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Abstract

Digital signatures are often used by trusted authorities to make unique bindings between a subject
and a digital object; for example, certificate authorities certify a public key belongs to a domain
name, and time-stamping authorities certify that a certain piece of information existed at a certain
time. Traditional digital signature schemes however impose no uniqueness conditions, so a malicious
or coerced authority can make multiple certifications for the same subject but different objects. We
propose the notion of a double-authentication-preventing signature, in which a value to be signed is
split into two parts: a subject and a message. If a signer ever signs two different messages for the
same subject, enough information is revealed to allow anyone to compute valid signatures on behalf
of the signer. This double-signature forgeability property prevents, or at least strongly discourages,
signers misbehaving. We give a generic construction using a new type of trapdoor functions with
extractability properties, which we show can be instantiated using the group of sign-agnostic quadratic
residues modulo a Blum integer.

Keywords: digital signatures, double signatures, forgeability, extractability, dishonest signer,
two-to-one trapdoor functions

1 Introduction

Digital signatures are used in several cryptographic contexts by authorities who are trusted to behave
appropriately. For instance, certificate authorities (CAs) in public key infrastructures, who assert that
a certain public key belongs to a party with a certain identifier, are trusted to not issue fraudulent
certificates for a domain name; time-stamping services, who assert that certain information existed at a
certain point in time, are trusted to not retroactively certify information (they should not “change the
past”).

In both of these cases, the authority is trusted to make a unique binding between a subject — a
domain name or time — and a digital object — a public key or piece of information. However, traditional
digital signatures provide no assurance of the uniqueness of this binding. As a result, an authority could
make multiple bindings per subject. For example, in the public key infrastructure used in the world
wide web, CAs have been known to sign multiple certificates per domain name, as a result of either (a)
poor management practices, (b) a security breach, (c) malicious behavior on the part of the CA, or (d)
coercion (legal or otherwise) by law enforcement agencies, governments, or other parties who “make him
an offer he can’t refuse”; similar concerns apply to time-stamping authorities. If it comes to light that a
CA has improperly signed two or more certificates for the same domain name, various responses exist,
including bad publicity, the CA revoking the extra certificates, or ultimately removal of the CA from web
browsers’ lists of trusted CAs. A CA acting maliciously may bet that the embarrassment from one or two
lapses in judgment may not be enough to lead to a downfall.

Contributions. We propose a new type of digital signature scheme for which the response to improper
signer behavior is less ambiguous. In a double-authentication-preventing signature (DAPS), the data to
be signed is split into two parts: a subject and a message. If a signer ever signs two messages for the
same subject, then enough information is revealed for anyone to be able to forge signatures on arbitrary
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messages, rendering the signer immediately and irrevocably untrustworthy. Depending on the nature of
the subjects, in some applications an honest signer may need to track the list of subjects signed to avoid
signing the same subject twice.

In addition to unforgeability, we require two new security properties for DAPS: double-signature
forgeability, where a signer who signs two messages for the same subject reveals enough information for
anyone to sign arbitrary messages, and a stronger notion called double-signature extractability, where
two signatures on the same subject allow full recovery of the signing key. We give a generic construction
for DAPS based on a new primitive called extractable two-to-one trapdoor function which allows anyone,
given two preimages of the same value, to recover the trapdoor required for inverting the function. We
show how to construct these functions using the group of sign-agnostic quadratic residues modulo a Blum
integer (RSA modulus), an algebraic reformulation of a mathematical construction that has been used
in several cryptographic primitives. The resulting double-authentication-preventing signature scheme is
efficient and for a standard security level has reasonably sized signatures of 48kB.

Our quadratic residue-based construction provides double-signature extractability in what we call the
trusted setup model, where it is assumed that the signer follows the correct procedure for key generation.
This model is suitable for scenarios where signers want to be honest and create their keys with best
intention — and we hope most CAs belong to this group, facing potential coercive requests by third
parties, such as government agencies, to construct fraudulent certificates only after completed setup.
Our construction can be translated to the untrusted setup model, where parties do not have to trust the
signer to generate keys following the scheme specification, using zero-knowledge techniques for proving
well-formedness of the verification key.

1.1 Outline

We define a double-authentication-preventing signature in Section 2 and its unforgeability as well as
double-signature forgeability and double-signature extractability properties. We introduce in Section 3
extractable 2:1 trapdoor functions and provide a factoring-based instantiation in Section 4 using sign-
agnostic quadratic residues. In Section 5 we generically construct a DAPS scheme from extractable 2:1
trapdoor functions and prove the scheme’s security and double signature extractability in the trusted
setup model, as well as discuss its use with untrusted setup. Section 6 examines applications of DAPS to
certification and time-stamping authorities. We conclude in Section 7. The appendices contain a review
of basic results from number theory (Appendix A), proofs of results from the main body (Appendix B),
and a discussion on the relationship of extractable 2:1 trapdoor functions and claw-free permutations
(Appendix C).

1.2 Related work

One-time signatures. One-time signatures, first proposed by Lamport using a construction based on
hash functions [Lam79], allow at most one message to be signed. Many instances can be combined using
Merkle trees [Mer90] to allow multiple signatures with just a single verification key, but key generation
time becomes a function of the total number of signatures allowed. There is a vast literature on one-time
signature schemes, with various lines of research focusing on shorter signatures, more efficient generation,
smaller key sizes, and minimization of the assumptions required.

Double-authentication-preventing signatures are fundamentally different from one-time signatures:
in DAPS, the number of messages to be signed need not be fixed a priori, and our construction relies
on number-theoretic trapdoor functions, rather than solely hash functions. A natural first attempt at
creating a DAPS scheme is to begin with a Merkle-tree construction, in which the subject serves as an
index to the leaf: each subject identifies a path through the tree and hence which keys must be used to
sign the message. However, this limits the size of the subject space and requires a key generation time at
least linear in the size of the subject space. Moreover, in such a scheme two signatures under the same
subject do not immediately lead to the ability to forge signatures on arbitrary messages. Our scheme
allows for arbitrary subject spaces and has efficient key generation time, so we leave the construction of a
tree-based DAPS as an open problem.

Fail-stop signatures. Fail-stop signatures [WP90,vP92,vPP93,BP97,PP97] allow a signer to prove
to a judge that a forgery has occurred; a signer is protected against cryptanalytic attacks by even an
unbounded adversary. Verifiers too are protected against computationally bounded signers who try to
claim a signature is a forgery when it is not. When a forgery is detected, generally the security of the
scheme collapses, because some secret information can be recovered, and so the security of previous
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signatures is left in doubt. Recent work on fail-stop signatures focuses on shorter signatures and more
efficient constructions, especially related to the use of accumulators. Forgery-resilient signatures [MO12]
aim to have similar properties to fail-stop signatures — the ability for a signer to prove a cryptanalytic
forgery — but discovery of a forgery does not immediately render previous signatures insecure.

Both fail-stop and forgery-resilient signatures focus on the ability of an honest signer to prove someone
else has constructed a forgery, whereas DAPS is about what happens when a dishonest signer signs two
messages for the same subject.

Digital cash. Although we do not see a direct functional connection between digital cash schemes
(e.g., [CFN90]) and DAPS, it is interesting to note that the number-theoretic structures our scheme builds
on are similar to those used in digital cash to provide double spending traceability: both schemes use
RSA moduli that can be factored if signers/spenders misbehave.

2 Definitions

In this section we present the central definitions of the paper: a double-authentication-preventing signature
and its security requirements: the standard (though slightly adapted) notion of existential unforgeability,
as well as the new properties of forgeability and signing key extractability given two signatures on the
same subject.

Notation. If S is a finite set, let U(S) denote the uniform distribution on S and x ←
R
S denote

sampling x uniformly from S. If A and B are two probability distributions, then notation A ≈ B denotes
that the statistical distance between A and B is negligible. If A is a (probabilistic) algorithm, then
x←

R
AO(y) denotes running A with input y on uniformly random coins with oracle access to O, and

setting x to be the output. We use the notation A(y; r) to explicitly identify the random coins r on which
the otherwise deterministic algorithm A is run.

Definition 1 (Double-authentication-preventing signature scheme). A double-authentication-preventing
signature (DAPS) is a tuple of efficient algorithms DAPS = (KGen,Sign,Ver) as follows:

• KGen(1λ): On input security parameter 1λ, this algorithm outputs a signing key sk and a verification
key vk.

• Sign(sk, subj,msg): On input signing key sk and subject/message pair subj,msg ∈ {0, 1}∗, this
algorithm outputs a signature σ.

• Ver(vk, subj,msg, σ): On input verification key vk, subject/message pair subj,msg ∈ {0, 1}∗, and
candidate signature σ, this algorithm outputs either 0 or 1.

Definition 2 (Correctness of DAPS). A double-authentication-preventing signature DAPS is correct if,
for all λ ∈ N, for all key pairs (sk, vk) ←

R
KGen(1λ), for all subj,msg ∈ {0, 1}∗, and for all signatures

σ ←
R
Sign(sk, subj,msg), we have that Ver(vk, subj,msg, σ) = 1.

2.1 Unforgeability

Our unforgeability notion largely coincides with the standard unforgeability notion for digital signature
schemes [GMR88]; the main difference is that, for DAPS, forgeries crafted by the adversary are not
considered valid if the adversary has requested forgeries on different messages for the same subject.

Definition 3 (Existential unforgeability). A double-authentication-preventing signature DAPS is exis-
tentially unforgeable under adaptive chosen message attacks if, for all efficient adversaries A, the success

probability Succ EUF
DAPS,A(λ) := Pr

[
Exp EUF

DAPS,A(λ) = 1
]

in the EUF experiment of Figure 1 is a negligible

function in λ.

