
Trapdoor Privacy in Asymmetric Searchable
Encryption Schemes

Afonso Arriaga1 and Qiang Tang1

APSIA group, SnT, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

{afonso.delerue,qiang.tang}@uni.lu

Abstract. We investigate the open problem, namely trapdoor privacy, in
asymmetric searchable encryption (ASE) schemes. We first present two trap-
door privacy definitions (i.e. 2-TRAP-PRIV and poly-TRAP-PRIV) which pro-
vide different levels of security guarantee. Motivated by the generic transfor-
mation from IBE to ASE, we introduce two key anonymity properties (i.e.
2-KEY-ANO and poly-KEY-ANO) for IBE schemes, so that these properties
directly lead to the resulting ASE’s 2-TRAP-PRIV and poly-TRAP-PRIV prop-
erties respectively at the end of a transformation. We then present a sim-
plified Boyen-Waters scheme and prove that it achieves IBE-IND-CPA, IBE-
ANO (anonymity), and 2-KEY-ANO security in the random oracle model. Fi-
nally, we extend the simplified Boyen-Waters scheme to be based on pairings
over composite-order groups and prove that the extended scheme achieves
poly-KEY-ANO security without random oracles.

Keywords: Searchable Encryption, Trapdoor Privacy, Anonymous IBE.

1 Introduction

A searchable encryption (SE) scheme allows a third party to search over a client’s
encrypted data, on its behalf, without the need of recovering the plaintexts. In a cloud
computing era, SE schemes enable organizations and individuals to outsource their
data in encrypted form and securely delegate the search functionality to the cloud
service provider. As such, the concept of SE has received a great deal of attention and
resulted in many cryptographic constructions. Mainly, existing schemes, as surveyed
in [1], fall into either one of these two settings: symmetric or asymmetric.

– In the symmetric setting, which was first introduced by Song, Wagner and Per-
rig [2], the client encrypts her own data and stores the resulting ciphertexts in a
remote server. Later on, she can authorize the server to search on her behalf by
issuing a trapdoor for a target message, generated from her secret key. We refer
to schemes in this setting as symmetric SE schemes.

– The asymmetric setting was first introduced by Boneh et al. [3]. In this setting,
the client generates a public/private key pair and publishes her public key. With
this public key, any entity can generate encrypted contents that only the client
can decrypt. Unlike ciphertexts generated from standard public-key encryption
schemes, these are searchable upon delegation, meaning that if stored in a remote
server, the client can authorize the server to search on her behalf by issuing a
trapdoor for a target message, generated from her secret key. We refer to schemes
in this setting as asymmetric SE schemes.

In both cases, the authors from [2, 3] (and many others that followed), only considered
search queries based on equality tests, where a match is determined by whether the
message encoded in the trapdoor is equal to the plaintext underneath the ciphertext.
Other authors, as mentioned in [1], have considered search queries with more complex

comparison structures, allowing conjunctive, disjunctive, subset, inner product and
stemming types of queries. Here, we concentrate on SE schemes that support equality
tests. Nevertheless, our observations apply to the other SE schemes as well.

1.1 Privacy Issues in SE Schemes

The search functionality itself leaks inevitably some information to the (semi-trusted)
server, which is the primary attacker for SE schemes. However, this leakage should not
reveal more than that revealed by the matches between the issued trapdoors and the
ciphertexts (and other information that one could infer from such matches, e.g. when
two ciphertexts are matched by the same trapdoor it generally means that the two
ciphertexts encrypt the same message). Thus, the leakage of information can occur
from two interdependent sources, namely the ciphertexts and the trapdoors. The
interdependency lies in the fact that information leakage from one source will lead
to an information leakage of the other. For example, if an attacker can recover some
information from a ciphertext (e.g. the plaintext is not a particular message m) then
it can deduce some information from a given trapdoor that matches the ciphertext
(i.e. the message encoded in the trapdoor is not m), and the reverse also applies. As a
result, in order to capture the ideal security for SE schemes, it is essential to take into
account the information leakage from both ciphertexts and trapdoors simultaneously.

For symmetric SE schemes, Shen, Shi and Waters [4] proposed a model (i.e. Full
Security) to capture information leakages from both ciphertexts and trapdoors1. In
their model, the challenger randomly picks a bit bit and answers a polynomial number
of encryption and trapdoor queries: for a encryption oracle query with {mi0 ,mi1}
the challenger returns the ciphertext for mibit , and for a trapdoor oracle query with
{mj0 ,mj1} the challenger returns the trapdoor for mjbit . The attacker issues the oracle
queries adaptively under the restriction that mi0 = mj0 iff mi1 = mj1 , and outputs a
guess bit′ for bit. If a symmetric SE scheme is secure (i.e. |Pr[bit′ = bit]− 1

2 | is negligible
for any attacker), then it only leaks the information “which ciphertext matches which
trapdoor”.

Unfortunately, for asymmetric SE schemes, no security model has simultaneously
captured information leakages from both ciphertexts and trapdoors. Most existing
security models are in the vein of that from [3] and have only considered information
leakage from ciphertexts. Informally, these security models guarantee that, with a
provably secure SE scheme, if an attacker has not been assigned the trapdoors for
two messages {m0,m1} then it is not able to distinguish their ciphertexts. Inherently,
these models do not provide any guarantee on trapdoor privacy, namely the privacy
of the messages in trapdoors.

– In the provably secure schemes from [5, 6], a trapdoor contains the target message
in clear so that the server knows what the client is search for. For other provably
secure schemes in these models, if the target messages are explicitly included in
the trapdoors, the proofs will still hold.

– Due to the interdependency, these models fail to capture the unnecessary informa-
tion leakage from ciphertexts. For example, in the schemes from [5, 6], if a match
is found then the server immediately learns the plaintext, otherwise the server
learns that the plaintext is different from the target message.

Some security models (e.g. [7]) consider one-wayness property of trapdoors for asym-
metric SE schemes. However, one-wayness is a rather weak property and it does not
prevent the attacker from learning the client’s search patters. For instance, in the
provably secure scheme from [7], if the client has submitted two search queries which

1 The security model from [4] generally assumes that a trapdoor encodes a predicate and a
search is in the form of evaluating the encoded predicate on the encrypted plaintext. As a
special case, we can assume that the predicate is an equality test for a particular message.

2

do not result in any match then the attacker knows whether the two search queries
are for the same target message or not.

It remains as an open problem to investigate a security model for simultaneously
capturing information leakages from both ciphertexts and trapdoors.

1.2 Our Contribution

The contribution of this paper is multi-fold. Firstly, we present two trapdoor privacy
definitions (i.e. 2-TRAP-PRIV and poly-TRAP-PRIV) to model the information leak-
ages from the trapdoors in ASE schemes. Due to the nature of ASE schemes (i.e.
any entity can encrypt messages by itself), separate modeling of information leakages
from ciphertexts and trapdoors is actually equivalent to a hybrid model of the style
[4]. Secondly, to facilitate generic constructions using the IBE→ASE framework [3,
8], we introduce two key anonymity properties (i.e. 2-KEY-ANO and poly-KEY-ANO)
for IBE that directly lead to the resulting ASE’s 2-TRAP-PRIV and poly-TRAP-PRIV
properties respectively at the end of a transformation. Both properties may be of inde-
pendent interest for IBE in other applications. Thirdly, we present a simplified Boyen-
Waters scheme and prove that it achieves IBE-IND-CPA, IBE-ANO, and 2-KEY-ANO
security in the random oracle model. As a result, we obtain an ASE scheme which
achieves computational consistency, ASE-IND-CPA, and 2-TRAP-PRIV security in the
random oracle model. Unfortunately, the simplified Boyen-Waters scheme does not
achieve poly-KEY-ANO security so that the resulting ASE scheme does not achieve
poly-TRAP-PRIV security. Finally, we extend the simplified Boyen-Waters scheme to
be based on pairings over composite-order groups and prove that the extended scheme
achieves poly-KEY-ANO security without random oracles. This extension may indi-
cate a general approach for other IBE schemes (e.g. the new BB2 scheme from [9]) to
achieve the poly-KEY-ANO security.

