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Abstract

Digital signatures are often used by trusted authorities to make unique bindings between
a subject and a digital object; for example, certificate authorities certify a public key belongs
to a domain name, and time-stamping authorities certify that a certain piece of information
existed at a certain time. Traditional digital signature schemes however impose no uniqueness
conditions, so a trusted authority could make multiple certifications for the same subject but
different objects, be it intentionally, by accident, or following a (legal or illegal) coercion.
We propose the notion of a double-authentication-preventing signature, in which a value
to be signed is split into two parts: a subject and a message. If a signer ever signs two
different messages for the same subject, enough information is revealed to allow anyone to
compute valid signatures on behalf of the signer. This double-signature forgeability property
discourages signers from misbehaving—a form of self-enforcement—and would give binding
authorities like CAs some cryptographic arguments to resist legal coercion. We give a generic
construction using a new type of trapdoor functions with extractability properties, which we
show can be instantiated using the group of sign-agnostic quadratic residues modulo a Blum
integer; we show an additional application of these new extractable trapdoor functions to
standard digital signatures.
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1 Introduction

Digital signatures are used in several contexts by authorities who are trusted to behave appropri-
ately. For instance, certificate authorities (CAs) in public key infrastructures, who assert that a
certain public key belongs to a party with a certain identifier, are trusted to not issue fraudulent
certificates for a domain name; time-stamping services, who assert that certain information
existed at a certain point in time, are trusted to not retroactively certify information (they
should not “change the past”).

In both of these cases, the authority is trusted to make a unique binding between a subject—a
domain name or time—and a digital object—a public key or piece of information. However,
traditional digital signatures provide no assurance of the uniqueness of this binding. As a result,
an authority could make multiple bindings per subject.

Multiple bindings per subject can happen due to several reasons: poor management practices,
a security breach, or coercion by external parties. Although there have been a few highly
publicized certificate authority failures due to either poor management practices or security
breaches, the vast majority of certificate authorities seem to successfully apply technological
measures—including audited key generation ceremonies, secret sharing of signing keys, and use
of hardware security modules—to securely and correctly carry out their role.

However, CAs have few tools to resist coercion, especially in the form of legal demands from
governments. This was identified by Soghoian and Stamm [SS12] as the compelled certificate
creation attack. For example, a certificate authority may receive a national security letter
compelling it to assist in an investigation by issuing a second certificate for a specified domain
name but containing the public key of the government agency, allowing the agency to impersonate
Internet services to the target of the investigation. Regardless of one’s opinions on the merits of
these legal actions, they are a violation of the trust promised by certificate authorities: to never
issue a certificate to anyone but the correct party. The extent to which legal coercion of CAs
occurs is unknown, however there are indications that the technique is of interest to governments.
A networking device company named Packet Forensics sells a device for eavesdropping on
encrypted web traffic in which, reportedly, “users have the ability to import a copy of any
legitimate key they obtain (potentially by court order)”.1 Moreover, various documents released
by NSA contractor Edward Snowden in disclosures in June–September 2013 indicate government
interest in executing man-in-the-middle attacks on SSL users.2

Two certificates for the same domain signed by a single CA indeed constitute a cryptographic
proof of fraud. However, in practice, it is currently up to the “market” to decide how to
respond: the nature of the response depends on the scope and nature of the infraction and the
CA’s handling of the issue. The consequences that have been observed from real-world CA
incidents range from minimal, such as the CA revoking the extra certificates amid a period of
bad publicity (as in the 2011 Comodo incident3), up to the ultimate punishment for a CA on
the web: removal of its root certificate from web browsers’ lists of trusted CAs (as in the 2011
DigiNotar incident [Fox12], which was found to have issued fraudulent certificates that were
used against Iranian Internet users [Goo11], and which lead to the bankruptcy of DigiNotar).

For a CA making business decisions on management and security practices, such consequences
may be enough to convince the CA to invest in better systems. For a CA trying to resist a
lawful order compelling it to issue a fraudulent certificate, however, such consequences may not
be enough to convince a judge that the CA should not be compelled to violate the fundamental
duty with which it was entrusted.

1http://www.wired.com/threatlevel/2010/03/packet-forensics/
2https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.html
3https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
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1.1 Contributions

We propose a new type of digital signature scheme for which the consequences of certain
signer behaviours are unambiguous: any double signing, for any reason, leads to an immediate,
irreversible, incontrovertible loss of confidence in the signature system. On the one hand, this
“fragility” provides no room for mistakes, but on the other hand, encourages “self-enforcement”
of correct behaviour and allows a signer to make a more compelling argument resisting lawful
coercion. If a CA fulfills a request to issue a double signature even to a lawful agency, the agency,
by using the certificate, enables the attacked party to issue arbitrary certificates as well.

In a double-authentication-preventing signature (DAPS), the data to be signed is split into
two parts: a subject and a message. If a signer ever signs two messages for the same subject, then
enough information is revealed for anyone to be able to forge signatures on arbitrary messages,
rendering the signer immediately and irrevocably untrustworthy. Depending on the nature of
the subjects, in some applications an honest signer may need to track the list of subjects signed
to avoid signing the same subject twice.

In addition to unforgeability, we require one of two new security properties for DAPS: double-
signature forgeability, where a signer who signs two messages for the same subject reveals enough
information for anyone to sign arbitrary messages, and a stronger notion called double-signature
extractability, where two signatures on the same subject allow full recovery of the signing key.