2.2 Double-signature forgeability

Although Definition 3 ensures that signatures of DAPS are generally unforgeable, we do want signatures
to be forgeable in certain circumstances, namely when two different messages have been signed for the
same subject. First we define the notion of compromising pairs of signatures, which says when two
signatures should lead to a forgery, and then define double-signature forgeability.
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Exp EUF
DAPS,A(λ):

1. (sk, vk)←
R
KGen(1λ)

2. (subj∗,msg∗, σ∗)←
R
AOSign(vk)

• If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) σ ←

R
Sign(sk, subj,msg)

(c) Return σ to A
3. Return 1 iff all the following hold:

• Ver(vk, subj∗,msg∗, σ∗) = 1
• (subj∗,msg∗) 6∈ SignedList
• ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList ⇒

msg0 = msg1

Figure 1: Experiment for existential unforgeability of DAPS

ExpDSF
DAPS,A(λ):

1. (vk, (S1, S2), subj∗,msg∗)←
R
A(1λ)

2. σ∗ ←
R
Forge(vk, (S1, S2), subj∗,msg∗)

3. Return 1 iff all the following hold:

• (S1, S2) is compromising
• Ver(vk, subj∗,msg∗, σ∗) 6= 1

ExpDSF∗

DAPS,A(λ):

1. (sk, vk)←
R
KGen(1λ)

2. ((S1, S2), subj∗,msg∗)←
R
A(sk, vk)

3. σ∗ ←
R
Forge(vk, (S1, S2), subj∗,msg∗)

4. Return 1 iff all the following hold:

• (S1, S2) is compromising
• Ver(vk, subj∗,msg∗, σ∗) 6= 1

Figure 2: Experiments for double-signature forgeability

Definition 4 (Compromising pair of signatures). For a fixed verification key vk, a pair (S1, S2) of
subject/message/signature triples S1 = (subj1,msg1, σ1) and S2 = (subj2,msg2, σ2) is compromising if
σ1, σ2 are valid signatures on different messages for the same subject; that is, if Ver(vk, subj1,msg1, σ1) = 1,
Ver(vk, subj2,msg2, σ2) = 1, subj1 = subj2, and msg1 6= msg2.

We now define the double-signature forgeability requirement. Here, the adversary takes the role of a
malicious signer that aims to generate compromising pairs of signatures that do not lead to successful
double-signature forgeries. We consider two scenarios: the trusted setup model, where key generation is
assumed to proceed honestly, and the untrusted setup model, where the adversary has full control over
key generation as well.

Definition 5 (Double-signature forgeability). A double-authentication-preventing signature DAPS is
double-signature forgeable (resp. double-signature forgeable with trusted setup) if an efficient algorithm

• Forge(vk, (S1, S2), subj∗,msg∗): On input verification key vk, compromising pair (S1, S2), and
subject/message pair subj∗,msg∗ ∈ {0, 1}∗, this algorithm outputs a signature σ∗.

is known such that, for all efficient adversariesA, the probability SuccDSF(∗)

DAPS,A(λ) := Pr
[
ExpDSF(∗)

DAPS,A(λ) = 1
]

of success in the DSF (resp. DSF∗) experiment of Figure 2 is a negligible function in λ.

2.3 Double-signature extractability

While the notion of double-signature forgeability expresses the desired functionality of the scheme from a
theoretical point of view, from an engineering perspective it may be more natural to consider double-
signature extractability, in which two signatures for the same subject lead to full recovery of the signing
key; obviously full recovery of the signing key gives the ability to forge.

Definition 6 (Double-signature extractability). A double-authentication-preventing signature DAPS is
double-signature extractable (resp. double-signature extractable with trusted setup) if an efficient algorithm

• Extract(vk, (S1, S2)): On input verification key vk and compromising pair (S1, S2), this algorithm
outputs a signing key sk′.

is known such that, for all efficient adversariesA, the probability SuccDSE(∗)

DAPS,A(λ) := Pr
[
ExpDSE(∗)

DAPS,A(λ) = 1
]

of success in the DSE (resp. DSE∗) experiment of Figure 3 is a negligible function in λ.
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ExpDSE
DAPS,A(λ):

1. (vk, (S1, S2))←
R
A(1λ)

2. sk′ ←
R
Extract(vk, (S1, S2))

3. Return 1 iff all the following hold:

• (S1, S2) is compromising
• sk′ is not the signing key corresponding

to vk

ExpDSE∗

DAPS,A(λ):

1. (sk, vk)←
R
KGen(1λ)

2. (S1, S2)←
R
A(sk, vk)

3. sk′ ←
R
Extract(vk, (S1, S2))

4. Return 1 iff all the following
hold:

• (S1, S2) is compromising
• sk′ 6= sk

Figure 3: Experiments for double-signature extractability

Note that the DSE experiment assumes existence of an efficient predicate that verifies that a candi-
date sk′ is the signing key corresponding to a verification key. In some schemes, there may be several
signing keys that correspond to a verification key or it may be inefficient to check. However, for the
scheme presented in Section 5, when instantiated with the factoring-based primitive of Section 4, it is
easy to check that a signing key (p, q) corresponds to a verification key n; note that there is a canonical
representation of such signing keys (take p < q).

Clearly, double-signature extractability implies double-signature forgeability. In fact, DSE implies
that the forger can generate signatures that are perfectly indistinguishable from signatures generated by
the honest signer. This is an important feature that plain double-signature forgeable schemes do not
necessarily offer, and indeed one can construct degenerate examples of schemes that are double-signature
forgeable but for which forged signatures are obviously different from honest signatures.

3 2:1 trapdoor functions and extractability

We introduce the concept of 2:1 trapdoor functions (2:1-TDF). At a high level, such functions are trapdoor
one-way functions, meaning that they should be hard to invert except with knowledge of a trapdoor.
They are two-to-one, meaning that the domain is exactly twice the size of the range, and every element
of the range has precisely two preimages. We also describe an additional property, extractability, which
means that given two distinct preimages of an element of the range, the trapdoor can be computed.

Consider two finite sets, A and B, such that A has twice the size of B. Let f : A→ B be a surjective
function such that, for any element b ∈ B, there are exactly two preimages in A; f is not injective, so the
inverse function does not exist. Define instead f−1 : B × {0, 1} → A such that for each b ∈ B the two
preimages under f are given by f−1(b, 0) and f−1(b, 1). Observe that this effectively partitions set A
into two subsets A0 = f−1(B, 0) and A1 = f−1(B, 1) of the same size.

A

A0

A1

B

Figure 4: Illustration of a 2:1 trapdoor function
f : A → B. Each element of B has exactly
two preimages, one in A0 and one in A1.

Function f is a 2:1-TDF if the following additional
properties hold: sets A0, A1, and B are efficiently sam-
plable, function f is efficiently computable, and inverse
function f−1 is hard to compute unless some specific
trapdoor information is known. We finally require an
extraction capability: there should be an efficient way
to recover the trapdoor for the computation of f−1 from
any two elements a0 6= a1 with f(a0) = f(a1) (we will
also write a0

x∼ a1 for such configurations). The setting
of 2:1-TDFs is illustrated in Figure 4. We will formalize
the functionality and security properties below.

2:1-TDFs resemble to a certain extent claw-free per-
mutations (CFPs), established by Goldwasser, Micali,
and Rivest [GMR88]. We explore the connection between
these primitives in Appendix C, highlighting two major

differences: (a) 2:1-TDFs seem to generally rely on weaker hardness assumptions (while we show that
CFPs readily imply 2:1-TDFs, we give some indication on why the converse might not hold), and (b) CFPs
are generally not equipped with extraction capabilities, in contrast to extractable 2:1-TDFs.
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3.1 Definition

We give a formal definition of 2:1-TDF and its correctness, and establish afterwards that it implements
the intuition developed above.

Definition 7 (2:1 trapdoor function). A 2:1 trapdoor function (2:1-TDF) is a tuple of efficient algorithms
(TdGen,SampleA,SampleB ,Apply,Reverse,Decide) as follows:

• TdGen(1λ): On input security parameter 1λ, this randomized algorithm outputs a pair (td, pub),
where td is a trapdoor and pub is some associated public information. Each possible outcome pub
implicitly defines finite sets A = A(pub) and B = B(pub).

• SampleA(pub, d; r): On input public information pub, bit d ∈ {0, 1}, and randomness r ∈ {0, 1}λ,
this algorithm outputs a value a ∈ A(pub). As shortcuts, by SampleA(pub, d) (respectively, SampleA
(pub)) we denote the result obtained by uniformly sampling r ←

R
{0, 1}λ (resp., d←

R
{0, 1} and

r ←
R
{0, 1}λ) and executing SampleA(pub, d; r).

• SampleB(pub; r): On input public information pub and randomness r ∈ {0, 1}λ, this algorithm
outputs a value b ∈ B(pub).

• Apply(pub, a): On input public information pub and element a ∈ A(pub), this deterministic algorithm
outputs an element b ∈ B(pub).

• Reverse(td, b, d): On input trapdoor td, element b ∈ B(pub), and bit d ∈ {0, 1}, this deterministic
algorithm outputs an element a ∈ A(pub).

• Decide(pub, a): On input public information pub and element a ∈ A(pub), this deterministic
algorithm outputs a bit d ∈ {0, 1}.

Definition 8 (Correctness of 2:1-TDF). A 2:1-TDF is correct if, for all (td, pub) ←
R
TdGen, all d ∈

{0, 1}, all a ∈ A(pub), and all b ∈ B(pub), we have that (1) a ∈ Reverse(td,Apply(pub, a), {0, 1}),
(2) Apply(pub,Reverse(td, b, d)) = b, and (3) Decide(pub,Reverse(td, b, d)) = d. We further require that
Decide(pub,SampleA(pub, d; r)) = d hold for all d ∈ {0, 1} and r ∈ {0, 1}λ.

Let (td, pub) be output by TdGen. Consider partition A(pub) = A0(pub)
.
∪ A1(pub) obtained by setting

Ad(pub) = {a ∈ A(pub) : Decide(pub, a) = d}, for d ∈ {0, 1}. It follows from correctness requirement (3)
that function ψd := Reverse(td, ·, d) is a mapping B(pub) → Ad(pub). Note that ψd is surjective by
condition (1), and injective by condition (2). Hence, we have bijections ψ0 : B(pub) → A0(pub) and
ψ1 : B(pub)→ A1(pub). Thus, |A0(pub)| = |A1(pub)| = |B(pub)| = |A(pub)|/2.

Define now relation x∼ ⊆ A(pub)×A(pub) such that

a x∼ a′ ⇐⇒ Apply(pub, a) = Apply(pub, a′) ∧ Decide(pub, a) 6= Decide(pub, a′) .

Note that for each a ∈ A(pub) there exists exactly one a′ ∈ A(pub) such that a x∼ a′; indeed, if a ∈ Ad(pub),
then a′ = ψ1−d(ψ

−1
d (a)) ∈ A1−d(pub). Observe how algorithms Apply and Reverse correspond to functions

f : A→ B and f−1 : B × {0, 1} → A discussed at the beginning of Section 3.

3.2 Security notions

We proceed with the specification of the principal security properties of 2:1-TDFs, samplability and
one-wayness. The treatment of extraction follows in the next section. The proofs of Lemmas 1 and 2
appear in Appendix B.1.

3.2.1 Samplability.

The task of a 2:1-TDF’s SampleA and SampleB algorithms is to provide samples from sets A(pub) and
B(pub), respectively, that are distributed nearly uniformly. The samplability security property refers to
the extent to which these samples are close to uniform.