1.3 Structure of the Paper

The rest of this paper is organized as follows. In Section 2, we first review bilinear
groups and some hardness assumptions, then introduce a new assumption, and finally
review IBE, ASE, and the transformation from IBE to ASE. In Section 3, we present
the new trapdoor privacy definitions for ASE and the corresponding key-anonymity
property definitions for IBE. In Section 4, we introduce the simplified Boyen-Waters
scheme and prove its security properties. In Section 5, we extend the simplified Boyen-
Waters scheme to be based on pairing over composite-order groups and prove its
poly-KEY-ANO security. In Section 6, we conclude the paper.

2 Preliminaries

Notation. We write a ← b to denote the algorithmic action of assigning the value
of b to the variable a. We use ⊥/∈ {0, 1}⋆ to denote special failure symbol. If S
is a set, we write a←$ S for sampling a from S uniformly at random. If A is a
probabilistic algorithm we write a←$ A(i1, i2, . . . , in) for the action of running A on
inputs i1, i2, . . . , in with random coins of its choice, and assigning the result to a. If a
is a variable, |a| denotes the length in bits of its representation.

Games. In this paper we use the code-based game-playing language [10]. Each game
has an Initialize and a Finalize procedure. It also has specifications of procedures to
respond to an adversary’s various queries. A game is run with an adversary A as
follows. First Initialize runs and its outputs are passed to A. Then A runs and its
oracle queries are answered by the procedures of the game. When A terminates, its

3

output is passed to Finalize which returns the outcome of the game. In each game,
we restrict attention to legitimate adversaries, which is defined specifically for each
game. We use lists as data structures to keep relevant state in the games. The empty
list is represented by square brackets []. We denote by list ← a : list the action of
appending element a to the head of list. To access the value stored in index i of list
and assign it to a, we write a ← list[i]. To denote the number of elements in list, we
use |list|. Unless stated otherwise, lists are initialized empty and variables are first
assigned with ⊥.

2.1 Bilinear Groups

We first review pairings over prime-order groups [11] and the associated DBDH (De-
cision Bilinear Diffie-Hellman) and DLIN (Decision linear) assumptions [12], and then
review pairings over composite-order groups [13] and introduce the CDDH (Compos-
ite Decision Diffie-Hellman) assumption which is weaker than the C3DH (Cpmposite
3-party Diffie-Hellman) assumption made in [14].

Definition 1. A prime-order bilinear group generator is an algorithm GP that takes
as input a security parameter λ and outputs a description Γ = (p,G,GT, e, g) where:

– G and GT are groups of prime-order p with efficiently-computable group laws.
– g is a generator of G.
– e is an efficiently-computable bilinear pairing e : G x G → GT, i.e., a map

satisfying the following properties:
• Bilinearity: ∀a, b ∈ Zp, e(g

a, gb) = e(g, g)ab;
• Non-degeneracy: e(g, g) ̸= 1.

Definition 2. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We say
the DBDH assumption holds for description Γ if, for every PPT adversary A, the
following definition of advantage is negligible in λ.

AdvDBDH
Γ,A := 2 · Pr[DBDHΓ,A ⇒ True]− 1,

where game DBDHΓ,A is described in Fig. 1.

procedure Initialize(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g)← Γ
z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

Z←$ GT

bit←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz3 , e(g, g)z1z2z3)
else return (Γ, gz1 , gz2 , gz3 ,Z)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 1. DBDH Game

procedure Initialize(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g)← Γ
z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

z4 ←$ Zp

Z←$ GT

bit←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4)
else return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , Z)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 2. DLIN Game

Definition 3. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We say
the DLIN assumption holds for description Γ if, for every PPT adversary A, the
following definition of advantage is negligible in λ.

AdvDLIN
Γ,A := 2 · Pr[DLINΓ,A ⇒ True]− 1,

where game DLINΓ,A is described in Fig. 2.

4

Definition 4. A composite-order bilinear group generator is an algorithm GC that
takes as input a security parameter λ and outputs a description Γ = (p, q,G,GT, e, g)
where:

– G and GT are groups of order n = pq, where p and q are primes, with efficiently
computable group laws.

– g is a generator of G.
– e is an efficiently-computable bilinear pairing e : G x G → GT, i.e., a map

satisfying the following properties:
• Bilinearity: ∀a, b ∈ Zn, e(g

a, gb) = e(g, g)ab;
• Non-degeneracy: e(g, g) ̸= 1.

Subgroups Gp ⊂ G and Gq ⊂ G of order p and order q can be generated respectively
by gp = gq and gq = gp. We recall some important facts regarding these groups, later
used in our proofs:

– G = Gp x Gq

– e(gp, gq) = e(gq, gp) = e(g, g)n = 1
– e(gp, (gp)

a · (gq)b) = e(gp, (gp)
a) · e(gp, (gq)b) = e(gp, gp)

a

Definition 5. Let Γ = (p,G,GT, e, g) be the description output by GC(λ). We say
the CDDH assumption holds for description Γ if, for every PPT adversary A, the
following definition of advantage is negligible in λ.

AdvCDDH
Γ,A := 2 · Pr[CDDHΓ,A ⇒ True]− 1,

where game CDDHΓ,A is described in Fig. 3.

procedure Initialize(λ):

(p, q,G,GT, e, g)←$ GC(λ); n = pq; gp = gq; gq = gp; Γ = (n,G,GT, e, g, gp, gq)
x1 ←$ Zn; X1 ← (gq)

x1 ; x2 ←$ Zn; X2 ← (gq)
x2 ; x3 ←$ Zn; X3 ← (gq)

x3

a←$ Zn; R←$ G; b←$ Zn

bit←$ {0, 1}
if bit = 0 return (Γ,X1 · (gp)a,X2 · (gp)b,X3 · (gp)ab)
else return (Γ,X1 · (gp)a,X2 · (gp)b,R)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 3. CDDH Game

In the CDDH game, the attacker’s input is a proper subset of the attacker’s input
in the C3DH game given in [14], therefore, the CDDH assumption is weaker than the
C3DH assumption.

2.2 IBE, ASE, and the Transformation

IBE. An IBE scheme Π = (Setup,Extract,Enc,Dec) is specified by four polynomial-
time algorithms associated with a message spaceM and public-key space I.

– Setup(λ): On input the security parameter λ, this algorithm returns a master
secret key Msk and public parameters params.

– Extract(params,Msk, id): On input public parameters params, a master secret key
Msk and public key id ∈ I, this algorithm outputs a secret key skid or failure
symbol ⊥.

– Enc(params,m, id): On input public parameters params, a message m ∈ M and a
public key id ∈ I, this algorithm outputs a ciphertext c.

– Dec(params, c, skid): On input public parameters params, a ciphertext c and a
secret key skid, this algorithm outputs either a message m or a failure symbol ⊥.

5

The correctness, IBE-IND-CPA, and IBE-ANO (anonymity) properties are for-
mally presented in Appendix I. Informally, the IBE-IND-CPA property guarantees
that an attacker cannot distinguish the ciphertexts of {m0,m1} under identity id∗

given the access to any skid except for skid∗ . The IBE-ANO property guarantees that
an attacker cannot distinguish the ciphertexts of m under identities {id0, id1} given
the access to any skid except those for {id0, id1}.

ASE. An ASE scheme E = (KeyGen,PEKS,Trapdoor,Test) is specified by four
polynomial-time algorithms associated with a message spaceM′.

– KeyGen(λ): On input the security parameter λ, this algorithm returns a pri-
vate/public key pair (sk, pk).

– PEKS(pk,w): On input a public key pk and a message w ∈ M′, this algorithm
produces a searchable ciphertext c.

– Trapdoor(sk,w): On input a secret key sk and a message w ∈ M′, this algorithm
outputs a trapdoor tp for w.

– Test(pk, c, tp): On input a public key pk, a searchable ciphertext c and a trapdoor
tp, this algorithm outputs either True or False.

The computational consistency and ASE-IND-CPA properties are formally pre-
sented in Appendix II. Informally, the ASE-IND-CPA property guarantees that an
attacker cannot distinguish the ciphertexts of {w0,w1} given the access to any trap-
door tpw except for {tpw0

, tpw1
}.