We give a generic construction for DAPS based on a new primitive called extractable two-to-
one trapdoor function which allows anyone, given two preimages of the same value, to recover the
trapdoor required for inverting the function. We show how to construct these functions using the
group of sign-agnostic quadratic residues modulo a Blum integer (RSA modulus), an algebraic
reformulation of a mathematical construction that has been used in several cryptographic
primitives. The resulting double-authentication-preventing signature scheme is efficient; with
1024-bit signing and verification keys, the signature size is about 20 KiB, and the runtime of our
implementation using libgcrypt is about 0.3 s for signing and 0.1 s for verifying. Note that in
applications such as PKI, signing happens rarely, and verifications may be cached.

Our quadratic residue-based construction provides double-signature extractability in what
we call the trusted setup model, where it is assumed that the signer follows the correct procedure
for key generation. This model is suitable for scenarios where signers want to be honest and
create their keys with best intention—and we hope most CAs belong to this group, facing
coercive requests only after they have completed setup. Our construction can be translated
to the untrusted setup model, where parties do not have to trust the signer to generate keys
following the scheme specification, using zero-knowledge techniques for proving well-formedness
of the verification key.

We also show how to use extractable two-to-one trapdoor functions to construct tightly
secure standard digital signatures, demonstrating the utility of extractable two-to-one trapdoor
functions beyond our immediate application of DAPS.

1.2 Outline

We recall some notation and standard definitions in Section 2. We define a double-authentication-
preventing signature in Section 3 and its unforgeability as well as double-signature forgeability
and double-signature extractability properties. We introduce in Section 4 extractable 2:1
trapdoor functions, and as a warm-up show in Section 5 how to construct a tightly secure
standard digital signature scheme. We provide a factoring-based instantiation of extractable
2:1 trapdoor functions in Section 6 using sign-agnostic quadratic residues. In Section 7 we
generically construct a DAPS scheme from extractable 2:1 trapdoor functions and prove the
scheme’s security and double signature extractability in the trusted setup model, as well as
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discuss its use with untrusted setup. Section 8 examines applications of DAPS to certification
and time-stamping authorities. We conclude in Section 9. The appendices contain a review of
basic results from number theory (Appendix A), a construction of a random oracle that maps
into the group of sign-agnostic quadratic residues (Appendix B), and proofs of results from the
main body (Appendix C).

1.3 Related work

Certificate auditing and other techniques. Mechanisms such as Certificate Transparency4 and
others aim to identify malicious or incorrect CA behaviour by collecting and auditing public
certificates. Incorrect behaviour, such as a CA issuing two certificates for the same domain
name, can be identified and then presented as evidence possibly leading to a loss of trust. DAPS
differs in that it provides an immediate and irrevocable loss of confidence and, importantly,
provides a completely non-interactive solution. Recently, several distinct technical measures
[EPS15,MP13,HS12] have been proposed to try to wrest some trust decisions away from CAs,
for example by allowing websites to make assertions to users about what certificates to accept in
the future.

Self-enforcement and traitor tracing. Dwork et al. [DLN96] introduced the notion of self-
enforcement in cryptography, in which the cryptosystem is designed to force the user to keep
the functionality private, that is, to not delegate or transfer the functionality to another user.
There are a variety of techniques for ensuring self-enforcement: tradeoffs in efficiency [DLN96] or
by allowing recovering of some associated secret value with any delegated version of the secret
information [CL01,JJN02,KT13]. Broadcast encryption schemes often aim for a related notion,
traitor tracing [CFN94], in which the broadcaster aims to detect which of several receivers have
used their private key to construct and distribute a pirate device; typically the broadcaster can
identify which private key was leaked. DAPS differs from this line of research in that it does
not aim to deter delegation or transferring of keys, rather it aims to deter a single party from
performing a certain local operation (double signing).

Accountable IBE. Goyal [Goy07] aimed to reduce trust in the key generation centre (KGC)
in identity-based encryption: how can a user demonstrate that the KGC created a second key
for the user’s identity? In accountable IBE, the key generation protocol between the user and
the KGC results in one of a large number of possible keys being generated, and which one
is generated is unknown to the KGC. Thus if the KGC issues a second key, it will with high
probability be different, and the two different keys for the same identity serve as a proof that the
KGC misbehaved. This effectively allows IBE to achieve the same level of detection as normal
public key infrastructures: two certificates for the same subject serve as a proof that the CA
misbehaved. However, neither approach has the stronger level of deterrence offered by DAPS:
double signing leads to an immediate and irrevocable loss of confidence, rather than just proof
of misbehaving for consideration of prosecution.

Digital cash. Digital cash schemes [CFN90] often aim to detect double spending: a party
who uses a token once maintains anonymity, but a party who uses a token twice reveals enough
information for her identity to be recovered and traced. DAPS has some conceptual similarities,
in that a party who signs two messages with the same subject reveals enough information for
her secret key to be recovered. In both settings, double operations leak information, but double
spending in digital cash typically leaks only an identity, whereas double signing in DAPS leaks
the signer’s private key. It is interesting to note that the number-theoretic structures our DAPS
scheme builds on are similar to those used in early digital cash to provide double spending
traceability [CFN90]: both schemes use RSA moduli that can be factored if signers/spenders

4http://www.certificate-transparency.org/
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misbehave. However, there does not seem to be a direct connection between the primitives.
One-time signatures. One-time signatures, first proposed by Lamport using a construction

based on hash functions [Lam79], allow at most one message to be signed. Many instances can be
combined using Merkle trees [Mer90] to allow multiple signatures with just a single verification
key, but key generation time becomes a function of the total number of signatures allowed.