Definition 9 (Sampling distance). Let X be a 2:1-TDF and let S0, S1 be two (sampling) algorithms.
We define the sampling distance of S0, S1 with respect to a distinguisher D as

Dist S0,S1

X,D (λ) :=

∣∣∣∣ Pr
[
(td, pub)←

R
TdGen(1λ);x←

R
S0(pub) : D(pub, x) = 1

]
−Pr

[
(td, pub)←

R
TdGen(1λ);x←

R
S1(pub) : D(pub, x) = 1

] ∣∣∣∣ .
We consider two different strategies to obtain samples from set B: using the SampleB algorithm

directly, or using SampleA and mapping obtained samples from set A to set B using the Apply algorithm.
The latter hybrid construction is formalized in Definition 10. We show in Lemma 1 that it yields reasonable
results, assuming good SampleA and SampleB algorithms.
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Exp INV-1
X,A (λ):

1. (td, pub)←
R
TdGen(1λ)

2. b←
R
SampleB(pub)

3. a←
R
A(pub, b)

4. Return 1 iff Apply(pub, a) = b

Exp INV-2
X,B (λ):

1. (td, pub)←
R
TdGen(1λ)

2. a←
R
SampleA(pub)

3. a′ ←
R
B(pub, a)

4. Return 1 iff a x∼ a′

Figure 5: Experiments for (second) preimage resistance of 2:1-TDFs

Definition 10 (Hybrid sampling). For a 2:1-TDF, let (td, pub) be output by TdGen. Then sampling
algorithm SampleAB for set B(pub) is defined as SampleAB(pub) := Apply(pub,SampleA(pub)).

Lemma 1 (Quality of hybrid sampling). Let X be a 2:1-TDF and let DB be an efficient distinguisher.
Then there exist efficient distinguishers D′A and D′B such that

Dist
SampleB ,SampleAB
X,DB

(λ) ≤ Dist
SampleA,U(A)
X,D′A

(λ) + Dist
SampleB ,U(B)
X,D′B

(λ) .

It follows from Lemma 1 that Dist
SampleB ,SampleAB
X is small if Dist

SampleA,U(A)
X and Dist

SampleB ,U(B)
X

are. This observation motivates the following security requirement on 2:1-TDFs.

Definition 11 (Samplability of 2:1-TDF). A 2:1-TDF X is samplable if, for all efficient distinguishers

DA and DB , Dist
SampleA,U(A)
X,DA

(λ) and Dist
SampleB ,U(B)
X,DB

(λ) are negligible functions in λ.

Observe that if Dist
SampleA,U(A)
X is negligible then so are Dist

SampleA(·,0),U(A0)
X and Dist

SampleA(·,1),U(A1)
X .

3.2.2 One-wayness.

We next define one-wayness for 2:1-TDFs. Intuitively, it should be infeasible to find preimages and second
preimages of the Apply algorithm without knowing the corresponding trapdoor.

Definition 12 (Preimage resistance of 2:1-TDF). A 2:1-TDF X is preimage resistant and second preimage
resistant if Succ INV-1

X,A (λ) := Pr
[
Exp INV-1

X,A (λ) = 1
]

and Succ INV-2
X,B (λ) := Pr

[
Exp INV-2

X,B (λ) = 1
]

are

negligible functions in λ, for all efficient adversaries A,B, where Exp INV-1
X,A and Exp INV-2

X,B are as in
Figure 5.

The following simple lemma shows that second preimage resistance implies preimage resistance. We
will see in Section 3.3 that these notions are actually equivalent for an extractable variant of 2:1-TDF.

Lemma 2 (INV-2 ⇒ INV-1 for samplable 2:1-TDF). Let X be a 2:1-TDF and let A be an efficient
algorithm for the INV-1 experiment. Then there exist an efficient algorithm B for the INV-2 experiment

and an efficient distinguisher DB such that Succ INV-1
X,A (λ) ≤ 2 · Succ INV-2

X,B (λ) + Dist
SampleB ,SampleAB
X,DB

(λ).

3.3 Extractable 2:1 trapdoor functions

We extend the functionality of 2:1-TDFs to include extraction of the trapdoor: knowledge of any two
elements a0, a1 ∈ A with a0 6= a1∧f(a0) = f(a1) shall immediately reveal the system’s inversion trapdoor.

Definition 13 (Extractable 2:1-TDF). A 2:1-TDF is extractable if an efficient algorithm

• Extract(pub, a, a′): On input public information pub and a, a′ ∈ A(pub), this algorithm outputs a
trapdoor td∗.

is known such that, for all (td, pub) output by TdGen and all a, a′ ∈ A(pub) with a x∼ a′, we have
Extract(pub, a, a′) = td.

Surprisingly, extractability of 2:1-TDFs has an essential effect on the relationship between INV-1
and INV-2 security notions. In combination with Lemma 2 we see that notions INV-1 and INV-2 are
equivalent for (samplable) extractable 2:1-TDFs. The proof of Lemma 3 appears in Appendix B.1.

Lemma 3 (INV-1⇒ INV-2 for extractable 2:1-TDF). Let X be an extractable 2:1-TDF and let B be an
efficient algorithm for the INV-2 experiment. Then there exists an efficient algorithm A for the INV-1
experiment such that Succ INV-2

X,B (λ) = Succ INV-1
X,A (λ).
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4 Constructing extractable 2:1 trapdoor functions

Having introduced 2:1-TDFs and extractable 2:1-TDFs, we now show how to construct these primitives:
we propose an efficient extractable 2:1-TDF and prove it secure, assuming hardness of the integer
factorization problem. A second construction, based on generic claw-free permutations, is treated in
Appendix C.

Our construction builds on a specific structure from number theory, the group of sign-agnostic quadratic
residues. This group was introduced to cryptography by Goldwasser, Micali, and Rivest in [GMR88], and
rediscovered 20 years later by Hofheinz and Kiltz [HK09]. We first reproduce the results of [GMR88,HK09]
and then extend them towards our requirements.1

In our exposition, we assume that the reader is familiar with definition and structure of groups Z×n ,
Jn, and QRn, for Blum integers n. If we additionally define Jn = Z×n \ Jn and QRn = Jn \QRn, these
five sets are related to each other as visualized in Figure 6 (left). Also illustrated is the action of the
squaring operation: it is 4:1 from Z×n to QRn, 2:1 from Jn to QRn, and 1:1 (i.e., bijective) from QRn to
QRn. For reference, we reproduce all number-theoretic details relevant to this paper in Facts 1–6 and
Corollary 2, in Appendix A.

4.1 Sign-agnostic quadratic residues

For an RSA modulus n, it is widely believed that efficiently distinguishing elements in QRn from elements
in QRn is a hard problem. It also seems to be infeasible to sample elements from QRn without knowing
a square root of the samples, or to construct hash functions that map to QRn and could be modeled as
random oracles. However, such properties are a prerequisite in certain applications in cryptography [HK09],
what renders group QRn unsuitable for such cases. As we see next, by switching from the group of
quadratic residues modulo n to the related group of sign-agnostic quadratic residues modulo n, sampling
and hashing becomes feasible.

The use of sign-agnostic quadratic residues in cryptography is explicitly proposed in [GMR88,HK09].
However, some aspects of the algebraical structure of this group are concealed in both works by the
fact that the group operation is defined to act directly on specific representations of elements. The
introduction to sign-agnostic quadratic residues that we give in the following paragraphs uses a new and
more consistent notation that aims at making the algebraical structure more readily apparent. Using this
new notation, it will not be difficult to establish Lemmas 4–6 below.

Let (H, ·) be an arbitrary finite abelian group that contains an element T ∈ H \ {1} such that T 2 = 1.
Then {1, T} is a (normal) subgroup in H, that is, H/{1,T} is a group, ψ : H → H/{1,T} : x 7→ {x, Tx} is
a group homomorphism, and |ψ(H)| = |H/{1,T}| = |H|/2. Further, for all subgroups G ≤ H we have
that ψ(G) ≤ ψ(H) = H/{1,T}. In such cases, if G is such that T ∈ G, then |ψ(G)| = |G/{1,T}| = |G|/2
as above; otherwise, if T 6∈ G, then |ψ(G)| = |G| and thus ψ(G) ∼= G.

Consider now the specific group H = Z×n , for a Blum integer n. Then T = −1 has order 2 in Z×n and
above observations apply, with mapping ψ : x 7→ {x,−x}. For any subgroup G ≤ Z×n , let G/±1 := ψ(G).
For subgroupQRn ≤ Z×n , as−1 6∈ QRn, we haveQRn/±1 ∼= QRn and thus |QRn/±1| = ϕ(n)/4. Moreover,
as Jn ≤ Z×n and −1 ∈ Jn, we have |Jn/±1| = |Jn|/2 = ϕ(n)/4. Similarly we see |Z×n /±1| = ϕ(n)/2. After
setting QRn/±1 := (Z×n /±1) \ (QRn/±1) we finally obtain |QRn/±1| = ϕ(n)/4.

Note that we just observed QRn/±1 ≤ Jn/±1 ≤ Z×n /±1 and |QRn/±1| = ϕ(n)/4 = |Jn/±1|. The
overall structure is hence QRn/±1 = Jn/±1 � Z×n /±1, as illustrated in Figure 6 (right). After agreeing on
notations {±x} = {x,−x} and {±x}2 = {±(x2)}, the result of Lemma 7 (in Appendix B.2) is immediate:

QRn/±1 =
{
{±x}2 : {±x} ∈ Z×n /±1

}
.

Moreover, by exploiting identity QRn/±1 = Jn/±1, we directly get the following characterizations of
QRn/±1 and QRn/±1. Observe that the sets are well-defined since

(
x
n

)
=
(−x
n

)
for all x ∈ Z×n .

QRn/±1 =
{
{±x} ∈ Z×n /±1 :

(
x
n

)
= +1

}
and QRn/±1 =

{
{±x} ∈ Z×n /±1 :

(
x
n

)
= −1

}
. (1)

Many facts on the structure of Z×n can be lifted to Z×n /±1. This holds in particular for Lemmas 4
and 5, which directly correspond with Facts 4 and 5 from Appendix A. Similarly, Corollaries 1 and 2
correspond. We stress that the following results do not appear in [GMR88,HK09]; the corresponding
proofs appear in Appendix B.2.

1Goldwasser et al. gave no name to this group; Hofheinz and Kiltz called it the group of signed quadratic residues, but
this seems to be a misnomer as the whole point is to ignore the sign, taking absolute values and forcing the elements to be
between 0 and (n− 1)/2; hence our use of the term sign-agnostic.