Remark 1. In this ASE definition, we do not explicitly state the message recovery
functionality, namely whether w can be recovered from Trapdoor(sk,w) given sk. If
message recovery is needed and cannot be done from Trapdoor(sk,w) (e.g. in the
construction from [3]), then we can easily extend the scheme by (1) asking KeyGen(λ)
to output an additional private/public key pair (sk′, pk′) for a standard public key
encryption scheme and (2) adding the ciphertext of w under pk′ to the output of
PEKS(pk,w). Such extension does not affect the security properties of the original
ASE scheme, so that we do not take message recovery into account in the rest of this
paper.

Transformation. Given an IBE scheme Π = (Setup,Extract,Enc,Dec), there is a
generic transformation to obtain an ASE scheme E = (KeyGen,PEKS,Trapdoor,Test)
[3, 8]. The transformation from [8] is rephrased as follows. Note that the message space
M′ of the derived ASE scheme is the public-key space I of the original IBE scheme.

– KeyGen(λ): set (sk, pk) = Setup(λ).

– PEKS(pk,w): set c = (m,Enc(pk,m,w)), where m←$M.

– Trapdoor(sk,w): set tp = Extract(params, sk,w).

– Test(pk, c, tp): if m = Dec(pk, c, tp) output True, otherwise output False.

In [8], it is proven that the IBE-IND-CPA and IBE-ANO properties of the IBE scheme
lead to the computational consistency and ASE-IND-CPA properties for the derived
ASE scheme, respectively.

3 Trapdoor Privacy for ASE

In this section, we define the trapdoor privacy properties for ASE, and then map
these properties to new key-anonymity properties for IBE.

6

3.1 Privacy for ASE

Referring to the Full Security model for symmetric SE schemes [4], in order to capture
the information leakages from both ciphertexts and trapdoors, we may attempt to
adopt a similar approach by asking an attacker to distinguish two ciphertext/trapdoor
sequences. However, asymmetric SE differs from symmetric SE in two aspects. One
is that an attacker can generate a ciphertext for any message, so that an encryption
oracle is unnecessary. The other one is that an attacker can trivially distinguish two
trapdoors generated based messages of its choice, so that the challenger should choose
the messages for generating the trapdoors in the challenge. Due to these differences,
it is not easy to have a single hybrid security model for asymmetric SE, instead we
can consider the information leakages in three different scenarios.

1. In the first scenario, we need to consider the privacy for the honestly-generated
ciphertexts2, which do not match any trapdoors received by the attacker. The
ASE-IND-CPA property under Definition 13 in the Appendix II is the precise
model for this.

2. In the second scenario, we need to consider the privacy for honestly-generated
ciphertexts and trapdoors which match with each other. This property is indeed
very straightforward to be achieved in the random oracle model (e.g. instead of
the original messages, use their hash values as the input to PEKS and Trapdoor).
We leave a more comprehensive discussion of this property as a future work.

3. In the third scenario, we need to consider the privacy for the trapdoors, which do
not match any honestly-generated ciphertexts. This will be addressed in the rest
of this paper.

It is worth emphasizing that, in the security models, the attacker refers to the
semi-trusted server in ASE schemes.

3.2 Trapdoor Privacy Definitions for ASE

We first present a trapdoor privacy definition for two trapdoors, as shown in Definition
6. If an ASE scheme is secure under this definition then it guarantees that, given
two trapdoors whose plaintexts are randomly chosen by the client, a server cannot
determine whether the two trapdoors are generated for the same message or not.

Definition 6. An ASE scheme E has 2-trapdoor privacy (2-TRAP-PRIV) if, for every
legitimate PPT adversary A, the following definition of advantage is negligible in λ

Adv2-TRAP-PRIV
E,A (λ) := 2 · Pr[2-TRAP-PRIVE,A(λ)⇒ True]− 1,

where game 2-TRAP-PRIVE,A is described in Fig. 4.

2 Honestly-generated ciphertexts refer to those generated by honest senders. They are in
contrast to the ciphertexts generated by the attacker itself.

7

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
w0 ←$ M′

w1 ←$ M′

tp0 ←$ Trapdoor(sk,w0)
tp1 ←$ Trapdoor(sk,wbit)
return (pk, tp0, tp1)

procedure Trapdoor(w):

tp←$ Trapdoor(sk,w)
return tp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 4. 2-TRAP-PRIVE,A Game

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
listtmp ← []
listtp ← []
return pk

procedure Trapdoor(w):

tp←$ Trapdoor(sk,w)
return tp

procedure Challenge(list0, list1):

for i in {0..k−1}
..... listtmp[listbit[i]]←$ M′

for i in {0..k−1}
..... listtp[i]←$ Trapdoor(sk, listtmp[listbit[i]])
return listtp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 5. poly-TRAP-PRIVE,A Game

Under this definition, a natural question is “with a secure ASE scheme, what
the server will learn from more than two trapdoors which do not match with any
honestly-generated ciphertexts?”. Unfortunately, it does not provide any guarantee
in this situation, due to the following fact: generating new trapdoors for the attacker
requires the knowledge of both the private key and the underlying messages, and this
knowledge may be leaked to the attacker (through the new trapdoors) unless these
new trapdoors can be generated by re-randomizing existing ones. This is illustrated
by our construction in Section 4.2. Therefore, it makes sense to consider the privacy
for any polynomial number of trapdoors, as done in Definition 7 below.

Definition 7. An ASE scheme E has poly-trapdoor privacy (poly-TRAP-PRIV) if, for
every legitimate PPT adversary A and any L (L = |list0| = |list1| is any polynomial
in λ), the following definition of advantage is negligible in λ

Advpoly-TRAP-PRIV
E,A (λ) := 2 · Pr[poly-TRAP-PRIVE,A(λ)⇒ True]− 1,

where game poly-TRAP-PRIVE,A is described in Fig. 5. The adversary is legitimate if
it only calls Challenge once in the game.

Remark 2. It is easy to see that both trapdoor privacy definitions are only achievable
when the message spaceM′ is not polynomial size. Otherwise, an attacker can trivially
generate ciphertexts for all messages and then figure out the messages in the trapdoors
by running the Test algorithm.

3.3 Key Anonymity Definitions for IBE

Referring to the generic transformation from IBE to ASE as described in Section
2.2, the two trapdoor privacy properties motivate two new key anonymity properties
properties for IBE. It is clear that these key anonymity properties lead to the trapdoor
privacy properties defined in Section 3.2.

Definition 8. An IBE scheme Π has 2-key anonymity (2-KEY-ANO) if, for every
legitimate PPT adversary A, the following definition of advantage is negligible in λ

Adv2-KEY-ANO
Π,A (λ) := 2 · Pr[2-KEY-ANOΠ,A(λ)⇒ True]− 1,

where game 2-KEY-ANOΠ,A is described in Fig. 6.

8

procedure Initialize(λ):

(Msk, params)←$ Setup(λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(params,Msk, id0)
sk1 ←$ Extract(params,Msk, idbit)
return (params, sk0, sk1)

procedure Extract(id):

skid ←$ Extract(params,Msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 6. 2-KEY-ANOΠ,A Game

procedure Initialize(λ):

(Msk, params)←$ Setup(λ)
bit←$ {0, 1}
listtmp ← []
listsk ← []
return

procedure Extract(id):

skid ← Extract(params,Msk, id)
return skid

procedure Challenge(list0, list1):

for i in {0..k−1}
..... listtmp[listbit[i]]←$ I
for i in {0..k−1}
..... listsk[i]←$ Extract(params,Msk, listtmp[listbit[i]])
return listsk

procedure Finalize(bit′):

return (bit = bit′)

Fig. 7. poly-KEY-ANOΠ,A Game

Definition 9. An IBE scheme Π is has poly-key anonymity (poly-KEY-ANO) if, for
every legitimate PPT adversary A, the following definition of advantage is negligible
in λ

Advpoly-KEY-ANO
Π,A (λ) := 2 · Pr[poly-KEY-ANOΠ,A(λ)⇒ True]− 1,

where game poly-KEY-ANOΠ,A is described in Fig. 7. The adversary is legitimate if
it only calls Challenge once in the game.

