CNF programs: CryptoMiniSat2 [47] and PicoSAT [9]. Thirdly,
the characteristics that were output during the search, were verified by
hand calculation.

Differentials and Characteristics. From Sect. 2, we recall that the
probability of a differential is equal to the sum of the probabilities of all
differential characteristics that correspond to this differential. Using our
framework, it is easy to find all characteristics that correspond to a given
differential. When we specify the input and output differences, it takes STP
less than a second to find all characteristics. For the 3-round characteristics
in App. A, we found that there are no other characteristics corresponding
to the same differentials.

Characteristics and Probabilities. Recently, Leurent pointed out that
several published attacks on ARX ciphers are invalid, because the differen-
tial characteristics cannot be satisfied [34]. Leurent’s characteristics make
use of the signed differences that were introduced by Wang et al., which
split up the XOR difference ∆x[i] into three possible cases:

– x[i] = x′[i], which is denoted as 0,
– x[i] = 0, x′[i] = 1, which is denoted as +1,
– x[i] = 1, x′[i] = 0, which is denoted as -1.

Furthermore, the multi-bit constraints in Leurent’s characteristics also de-
scribe the relations between two adjacent bits: (x[i], x′[i]) and (x[i+1], x′[i+
1]). Using these constraints, Leurent found the characteristics of several
published attacks on the SHA-3 finalist hash functions BLAKE [2] and
Skein [26] are invalid.

Our analysis of Salsa20 assumes that every output pair of the ARX
operations occur with equal probability, as long as the XOR difference is
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satisfied. This is clearly not the case when signed differences or multi-bit
constraints appear as a result of the addition operation.

In the case of BLAKE and Skein, the output of an addition is used
directly as the input of another addition. As can be seen from Fig. 1, this
situation never occurs in Salsa20. For Salsa20, the output of the addition
of two variables is, after rotation, XORed with a third variable. The differ-
ential characteristics that we consider are very sparse: of the 512-bit input
to every round of Salsa20, only very few bits contain a difference. There-
fore, the XOR operation has the effect of whitening the outputs, which
validates our assumption of uniform outputs and allows us to accurately
calculate the probability of a differential characteristic by multiplying the
probabilities of every ARX operation.

We have performed several experiments to verify that our probabil-
ity calculations indeed accurate. For example, using the first characteristic
of App. A, for 234 pairs of inputs chosen uniformly at random, we found
65620 valid output differences. As the theoretical probability of the char-
acteristic is 2−18, the expected value is 234 · 2−18 = 216 = 65536 valid
output differences. The null hypothesis is that the theoretical probability
of the characteristic is 2−18. A two-tailed hypothesis test gives a p-value of
0.7443, therefore we accept the null hypothesis. This provides evidence that
the experimental probability corresponds to the theoretical probability.

Linearization. Linearization is a common technique to find low-weight
characteristics for ARX ciphers. Using this technique, every addition is
replaced by XOR, which results in a linear code in GF(2). Standard tech-
niques from coding theory can then be used to find low-weight code-
words [17, 39]. Linearization is a very powerful technique, and can find
three-round Salsa20 characteristics of weight 18 in only a few seconds.

All three-round characteristics of weight 18 (given in App. A) can be
found by linearization. However, to find all linearized characteristics of
weight 18 requires more than 19 days of computation on a 2.93GHz In-
tel Xeon X7350 processor using MAGMA’s MinimumWords function. Our
framework finds the same characteristics in only half a hour. Furthermore,
linearization cannot find the non-linear three-round characteristics that
exist for weight 19 and higher.

Security Margin. The current best differential attack on Salsa20 is on
eight rounds [1]. This attack consists of a four-round differential, and goes
back four rounds with partial key guesses. The authors explain that they
have done extensive efforts to go back five rounds with partial key guesses,
but without success. We note that partial key guesses are much more diffi-
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cult in our case, because the result in this paper is on Salsa20 with 128-bit
instead of 256-bit keys.

Our proof for Salsa20 has a security margin of five rounds, which should
therefore be more than sufficient. Furthermore, this paper does not obtain
a tight bound: the best differential characteristic for 15-rounds may have
a lower probability than 2−130. The security margin of Salsa20 against
differential cryptanalysis may thus be even more than five rounds.

7 Conclusion and Future Work

In this paper, we provided the first proof that an ARX cipher is secure
against differential cryptanalysis. In particular, we proved that Salsa20
with the default 20 rounds and with a 128-bit key size is secure against
differential cryptanalysis. Our proof is the result of applying a general
framework for ARX ciphers, and is not specific to Salsa20.

The framework that we proposed, required writing equations for every
addition, rotation and XOR of the ARX cipher. For the addition operation,
we used the formulae proposed by Lipmaa and Moriai to restrict the input
and output differences to valid differentials, and to calculate the differential
probability.