8



Z×n

Jn

QRn

QRn

Jn

Z×n /±1

QRn/±1
= Jn/±1

QRn/±1

Figure 6: Illustration of Z×n and Z×n /±1 (for Blum integers n), and subgroups QRn, Jn and Jn/±1 =
QRn/±1. Also visualized is the action of the squaring operation (see Corollaries 1 and 2).

Lemma 4 (Square roots in Z×n /±1). Let n be a Blum integer. Every element {±y} ∈ QRn/±1 has exactly
two square roots in Z×n /±1. More precisely, there exist unique {±x0} ∈ QRn/±1 and {±x1} ∈ QRn/±1
such that {±x0}2 = {±y} = {±x1}2. The factorization of n can readily be recovered from such pairs
{±x0}, {±x1}: non-trivial divisors of n are given by gcd(n, x0 − x1) and gcd(n, x0 + x1). Square roots in
Z×n /±1 can be efficiently computed if the factors of n = pq are known.

Corollary 1 (Squaring in Z×n /±1, QRn/±1, and QRn/±1). Let n be a Blum integer. The squaring
operation Z×n /±1 → QRn/±1 : {±x} 7→ {±x}2 is a 2:1 mapping. Moreover, squaring is a 1:1 function
from QRn/±1 to QRn/±1 and from QRn/±1 to QRn/±1. These relations are illustrated in Figure 6
(right).

Lemma 5 (Computing square roots in Z×n /±1 is hard). Let n be a Blum integer. Computing square
roots in Z×n /±1 is as hard as factoring n.

Lemma 6 (Samplability and decidability of Z×n /±1, QRn/±1, and QRn/±1). Let n be a Blum integer
and t ∈ Z×n be fixed with

(
t
n

)
= −1. The algorithm that samples a←

R
Zn and returns {±a} generates a

distribution that is statistically indistinguishable from uniform on Z×n /±1. If the algorithm is modified such
that it returns {±a} if

(
a
n

)
= +1 and {±ta} if

(
a
n

)
= −1, then the output is statistically indistinguishable

from uniform on QRn/±1. Elements in QRn/±1 can be sampled correspondingly. Sets QRn/±1 and
QRn/±1 are efficiently decidable (within Z×n /±1) by equation (1).

Observe that, assuming the notation from Fact 6 in Appendix A, the described sampling method for
QRn/±1 can be seen as the composition G ◦ F , where G is defined as

G : Jn → QRn/±1 : y 7→ {±y} .

Going a step further, a sampler S : {0, 1}` → QRn/±1 that takes (uniform) bitstrings as input and outputs
(statistically close to uniform) elements in QRn/±1 is given by S = G ◦ F ◦ E.

Remark 1 (Representation of elements). An efficient and compact way to represent elements {±x} ∈ Z×n /±1
is by the binary encoding of x = min{x, n−x} ∈ [1, (n−1)/2], as proposed by [GMR88]. The corresponding
decoding procedure is x 7→ {x,−x}.

4.2 Indifferentiable hashing onto QRn/±1

Specific applications of the group of sign-agnostic quadratic residues modulo a Blum integer n might
rely on the existence of a hash function H : {0, 1}∗ → QRn/±1. Moreover, the corresponding security
arguments might require modeling H as a random oracle. We show in the following how to construct
such hash functions onto QRn/±1.

Let `� log n be an integer and assume h : {0, 1}∗ → {0, 1}` is a hash function that may be modeled
as a random oracle. From h, we construct H : {0, 1}∗ → QRn/±1 as H = G ◦ F ◦ E ◦ h, where

E : {0, 1}` → Zn F : Z×n → Jn G : Jn → QRn/±1

are the functions specified by Lemma 6 and Fact 6 (observe that E maps onto Zn, not onto Z×n as
syntactically required for composing E with F ; however, as described in Fact 6, operations involving
elements from Zn are statistically indistinguishable from operations involving elements from Z×n ).
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This method of constructing hash functions follows Boneh and Franklin [BF01] and Brier et al. [BCI+10,
BCI+09]. Specifically, Brier et al. show that if function G ◦ F ◦ E is an admissible encoding and h is a
random oracle, then H = G ◦F ◦E ◦ h is indifferentiable from a random oracle [BCI+09, §3]. To program
H, we can take a preimage of G ◦ F ◦ E and program h accordingly. We reproduce the definition and
main theorem from [BCI+09] as follows.

Definition 14 (Admissible encoding [BCI+09]). A function F : S → R between finite sets is an admissible
encoding if it satisfies the following properties:

(1) Computable: F is computable in deterministic polynomial time.
(2) Regular: for s uniformly distributed in S, the distribution of F (s) is statistically indistinguishable

from the uniform distribution in R.
(3) Samplable: there is an efficient randomized algorithm I such that, for any r ∈ R, I(r) induces a

distribution that is statistically indistinguishable from the uniform distribution in F−1(r).

Theorem 1 (Construction of random oracle [BCI+09]). Let F : S → R be an admissible encoding. If
h : {0, 1}∗ → S is a random oracle, then the construction H(m) = F (h(m)) is statistically indifferentiable
from a random oracle.

As admissibility is a transitive property, it suffices to show that E,F,G are admissible encodings.
Define corresponding inversion algorithms IE , IF , IG as

IE : Zn → [0, 2` − 1] : x 7→ x+ kn (where k ←
R

[0, b2`/nc − 1])

IF : Jn → Z×n : x 7→ x/tb (where b←
R
{0, 1})

IG : QRn/±1 → Jn : {±x} 7→ (−1)b · x (where b←
R
{0, 1})

(and observe that IG is actually well-defined). Functions E,F,G and inversion algorithms IE , IF , IG
are clearly efficient. While the regularity of F and G is obvious, function E is regular by Fact 6. It is
also easy to see that E,F,G are samplable. Thus E,F,G are admissible encodings, and so is G ◦ F ◦ E.
Hence H = G ◦ F ◦ E ◦ h : {0, 1}∗ → QRn/±1 behaves like a random oracle by Theorem 1.

4.3 Construction of Blum-2:1-TDF from sign-agnostic quadratic residues

We use the tools from Section 4.1 to construct a factoring-based extractable 2:1-TDF, which will map
Z×n /±1 → QRn/±1. While the Apply algorithm corresponds to the squaring operation, extractability will
be possible given distinct square roots of an element.

Construction 1 (Blum-2:1-TDF). Define algorithms Blum-2:1-TDF = (TdGen,SampleA,SampleB ,Apply,
Reverse,Decide,Extract) as follows:

• TdGen(1λ): Pick random Blum integer n = pq of length λ such that p < q. Pick t ∈ Z×n with(
t
n

)
= −1. Return pub← (n, t) and td← (p, q).

We will use sets A0(pub) := QRn/±1, A1(pub) := QRn/±1, A(pub) := Z×n /±1, and B(pub) :=
QRn/±1.

• SampleA(pub, d): Implement SampleA(pub, 0), SampleA(pub, 1), and SampleA(pub) using the sam-
plers for sets QRn/±1, QRn/±1, and Z×n /±1 from Lemma 6.

• SampleB(pub): Implement SampleB(pub) using the sampler for set QRn/±1 from Lemma 6.
• Apply(pub, {±a}): Return {±b} ← {±a}2.
• Reverse(td, {±b}, d): By Lemma 4, element {±b} ∈ QRn/±1 has exactly two square roots: {±a0} ∈
QRn/±1 and {±a1} ∈ QRn/±1. Return {±ad}.

• Decide(pub, {±a}): Return 0 if {±a} ∈ QRn/±1; otherwise return 1.
• Extract(pub, {±a0}, {±a1}): Both gcd(n, a0−a1) and gcd(n, a0+a1) are non-trivial factors of n = pq.

Return td∗ ← (p, q) such that p < q.

These algorithms are all efficient. Correctness of Blum-2:1-TDF and the various security properties
follow straightforwardly from the number-theoretic facts established in Sections 4.1. The proof appears
in Appendix B.2.

Theorem 2 (Security and extractability of Blum-2:1-TDF). Blum-2:1-TDF is samplable (Def. 11), (sec-
ond) preimage resistant (Def. 12) under the assumption that factoring is hard, and extractable (Def. 13).

Remark 2 (Choice of element t). In Construction 1, public element t can be any quadratic non-residue;
small values likely exist and might be favorable for storage efficiency. Observe that, if p ≡ 3 mod 8 and
q ≡ 7 mod 8, then

(
2
n

)
= −1 always holds, so there is not need to store t at all.
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KGen(1λ) : Return (sk, vk) = (td, pub) where (td, pub)←
R
TdGen(1λ2)

Sign(sk, subj,msg) :

1. s← Reverse(td, Hpub(subj), 0)
2. (d1, . . . , dλh

) ←
H#(subj, s,msg)

3. For 1 ≤ i ≤ λh :

(a) bi ← Hpub(subj, s, i)
(b) ai ← Reverse(td, bi, di)

4. Return σ ← (s, a1, . . . , aλh
)

Ver(vk, subj,msg, σ) :

1. Parse (s, a1, . . . , aλh
)← σ

2. If Apply(pub, s) 6= Hpub(subj), return 0
3. (d1, . . . , dλh

)← H#(subj, s,msg)
4. For 1 ≤ i ≤ λh :

(a) If Apply(pub, ai) 6= Hpub(subj, s, i), re-
turn 0

(b) If Decide(pub, ai) 6= di, return 0

5. Return 1

Figure 7: Double-authentication-preventing signature scheme 2:1-DAPS

5 DAPS construction based on extractable 2:1-TDF

We now come to the central result of this paper, a double-authentication-preventing signature generically
constructed from any extractable 2:1 trapdoor function; of course factoring-based Blum-2:1-TDF from the
previous section is a suitable candidate for instantiating the scheme.

Construction 2 (DAPS from extractable 2:1-TDF). Let λ be a security parameter, and let λ2 and λh
be security parameters derived from λ. Let X = (TdGen,SampleA,SampleB ,Apply,Reverse,Decide) be
an extractable 2:1 trapdoor function and let H# : {0, 1}∗ → {0, 1}λh be a hash function. For each pub
output by TdGen, let Hpub : {0, 1}∗ → B(pub) be a hash function. Double-authentication-preventing
signature 2:1-DAPS consists of the algorithms specified in Figure 7.

The basic idea of the signing algorithm is as follows. From any given subject, the signer derives
message-independent signing elements b1, . . . , bλh

. The signer also hashes subject and message to a bit
string d1 . . . dλh

; for each bit di, she finds the preimage ai of the signing element bi which is in the di
partition of A; either in A0 or A1. The signature σ is basically the vector of these preimages. Intuitively,
the scheme is unforgeable because it is hard to find preimages of signing elements bi without knowing the
trapdoor. Moreover, the scheme is extractable because the signing elements bi are only dependent on the
subject, so the signatures of two different messages for the same subject use the same bi. But, by collision
resistance of H#, at least one different di is used in the two signatures, so two distinct preimages of bi
are involved, which allows anyone to recover the trapdoor.