Remark 3. Similar to the trapdoor privacy properties for ASE, both key anonymity
definitions are only achievable when the public-key space I is not polynomial size.

Besides achieving the trapdoor privacy properties for ASE in the generic trans-
formation, the key-anonymity properties for IBE may be of independent interest. For
instances, when IBE is used for enforcing access control policies, even if some entities’
keys are compromised these entities’ identities can still be hidden from the attacker.

3.4 Remarks on Trapdoor Privacy Definitions

In the same direction as in the Full Security definition for symmetric SE schemes [4],
we can also have a hybrid model with the security game in Fig. 8 for both the trapdoor
privacy and the ASE-IND-CPA privacy. However, based on a similar argument to
that in [15] where the security of encrypting one message is proven to be equivalent
to encrypting multiple messages, we can show that if an ASE scheme is secure under
Definition 7 and Definition 13 then it is also secure under the hybrid definition.

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
listtmp ← []
listtp ← []
return pk

procedure Challenge(list0, list1,w0):

for i in {0..k−1}
..... listtmp[listbit[i]]←$ M′

for i in {0..k−1}
..... listtp[i]←$ Trapdoor(sk, listtmp[listbit[i]])

if w0 ∈ list return ⊥
w1 ←$ M′

c←$ PEKS(pk,wbit)

return (listtp, c)

procedure Trapdoor(w):

if w == w0 return ⊥
tp←$ Trapdoor(sk,w)
list← w : list
return tp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 8. Hybrid Security Game

9

In Definition 6 and 7 for ASE, we have assumed that the messages in the challenge
are chosen by the challenger uniformly at random. To further enhance the definitions,
we may let the attacker specify some relationships that the messages should satisfy.
For instance, in Definition 6, an attacker can require that w1 = w0+1. This observation
also applies to Definition 8 and 9 for IBE. We leave a more comprehensive discussion
about these enhancements as a future work. Nevertheless, in the random oracle model,
the enhanced definitions may be equivalent to what we have defined.

4 2-KEY-ANO Secure IBE

In this section, we design a 2-KEY-ANO secure IBE scheme. Based on this IBE scheme,
it is trivial to obtain a 2-TRAP-PRIV secure ASE through the generic transformation
described in Section 2.2, hence, we skip the details here.

4.1 Concise Survey of Anonymous IBE

As mentioned in Section 2.2, the IBE-IND-CPA and IBE-ANO properties are essential
to achieve the computational consistency and ASE-IND-CPA properties in the generic
transformation. Therefore, we aim at IBE schemes which achieve IBE-IND-CPA, IBE-
ANO, 2-TRAP-PRIV, and poly-KEY-ANO properties.

IBE-IND-CPA IBE-ANO 2-TRAP-PRIV poly-TRAP-PRIV
[11] Yes (BDH & RO) Yes(BDH & RO) No No
[16] Yes (DBDH) No Maybe Maybe
BB1 [17] Yes (DBDH & sID) No Maybe No
BB2 [17] Yes (DBDHI & sID) No Maybe Maybe
[18] Yes (DBDH) No Maybe No
[19] Yes (ABDHE) Yes (ABDHE) No No
[20] Yes (DBDH & sID) Yes (DLIN & sID) Maybe Maybe
[21] Yes (LBDH) & RO Maybe No No
[14] Yes (C3DH & sID) Yes (C3DH & sID) Maybe Maybe
New BB1 [9] Yes (BDDHI) No Maybe Maybe
New BB2 [9] Yes (BDDHI) Yes (BDDHI) Maybe No
[22] Yes (Decision P-BDH & sID) Yes (Decision P-BDH & sID) Maybe Maybe

Table 1. IBE Survey

In Table 1, we survey the existing IBE schemes with respect to their security
properties. The “No” means that the scheme does not achieve the property, and the
“Maybe” indicates that we have neither an attack nor a proof. From the survey results,
the schemes from [14, 20, 22] are promising, if we can prove the properties labeled with
“Maybe”. We based our solutions on the scheme from [20] for two reasons: its security
is based on relatively more standard assumptions, and it only assumes symmetric
pairing over prime-order groups.

4.2 2-KEY-ANO Secure IBE

To eliminate the selective-ID constraint of the Boyen-Waters scheme [20], we adopt
the random oracle approach introduced in the full paper of [17], by replacing the
identities with their hash values in the IBE algorithms. Furthermore, we simplify the
resulted scheme by removing two elements from the public parameters and all private
keys, and obtain the final scheme in Fig. 9. Compared with the original scheme, the
simplified Boyen-Waters scheme saves two exponentiations in the Extract and Enc
algorithms, and saves two pairing computations in the Dec algorithm.

10

Setup(λ):

Γ = (p,G,GT, e, g)←$ GP(λ)
w, t1, t2 ←$ Z3

p

Ω ← e(g, g)t1t2w

v1 ← gt1

v2 ← gt2

H : I → G
params← (Γ,Ω, v1, v2)
Msk← (w, t1, t2)
return (Msk, params)

Extract(params,Msk, id):

r←$ Zp

(w, t1, t2)← Msk
(g, Ω, v1, v2)← params
h← H(id)
d0 ← grt1t2

d1 ← g−wt2 · h−rt2
d2 ← g−wt1 · h−rt1
skid ← (d0, d1, d2)
return skid

Enc(params,m, id):

s, s1 ←$ Z2
p

(g, Ω, v1, v2)← params
h← H(id)
ĉ← Ωsm
c0 ← hs

c1 ← v
s−s1
1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Dec(params, c, id, skid):

(d0, d1, d2)← skid
(ĉ, c0, c1, c2)← c
e0 ← e(c0, d0)
e1 ← e(c1, d1)
e2 ← e(c2, d2)
m← ĉ · e0 · e1 · e2
return m

Fig. 9. Simplified Boyen-Waters Scheme

Due to the simplification, we provide new proofs for the IBE-IND-CPA, IBE-ANO,
2-TRAP-PRIV security properties in the random oracle model.

Theorem 1. The simplified Boyen-Waters scheme scheme Π [Fig. 9] is IBE-IND-
CPA secure under Definition 10 in the random oracle model assuming DBDH is in-
tractable.

Proof. Game0 is game IBE-IND-CPAΠ,A [Fig. 17], where A is any legitimate PPT ad-
versary. In Game1, we set ĉ←$ GT instead of computing its value. We now show that
the existence of A that can successfully distinguish between Game0 and Game1 contra-
dicts the DBDH assumption. More precisely, we construct a simulator S0 [Figure 10]
that interpolates between Game0 and Game1 by playing game DBDH [Fig. 1]. The hash
function H is modelled as a random oracle and we assume, without loss of generality,
that A always asks for the hash value of id before querying id to oracles Extract and
Real-or-Random. Furthermore, for simplicity of exposition, we assume that A places
exactly q queries, where q is bounded by some polynomial in the security parameter
λ, since A is required to run in polynomial-time. Simulator S0 randomly tries to guess
which query i ∈ {0, q−1} contains the id on which adversary A asks to be challenged.
When i is not sucessfully guessed, S0 simply aborts. But when it is, which happens
with probability 1

q , S0 perfectly simulates Game0 if Z is of the form e(g, g)z1z2z3 , and
perfectly simulates Game1 if Z is just a random element of GT. Notice that this implies
w = z1z2 and s = z3.
Let id⋆ be the id chosen by A for the challenge. Random function H is consistently
computed: if queried twice on the same id, the same result is returned. When S0
successfully completes its simulation, the function is set to (gz1)x for every id but id⋆,
and to gx in this particular case, where x is a random value sampled from Zp.
Challenge is well formed, as well as secret keys for random exponents r′ = r−z2

x , where
x here is the value used to compute the hash of the corresponding id and r is sampled
from Zp. For completeness, we present the equalities between the original expressions
and those computed by the simulator3.