Double-authentication-preventing signatures are fundamentally different from one-time sig-
natures: in DAPS, the number of messages to be signed need not be fixed a priori, and our
construction relies on number-theoretic trapdoor functions, rather than solely hash functions. A
natural first attempt at creating a DAPS scheme is to begin with a Merkle-tree construction, in
which each subject identifies a path from the root to a leaf and hence which keys must be used
to sign the message. However, this requires a key generation time at least linear in the size of
the subject space and therefore limits the size of the latter. Moreover, in such a scheme two
signatures under the same subject do not immediately lead to the ability to forge signatures
on arbitrary messages. Our scheme allows for arbitrary subject spaces and has efficient key
generation time, so we leave the construction of a tree-based DAPS as an open problem.

Fail-stop signatures. Fail-stop signatures [WP90,vP93,vPP93,BP97,PP97] allow a signer to
prove to a judge that a forgery has occurred; a signer is protected against cryptanalytic attacks
by even an unbounded adversary. Verifiers too are protected against computationally bounded
signers who try to claim a signature is a forgery when it is not. When a forgery is detected,
generally the security of the scheme collapses, because some secret information can be recovered,
and so the security of previous signatures is left in doubt. Forgery-resilient signatures [MO12] aim
to have similar properties to fail-stop signatures—the ability for a signer to prove a cryptanalytic
forgery—but discovery of a forgery does not immediately render previous signatures insecure.
Both fail-stop and forgery-resilient signatures focus on the ability of an honest signer to prove
someone else has constructed a forgery, whereas DAPS is about what happens when a dishonest
or coerced signer signs two messages for the same subject.

Chameleon hash functions. Chameleon hash functions [KR00] are trapdoor-based and
randomized. Hashing is collision-resistant as long as only the public parameters are known.
However, given the trapdoor and the message-randomness pair used to create a specific hash
value, a collision for that value can be efficiently found. Some constructions allow the extraction
of the trapdoor from any collision [ST01,BR08,Ad04]. However, it remains open how DAPS
could be constructed from Chameleon hash functions.

2 Preliminaries

In this section we introduce some notation and recall some standard cryptographic definitions.

Notation. If S is a finite set, let U(S) denote the uniform distribution on S and x ←R S
denote sampling x uniformly from S. If A and B are two probability distributions, then notation
A ≈ B denotes that the statistical distance between A and B is negligible. If A is a (probabilistic)
algorithm, then x←R AO(y) denotes running A with input y on uniformly random coins with
oracle access to O, and setting x to be the output. For a given x we write AO(y)⇒ x for the
event that A outputs x. We use the notation A(y; r) to explicitly identify the random coins r
on which the otherwise deterministic algorithm A is run.

Definition 1 (Pseudorandom function). A pseudorandom function (PRF) with output length c
is a family F = (Fλ)λ∈N of efficient functions Fλ : {0, 1}λ × {0, 1}∗ → {0, 1}c. It is secure if the

advantage Adv prf
F,D(λ) of any efficient distinguisher D is a negliglible function in λ, where we

define

Adv prf
F,D(λ) :=

∣∣∣Pr
[
ϕ←R Func{0,1}

∗→{0,1}c : Dϕ ⇒ 1
]
− Pr

[
K ←R {0, 1}

λ : DFλ(K,·) ⇒ 1
]∣∣∣
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Exp EUF
Σ,A (λ):

1 SignedList← ∅
2 (sk, vk)←R KGen(1λ)
3 (msg∗, σ∗)←R AOSign(vk)
4 If A queries OSign(msg):
5 Append msg to SignedList
6 σ ←R Sign(sk,msg)
7 Return σ to A
8 Return 1 iff all the following hold:
9 - Ver(vk,msg∗, σ∗) = 1
10 - msg∗ 6∈ SignedList

Figure 1: Experiment for existential unforgeability of signature schemes

and denote with Func{0,1}
∗→{0,1}c the set of all functions mapping domain {0, 1}∗ to range {0, 1}c.

Definition 2 (Signature scheme). A signature scheme is a tuple of efficient algorithms Σ =
(KGen, Sign,Ver) as follows:

• KGen(1λ): On input security parameter 1λ, this algorithm outputs a signing key sk and a
verification key vk.

• Sign(sk,msg): On input signing key sk and message msg ∈ {0, 1}∗, this algorithm outputs
a signature σ.

• Ver(vk,msg, σ): On input verification key vk, message msg ∈ {0, 1}∗, and candidate
signature σ, this algorithm outputs either 0 or 1.

Definition 3 (Correctness). Signature scheme Σ is correct if, for all λ ∈ N, for all key pairs
(sk, vk)←R KGen(1λ), for all msg ∈ {0, 1}∗, and for all signatures σ ←R Sign(sk,msg), we have
that Ver(vk,msg, σ) = 1.

Definition 4 (Existential unforgeability). Signature scheme Σ is existentially unforgeable
under adaptive chosen message attacks if, for all efficient adversaries A, the success probability
Succ EUF

Σ,A (λ) := Pr[Exp EUF
Σ,A (λ) = 1] in the EUF experiment of Figure 1 is a negligible function

in λ.

3 Double-authentication-preventing signatures

In this section we present the central definitions of the paper: a double-authentication-preventing
signature and, as security requirements, the standard (though slightly adapted) notion of
existential unforgeability, as well as the new properties of forgeability and signing key extractability
given two signatures on the same subject.

Definition 5 (Double-authentication-preventing signature). A double-authentication-preventing
signature (DAPS) is a tuple of efficient algorithms (KGen,Sign,Ver) as follows:

• KGen(1λ): On input security parameter 1λ, this algorithm outputs a signing key sk and a
verification key vk.