Remark 3 (Rationale on subj-dependent value s). We give further explanation on the subject-dependent
value s that we embed into every signature. Consider the standard security reduction for proving
FDH-TDP signatures unforgeable [BR96], and in particular how adversary’s queries to random oracle H
are answered. Usually, random oracle H is programmed such that H(m) = g(x), where m is the queried
message, g is the TDP, and x is sampled uniformly from the domain of g. This construction exploits that
g (as opposed to g−1) can be efficiently computed without knowledge of any trapdoor, and it ensures
that the simulation ‘knows’ the preimage of hash values H(m), for all messages m. When switching to
2:1-TDFs, however, we observe that this method of reduction does not work satisfyingly: While for any
H query a corresponding preimage a ∈ A of the 2:1-TDF could be uniformly sampled, it might be related
value a′ ∈ A, a x∼ a′, that needs to be revealed in later queries to the signing oracle. But computing a′

from a, or even jointly sampling them, is infeasible without knowledge of 2:1-TDF’s trapdoor. In our
DAPS construction, value s ensures that the simulation is not required to program Hpub oracle until the
point where it learns subj and msg, i.e. learns which preimage it will have to reveal. For further details
we refer to the proof of Theorem 3.

5.1 Unforgeability of 2:1-DAPS

We next establish existential unforgeability of 2:1-DAPS. The proof proceeds by changing the EUF
simulation so that it performs all operations without using the signing key and without (noticeably)
changing the distribution of verification key and answers to A’s oracle queries; these changes cannot be
detected if 2:1-TDF X is samplable. From any forgery crafted by adversary A, either a preimage or
second preimage of X, or a collision of H# can be extracted. Observe that, by Lemma 2, it suffices to
require second preimage resistance of X in Theorem 3. The detailed proof appears in Appendix B.3.
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Theorem 3 (2:1-DAPS is EUF). In the setting of Construction 2, if X is samplable and second preimage
resistant, H# is collision-resistant, and Hpub is a random oracle, then double-authentication-preventing
signature 2:1-DAPS is existentially unforgeable under adaptive chosen message attacks. More precisely,
for any efficient EUF algorithm A making at most q1 queries to Hpub(·), q2 queries to Hpub(·, ·, ·), and
qS queries to OSign oracle, there exist efficient distinguishers DA and DB and efficient algorithms B1, B2,
and C such that

Succ EUF
2:1-DAPS,A(λ) ≤ (q1 + q2 + (λh + 1)qS + 1) Dist

SampleA,U(A)
X,DA

(λ2)

+ (q1 + q2 + (λh + 1)qS) Dist
SampleB ,U(B)
X,DB

(λ2)

+ q1Succ INV-1
X,B1

(λ2) + 2qSλh Succ INV-2
X,B2

(λ2) + SuccCR
H#,C(λh) ,

where SuccCR
H#,C(λh) is the success probability of algorithm C in finding collisions of hash function H#.

Remark 4 (2:1-DAPS is deterministic and S-EUF). Note that 2:1-DAPS is not only deterministic, but
also strongly unforgeable: it is hard for the adversary to return a new signature on a subject/message
pair for which it already has a signature. Further on, the scheme can be made unique [Cor02] by adding
requirement Decide(pub, s) = 0 to the verification algorithm.

5.2 Double-signature extractability of 2:1-DAPS

Assuming collision resistance of H#, two signatures for different messages but the same subject result
in some index j where the hashes H#(subj, s,msg1) and H#(subj, s,msg2) differ. The corresponding
jth values aj in the two signatures can be used to extract the signing key. This is the intuition behind
Theorem 4; the detailed proof appears in Appendix B.4.

Theorem 4 (2:1-DAPS is DSE∗). In the setting of Construction 2, if X is extractable and H# is collision-
resistant, then double-authentication-preventing signature 2:1-DAPS is double-signature extractable with
trusted setup.

Remark 5 (Untrusted setup). The double-signature extractability of 2:1-DAPS in Theorem 4 relies on
the assumption that signer’s verification key is well-formed. When instantiated with Blum-2:1-TDF, this
means assuming that signer’s public information n is a Blum integer, as extractability of Blum-2:1-TDF
is guaranteed only in this case. Well-formedness can be shown using interactive or non-interactive
zero-knowledge proofs. In particular, there is an interactive zero-knowledge protocol of van de Graaf and
Peralta [vP88] for demonstrating that an integer n is of the form prqs where p and q are both primes
such that p ≡ q ≡ 3 mod 4, which can be combined with the interactive protocol of Boyar et al. [BFL91]
for demonstrating that an integer n is square-free, to ultimately show that a modulus n is a Blum integer.
Alternatively, a non-interactive zero-knowledge proof for the well-formedness of a Blum integer was given
by De Santis et al. [DDP94], and for products of safe primes (which includes Blum integers) by Camenisch
and Michels [CM99].

5.3 Efficiency of construction based on sign-agnostic quadratic residues

Table 1 shows the size of verification keys, signing keys, and signatures, and the cost of signature generation
and verification for the 2:1-DAPS based on Blum-2:1-TDF. We assume the element representation from
Remark 1, the verification key optimization from Remark 2, and an implementation of random oracle
Hpub as described in Section 4.2. We give concrete values to bound the forging probability by 2−60 for an
adversary who makes q1 + q2 ≤ 250 random oracle queries and qS ≤ 240 signature queries. Substituting
into the expression in Theorem 3, noting that the Dist terms are (statistically) negligible, and taking
λh = 160 so that the SuccCR

H#,C(λh) term is insignificant, thus we need Succ INV-2
X (λ) ≤ 2−112. Inverting

in the factoring-based 2:1-TDF of Construction 1 is as hard as factoring. Applying, for example, ECRYPT
recommendations [BCC+08] relating success probability and key length, we need an RSA modulus
of λ2 = 2432 bits. This results in signatures of about 48 kilobytes, which is somewhat large but not
prohibitively so.

6 Applications

DAPS allows applications that rely on digital signatures to provide unique bindings to shift the risk/reward
ratio for misbehaving signers. It is true that, if an accidental error occurs in a DAPS-based system, the
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Table 1: Efficiency of 2:1-DAPS based on sign-agnostic quadratic residues

General analysis Concrete parameters
(Succ EUF

2:1-DAPSA(λ) ≤ 2−60)

λh — 160
λ2 (size of n in bits) — 2 432

Verification key size (bits) log2 n 2 432
Signing key size (bits) log2 n 2 432

Signature generation cost (λh + 1) · Jac, (λh + 1) · sqrt —
Signature size (bits) (λh + 1) log2 n 391 552 = 48 KiB

Signature verification cost (2λh + 1) · Jac, (λh + 1) · sqr —

Legend: Jac: computation of Jacobi symbol modulo n; sqrt: square root modulo n; sqr: squaring
modulo n.

damage is higher than with normal signatures. But this correspondingly gives signers a high incentive
to not fraudulently sign multiple signatures for the same subject. When those who rely on signatures
place a high value on the uniqueness of the binding between two values, it may be worthwhile to employ
DAPS instead of traditional digital signatures, despite the potential for increased damage on account of
accidental errors. In this section, we examine a few cryptographic applications involving unique bindings
and discuss the potential applicability of DAPS.

Discouraging time-stamping authority fraud. A standard approach to preventing time-stamping
authorities from “changing the past” is to require that, when a digital signature is constructed that
asserts that certain pieces of information x exist at a particular time t, the actual message being signed
must also include the (hash of) messages authenticated in the previous time periods. The authority is
prevented from trying to change the past and assert that y 6= x existed at time t because the signatures
issued at time periods t+ 1, t+ 2, . . . chain back to the original message x.

DAPS could be used to alternatively discourage time-stamping authority fraud by having the subject
consist of the time period t and the message consist of whatever information x is to be signed at that time
period. A time-stamping authority who signs an assertion for a given time period cannot sign another for
the same time period without invalidating its own key. Assuming an honest authority’s system is designed
to only sign once per time period, the signer need not statefully track the list of all signed subjects, since
time periods automatically increment.

Discouraging CA coercion. The importance of reducing trust in CAs has been demonstrated by
several recent incidents; for example, in 2011 Dutch CA DigiNotar was found to have issued fraudulent
certificates that were used against Iranian Internet users [Goo11], resulting in the eventual distrusting of
DigiNotar by all browser vendors and the company’s subsequent bankruptcy. Recently, several distinct
technical measures [EP12,MP12,HS12] have been proposed to try to wrest some trust decisions away
from CAs.

DAPS could be used to ensure that certification authorities in the web PKI proceed with due diligence
when signing certificates. For example, by having the subject consist of the domain name and the year,
and the message consist of the public key and other certificate details, a CA who signs one certificate
for “www.example.com‖2013” using DAPS cannot sign another for the same domain and time period
without invalidating its own key. A CA using DAPS must then be stateful, carefully keeping track of the
previous subjects signed and refusing to sign duplicates. In commercial certificate authorities, where the
signing is done on a hardware security module (HSM), the list of subjects signed should be kept under
authenticated control of the HSM.

PKIs generally provide functionalities beyond unique binding of a key to an identifier, including
revocation and reissuing of certificates. A DAPS-based PKI could support revocation using standard
mechanisms such as certificate revocation lists. Reissuing could be achieved by including a counter in
the DAPS subject (e.g., “www.example.com‖2013‖0”) and using DAPS-based revocation to provide an
unambiguous and unalterable auditable chain from the initial certificate to the current one.

One of the major problems with multi-CA PKIs such as the web PKI is that clients trust many CAs,
any one of which can issue a certificate for a particular subject. A DAPS-based PKI would prevent
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one CA from signing multiple certificates for a subject, but not other CAs from also signing certificates
for that subject. We could consider a multi-CA PKI in which other DAPS-based CAs agree to issue a
“void certificate” for a domain name when presented with a valid certificate from another CA, thereby
disqualifying them from issuing future signatures on that subject. In general, though, coordination of CAs
is challenging. We believe it remains a very interesting open question to find cryptographic constructions
that solve the multi-CA PKI problem.

A DAPS-based CA also has some additional risks compared with a normal PKI: while the CA is
discouraged from intentionally issuing multiple certificates for the same subject, the margin for accidental
error is also eliminated. A naive application of DAPS leads to catastrophic failure if a double-sign occurs,
but it is also possible to design less catastrophic DAPS.