d0 = gr
′t1t2 = g

r−z2
x t1t2 = g

rt1t2
x · g

−z2t1t2
x = g

rt1t2
x · Z

−t1t2
x

2

d1 = g−wt2 · h−r′t2 = g−z1z2t2 · [(gz1)x]−
r−z2

x t2 = Z−rt21

d2 = g−wt1 · h−r′t1 = g−z1z2t1 · [(gz1)x]−
r−z2

x t1 = Z−rt11

ĉ = Ωs ·m = [e(g, g)t1t2w]s ·m = [e(g, g)t1t2z1z2]z3 ·m = Zt1t2 ·m
c0 = hs = (gx)z3 = Zx

3

c1 = vs−s11 = (gt1)
z3−s1 = (Z3 · g−s1)t1

c2 = vs12

In Game1, the challenge ciphertext does not depend on mbit. Therefore, we have that
AdvIBE-IND-CPA

Π,A (λ) = 1
q ·AdvDBDH,S0 , which concludes our proof. ⊓⊔

3 For ĉ we used the case where Z = e(g, g)z1z2z3 , which corresponds to the simulation of
Game0.

11

procedure Initialize(λ):

(Z1, Z2,Z3, Z)← DBDH.Initialize
t1, t2 ←$ Z2

p

Ω ← e(Z1, Z2)
t1t2

v1 ← gt1

v2 ← gt2

params← (Ω, v1, v2)
listID ← [], listH ← []
id⋆ ← null, i←$ {0, q−1}
return params

procedure Finalize(bit):
return

procedure H(id):

get x for id from listH
if x ==⊥
..... x←$ Zp

..... listH ← (id, x) : listH
if id is in listH[i] then h← gx else h← Zx

1
return h

procedure Extract(id):

if id == id⋆ return ⊥
if id is in listH[i] abort
get x for id from listH
r←$ Zp

d0 ← g
rt1t2

x · Z
−t1t2

x
2

d1 ← Z
−rt2
1

d2 ← Z
−rt1
1

skid ← (d0, d1, d2)
listID ← id : listID
return skid

procedure Real-or-Random(id⋆,m):

if id⋆ ∈ listID return ⊥
if id⋆ is not in listH[i] abort

s1 ←$ Zp

get x for id⋆ from listH

ĉ← Zt1t2 · m
c0 ← Zx

3

c1 ← Z
t1
3 · g

−t1s1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Fig. 10. Simulator S0 interpolates between Game0 and Game1 by playing game DBDH.

Theorem 2. The simplified Boyen-Waters scheme Π [Fig. 9] is IBE-ANO secure
under Definition 11 in the random oracle model assuming DBDH and DLIN are in-
tractable.

Proof. By applying the reduction of Theorem 1, we start with Game1, which sets
ĉ←$ GT. In Game2, instead of computing its value, we set c1 ←$ G. For A to suc-
cessfully distinguish between Game1 and Game2, the DLIN assumption would have
to be tractable. Formally, we show this by constructing a simulator S1 [Fig. 11] that
interpolates between Game1 and Game2 by playing game DLIN [Fig. 2]. As in Theo-
rem 1, the hash function H is modelled as a random oracle. Without loss of generality,
we assume that A places exactly q queries and always asks for the hash value of id
before querying id to Extract and Real-or-Random. Employing the same strategy as
before, simulator S1 randomly tries to guess which query i ∈ {0, q−1} contains the id
on which A asks to be challenged. When i is sucessfully guessed, which happens with
probability 1

q , S1 perfectly simulates Game1 if Z is of the form gz3+z4 , and perfectly
simulates Game2 otherwise. This implies that t1 = z1 and t2 = z2. Random function
H is set to (gz2)x for every id but the id chosen for the challenge, which is set to gx,
where x is a random value sampled from Zp. Challenge is well formed, as well as secret
keys for random exponents r′ = r

z2
, where r is sampled from Zp. Finally, notice that

s = z3 + z4 and s1 = z4, and that t1, t2, r
′, s and s1 are uniformly distributed over

Zp, as they should. For completeness, we present the equalities between the original
expressions and those computed by the simulator4.

d0 = gr
′t1t2 = g

r
z2

z1z2 = (gz1)r = Zr
1

d1 = g−wt2 · h−r′t2 = g−wz2 · [(gz2)x]−
r
z2

z2 = Z−w2 · Z
−xr
2 = Z−w−xr2

d2 = g−wt1 · h−r′t1 = g−wz1 · [(gz2)x]−
r
z2

z1 = Z−w1 · Z
−xr
1 = Z−w−xr1

c0 = hs = (gx)z3+z4 = Zx

c1 = vs−s11 = (gz1)(z3+z4)−z4 = Z13

c2 = vs12 = (gz2)z4 = Z24

In Game2, the challenge ciphertext does not depend on the receiver’s identity. There-
fore, we have that AdvIBE-ANO

Π,A (λ) = 1
q ·AdvDBDH,S0 +

1
q ·AdvDLIN,S1 , which concludes

our proof. ⊓⊔
4 For c0 we used the case where Z = gz3+z4 , which corresponds to the simulation of Game1.

12

procedure Initialize(λ):

(Z1, Z2,Z13, Z24, Z)← DLIN.Initialize
w←$ Zp

Ω ← e(Z1, Z2)
w

v1 ← Z1

v2 ← Z2

params← (Ω, v1, v2)
listID ← [], listH ← []
id⋆ ← null, i←$ {0, q−1}
return params

procedure Finalize(bit):
return

procedure H(id):

get x for id from listH
if x ==⊥
..... x←$ Zp

..... listH ← (id, x) : listH
if id is in listH[i] then h← gx else h← Zx

2
return h

procedure Extract(id):

if id == id⋆ return ⊥
if id is in listH[i] abort
get x for id from listH
r←$ Zp

d0 ← Zr
1

d1 ← Z−w−xr2

d2 ← Z−w−xr1

skid ← (d0, d1, d2)
listID ← id : listID
return skid

procedure Real-or-Random(id⋆,m):

if id⋆ ∈ listID return ⊥
if id⋆ is not in listH[i] abort

get x for id⋆ from listH

ĉ←$ GT

c0 ← Zx

c1 ← Z13

c2 ← Z24

c← (ĉ, c0, c1, c2)
return c

Fig. 11. Simulator S1 interpolates between Game1 and Game2 by playing game DLIN.

Theorem 3. The simplified Boyen-Waters scheme Π [Fig. 9] is 2-KEY-ANO secure
under Definition 8 in the random oracle model assuming DLIN is intractable.

Proof. Let A be any legitimate PPT adversary in game 2-KEY-ANOΠ,A [Fig. 6],
where Π is the scheme we presented in Fig. 9. By building a simulator S2 [Fig. 12]
that plays game DLIN [Fig. 2] and simulates game 2-KEY-ANOΠ,A in such a way that
A’s guess can be forward to game DLIN, we upper-bound the adversary’s advantage
to the hardness of deciding on an instance of this problem.
The master secret key is set as following: t1 = z1, t2 = z1 · a for random a ∈ Zp, and
w = z3·b

z1
for random b ∈ Zp. Although the values of t1, t2 and w are unknown to S2,

the corresponding public parameters can still be consistently computed:

Ω = e(g, g)t1t2w = e(g, g)z1z1a
z3·b
z1 = e(Z13, g)

ab

v1 = gt1 = Z1

v2 = gt2 = (Z1)
a

The hash function H is modelled as a random oracle and set to (gz1)x · g−
1
y , for

random x, y ∈ Z2
p. We assume, without loss of generality, that A always asks for the

hash value of id before querying id to oracle Extract. Whenever asked to extract a
private key on some id, we set r = w · y, where y is the value used to compute the
hash of that particular id. Note that this still makes r uniformily distributed over Zp

and independent of h and w. Given this, private keys can be extracted as follows:

d0 = grt1t2 = gwyt1t2 = g
z3·b
z1

yz1z1a = (Z13)
aby

d1 = g−wt2 · h−rt2 = g−wt2 · [(gz1)x · g−
1
y]−wyt2 = g−z1xwyt2 = g−z1x

z3·b
z1

yz1a = (Z13)
−abxy

d2 = g−wt1 · h−rt1 = g−wt1 · [(gz1)x · g−
1
y]−wyt1 = g−z1xwyt1 = g−z1x

z3·b
z1

yz1 = (Z13)
−bxy

Finally, to complete the simulation, we extract two private keys to challenge A, such
that these private keys are for the same id if S2 received a valid DLIN tuple, and for
different ids otherwise. Let sk⋆ = (d⋆0, d

⋆
1, d

⋆
2) and sk◦ = (d◦0, d

◦
1, d
◦
2) be the challenge

keys. We set h = gz1z4 , r⋆ = b
(z1)2

and r◦ = z2+b
(z1)2

. Note that h is uniformily distributed

over G, and r⋆ and r◦ are uniformily distributed over Zp, independent of each other
and of w. For completeness, we present the equalities between the original expressions
and those computed by the simulator.