• Sign(sk, subj,msg): On input signing key sk and subject/message pair subj,msg ∈ {0, 1}∗,
this algorithm outputs a signature σ.

7



Exp EUF
DAPS,A(λ):

1 SignedList← ∅
2 (sk, vk)←R KGen(1λ)
3 (subj∗,msg∗, σ∗)←R AOSign(vk)
4 If A queries OSign(subj,msg):
5 Append (subj,msg) to SignedList
6 σ ←R Sign(sk, subj,msg)
7 Return σ to A
8 Return 1 iff all the following hold:
9 - Ver(vk, subj∗,msg∗, σ∗) = 1
10 - (subj∗,msg∗) 6∈ SignedList
11 - ∀ subj,msg0,msg1:
12 if (subj,msg0), (subj,msg1) ∈ SignedList
13 then msg0 = msg1

Figure 2: Experiment for existential unforgeability of DAPS

• Ver(vk, subj,msg, σ): On input verification key vk, subject/message pair subj,msg ∈ {0, 1}∗,
and candidate signature σ, this algorithm outputs either 0 or 1.

Definition 6 (Correctness). A double-authentication-preventing signature scheme is correct
if, for all λ ∈ N, for all key pairs (sk, vk)←R KGen(1λ), for all subj,msg ∈ {0, 1}∗, and for all
signatures σ ←R Sign(sk, subj,msg), we have Ver(vk, subj,msg, σ) = 1.

3.1 Unforgeability

Our unforgeability notion largely coincides with the standard unforgeability notion for digital
signature schemes [GMR88]; the main difference is that, for DAPS, forgeries crafted by the
adversary are not considered valid if the adversary has requested forgeries on different messages
for the same subject.

Definition 7 (Existential unforgeability). A double-authentication-preventing signature scheme
is existentially unforgeable under adaptive chosen message attacks if, for all efficient ad-
versaries A, the success probability Succ EUF

DAPS,A(λ) := Pr[Exp EUF
DAPS,A(λ) = 1] in the EUF

experiment of Figure 2 is a negligible function in λ.

3.2 Double-signature forgeability

Although Definition 7 ensures that signatures of DAPS are generally unforgeable, we do want
signatures to be forgeable in certain circumstances, namely when two different messages have
been signed for the same subject. First we define the notion of compromising pairs of signatures,
which says when two signatures should lead to a forgery, and then define double-signature
forgeability.

Definition 8 (Compromising pair of signatures). For a fixed verification key vk, a pair (S1, S2)
of subject/message/signature triples S1 = (subj1,msg1, σ1) and S2 = (subj2,msg2, σ2) is com-
promising if σ1, σ2 are valid signatures on different messages for the same subject; that is, if
Ver(vk, subj1,msg1, σ1) = 1, Ver(vk, subj2,msg2, σ2) = 1, subj1 = subj2, and msg1 6= msg2.

We now define the double-signature forgeability requirement. Here, the adversary takes the
role of a malicious signer that aims to generate compromising pairs of signatures that do not
lead to successful double-signature forgeries. We consider two scenarios: the trusted setup model,
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Exp DSF
DAPS,A(λ):

1 (vk, (S1, S2), subj∗,msg∗)←R A(1λ)
2 σ∗ ←R Forge(vk, (S1, S2), subj∗,msg∗)
3 Return 1 iff all the following hold:
4 - (S1, S2) is compromising
5 - Ver(vk, subj∗,msg∗, σ∗) 6= 1

Exp DSF∗

DAPS,A(λ):

1 (sk, vk)←R KGen(1λ)
2 ((S1, S2), subj∗,msg∗)←R A(sk, vk)
3 σ∗ ←R Forge(vk, (S1, S2), subj∗,msg∗)
4 Return 1 iff all the following hold:
5 - (S1, S2) is compromising
6 - Ver(vk, subj∗,msg∗, σ∗) 6= 1

Figure 3: Experiments for double-signature forgeability (without and with trusted setup)

where key generation is assumed to proceed honestly, and the untrusted setup model, where the
adversary has full control over key generation as well.

Definition 9 (Double-signature forgeability). A double-authentication-preventing signature
DAPS is double-signature forgeable (resp. double-signature forgeable with trusted setup) if an
efficient algorithm

• Forge(vk, (S1, S2), subj∗,msg∗): On input verification key vk, compromising pair (S1, S2),
and subject/message pair subj∗,msg∗ ∈ {0, 1}∗, this algorithm outputs a signature σ∗.

is known such that, for all efficient adversaries A, the probability Succ DSF(∗)

DAPS,A(λ) :=

Pr[Exp DSF(∗)

DAPS,A(λ) = 1] of success in the DSF (resp. DSF∗) experiment of Figure 3 is a negligible
function in λ.

3.3 Double-signature extractability

While the notion of double-signature forgeability expresses the desired functionality of the scheme
from a theoretical point of view, from an engineering perspective it may be more natural to
consider double-signature extractability, in which two signatures for the same subject lead to full
recovery of the signing key; obviously full recovery of the signing key gives the ability to forge.

Definition 10 (Double-signature extractability). A double-authentication-preventing signature
DAPS is double-signature extractable (resp. double-signature extractable with trusted setup) if
an efficient algorithm

• Extract(vk, (S1, S2)): On input verification key vk and compromising pair (S1, S2), this
algorithm outputs a signing key sk′.

is known such that, for all efficient adversaries A, the probability Succ DSE(∗)

DAPS,A(λ) :=

Pr[Exp DSE(∗)

DAPS,A(λ) = 1] of success in the DSE (resp. DSE∗) experiment of Figure 4 is a negligible
function in λ.