Non-catastrophic DAPS. As described so far, when a signer signs two different messages with the
same subject, anyone can recover enough information to either forge signatures or fully recover the signing
key. This maximum disclosure is by design and may serve as a strong incentive for signers to behave.
However, it may be desirable to construct schemes that have less catastrophic penalties. We can do so,
augmenting a generic standard signature scheme with our factoring-based DAPS as follows. The signer
publishes a public key consisting of the standard signature’s verification key, the DAPS verification key
(RSA modulus) N , and a verifiable Rabin encryption of, say, the first half of the bits of the standard
scheme’s signing key. The non-catastrophic DAPS signature for a subject/message pair would consist
of the standard scheme’s signature on subject and message concatenated, and the DAPS signature on
separated subject and message. If two messages are ever signed for the same subject, then the signer’s
DAPS secret key can be recovered, which can then be used to decrypt the Rabin ciphertext containing the
first half of the standard scheme’s signing key. This is not quite enough to readily forge signatures, but it
substantially and quantifiably weakens trust in this signer’s signatures, making it clear that migration to
a new signer must occur but still providing a window of time in which to migrate.

7 Conclusions

We have introduced a new type of signatures, double-authentication-preventing signatures, in which a
subject/message pair is signed. In certain situations, DAPS can provide greater assurance to verifiers
that signers behave honestly since there is a great disincentive for signers who misbehave: if a signer ever
signs two different messages for the same subject, then enough information is revealed to allow anyone to
forge arbitrary signatures or even fully recover the signer’s secret key. Our construction is based on a
new primitive called extractable 2:1 trapdoor function. We have shown how to instantiate this using an
algebraic reformulation of sign-agnostic quadratic residues modulo Blum integers; the resulting DAPS is
unforgeable assuming factoring is hard, with not-unreasonable signature sizes.

We believe DAPS can be useful in scenarios where trusted authorities are meant to make unique
bindings between identifiers and digital objects. This includes the cases of certificate authorities in PKIs
who are supposed to make unique bindings between domain names and public keys, and time-stamping
authorities who are supposed to make unique bindings between time periods and pieces of information.

On the one hand, DAPS is more fragile and less robust to failure compared to traditional schemes. But
on the other hand, in DAPS, any failure is catastrophic, and thus signers have a much higher incentive to
ensure absolutely nothing goes wrong. Considering the amount of trust placed in CAs in public PKIs,
DAPS may encourage CAs to behave even more securely and responsibly, since any mistake puts them out
of business. For cases where a more graceful degradation is desired, in Section 6 we discuss a variant of
DAPS that alleviates the extreme consequences of an infringement of the rules it enforces in an adjustable
manner.

Besides the practical applications of DAPS, several interesting theoretical questions arise from our
work. Are there more efficient constructions of DAPS? How else can extractable 2:1 trapdoor functions be
instantiated? Given that DAPS and double-spending-resistant digital cash use similar number-theoretic
primitives, can DAPS be used to generically construct untraceable digital cash?
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A Basic results from number theory

We recall some definitions and results (without proof) from number theory as well as establish notation
that we use in the paper. We refer the reader to classic textbooks on cryptography [MvOV01, Ch. 2–
3], [KL07, Ch. 7, 11], or on number theory [IR90] for details.

Fact 1 (Quadratic residues modulo p). Let p be a prime number. Then QRp =
{
x2 : x ∈ Z×p

}
denotes the

group of quadratic residues modulo p. The Legendre symbol
( ·
p

)
: Z×p → {−1, 1} : a 7→

(
a
p

)
= a(p−1)/2

serves as an indicator function for QRp: a ∈ QRp ⇔
(
a
p

)
= 1. We have |QRp| = |Z×p |/2 = (p− 1)/2. If

p ≡ 3 mod 4 then −1 6∈ QRp, in which case
(−a
p

)
= −

(
a
p

)
for all a ∈ Z×p . The Legendre symbol can be

efficiently computed.

Fact 2 (Structure of Zn and Z×n ). Let n be an RSA modulus, that is, n = pq is the product of distinct
prime numbers p and q. When p ≡ q ≡ 3 mod 4, n is called a Blum integer. The Chinese Remainder
Theorem states that Zn ∼= Zp × Zq (as rings), and hence Z×n ∼= Z×p × Z×q (as groups). An isomorphism
ψ : Zn → Zp × Zq is given by x 7→ (x mod p, x mod q). Both ψ and ψ−1 can be efficiently computed if
the factors of n = pq are known.

Fact 3 (Quadratic residues modulo n). Let n = pq be an RSA modulus. Then QRn =
{
x2 : x ∈ Z×n

}
denotes the group of quadratic residues modulo n. The Jacobi symbol

( ·
n

)
: Z×n → {−1, 1} : a 7→

(
a
n

)
is

defined by
(
a
n

)
=
(
a mod p

p

)(
a mod q

q

)
. Although

(
a
n

)
= 1 for all a ∈ QRn, the Jacobi symbol does not serve

as an indicator for QRn: if n is a Blum integer, then
(−1
n

)
= 1 and thus

(
a
n

)
=
(−a
n

)
for all a ∈ Z×n , but

fact a ∈ QRn ⇒ −a 6∈ QRn implies that at most one of a, a′ can be in QRn. If n is a Blum integer such
that p ≡ 3 mod 8 and q ≡ 7 mod 8, then

(
2
n

)
= −1. The Jacobi symbol can be efficiently computed, even

if the factorization of n is not known.
The set Jn =

{
a ∈ Z×n :

(
a
n

)
= 1
}

is a subgroup of Z×n , and QRn is a subgroup of Jn. Define

Jn = Z×n \Jn and QRn = Jn\QRn. If we set ϕ(n) = (p−1)(q−1) then |Z×n | = ϕ(n), |Jn| = |Jn| = ϕ(n)/2,
and |QRn| = |QRn| = ϕ(n)/4. These relations are illustrated in Figure 6 (left).

Fact 4 (Square roots in Z×n ). Let n be an RSA modulus. Every element y ∈ QRn has exactly four square
roots in Z×n , namely {±x0,±x1}, where x0, x1 ∈ Z×n . If n is a Blum integer, then

(
x0

n

)
6=
(
x1

n

)
and

exactly one of {±x0,±x1} is in QRn. Since (x0 − x1)(x0 + x1) ≡ x20 − x21 ≡ y− y ≡ 0 mod n, non-trivial
divisors of n are given by gcd(n, x0 − x1) and gcd(n, x0 + x1). Square roots modulo n can be efficiently
computed if the factors of n = pq are known.

Corollary 2 (Squaring in Z×n , Jn, and QRn). Let n be an RSA modulus. The squaring operation
Z×n → QRn : x 7→ x2 is a 4:1 mapping. If n is a Blum integer, then squaring is a 2:1 function from Jn to
QRn, while squaring is a 1:1 function both from QRn to QRn and from QRn to QRn. These relations
are illustrated in Figure 6 (left).

Fact 5 (Computing square roots in Z×n is hard). Let n be an RSA modulus. Computing square roots
modulo n is as hard as factoring n. In particular, given an algorithm A that computes square roots of
elements in QRn, factors of n can be found by randomly picking x←

R
Z×n and running x′ ←

R
A(n, x2)

to obtain a second, potentially different, square root of x2. With probability 1/2, x′ 6≡ ±x; by Fact 4, a
non-trivial factor of n is given by gcd(n, x− x′).

Fact 6 (Samplability and decidability of Zn, Z×n , Jn, and Jn). Let n = pq be an RSA modulus, t ∈ Z×n a
fixed element with

(
t
n

)
= −1, and `� log n. Identify set {0, 1}` with [0, 2`− 1] using a canonical bijection

and consider functions

E : {0, 1}` → Zn : r 7→ r mod n and F : Z×n → Jn : x 7→
{
x if

(
x
n

)
= +1

xt if
(
x
n

)
= −1

.

A common method (see [Des95, Sho05] and [Nat07, §B.5.1.3]) for sampling random elements x from Zn
is to pick a seed r ←

R
{0, 1}` and to output x = E(r). The resulting distribution is statistically close to

uniform [Sho05]. If p and q grow exponentially in a security parameter, then |Z×n |/|Zn| = 1−(p+q−1)/pq
becomes negligibly close to 1, so function E can be used without modification for sampling from Z×n with a
distribution statistically close to uniform. Note that membership in Z×n can be efficiently decided since
Z×n = {x ∈ Zn : gcd(x, n) = 1}.

Elements in Jn and Jn can be efficiently recognized by evaluating the Jacobi symbol. Moreover, it is
not difficult to see that elements y can be uniformly sampled from Jn by picking a random x←

R
Z×n and

outputting y = F (x). Elements from Jn can be sampled in a similar fashion.
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It is widely believed that, unless the factorization of n is known, distinguishing elements in QRn from
elements in QRn is a hard problem. It also seems to be infeasible to sample elements from QRn without
knowing a square root of these samples.

B Proofs

B.1 Proofs from Section 3

B.1.1 Proof of Lemma 1

Proof. Define the required distinguishers as D′A(a) = DB(Apply(a)) and D′B(b) = DB(b), where we assume

implicit parameter ‘pub’. After observing that Apply is 2:1 and hence Dist
U(B),Apply(U(A))
X,D (λ) = 0 for any

distinguisher D, the triangle inequality shows

Dist
SampleB ,SampleAB
X,DB

(λ) ≤ Dist
SampleB ,U(B)
X,DB

(λ) + Dist
U(B),Apply(U(A))
X,DB

(λ) + Dist
Apply(U(A)),Apply(SampleA)
X,DB

(λ)

= Dist
SampleB ,U(B)
X,D′B

(λ) + Dist
U(A),SampleA
X,D′A

(λ) .

B.1.2 Proof of Lemma 2

Proof. Construct INV-2 algorithm B and distinguisher DB as follows: Upon receiving (pub, a), B computes
b ← Apply(pub, a) and outputs a′ ←

R
A(pub, b). For any element b to be decided, DB outputs 1 iff

Apply(pub,A(pub, b)) = b. Inspection shows

Dist
SampleB ,SampleAB
X,DB

(λ) =

∣∣∣∣∣ Pr
[
(td, pub)←

R
TdGen(1λ); b←

R
SampleB(pub) : DB(pub, b) = 1

]
−Pr

[
(td, pub)←

R
TdGen(1λ); b←

R
SampleAB(pub) : DB(pub, b) = 1

] ∣∣∣∣∣
=

∣∣∣Succ INV-1
X,A (λ)− Pr

[
Exp INV-2∗

X,B (λ) = 1
]∣∣∣ ,

where Exp INV-2∗

X,B is identical to Exp INV-2
X,B (cf. Figure 5) except that it returns 1 iff (a x∼ a′ ∨ a = a′). As

Apply is 2:1, we have Pr
[
Exp INV-2∗

X,B (λ) = 1
]

= 2 ·Pr
[
Exp INV-2

X,B (λ) = 1
]

= 2 ·Succ INV-2
X,B (λ). We combine

these results to obtain

Dist
SampleB ,SampleAB
X,DB

(λ) =
∣∣Succ INV-1

X,A (λ)− 2 · Succ INV-2
X,B (λ)

∣∣ .
The statement of Lemma 2 follows immediately.