13

d⋆0 = gr
⋆t1t2 = g

b
(z1)2

z1z1a
= gab

d⋆1 = g−wt2 · h−r⋆t2 = g−
z3b
z1

z1a · (gz1z4)−
b

(z1)2
z1a

= (g−ab)z3 · (g−ab)z4 = Z−ab

d⋆1 = g−wt1 · h−r⋆t1 = g−
z3b
z1

z1 · (gz1z4)−
b

(z1)2
z1

= (g−b)z3 · (g−b)z4 = Z−b

d◦0 = gr
◦t1t2 = g

z2+b

(z1)2
z1z1·a

= gz2·a+ab = (Z2)
a · gab

d◦1 = g−wt2 · h−r◦t2 = g−
z3b
z1

z1a · (gz1z4)−
z2+b

(z1)2
z1a

= (g−ab)(z3+z4) · (gz2z4)−a = Z−ab · (Z24)
−a

d◦2 = g−wt1 · h−r◦t1 = g−
z3b
z1

z1 · (gz1z4)−
z2+b

(z1)2
z1

= (g−b)(z3+z4) · (gz2z4)−1 = Z−b · (Z24)
−1

Therefore, we have that Adv2-KEY-ANO
Π,A (λ) = AdvDLIN,S2 , which concludes our proof.

⊓⊔

procedure Initialize(λ):

(Z1, Z2,Z13, Z24, Z)← DLIN.Initialize
a←$ Zp, b←$ Zp

listH ← []

Ω ← e(Z13, g)
ab

v1 ← Z1

v2 ← (Z1)
a

d⋆0 ← gab, d◦0 ← (Z2)
a · gab

d⋆1 ← Z−ab, d◦1 ← Z−ab · (Z24)
−a

d⋆1 ← Z−b, d◦2 ← Z−b · (Z24)
−1

sk0 ← (d⋆0 , d
⋆
2 , d

⋆
2)

sk1 ← (d◦0 , d
◦
2 , d

◦
2)

params← (Ω, v1, v2)

return (params, sk0, sk1)

procedure H(id):

get (x, y) for id from listH
if (x, y) ==⊥
..... x←$ Zp

..... y←$ Zp

..... listH ← (id, x, y) : listH

h← (gz1)x · g−
1
y

return h

procedure Extract(id):

get (x, y) for id from listH

d0 ← (Z13)
aby

d1 ← (Z13)
−abxy

d2 ← (Z13)
−bxy

skid ← (d0, d1, d2)
return skid

procedure Finalize(bit):

DLIN.Finalize(bit)

Fig. 12. Simulator S2 forwards A’s guess from 2-KEY-ANOΠ,A to game DLIN.

4.3 Non poly-KEY-ANO Security

Standard left-or-right (and real-or-random) definitions for public-key encryption model
the encryption of a single plaintext. These definitions are equivalent (with some loss
in tightness) to those allowing an adversary to acquire multiple encryptions, which
can be shown by applying the hybrid argument from [15]. One might be tempted
to think that the same hybrid argument also applies to 2-KEY-ANO. However, this
argument does not because we can show that an adversary can still easily distinguish
patterns when more than two keys are issued.

Suppose that an adversary is asked to distinguished between tuples of the form
(Extract(id0),Extract(id0),Extract(id0)), where the three secret keys are extracted from
the same id, from those of the form (Extract(id0),Extract(id0),Extract(id1)), where the
third key is extracted from an independent id, for uniformly sampled id0 and id1 ∈ I.
Let (sk0, sk1, sk2) be the tuple the adversary receives, and for which it has to decide
its form. We further expand ski to (di0, di1, di2) according to our scheme. If the keys
were generated honestly, i.e. by following the algorithm Extract as described in Fig. 9,
the adversary simply has to check if

e(
d10
d00

,
d21
d01

)
?
= e(

d00
d20

,
d01
d11

)

to determine the form of the tuple with overwhelming probability. If the result
from the equality is true, then the three trapdoors are very likely to have been ex-
tracted for the same id5. If the result is false, then the tuple is definitely of the form

5 Collisions in the hash function H may lead to misleading results but only occur with
negligible probability.

14

(Extract(id0),Extract(id0),Extract(id1)). For completeness, we show this by expanding
and simplifying the above expression.

e(
d10
d00

,
d21
d01

) = e(
d00
d20

,
d01
d11

)⇔

e(
gr1t1t2

gr0t1t2
,
g−wt2 · h−r2t22

g−wt2 · h−r0t20

) = e(
gr0t1t2

gr2t1t2
,
g−wt2 · h−r0t20

g−wt2 · h−r1t21

)⇔

e(
gr1t1t2

gr0t1t2
,
h−r2t22

h−r0t20

) = e(
gr0t1t2

gr2t1t2
,
h−r0t20

h−r1t20

)⇔

e(g(r1−r0), hr00 · h
−r2
2)t1(t2)

2

= e(g(r0−r2), h(r1−r0)0)t1(t2)
2

⇔

e(g, hr00 · h
−r2
2) = e(g, h

(r0−r2)
0)⇔

h2 = h0

It is now clear that the simplified Boyen-Waters scheme fails to achieve the poly-KEY-ANO
security.

5 poly-KEY-ANO Secure IBE

As shown in Fig. 13, we extend the simplified Boyen-Waters IBE scheme described
in Fig. 9 to be based on pairings over composite-order groups. The extension is very
simple: let all the parameters in the original scheme be from the subgroup Gp (gen-
erated by gp) and randomize each element of the extracted secret key by a random
element from the subgroup Gq (generated by gq). Note that the message space is GT.

Setup(1λ):

(p, q,G,GT, e, g)←$ GC(λ)
n← pq; gp ← gq; gq ← gp

Γ ← (n,G,GT, e, g, gp, gq)
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1t2w

v1 ← g
t1
p

v2 ← g
t2
p

params← (Γ,Ω, v1, v2)
Msk← (w, t1, t2)
return (Msk, params)

Extract(params,Msk, id):

(w, t1, t2)← Msk
(Γ,Ω, v1, v2)← params
(n,G,GT, e, g, gp, gq)← Γ
r←$ Zn

x0, x1, x2 ←$ Gq

h← H(id)

d0 ← x0 · g
rt1t2
p

d1 ← x1 · g
−wt2
p · h−rt2

d2 ← x2 · g
−wt1
p · h−rt1

sk← (d0, d1, d2)
return sk

Enc(params,m, id):

(Γ,Ω, v1, v2)← params
(n,G,GT, e, g, gp, gq)← Γ
s, s1 ←$ Zn

h← H(id)
ĉ← Ωsm
c0 ← hs

c1 ← v
s−s1
1

c2 ← v
s1
2

c← (ĉ, c0, c1, c2)
return c

Dec(params, c, id, skid):

(d0, d1, d2)← skid
(ĉ, c0, c1, c2)← c
e0 ← e(c0, d0)
e1 ← e(c1, d1)
e2 ← e(c2, d2)
m← ĉ · e0 · e1 · e2
return m

Fig. 13. Extended Simplified Boyen-Waters Scheme Π ′

In this extended IBE scheme, the decryption algorithm remains correct, since

e(hs, x0 · grt1t2p) = e(hs, grt1t2p)

e(vs−s11 , x1 · g−wt2p · h−rt2) = e(vs−s11 , g−wt2p · h−rt2)
e(vs12 , x2 · g−wt1p · h−rt1) = e(vs12 , g−wt1p · h−rt1)

The IBE-IND-CPA and IBE-ANO properties still hold since the DBDH and DLIN
assumptions still hold. We only need to prove the poly-KEY-ANO security.