Note that the DSE experiment assumes existence of an efficient predicate that verifies that a
candidate sk′ is the signing key corresponding to a verification key. In some schemes, there may
be several signing keys that correspond to a verification key or it may be inefficient to check.
However, for the scheme presented in Section 7, when instantiated with the factoring-based
primitive of Section 6, it is easy to check that a signing key (p, q) corresponds to a verification
key n; note that there is a canonical representation of such signing keys (take p < q).

Clearly, double-signature extractability implies double-signature forgeability. In fact, DSE
implies that the forger can generate signatures that are perfectly indistinguishable from signatures
generated by the honest signer. This is an important feature that plain double-signature forgeable
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Exp DSE
DAPS,A(λ):

1 (vk, (S1, S2))←R A(1λ)
2 sk′ ←R Extract(vk, (S1, S2))
3 Return 1 iff all the following hold:
4 - (S1, S2) is compromising
5 - sk′ is not the signing key corresponding to vk

Exp DSE∗

DAPS,A(λ):

1 (sk, vk)←R KGen(1λ)
2 (S1, S2)←R A(sk, vk)
3 sk′ ←R Extract(vk, (S1, S2))
4 Return 1 iff all the following hold:
5 - (S1, S2) is compromising
6 - sk′ 6= sk

Figure 4: Experiments for double-signature extractability (without and with trusted setup)

A

A0

A1

B

Figure 5: Illustration of a 2:1 trapdoor function f : A→ B. Each element of B has exactly two
preimages, one in A0 and one in A1.

schemes do not necessarily offer, and indeed one can construct degenerate examples of schemes
that are double-signature forgeable but for which forged signatures are obviously different from
honest signatures.

4 2:1 trapdoor functions and extractability

We introduce the concept of 2:1 trapdoor functions (2:1-TDF). At a high level, such functions are
trapdoor one-way functions, meaning that they should be hard to invert except with knowledge of
a trapdoor. They are two-to-one, meaning that the domain is exactly twice the size of the range,
and every element of the range has precisely two preimages. We also describe an additional
property, extractability, which means that given two distinct preimages of an element of the
range, the trapdoor can be computed.

Consider two finite sets, A and B, such that A has twice the size of B. Let f : A→ B be a
surjective function such that, for any element b ∈ B, there are exactly two preimages in A; f is
not injective, so the inverse function does not exist. Define instead f−1 : B × {0, 1} → A such
that for each b ∈ B the two preimages under f are given by f−1(b, 0) and f−1(b, 1). Observe
that this effectively partitions set A into two subsets A0 = f−1(B, 0) and A1 = f−1(B, 1) of the
same size.

Function f is a 2:1-TDF if the following additional properties hold: sets A0, A1, and B are
efficiently samplable, function f is efficiently computable, and inverse function f−1 is hard to
compute unless some specific trapdoor information is known. We finally require an extraction
capability: there should be an efficient way to recover the trapdoor for the computation of f−1

from any two elements a0 6= a1 with f(a0) = f(a1) (we will also write a0
x∼ a1 for such

configurations). The setting of 2:1-TDFs is illustrated in Figure 5. We will formalize the
functionality and security properties below.
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4.1 Definition

We give a formal definition of 2:1-TDF and its correctness, and establish afterwards that it
implements the intuition developed above.

Definition 11 (2:1 trapdoor function). A 2:1 trapdoor function (2:1-TDF) is a tuple of efficient
algorithms (TdGen,SampleA, SampleB,Apply,Reverse,Decide) as follows:

• TdGen(1λ): On input security parameter 1λ, this randomized algorithm outputs a pair
(td, pub), where td is a trapdoor and pub is some associated public information. Each
possible outcome pub implicitly defines finite sets A = A(pub) and B = B(pub).

• SampleA(pub, d; r): On input public information pub, bit d ∈ {0, 1}, and randomness r ∈
{0, 1}λ, this algorithm outputs a value a ∈ A(pub).

As shortcuts:

• SampleA(pub, d) := r ←R {0, 1}λ; return SampleA(pub, d; r)

• SampleA(pub) := d←R {0, 1}; return SampleA(pub, d)

• SampleA0
(pub) := return SampleA(pub, 0)

• SampleA1
(pub) := return SampleA(pub, 1)

• SampleB(pub; r): On input public information pub and randomness r ∈ {0, 1}λ, this
algorithm outputs a value b ∈ B(pub).

• Apply(pub, a): On input public information pub and element a ∈ A(pub), this deterministic
algorithm outputs an element b ∈ B(pub).

• Reverse(td, b, d): On input trapdoor td, element b ∈ B(pub), and bit d ∈ {0, 1}, this
deterministic algorithm outputs an element a ∈ A(pub).

• Decide(pub, a): On input public information pub and element a ∈ A(pub), this deterministic
algorithm outputs a bit d ∈ {0, 1}.

Definition 12 (Correctness of 2:1-TDF). A 2:1-TDF is correct if, for all (td, pub)←R TdGen,
all d ∈ {0, 1}, all a ∈ A(pub), and all b ∈ B(pub), we have that

(1) a ∈ Reverse(td,Apply(pub, a), {0, 1}),

(2) Apply(pub,Reverse(td, b, d)) = b, and

(3) Decide(pub,Reverse(td, b, d)) = d.

We further require that Decide(pub, SampleA(pub, d; r)) = d hold for all d ∈ {0, 1} and r ∈ {0, 1}λ.