We noted that in Salsa20, the output of the addition of two input
variables is always (after rotation) XORed with a third input value. This
XOR has the effect of whitening the output pairs, therefore for sparse
characteristics, it is correct to assume that for a given output difference,
the output pairs of an ARX operation are uniformly distributed. We have
performed experiments to verify that the experimental and the theoretical
probability of Salsa20 characteristics correspond to each other. Note that
unlike Salsa20, in several other ARX ciphers such as BLAKE, ChaCha and
Skein, the output of an addition is directly input into another addition.

Our proof required a search for the best characteristics, which we per-
formed using a SAT solver. After less than 20 hours of computation on a
single CPU core, we proved that no characteristic exists for 15 rounds of
Salsa20, with a probability of less than 2−130. As Salsa20 has 20 rounds in
total, there is a security margin of five rounds against differential crypt-
analysis attacks. Our result holds for 128-bit keys, both in the single-key
and in the related-key model.

The framework of this paper allows the designers of ARX ciphers to
prove the security of their ciphers against differential cryptanalysis, and
therefore make a trade-off between security and efficiency. The security
bound provided in this paper is not tight, it is therefore possible to obtain
better bounds. The application and improvement of our framework to other
ARX ciphers, as well as the extension to linear cryptanalysis, are other
interesting topics for future research.

14



Acknowledgments. The authors would like to thank (in alphabetical
order) Atul Luykx, Nikos Mavrogiannopoulos, Florian Mendel, Vincent
Rijmen and Kan Yasuda for their useful comments and suggestions.

References

1. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features of
Latin Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg [41], pp. 470–488

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to the NIST SHA-3 Competition (Round 3) (2010), http://131002.

net/blake/blake.pdf

3. Bernstein, D.J.: Salsa20 specification. http://cr.yp.to/snuffle/spec.pdf (April
2005)

4. Bernstein, D.J.: Salsa20/8 and Salsa20/12. http://cr.yp.to/snuffle/812.pdf

(February 2006)
5. Bernstein, D.J.: Response to “On the Salsa20 core function”. http://cr.yp.to/

snuffle/reoncore-20080224.pdf (February 2008)
6. Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Robshaw and Billet [44],

pp. 84–97
7. Bernstein, D.J.: eBACS: ECRYPT Benchmarking of Stream Ciphers. http://bench.

cr.yp.to/results-stream.html (January 2013)
8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 sub-

mission. Submission to the NIST SHA-3 Competition (Round 3) (2011), http:

//keccak.noekeon.org/Keccak-submission-3.pdf

9. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008)
10. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.

Cryptology 4(1), 3–72 (1991)
11. Biryukov, A., Gong, G., Stinson, D.R. (eds.): Selected Areas in Cryptography -

17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-
13, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6544.
Springer (2011)
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A Differential Characteristics for Three Rounds of Salsa20

There are exactly eight three-round differential characteristics for Salsa20
with a weight of less than or equal to 18. Below, we give four of these
characteristics. The characteristics show the symmetry of the Salsa20 core
function, as explained in [3, 5]. The other four characteristics can be ob-
tained by flipping the MSB of every XOR word difference.

Each XOR word difference is represented by a pair of parentheses. Inside
these parentheses, the bits are given that have an XOR difference of 1. Bit
31 is the MSB. All other bits have XOR difference of 0.
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– Characteristic 1:








(31) (6) (8, 3) ()
(6) (24) (21) ()
(8) (13) (26) ()
() (1) (28, 1) ()









→









(31) () () ()
(6) () () ()
(8) () () ()
() () () ()









→









(31) () () ()
() () () ()
() () () ()
() () () ()









→









(31, 26, 14, 7, 5, 1) (6) (15, 8) (28, 21, 19)
() () () ()
() () () ()
() () () ()









– Characteristic 2:








() () (1) (28, 1)
() (31) (6) (8, 3)
() (6) (24) (21)
() (8) (31, 13) (26)









→









() () () ()
() (31) () ()
() (6) () ()
() (8) () ()









→









() () () ()
() (31) () ()
() () () ()
() () () ()









→









() () () ()
(28, 21, 19) (31, 26, 14, 7, 5, 1) (6) (15, 8)

() () () ()
() () () ()









– Characteristic 3:








(26) () (8) (31, 13)
(28, 1) () () (1)
(8, 3) () (31) (6)
(21) () (6) (24)









→









() () (8) ()
() () () ()
() () (31) ()
() () (6) ()









→









() () () ()
() () () ()
() () (31) ()
() () () ()









→









() () () ()
() () () ()

(15, 8) (26, 21, 19) (31, 26, 14, 7, 5, 1) (6)
() () () ()









– Characteristic 4:








(24) (21) () (6)
(31, 13) (26) () (8)

(1) (28, 1) () ()
(6) (8, 3) () (31)









→









() () () (6)
() () () (8)
() () () ()
() () () (31)









→









() () () ()
() () () ()
() () () ()
() () () (31)









→









() () () ()
() () () ()
() () () ()
(6) (15, 8) (28, 21, 19) (31, 26, 14, 7, 5, 1)
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