Theorem 4. The extended scheme Π ′ [Fig. 13] is poly-KEY-ANO secure under Def-
inition 9 assuming CDDH is intractable.

Proof. First, let us show an important propriety that scheme Π ′ possess and that is
relevant for the completion of this proof. From two keys honestly extracted from the
same identity, say sk0 = (d00, d01, d02) and sk1 = (d10, d11, d12), one can generate new
valid keys for that identity with fresh random coins, without the knowledge of any
secret parameter. Concretely, sk2 = (d20, d21, d22) can be generated as follows, with a

15

random y ∈ Zn and random R0,R1,R2 ∈ Gq:

d20 = R0 · (d10d00
)y · d00 = [R0 · (x10)

y

(x00)(y−1)] · g[yr1−(y−1)r0]t1t2

d21 = R1 · (d11d01
)y · d01 = [R1 · (x11)

y

(x01)(y−1)] · g−wt2 · h−[yr1−(y−1)r0]t2

d22 = R2 · (d12d02
)y · d02 = [R2 · (x12)

y

(x02)(y−1)] · g−wt1 · h−[yr1−(y−1)r0]t1

Let A be any PPT adversary against poly-KEY-ANOΠ′,A. Using a hybrid argument,
we can now drastically simplify the security model [Fig. 7], so that it looks like the
one presented in Fig. 14, which we call 5-KEY-ANO. We reiterate that it is enough to
show that Π ′ is secure according to model 5-KEY-ANO only because from two keys
honestly extracted from the same identity we can generate a third with fresh random
coins, without knowing the master secret-key.
In poly-KEY-ANOΠ′,A, A submits two lists list0 and list1 of the same length, say L,
for the challenge. Since A is polynomially bounded, so is the length of the lists. L
intermediate lists are constructed, such that list0 = list0 and for every i ∈ {1..L},
listi = listi−1, except for the element listi[i] which is taken from list1[i]. This results in
listL being equal to list1.
The advantage A has in distinguishing list0 from list1 cannot be more than the sum

of the advantages of distinguishing listi−1 from listi, for every i ∈ {0..L}. The proba-

bility of distinguishing listi−1 from listi cannot be more than that of identifying the
form of the tuple in model 5-KEY-ANO. More precisely, one can expand the 5-tuple
(sk◦0, sk

◦
1, sk

◦
2, sk

◦
3, sk

◦
4) from 5-KEY-ANO into a L-tuple of keys that corresponds to the

requirements of eitheir listi−1 or listi. Since the lists only (possibly) differ in position i,
we set ski of the L-tuple to sk◦2. Every other key is extracted from the extraction oracle
of model 5-KEY-ANO or generated from (sk◦0, sk

◦
1) or (sk◦3, sk

◦
4) if the key is required

to be extracted from the identity in listi−1[i] or listi[i], respectively.

procedure Initialize(λ):

(Msk, params)←$ Setup(1λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(params,Msk, id0)
sk1 ←$ Extract(params,Msk, id0)
sk2 ←$ Extract(params,Msk, idbit)
sk3 ←$ Extract(params,Msk, id1)
sk4 ←$ Extract(params,Msk, id1)
return (params, sk0, sk1, sk2, sk3, sk4)

procedure Extract(id):

skid ←$ Extract(params,Msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 14. 5-KEY-ANOΠ,A Game

The model can be further simplified to that of Fig. 15, which we call 4-KEY-ANO.
Again, making use of the property introduced in the beginning of this proof, the
difficulty of distinguishing a 5-tuple of keys extracted from (id0, id0, id0, id1, id1) from
those extracted from (id0, id0, id0, id0, id0), where id0 and id1 are sampled from I,
is equivalente to that of distinguishuing a 4-tuple of keys that were extracted from
(id0, id0, id1, id1) from those extracted from (id0, id0, id0, id0). This also applies for the
5-tuple of keys extracted from (id0, id0, id1, id1, id1). So, the advantage A has in dis-
tinguishing the tuples in 5-KEY-ANO game cannot be more than twice the advantage
A has in distinguishing the tuples in 4-KEY-ANO.

16

procedure Initialize(λ):

(Msk, params)←$ Setup(1λ)
bit←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(params,Msk, id0)
sk1 ←$ Extract(params,Msk, id0)
sk2 ←$ Extract(params,Msk, idbit)
sk3 ←$ Extract(params,Msk, idbit)
return (params, sk0, sk1, sk2, sk3)

procedure Extract(id):

skid ←$ Extract(params,Msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 15. 4-KEY-ANOΠ,A Game

To complete the proof, we build a simulator S3 [Fig. 16] that by playing game CDDH
outputs four keys (sk⋆0, sk

⋆
1, sk

⋆
2, sk

⋆
3) such that the adversary’s guess in 4-KEY-ANOΠ′,A

can be forward to game CDDH. We refer to key sk⋆i as the tuple (d
⋆
i0, d

⋆
i1, d

⋆
i2), associated

with h⋆i , the hashed-identity from which sk⋆i was extracted. If the simulator receives a
well-formed CDDH tuple, h⋆0 = h⋆1 = h⋆2 = h⋆3 is set to ga. Otherwise, h⋆0 = h⋆1 = ga and
h⋆2 = h⋆3 with an independent random value in Gp. We also set r⋆2 = b and r⋆3 = b · u,
for a random u ∈ Zn.

procedure Initialize(λ):

(Γ, Za,Zb, Zab)← CDDH.Initialize(λ)
(n,G,GT, e, g, gp, gq)← Γ
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1t2w

v1 ← g
t1
p

v2 ← g
t2
p

Msk← (w, t1, t2)
params← (Γ,Ω, v1, v2)

r⋆0 ←$ Zn

x00
′, x01

′, x02
′ ←$ Zn; x00 ← g

x00
′

q ; x01 ← g
x01

′
q ; x02 ← g

x02
′

q

sk⋆0 ← (x00 · (gp)r
⋆
0 t1t2 , x01 · Z

−r⋆0 t2
a · (gp)−wt2 , x02 · Z

−r⋆0 t1
a · (gp)−wt1)

r⋆1 ←$ Zn

x10
′, x11

′, x12
′ ←$ Zn; x10 ← g

x10
′

q ; x11 ← g
x11

′
q ; x12 ← g

x12
′

q

sk⋆1 ← (x10 · (gp)r
⋆
1 t1t2 , x11 · Z

−r⋆1 t2
a · (gp)−wt2 , x12 · Z

−r⋆1 t1
a · (gp)−wt1)

x20
′, x21

′, x22
′ ←$ Zn; x20 ← g

x20
′

q ; x21 ← g
x21

′
q ; x22 ← g

x22
′

q

sk⋆2 ← (x20 · Z
t1t2
b , x21 · Z

−t2
ab · (gp)

−wt2 , x22 · Z
−t1
ab · (gp)

−wt1)

u←$ Zn

x30
′, x31

′, x32
′ ←$ Zn; x30 ← g

x30
′

q ; x31 ← g
x31

′
q ; x32 ← g

x32
′

q

sk⋆3 ← (x30 · Z
ut1t2
b , x31 · Z

−ut2
ab · (gp)−wt2 , x32 · Z

−ut1
ab · (gp)−wt1)

return (params, sk⋆0 , sk
⋆
1 , sk

⋆
2 , sk

⋆
3)

procedure Extract(id):

skid ←$ Extract(params,Msk, id)
return skid

procedure Finalize(bit):

return CDDH.Finalize(bit)

Fig. 16. Simulator S3 forwards A’s guess from 4-KEY-ANOΠ′,A to game CDDH.