Let (td, pub) be output by TdGen. Consider partition A(pub) = A0(pub)
.
∪ A1(pub) obtained

by setting Ad(pub) = {a ∈ A(pub) : Decide(pub, a) = d}, for d ∈ {0, 1}. It follows from
correctness requirement (3) that function ψd := Reverse(td, ·, d) is a mapping B(pub)→ Ad(pub).
Note that ψd is surjective by condition (1), and injective by condition (2). Hence, we have
bijections ψ0 : B(pub)→ A0(pub) and ψ1 : B(pub)→ A1(pub). Thus, |A0(pub)| = |A1(pub)| =
|B(pub)| = |A(pub)|/2.

Define now relation x∼ ⊆ A(pub)×A(pub) such that

a x∼ a′ ⇐⇒ Apply(pub, a) = Apply(pub, a′) ∧ Decide(pub, a) 6= Decide(pub, a′) .

Note that for each a ∈ A(pub) there exists exactly one a′ ∈ A(pub) such that a x∼ a′; indeed, if
a ∈ Ad(pub), then a′ = ψ1−d(ψ

−1
d (a)) ∈ A1−d(pub). Observe how algorithms Apply and Reverse

correspond to functions f : A → B and f−1 : B × {0, 1} → A discussed at the beginning of
Section 4.

11



4.2 Security notions

We proceed with the specification of the principal security properties of 2:1-TDFs, samplability
and one-wayness. The treatment of extraction follows in the next section. The proofs of
Lemmas 1 and 2 appear in Appendix C.1.

4.2.1 Samplability

The task of a 2:1-TDF’s SampleA and SampleB algorithms is to provide samples from sets
A(pub) and B(pub), respectively, that are distributed nearly uniformly. The samplability security
property refers to the extent to which these samples are close to uniform.

Definition 13 (Sampling distance). Let X be a 2:1-TDF and let S0, S1 be two (sampling)
algorithms. We define the sampling distance of S0, S1 with respect to a distinguisher D as

Dist S0,S1

X,D (λ) :=

∣∣∣∣ Pr
[
(td, pub)←R TdGen(1λ);x←R S0(pub) : D(pub, x) = 1

]
−Pr

[
(td, pub)←R TdGen(1λ);x←R S1(pub) : D(pub, x) = 1

] ∣∣∣∣ .
We consider different strategies to obtain samples from set B: using the SampleB algorithm

directly, or using SampleA (or SampleA0
, or SampleA1

) and mapping obtained samples from
set A to set B using the Apply algorithm. The latter hybrid constructions are formalized in
Definition 14. We show in Lemma 1 that they yield reasonable results, assuming good SampleA
and SampleB algorithms.

Definition 14 (Hybrid sampling). For a 2:1-TDF, let (td, pub) be output by TdGen. Then sam-
pling algorithm SampleAB for set B(pub) is defined as SampleAB(pub) := Apply(pub,SampleA(pub)).
We define sampling algorithms SampleA0

B and SampleA1
B correspondingly.

Lemma 1 (Quality of hybrid sampling). Let X be a 2:1-TDF and let DB be an efficient
distinguisher. Then there exist efficient distinguishers D′A,D′A0

,D′A1
,D′B,D′′B,D′′′B such that

Dist
SampleB ,SampleAB
X,DB (λ) ≤ Dist

SampleA,U(A)
X,D′A

(λ) + Dist
SampleB ,U(B)
X,D′B

(λ)

Dist
SampleB ,Sample

A0
B

X,DB (λ) ≤ Dist
SampleA0

,U(A0)

X,D′A0

(λ) + Dist
SampleB ,U(B)
X,D′′B

(λ)

Dist
SampleB ,Sample

A1
B

X,DB (λ) ≤ Dist
SampleA1

,U(A1)

X,D′A1

(λ) + Dist
SampleB ,U(B)
X,D′′′B

(λ) .

In Lemma 1, the terms on the left-hand side are small if the terms on the right-hand side
are. This observation motivates the following security requirement on 2:1-TDFs. Note that if

Dist
SampleA,U(A)
X,D is negligible then so are Dist

SampleA0
,U(A0)

X,D and Dist
SampleA1

,U(A1)

X,D .

Definition 15 (Samplability of 2:1-TDF). Let X denote a 2:1-TDF. We say that X is samplable

if, for all efficient distinguishers D,D′, we have that Dist
SampleA,U(A)
X,D and Dist

SampleB ,U(B)
X,D′ are

negligible functions.

4.2.2 One-wayness

We next define one-wayness for 2:1-TDFs. Intuitively, it should be infeasible to find preimages
and second preimages of the Apply algorithm without knowing the corresponding trapdoor.

Definition 16 (Preimage resistance of 2:1-TDF). A 2:1-TDF X is preimage resistant and
second preimage resistant if Succ INV-1

X,A (λ) := Pr[Exp INV-1
X,A (λ) = 1] and Succ INV-2

X,B (λ) :=

Pr[Exp INV-2
X,B (λ) = 1] are negligible functions in λ, for all efficient adversaries A and B, where

Exp INV-1
X,A and Exp INV-2

X,B are as in Figure 6.
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Exp INV-1
X,A (λ):

1 (td, pub)←R TdGen(1λ)
2 b←R SampleB(pub)
3 a←R A(pub, b)
4 Return 1 iff Apply(pub, a) = b

Exp INV-2
X,B (λ):

1 (td, pub)←R TdGen(1λ)
2 a←R SampleA(pub)
3 a′ ←R B(pub, a)
4 Return 1 iff a x∼ a′

Figure 6: Experiments for preimage and second preimage resistance of 2:1-TDFs

The following simple lemma shows that second preimage resistance implies preimage resistance.
We will see in Section 4.3 that these notions are actually equivalent for an extractable variant of
2:1-TDF.

