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Abstract

Obtainment of exact value or high lower bound on the r-th order
nonlinearity of Boolean function is a very complicated problem (especial if
r > 1). In a number of papers lower bounds on the r-th order nonlinearity
of Boolean function via its algebraic immunity were obtain for different
r. This bounds is rather high for function with maximum near maximum
possible algebraic immunity. In this paper we prove theorem, which try
to obtain rather high lower bound on the r-th order nonlinearity for many
functions with small algebraic immunity.
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A Boolean function of n variables is a function f : Fn
2 → F2. The weight

wt(x) of a vector x ∈ Fn
2 is the number of ones in x. The weight wt(f) of f

from Fn
2 intoF2 is the number of vectors x from Fn

2 , that f(x) = 1.
It is well known that a Boolean function can be uniquely represented as a

polynomial

f(x1, . . . , xn) =
⊕

a1,...,an∈Fn
2

g(a1, . . . , an)x
a1
1 · · ·xan

n ,

where g is a Boolean function too. This polynomial representation is called
its algebraic normal form (ANF). The algebraic degree of f , denoted deg(f), is
the length of the longest term in the polynomial of f .

The algebraic immunity of f is defined:

AI(f) = min
g ̸=0, gf≡0 or g(f+1)≡0

deg(g).

It is known [3, 4] that for any f on Fn
2 the inequality AI(f) ≤ ⌈n

2 ⌉ holds.
The nonlinearity of rth order nlr(f) of a Boolean function f over Fn

2 is called
the value min

l, deg(l)≤r
d(f, l), where d(f, l) is the Hamming distance.
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In [1, 2] it was proved exact lower bound on first and second order nonlin-
earities via value of algebraic immunity. In [5] it was proved lower bound (not
exact) on the r-th order nonlinearity.

nl1(f) ≥ 2

AI(f)−2∑
i=0

(
n− 1

i

)
, nl2(f) ≥

AI(f)−1∑
i=0

(
n

i

)
−

AI(f)−1∑
i=0

2i
(

n− 2i− 1

AI(f)− 1− i

)
,

nlr(f) ≥
AI(f)−r−1∑

i=0

(
n

i

)
+

AI(f)−r−1∑
i=AI(f)−2r

(
n− r

i

)
. (1)

If AI(f) is near to maximum possible, bounds are rather high, but they
don’t obtain so good results for function with low AI(f). In [] it was
proved lower bound on nlr(f) not via AI(f), but via ming ̸=0, gf≡0 deg(g) and
ming ̸=0, g(f+1)≡0 deg(g). This bound generalize bound (1) and it is better for
some function with low algebraic immunity.

In this paper we prove theorem, that generalize author’s method of obtaining
of lower bounds on nlr(f) via AI(f) from [2] and result from [6]. Bounds on
nlr(f) obtaining from this theorem is higher for many functions.

Definition 1 Let h(x1, . . . , xn),define Ank(h) = {g(x1, . . . , xn)| gh =
0, deg(g) ≤ k} .

Definition 2 Let C = {x1, . . . , xn} be some set of vectors in Fn
2 . For any

given k, k ≤ n, and for any vector x = (x1, . . . , xn) ∈ Fn
2 we correspond to x

the uniform linear equation with the left side generated by the substitution of
components of the vector x into the expression

a0 +

n∑
i=1

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+
∑

1≤i1≤...≤ik≤n

ai1...ikxi1 . . . xik .

The right side of the equation is 0. Then we call a k-rank of the set C the rank
of the system of linear equations generated by such way from the vectors of the
set C. Denote this rank by rk(C).

Next, we search all functions from Ank(f) by the method of undefined co-
efficients:

g = a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

aijxixj + · · ·+
∑

1≤i1<...<ik≤n

ai1...ikxi1 . . . xik .

The function g is an annihilator of f if and only if f(x) = 1 follows g(x) = 0.
Thus, we obtain the system of linear equations.

Dimension of solution space of homogeneous linear system equals to rank of
the system subtract number of variables.

dim(Ank(f)) =

k∑
i=0

(
n

i

)
− rk(supp(f)). (2)
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Proposition 1 Let f and f0 be n-variable functions, 1 ≤ k1, k2 ≤ n,
dim(Ank1(f)) ≥ dim(Ank1(f0)) and dim(Ank2(f + 1)) ≥ dim(Ank2(f0 + 1)).
Then

d(f, f0) ≥ dim(Ank1(f))−dim(Ank1(f0))+dim(Ank2(f+1))−dim(Ank2(f0+1)).

Proof. From (2) we obtain rk1(supp(f0))− rk1(supp(f)) = dim(Ank1(f))−
dim(Ank1(f0)). Hence, there exist at least dim(Ank1(f))− dim(Ank1(f0)) vec-
tors where f0 is equal to 1, and f is equal to 0.