B.1.3 Proof of Lemma 3

Proof. Construct algorithm A as follows: Upon receiving (pub, b), A runs a′ ←
R
SampleA(pub) and lets

B compute a′′ ←
R
B(pub, a′) such that a′ x∼ a′′. Then A computes td′ ← Extract(pub, a′, a′′) and inverts

challenge b via Reverse(td′, b, 0). Algorithm A is successful in finding a preimage for b whenever B is
successful in finding a second preimage for a′, that is, Succ INV-1

X,A (λ) = Succ INV-2
X,B (λ).

B.2 Lemma 7 and proofs from Section 4

Lemma 7. Let n be a Blum integer. Then QRn/±1 =
{
{±x}2 : {±x} ∈ Z×n /±1

}
.

Proof. “⊆”: Let {±y} ∈ QRn/±1 be arbitrary. Without loss of generality assume y ∈ QRn, i.e. there
exists x ∈ Z×n with x2 = y. But then {±x} ∈ Z×n /±1 and {±x}2 = {±(x2)} = {±y}. “⊇”: Fix an
element {±x} ∈ Z×n /±1 and let y ∈ Z×n be the (unique) value such that y = x2. Then y ∈ QRn and
{±x}2 = {±y} ∈ QRn/±1.

B.2.1 Proof of Lemma 4

Proof. Let {±y} ∈ QRn/±1 be arbitrary. Without loss of generality assume y ∈ QRn. By Fact 4
there exist exactly four square roots {±x0,±x1} of y in Z×n . These correspond to the two elements
{±x0}, {±x1} ∈ Z×n /±1. Fact 4 further states that

(
x0

n

)
6=
(
x1

n

)
, that is, one of {±x0}, {±x1} is in

QRn/±1 and the other in QRn/±1, by equation (1). Factorization and computation of square roots
immediately follow from Fact 4.
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B.2.2 Proof of Lemma 5

Proof. Assume towards contradiction the existence of an efficient algorithm A that computes square roots
of elements in QRn/±1. By picking {±x} ∈ Z×n /±1 at random and running {±x′} ←

R
A(n, {±x}2) we

obtain a second, potentially different, square root of {±x}2. By Corollary 1, with probability 1/2 we
have {±x′} 6= {±x} and thus obtain the factorization of n by Lemma 4.

B.2.3 Proof of Lemma 6

Proof. By Fact 6, the distribution of a is statistically close to uniform on Z×n . Mapping a 7→ {±a} is 2:1,
so it preserves uniformity, i.e. the sampler for Z×n /±1 has the required property. For the QRn/±1 sampler
we notice that if

(
a
n

)
= +1, then {±a} is already close to uniform in Jn/±1 = QRn/±1. If

(
a
n

)
= −1,

then
(
ta
n

)
= +1; since multiplication by t is a permutation of Zn, ta is close to uniformly distributed

in Jn, so {±ta} is close to uniformly distributed in Jn/±1 = QRn/±1. A similar argument holds for the
QRn/±1 sampler.

B.2.4 Proof of Theorem 2

Proof. Samplability. That Dist
SampleA,U(A)
X,DA

(λ) and Dist
SampleB ,U(B)
X,DB

(λ) are negligible for all efficient
algorithms DA and DB is exactly the statement of Lemma 6.

(Second) preimage resistance. By Lemma 2 it suffices to show second preimage resistance. Given an
arbitrary element {±x0} ∈ Z×n /±1, assume an efficient adversary could compute {±x1} ∈ Z×n /±1 such
that {±x0} x∼ {±x1}, i.e. such that {±x0} 6= {±x1} and {±x0}2 = {±x1}2. By Lemma 4, this suffices
for factoring n.

Extractability. Given are {±x0}, {±x1} ∈ Z×n /±1 such that {±x0} x∼ {±x1}, i.e. such that {±x0} 6=
{±x1} and {±x0}2 = {±x1}2. By Lemma 4, this suffices for factoring n and recovering trapdoor
td = (p, q).

B.3 Proof of unforgeability (Theorem 3)

Proof. We use a sequence of games; underlining colors are used to highlight
:::::::
changes and additions between

games. Let A be an adversary for experiment Exp EUF
2:1-DAPS. Without loss of generality we assume that A

queries its OSign oracle at most once per subject. We further assume that the distribution of random
oracle Hpub is the one induced by SampleB algorithm2. Let Si be the event that game i outputs 1 when
running A.

Game 0. This is the original EUF experiment for 2:1-DAPS. For clarity, we write it in full detail:

1. (td, pub)←
R
TdGen(1λ2)

2. (subj∗,msg∗, σ∗)←
R
AOSign,Hpub(pub)

• If A queries Hpub(subj):

(a) If (subj, b) ∈ HList1, return b to A
(b) b←

R
SampleB(pub)

(c) Append (subj, b) to HList1
(d) Return b to A

• If A queries Hpub(subj, s, i):

(a) If (subj, s, i, bi) ∈ HList3, return bi to A
(b) bi ←R

SampleB(pub)
(c) Append (subj, s, i, bi) to HList3
(d) Return bi to A

• If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) s← Reverse(td, Hpub(subj), 0)
(c) (d1, . . . , dλh

)← H#(subj, s,msg)
(d) bi ← Hpub(subj, s, i) for all 1 ≤ i ≤ λh
(e) ai ← Reverse(td, bi, di) for all 1 ≤ i ≤ λh
(f) σ ← (s, a1, . . . , aλh

)

2Observe that this assumption is quite natural as random oracles are usually constructed from such samplers. This holds
in particular for Blum-2:1-TDF and the random oracle implementation we propose in Section 4.2.
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(g) Return σ to A
3. Return 1 iff all the following hold:

• Ver(pub, subj∗,msg∗, σ∗) = 1
• (subj∗,msg∗) 6∈ SignedList
• ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1

By definition,
Pr[S0] = Succ EUF

2:1-DAPS,A(λ) . (2)

Game 1. In this game, we change the simulator so that it performs all operations without using the
signing key. We also change the random oracles that currently sample from set B with SampleB(pub)
algorithm to use instead the hybrid construction from Definition 10. These changes will not be detected
unless one can either invert the 2:1-TDF or can distinguish the two sampling methods.

1.
::::::::::::::::::::
(·, pub)←

R
TdGen(1λ2)

2. (subj∗,msg∗, σ∗)←
R
AOSign,Hpub(pub)

• If A queries Hpub(subj):

(a) If (subj, a, b) ∈ HList1, return b to A
(b)

:::::::::::::::::::
a←

R
SampleA(pub, 0)

(c)
:::::::::::::::
b← Apply(pub, a)

(d) Append (subj, a, b) to HList1
(e) Return b to A

• If A queries Hpub(subj, s, i):

(a) If (subj, s, i, ai, bi) ∈ HList3, return bi to A
(b)

::::::::::::::::::
ai ←R

SampleA(pub)
(c)

:::::::::::::::::
bi ← Apply(pub, ai)

(d) Append (subj, s, i, ai, bi) to HList3
(e) Return bi to A

• If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) t← Hpub(subj)
(c) Event F1: Abort if there exists (subj, s, ·, ·, ·) ∈ HList3 such that Apply(pub, s) = t.
(d) Retrieve (subj, s, t) from HList1
(e) (d1, . . . , dλh

)← H#(subj, s,msg)
(f)

:::::::::::::::::::
ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh

(g)
:::::::::::::::::
bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh

(h) Append (subj, s, i, ai, bi) to HList3 for all 1 ≤ i ≤ λh
(i) σ ← (s, a1, . . . , aλh

)
(j) Return σ to A

3. Return 1 iff all the following hold:

• Ver(pub, subj∗,msg∗, σ∗) = 1
• (subj∗,msg∗) 6∈ SignedList
• ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1

Analysis of distribution of values given to A in game 1. First, we show that the distribution of
values returned to A in game 1 is indistinguishable from in game 0. Let us consider each of the values
given to A in turn. Suppose abort event F1 does not occur.

Of key importance in the following is Lemma 1, which gives an upper-bound on the distinguishability
of values returned by SampleB(pub) from values returned by running a ←

R
SampleA(pub) and then

returning Apply(pub, a).

• pub in line 1: This value is distributed identically to game 0.
• Hpub(subj) queries: These values are always consistent with other queries in this game. Any

algorithm that distinguishes the values used for this query in this game from the previous game
allows us to construct a distinguisher DB between SampleAB and SampleB .

• Hpub(subj, s, i) queries: These values are always consistent with Hpub(subj) queries. Any algorithm
that distinguishes the values used for this query in this game from the previous game allows us to
construct a distinguisher DB between SampleAB and SampleB . We note in the following point that
OSign queries might become inconsistent in certain circumstances.
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• OSign(subj,msg) queries: These values are always consistent with Hpub(subj) queries. Moreover,
they are also consistent with Hpub(subj, s, i) queries unless the OSign(subj,msg) query is asked after
an Hpub(subj, s, i) query with Apply(pub, s) = Hpub(subj) and Decide(pub, s) = 0. As this case is
covered by the F1 event, we disregard it for now. Any algorithm that distinguishes the values
used for this query in this game from the previous game allows us to construct a distinguisher DB
between SampleAB and SampleB .

Thus,

|Pr[S0]− Pr[S1]| ≤ (q1 + q2 + (λh + 1)qS) Dist
SampleAB ,SampleB
X,DB

(λ2) + Pr[F1] . (3)

Analysis of abort event F1. We claim that, if A makes at most q1 queries to its Hpub(·) oracle, then
we can construct an efficient algorithm B1 against preimage resistance of 2:1-TDF X such that

Pr[F1] ≤ q1 Succ INV-1
X,B1

(λ2) . (4)

Proof of claim: Let (pub, b∗) be the INV-1 challenge. Construct B1 as a modification of game 1 in which
B1 guesses a value ̂ ←

R
[1, q1] and, upon A’s ̂th (unique) query to Hpub(·), B1 returns the challenge

value b∗ to A instead of following the algorithm in game 1. If event F1 occurs, then with probability 1/q1
the value subj for which it occurs is the value of subj that was queried to the ̂th Hpub(·) query. But then
there is some (subj, s, ·, ·, ·) ∈ HList3 such that Apply(pub, s) = Hpub(subj) = b∗. In other words, s in an
inverse of b∗, and hence B1 has successfully inverted the INV-1 challenge, winning Exp INV-1

X,B1
(λ2). Thus,

Pr[F1] ≤ q1 Pr
[
Succ INV-1

X,B1
(λ2) = 1

]
.