Lemma 2 (INV-2 ⇒ INV-1 for samplable 2:1-TDF). Let X be a 2:1-TDF and let A be an
efficient algorithm for the INV-1 experiment. Then there exist an efficient algorithm B for the
INV-2 experiment and an efficient distinguisher DB such that Succ INV-1

X,A (λ) ≤ 2 ·Succ INV-2
X,B (λ)+

Dist
SampleB ,SampleAB
X,DB (λ).

4.3 Extractable 2:1 trapdoor functions

We extend the functionality of 2:1-TDFs to include extraction of the trapdoor: knowledge of
any two elements a0, a1 ∈ A with a0 6= a1 ∧ f(a0) = f(a1) shall immediately reveal the system’s
inversion trapdoor.

Definition 17 (Extractable 2:1-TDF). A 2:1-TDF is extractable if an efficient algorithm

• Extract(pub, a, a′): On input public information pub and a, a′ ∈ A(pub), this algorithm
outputs a trapdoor td∗.

is known such that, for all (td, pub) output by TdGen and all a, a′ ∈ A(pub) with a x∼ a′, we have
Extract(pub, a, a′) = td.

Surprisingly, extractability of 2:1-TDFs has an essential effect on the relationship between
INV-1 and INV-2 security notions. In combination with Lemma 2 we see that notions INV-1
and INV-2 are equivalent for (samplable) extractable 2:1-TDFs. The proof of Lemma 3 appears
in Appendix C.1.

Lemma 3 (INV-1⇒ INV-2 for extractable 2:1-TDF). Let X be an extractable 2:1-TDF and let
B be an efficient algorithm for the INV-2 experiment. Then there exists an efficient algorithm A
for the INV-1 experiment such that Succ INV-2

X,B (λ) = Succ INV-1
X,A (λ).

5 Tightly secure signatures from 2:1 trapdoor functions

As a first application of our new primitive we present a signature scheme. The construction
essentially extends the well-known full-domain hash paradigm (FDH, see [BR93]) from bijective
trapdoor functions, e.g., TDPs, to the new 2:1-TDF notion. While security reductions of regular
FDH signatures are necessarily highly untight (the security loss in comparison with TDP security
is qH , the number of adversary’s hash function evaluations; but see [Cor02] for tighter bounds for
homomorphic TDPs), it turns out that our new signature scheme is tightly secure if the deployed
2:1-TDF is extractable. We note that our construction is similar in spirit with the tightly secure
signature constructions found in [GJKW07, Ber08]; however, our abstraction model is quite
different.
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KGen(1λ) :
1 (td, pub)←R TdGen(1λ2)
2 K ←R {0, 1}λf
3 Return (sk, vk) = ((td,K), pub)

Sign(sk,msg) :
1 b← Hpub(msg)
2 d← F (K,msg)
3 σ ← Reverse(td, b, d)
4 Return σ

Ver(vk,msg, σ) :
1 b← Hpub(msg)
2 If Apply(pub, σ) = b
3 then return 1
4 else return 0

Figure 7: Signature scheme 2:1-Sig

Construction 1 (Signature scheme from 2:1-TDF). Let λ be a security parameter, and let λ2

and λf be parameters polynomially dependent on λ. Let X = (TdGen,SampleA,SampleB,Apply,
Reverse,Decide) be an extractable 2:1 trapdoor function and let F : {0, 1}λf × {0, 1}∗ → {0, 1} be
a PRF. For each pub output by TdGen, let Hpub : {0, 1}∗ → B(pub) be a hash function. Signature
scheme 2:1-Sig consists of the algorithms specified in Figure 7.

We assess the security of 2:1-Sig in Theorem 1; the corresponding proof appears in Ap-
pendix C.2. A factor of qH appears in the bounds claimed in Theorem 1. That factor scales
a purely statistical quantity that can easily be forced to be smaller than (say) 2−256, and this
matches the notion of “tightness” in works like [Ber08] (in which the sampling issues that we
factor in are actually left implicit).

Theorem 1 (2:1-Sig is EUF). In the setting of Construction 1, if X is extractable, samplable,
and second preimage resistant, F is a secure PRF, and Hpub is a random oracle, then signature
scheme 2:1-Sig is existentially unforgeable under adaptive chosen message attacks. More precisely,
for any efficient EUF algorithm A making at most qH queries to the Hpub(·) oracle, there exist
efficient distinguishers DA, DB, and C, and an efficient algorithm B such that

Succ EUF
2:1-Sig,A(λ) ≤ qH ·Dist

SampleA,U(A)
X,DA (λ2) + qH ·Dist

SampleB ,U(B)
X,DB (λ2)

+ 2 · Succ INV-2
X,B (λ2) + Adv prf

F,C(λf ) .

6 Constructing extractable 2:1 trapdoor functions

Having introduced 2:1-TDFs and extractable 2:1-TDFs, we now show how to construct these
primitives: we propose an efficient extractable 2:1-TDF and prove it secure, assuming hardness
of the integer factorization problem.