Finally, we have that Advpoly-KEY-ANO
Π′,A (λ) ≤ 2L · AdvCDDH,S3 , which concludes our

proof. ⊓⊔

6 Conclusion

We investigated the trapdoor privacy issues in ASE schemes and presented two pri-
vacy definitions. We also proposed two key anonymity properties (i.e. 2-KEY-ANO and
poly-KEY-ANO) for IBE schemes so that these properties directly lead to the trap-
door privacy properties in the generic transformation from IBE to ASE [8]. We then
proved that a simplified Boyen-Waters scheme achieves the 2-KEY-ANO security in
the random oracle model and an extended version of this simplified scheme based on
pairings over composite-order groups achieves poly-KEY-ANO security without ran-
dom oracles. Our work leaves a number of interesting future research topics. One is

17

to enhance the proposed definitions by considering non-uniform message distributions
in the challenge, as remarked in Section 3.4. Another is to analyze the trapdoor pri-
vacy properties of the schemes from [14, 20, 22], and have new constructions without
random oracles. Another is to investigate the trapdoor privacy properties for ASE
schemes that support search queries with more complex comparison structures. Yet
another is to formally investigate the one-wayness property in the second scenario,
namely the trapdoor privacy in the case that trapdoors match with ciphertexts.

Note.

After submitting this paper, we found that another paper by Boneh, Raghunathan,
and Segev (http://eprint.iacr.org/2013/283) has addressed a similar problem. We will
compare our results with theirs and update the paper soon.

References

1. Tang, Q.: Search in Encrypted Data: Theoretical Models and Practical Applications.
In: Theory and Practice of Cryptography Solutions for Secure Information Systems. IGI
(2013) 84–108

2. Song, D.X., Wagner, D., Perrig, A.: Practical Techniques for Searches on Encrypted
Data. In: IEEE Symposium on Security and Privacy. (2000) 44–55

3. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public Key Encryption with
Keyword Search. In: Advances in Cryptology — EUROCRYPT 2004. (2004) 506–522

4. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Proceedings of
the 6th Theory of Cryptography Conference on Theory of Cryptography. (2009) 457–473

5. Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Proceedings of the 1st
international conference on Provable security. (2007) 228–236

6. Hofheinz, D., Weinreb, E.: Correlation-resistant storage via keyword-searchable encryp-
tion. Cryptology ePrint Archive: Report 2008/423 (2008)

7. Tang, Q., Chen, X.: Towards asymmetric searchable encryption with message recovery
and flexible search authorization. In: 8th ACM Symposium on Information, Computer
and Communications Security (ASIACCS 2013). (2013) To appear

8. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J.,
Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties,
relation to anonymous ibe, and extensions. J. Cryptol. 21(3) (2008) 350–391

9. Kiltz, E.: From selective-id to full security: The case of the inversion-based boneh-boyen
ibe scheme. Cryptology ePrint Archive: Report 2007/033 (2007)

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-
based game-playing proofs. In: Advances in Cryptology – EUROCRYPT 2006. (2006)
409–426

11. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Advances
in Cryptology – CRYPTO 2001. (2001) 213–229

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in Cryptology
– CRYPTO 2004. (2004) 41–55

13. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Theory
of Cryptography, Second Theory of Cryptography Conference (TCC). (2005) 325–341

14. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In:
Proceedings of the 4th conference on Theory of cryptography. (2007) 535–554

15. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Advances in Cryptology – EUROCRYPT 2000.
(2000) 259–274

16. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In:
Advances in Cryptology – CRYPTO 2004. (2004) 443–459

17. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without
random oracles. In: Advances in Cryptology – EUROCRYPT 2004. (2004) 223–238

18. Waters, B.: Efficient identity-based encryption without random oracles. In: Advances
in Cryptology – EUROCRYPT 2005. (2005) 114–127

18

19. Gentry, C.: Practical identity-based encryption without random oracles. In: Advances
in Cryptology – EUROCRYPT 2006. (2006) 445–464

20. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without ran-
dom oracles). In: Advances in Cryptology – CRYPTO 2006. (2006) 290–307

21. Attrapadung, N., Furukawa, J., Gomi, T., Hanaoka, G., Imai, H., Zhang, R.: Efficient
identity-based encryption with tight security reduction. In: Proceedings of the 5th in-
ternational conference on Cryptology and Network Security. (2006) 19–36

22. Ducas, L.: Anonymity from asymmetry: new constructions for anonymous hibe. In:
Proceedings of the 2010 international conference on Topics in Cryptology (CT-RSA’10).
(2010) 148–164

23. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of sym-
metric encryption. In: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science (FOCS). (1997) 394–403

Appendix I: Property Definitions for IBE

The correctness of an IBE scheme requires that decryption reverses encryption,
i.e. for any λ ∈ N, any (Msk, params)←$ Setup(λ), any id ∈ I, any m ∈ M, we have
that Dec(params,Enc(params,m, id), id,Extract(params,Msk, id)) = m.

Definition 10. An IBE scheme Π is IBE-IND-CPA secure if, for every legitimate
PPT adversary A, the following definition of advantage is negligible in λ

AdvIBE-IND-CPA
Π,A (λ) := 2 · Pr[IBE-IND-CPAΠ,A(λ)⇒ True]− 1,

where game IBE-IND-CPAΠ,A is described in Fig. 17. The adversary is legitimate if it
only calls Real-or-Random once.

procedure Initialize(λ):

(Msk, params)←$ Setup(λ)
bit←$ {0, 1}
return params

procedure Real-or-Random(id⋆,m0):

if id⋆ ∈ list return ⊥
m1 ←$ M
c←$ Enc(params,mbit, id

⋆)
return c

procedure Extract(id):

if id == id⋆ return ⊥
skid ←$ Extract(params,Msk, id)
list← id : list
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 17. IBE-IND-CPAΠ,A Game

Definition 11. An IBE scheme Π is IBE-ANO secure if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvIBE-ANO
Π,A (λ) := 2 · Pr[IBE-ANOΠ,A(λ)⇒ True]− 1,

where game ANOΠ,A is described in Fig. 18. The adversary is legitimate if it only
calls Real-or-Random once.

procedure Initialize(λ):

(Msk, params)←$ Setup(λ)
bit←$ {0, 1}
return params

procedure Real-or-Random(id0,m
⋆):

if id0 ∈ list return ⊥
id1 ←$ I
c←$ Enc(params,m⋆, idbit)
id⋆ ← id0
return c

procedure Extract(id):

if id == id⋆ return ⊥
skid ←$ Extract(params,Msk, id)
list← id : list
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 18. IBE-ANOΠ,A Game

19

Remark 4. Similar to the results in [23], we can show that the Real-or-Random chal-
lenge and the typical Left-or-Right style challenge are equivalent in asymmetric en-
cryption security definitions when the message space is not polynomial size.

Appendix II: Property Definitions for ASE

Definition 12. An ASE scheme E is computationally consistent if, for every legiti-
mate PPT adversary A, the following definition of advantage is negligible in λ

AdvASE-CONSIST
E,A (λ) := 2 · Pr[ASE-CONSISTE,A(λ)⇒ True]− 1,

where game ASE-CONSISTE,A is described in Fig. 19.

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
return pk

procedure Finalize(w0,w1):

c←$ PEKS(pk,w0)
tp←$ Trapdoor(sk,w1)
return Test(pk, c, tp) ∧ (w0 ̸= w1)

Fig. 19. ASE-CONSIST Game

Definition 13. An ASE scheme E is ASE-IND-CPA secure if, for every legitimate
PPT adversary A, the following definition of advantage is negligible in λ

AdvASE-IND-CPA
E,A (λ) := 2 · Pr[ASE-IND-CPAE,A(λ)⇒ True]− 1,

where game ASE-IND-CPAE,A is described in Fig. 20. The adversary is legitimate if
it only calls Real-or-Random once.

procedure Initialize(λ):

(sk, pk)←$ KeyGen(λ)
bit←$ {0, 1}
return pk

procedure Real-or-Random(w0):

if w0 ∈ list return ⊥
w1 ←$ M′

c←$ PEKS(pk,wbit)
return c

procedure Trapdoor(w):

if w == w0 return ⊥
tp←$ Trapdoor(sk,w)
list← w : list
return tp

procedure Finalize(bit′):

return (bit = bit′)

Fig. 20. ASE-IND-CPAE,A Game

20