Game 2. In this game, we place an additional condition on the simulator to output 1, namely that
the signature returned by the adversary must include an s value which was previously queried to Hpub.
However, since the s value for a subject is only known to the challenger before an OSign query, no adversary
should be able to construct a valid signature without querying OSign.

1. (·, pub)←
R
TdGen(1λ2)

2. (subj∗,msg∗, σ∗)←
R
AOSign,Hpub(pub)

• If A queries Hpub(subj):

(a) If (subj, a, b) ∈ HList1, return b to A
(b) a←

R
SampleA(pub, 0)

(c) b← Apply(pub, a)
(d) Append (subj, a, b) to HList1
(e) Return b to A

• If A queries Hpub(subj, s, i):

(a) If (subj, s, i, ai, bi) ∈ HList3, return bi to A
(b) ai ←R

SampleA(pub)
(c) bi ← Apply(pub, ai)
(d) Append (subj, s, i, ai, bi) to HList3
(e) Return bi to A

• If A queries OSign(subj,msg):

(a) Append (subj,msg) to SignedList
(b) t← Hpub(subj)
(c) Event F1: Abort if there exists (subj, s, ·, ·, ·) ∈ HList3 such that Apply(pub, s) = t.
(d) Retrieve (subj, s, t) from HList1
(e) (d1, . . . , dλh

)← H#(subj, s,msg)
(f) ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh
(g) bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh
(h) Append (subj, s, i, ai, bi) to HList3 for all 1 ≤ i ≤ λh
(i) σ ← (s, a1, . . . , aλh

)
(j) Return σ to A

3. Return 1 iff all the following hold:

• Ver(pub, subj∗,msg∗, σ∗) = 1
• (subj∗,msg∗) 6∈ SignedList
• ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1
• Event ¬F2: ∀ i ∃ (subj∗, s∗, i, a∗i , bi) ∈ HList3 : Apply(pub, a∗i ) = bi
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Analysis of difference in success probabilities in game 1 and game 2. The messages that A
sees in game 2 have exactly the same distribution as in game 1. The only difference is the additional
condition ¬F2 for the experiment to output 1. Clearly, then,

|Pr[S1]− Pr[S2]| ≤ Pr[F2] . (5)

If event F2 occurs, then there is some i such that A never queried Hpub(subj
∗, s∗, i) but, since the

signature σ∗ verified, Apply(pub, a∗i ) = Hpub(subj
∗, s∗, i). In other words, the value Hpub(subj

∗, s∗, i) was
first computed when the challenger tried to verify the signature in step 3. Since it was computed by
choosing ai ←R

SampleA(pub), it is unlikely that A could guess this ai in advance. In particular, any
algorithm that detects this serves as a distinguisher DA between SampleA and U(A)

Pr[F2] ≤ Dist
SampleA,U(A)
X,DA

(λ2) . (6)

Analysis of success in game 2. Claim: For every probabilistic algorithm A making qS queries to
OSign, there exists probabilistic algorithms B2 and C with running time linear in that of A such that

Pr[S2] ≤ 2qSλh Succ INV-2
X,B2

(λ2) + SuccCR
H#,C(λh) . (7)

Proof of claim: We will construct an adversary B2 for Exp INV-2
X,· (λ2) using algorithm A. Let (pub, a∗) be

the challenge received by B2 in Exp INV-2
X,B2

(λ2).
Next, B2 guesses a value ̂ ←

R
[1, qS ] and, upon A’s ̂th query to OSign, B2 further guesses a value

ı̂←
R

[1, λh]. If dı̂ 6= Decide(pub, a∗), then B2 aborts. Otherwise, it sets aı̂ ← a∗.
Suppose game 2 outputs 1. Then A has output (subj∗,msg∗, σ∗) which is a valid signature under pub,

was not signed by OSign, and there was no double signature for any subject queried to OSign. Moreover,
since neither event F1 nor F2 occurred, A must have queried OSign(subj

∗,msg′) for some msg′ 6= subj∗.
With probability 1/qS , A issued this query on its ̂th to OSign. If this was not the case, then B2 aborts.

Now, either H#(subj∗, s∗,msg∗) = H#(subj∗, s∗,msg′), or not. If so, then a collision has been found in
H#, then this experiment serves as an efficient algorithm C which finds collisions in H#. Hence, suppose
no such collision occurs, namely that H#(subj∗, s∗,msg∗) 6= H#(subj∗, s∗,msg′). In particular, there is
some bit i where H#(subj∗, s∗,msg∗) and H#(subj∗, s∗,msg′) differ. With probability 1/λh, i = ı̂. When
this is the case, we have that ai

x∼ a∗. This is a solution to the INV-2 challenge a∗, which B2 outputs to
win Exp INV-2

X,B2
(λ2).

By the argument above, if B2 correctly guesses ̂ and ı̂, and if Decide(pub, a∗) = dı̂, then whenever A
wins game 2, B wins Exp INV-2

X,B2
(λ2).

Final result. The final result follows from combining equations (3) through (7) and applying Lemma 1.

B.4 Proof of double-signature extractability (Theorem 4)

Proof. We propose the following DSE∗ extractor (cf. Definition 6):

• Extract(pub, (subj,msg1, σ1), (subj,msg2, σ2)) : Parse (s, a11, . . . , a
1
λh

)← σ1 and (s, a21, . . . , a
2
λh

)← σ2.

Let (d11, . . . , d
1
λh

) ← H#(subj, s,msg1) and (d21, . . . , d
2
λh

) ← H#(subj, s,msg2). Let j ∈ [1, λh] be

such that d1j 6= d2j . Use 2:1-TDF’s Extract algorithm to output td← Extract(pub, a1j , a
2
j ).

It is straightforward to see that this is a valid extractor. Given two valid subject-message-signature
tuples (subj,msg1, σ1) and (subj,msg2, σ2) for which msg1 6= msg2, except with negligible probabil-
ity, H#(subj, s,msg1) 6= H#(subj, s,msg2). Assume no such collision occurs and the hash values are
(d11, . . . , d

1
λh

) and (d21, . . . , d
2
λh

). Then there exists some position j ∈ [1, λh] such that d1j 6= d2j .

Now, since both σ1 and σ2 are valid, we have that Apply(pub, a1j ) = Hpub(subj, s, j) = Apply(pub, a2j ),

but Decide(pub, a1j) 6= Decide(pub, a2j). In other words, a1j
x∼ a2j . Thus, 2:1-TDF’s Extract(pub, a1j , a

2
j)

returns the trapdoor td corresponding to pub.

C Claw-free permutations

Claw-free permutations (CFPs) were proposed by Goldwasser, Micali, and Rivest [GMR88], and have
found several applications [KR00,Dam88, DR02,GMR88]. We briefly describe their functionality and
security properties.
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Consider a finite set D and a pair of one-way trapdoor permutations g0, g1 : D → D. More precisely,
functions g0, g1 shall be bijective and efficiently computable, while inverse functions g−10 , g−11 shall be
computable only with knowledge of a specific trapdoor. Such a triple (D, g0, g1) is called claw-free if the
problem of finding claws — pairs x, y ∈ D such that g0(x) = g1(y) — is hard. See Figure 8 (left) for an
illustration.

Let us recall the factoring-based CFP of Goldwasser et al. [GMR88], adapted to our notation
from Section 4.1. Let n = pq be a Blum integer with the additional property that p ≡ 3 mod 8
and q ≡ 7 mod 8, so

(
2
n

)
= −1. Let D = QRn/±1, and define g0 : D → D : {±x} 7→ {±x}2 and

g1 : D → D : {±x} 7→ 4 · {±x}2. This yields a secure (i.e., claw-free) CFP, under the assumption that
factoring Blum integer n is hard [GMR88]. In the corresponding security reduction it is shown that n can
be factored by knowledge of any claw, i.e., any pair {±x}, {±y} ∈ QRn/±1 with {±x}2 = 4 · {±y}2. We
therefore see that this specific CFP has an extraction functionality: anybody that finds a claw for g0, g1
can also compute the correct trapdoor to invert these functions. This property is similar to the extraction
property of 2:1-TDFs from Section 3.3. However, it was not formalized by Goldwasser et al. [GMR88].

g0

g1

D D

x

y

z

f = g0

f = g1

A0 = {0} ×D

A1 = {1} ×D

B = D
(0, x)

(1, y)

z

Figure 8: Left: Illustration of a CFP. Right: Illustration of the CFP-based 2:1-TDF construction.

C.1 Constructing (extractable) 2:1-TDFs from claw-free permutations

There is a simple way to construct 2:1-TDFs from CFPs (D, g0, g1). Using the notation from Section 3,
let A = {0, 1} × D and B = D. Define f : A → B : (d, x) 7→ gd(x) and f−1 : B × {0, 1} → A :
(b, d) = (d, g−1d (b)). That is, f processes elements in A0 with permutation g0 and elements in A1 with
permutation g1, as illustrated in Figure 8 (right).

It is immediate to see that |A| = 2|B| and that f : A→ B is 2:1. Moreover, the decision whether an
element (d, x) ∈ A is in A0 or in A1 is determined directly from bit d: A0 = {0} ×D and A1 = {1} ×D.
It is also easy to verify that the 2:1-TDF correctness requirements from Definition 8 hold.

Observe that this construction inherits extractability from the underlying CFP. Indeed, claws of the
CFP correspond exactly with pairs a, a′ ∈ A with a x∼ a′. Hence, if the CFP’s trapdoor can be recovered
from any claw, then the 2:1-TDF’s trapdoor can be recovered from any pair a, a′ with a x∼ a′.

Although we have seen how to construct (extractable) 2:1-TDFs from (extractable) claw-free per-
mutations, it remains unclear whether the converse is feasible as well: given a generic 2:1-TDF, can we
construct a CFP from it? We found no such construction, and the fact that CFPs are permutations
D → D, while 2:1-TDFs are defined as A→ B for arbitrary (generally unrelated) sets A and B, might
indicate that such constructions may not necessarily exist.

If it indeed turns out to be impossible to generically construct CFPs from 2:1-TDFs, one could say
that 2:1-TDFs are formally based on weaker assumptions, and thus should be favored over CFPs, where
possible, when used as a building block in a cryptographic protocol. On the other hand, it is true that
the security of all currently known constructions of both 2:1-TDFs and CFPs is based on the same hard
problem: factoring Blum integers.
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