Analogously, we obtain, that there exist at least dim(Ank2(f + 1)) −
dim(Ank2(f0 + 1)) the number of vectors where f is 1 and f0 is 0. �

Definition 3 Let h be n-variable function. Define Bk1,k2(h) = {g(x1, . . . , xn)|deg(g) ≤
k1, deg(gh) ≤ k2}.

In [2] the following bound was proved

dim(Bk,k(h)) ≥
k−r∑
i=0

(
n

i

)
+

k−r∑
i=k−2r+1

(
n− r

i

)
, (3)

if deg ≤ r

Proposition 2 Let k1 ≥ k2, then

dim(Ank1(f)) + dim(Ank2(f + 1)) = dim(Bk1,k2(f)).

Proof. It is sufficient to prove, that Bk1,k2
(f) is a direct sum of Ank1(f) and

Ank2(f + 1).
Because of Ank1

(f) ∩ Ank2
(f + 1) = 0 it is sufficient to prove, that some

function from Bk1,k2(f) is represented as a sum of functions from Ank1(f) and
Ank2

(f + 1), and sum of some functions from Ank1
(f) and Ank2

(f + 1) is a
function from Bk1,k2(f).

Let g1 ∈ Ank1(f), a g2 ∈ Ank2(f + 1) then g1 + g2 ∈ Bk1,k2(f). Genuinely:

deg(g1 + g2) ≤ max(deg(g1), deg(g2)) ≤ k1,

deg((g1 + g2)f) = deg(g1f + g2(f + 1) + g2) = deg(g2) ≤ k2.

Inverse, let g ∈ Bk1,k2(f), then g(f + 1) ∈ Ank1(f) and gf ∈ Ank2(f + 1). It
follows from definition of space Bk1,k2(f) and

gf(f + 1) ≡ 0,

deg(g(f + 1) = deg(gf + g) ≤ max(deg(gf),deg(g)) ≤ k1.

Because of g = gf+g(f+1), some function g ∈ Bk1,k2(f) can be represented
as g = g1 + g2, where g1 = g(f + 1) ∈ Ank1(f) and g2 = gf ∈ Ank2(f + 1). �

As a simple corollary from Proposition 1 and 2 obtain:
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Corollary 1 Let f and f0 be n-variable functions, 1 ≤ k2 ≤ k1 ≤ n,
dim(Ank1(f)) ≥ dim(Ank1(f0)) and dim(Ank2(f + 1)) ≥ dim(Ank2(f0 + 1)).
Then d(f, f0) ≥ dim(Bk1,k2

(f))− dim(Bk1,k2
(f0)).

A cause of constant approximating considered in its own right, we obtain
from Corollary 1 the following bound on the r-th order nonlinearity.

Theorem 1 Let for f(x1, . . . , xn) the following inequations are true min1≤deg(g)≤r dim(Ank1(g)) ≥
dim(Ank1(f)) and min1≤deg(g)≤r dim(Ank1(g)) ≥ dim(Ank1(f + 1)), then

nlr(f) ≥ min ( min
deg(g)≤r

dim(Bk1,k2(g))− dim(Bk1,k2(f)), wt(f), wt(f + 1)),

if k1 ≥ k2, and

nlr(f) ≥ min ( min
deg(g)≤r

dim(Bk2,k1(g))− dim(Bk2,k1(f + 1)), wt(f), wt(f + 1)),

if k1 < k2.

Next can be useful to check the assumptions of 1.

Proposition 3 The following inequation is true

min
1≤deg(g)≤r

dim(Ank(g)) ≥
k−r∑
i=0

(
n− r

i

)
.

Theorem 1 generalizes the corresponding results from [6, 5, 2]; therefore, the
estimates obtained with its help, are necessarily not less sharp. In what follows,
we shall show that, in fact, for some particular functions, this theorem implies
stronger estimates for nlr(f) than those from [6, 5, 2].

For n = 4k + 1 let us define the function fn(x1, . . . , xn):

fn(x1, . . . , xn) =

{
0, if wt(x1, . . . , xn) ≤ 2k,
1, if wt(x1, . . . , xn) > 2k,

Consider the function f = fn · (x1 ∨ x2 ∨ . . .∨ xk)∨ x1x2 . . . xk. It is easy to
prove that AI(f) = k. From [5, 2] and from [6] in view (3) the same bound can
be deduced:

nlr(f) ≥ min
deg(g)≤r

dim(Bk−1,k−1(g)) ≥
k−r−1∑
i=0

(
n

i

)
+

k−r−1∑
i=k−2r

(
n− r

i

)
.

At the same time, using Theorem 1 and Proposition 3, we obtain the significantly
stronger bound

nlr(f) ≥ min
deg(g)≤r

dim(B2k,2k(g))− 2
k∑

i=0

(
n− k

i

)
≥

≥
2k−r∑
i=0

(
n

i

)
+

2k−r∑
i=2k−2r+1

(
n− r

i

)
− 2

k∑
i=0

(
n− k

i

)
.
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