Our construction builds on a specific structure from number theory, the group of sign-agnostic
quadratic residues. This group was introduced to cryptography by Goldwasser, Micali, and
Rivest in [GMR88], and rediscovered 20 years later by Hofheinz and Kiltz [HK09]. We first
reproduce the results of [GMR88,HK09] and then extend them towards our requirements.5

In our exposition, we assume that the reader is familiar with definition and structure of
groups Z×n , Jn, and QRn, for Blum integers n. If we additionally define Jn = Z×n \ Jn and
QRn = Jn \QRn, these five sets are related to each other as visualized in Figure 8 (left). Also
illustrated is the action of the squaring operation: it is 4:1 from Z×n to QRn, 2:1 from Jn to QRn,
and 1:1 (i.e., bijective) from QRn to QRn. For reference, we reproduce all number-theoretic
details relevant to this paper in Facts 1–6 and Corollary 2, in Appendix A.

5Goldwasser et al. gave no name to this group; Hofheinz and Kiltz called it the group of signed quadratic
residues, but this seems to be a misnomer as the whole point is to ignore the sign, taking absolute values and
forcing the elements to be between 0 and (n− 1)/2; hence our use of the term sign-agnostic.
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6.1 Sign-agnostic quadratic residues

For an RSA modulus n, it is widely believed that efficiently distinguishing elements in QRn from
elements in QRn is a hard problem. It also seems to be infeasible to sample elements from QRn
without knowing a square root of the samples, or to construct hash functions that map to QRn
and could be modeled as random oracles. However, such properties are a prerequisite in certain
applications in cryptography [HK09], what renders group QRn unsuitable for such cases. As we
see next, by switching from the group of quadratic residues modulo n to the related group of
sign-agnostic quadratic residues modulo n, sampling and hashing becomes feasible.

The use of sign-agnostic quadratic residues in cryptography is explicitly proposed in [GMR88,
HK09]. However, some aspects of the algebraical structure of this group are concealed in both
works by the fact that the group operation is defined to act directly on specific representations
of elements. The introduction to sign-agnostic quadratic residues that we give in the following
paragraphs uses a new and more consistent notation that aims at making the algebraical structure
more readily apparent. Using this new notation, it will not be difficult to establish Lemmas 5–8
below.

Let (H, ·) be an arbitrary finite abelian group that contains an element T ∈ H \{1} such that
T 2 = 1. Then {1, T} is a (normal) subgroup in H, that is, quotient group H/{1,T} is well-defined,
ψ : H → H/{1,T} : x 7→ {x, Tx} is a group homomorphism, and |ψ(H)| = |H/{1,T}| = |H|/2
holds. Further, for all subgroups G ≤ H we have that ψ(G) ≤ ψ(H) = H/{1,T}. In such cases,
if G is such that T ∈ G, then |ψ(G)| = |G/{1,T}| = |G|/2 as above; otherwise, if T 6∈ G, then
|ψ(G)| = |G| and thus ψ(G) ∼= G.

Consider now the specific group H = Z×n , for a Blum integer n. Then T = −1 has order 2
in Z×n and above observations apply, with mapping ψ : x 7→ {x,−x}. For any subgroup G ≤ Z×n ,
let G/±1 := ψ(G). For subgroup QRn ≤ Z×n , as −1 6∈ QRn, we have QRn/±1

∼= QRn and thus
|QRn/±1| = ϕ(n)/4. Moreover, as Jn ≤ Z×n and −1 ∈ Jn, we have |Jn/±1| = |Jn|/2 = ϕ(n)/4.
Similarly we see |Z×n /±1| = ϕ(n)/2. After setting QRn/±1 := (Z×n /±1) \ (QRn/±1) we finally
obtain |QRn/±1| = ϕ(n)/4.

Note that we just observed QRn/±1 ≤ Jn/±1 ≤ Z×n /±1 and |QRn/±1| = ϕ(n)/4 = |Jn/±1|.
The overall structure is hence QRn/±1 = Jn/±1 � Z×n /±1, as illustrated in Figure 8 (right).
After agreeing on notations {±x} = {x,−x} and {±x}2 = {±(x2)} we additionally obtain the
following result (proven in Appendix C.3):

Lemma 4. Let n be a Blum integer. Then QRn/±1 =
{
{±x}2 : {±x} ∈ Z×n /±1

}
.

Moreover, by exploiting identity QRn/±1 = Jn/±1, we directly get the following characteri-
zations of QRn/±1 and QRn/±1. Observe that the sets are well-defined since

(
x
n

)
=
(−x
n

)
for all

x ∈ Z×n .

QRn/±1 =
{
{±x} ∈ Z×n /±1 :

(
x
n

)
= +1

}
(1)

QRn/±1 =
{
{±x} ∈ Z×n /±1 :

(
x
n

)
= −1

}
. (2)

Many facts on the structure of Z×n can be lifted to Z×n /±1. This holds in particular for
Lemmas 5 and 6, which directly correspond with Facts 4 and 5 from Appendix A. Similarly,
Corollaries 1 and 2 correspond. We stress that the following results do not appear in [GMR88,
HK09]; the corresponding proofs appear in Appendix C.3.

Lemma 5 (Square roots in Z×n /±1). Let n be a Blum integer. Every element {±y} ∈ QRn/±1

has exactly two square roots in Z×n /±1. More precisely, there exist unique {±x0} ∈ QRn/±1 and
{±x1} ∈ QRn/±1 such that {±x0}2 = {±y} = {±x1}2. The factorization of n can readily be
recovered from such pairs {±x0}, {±x1}: non-trivial divisors of n are given by gcd(n, x0 − x1)
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Z×n

Jn

QRn

QRn

Jn

Z×n /±1

QRn/±1
= Jn/±1

QRn/±1

Figure 8: Illustration of Z×n and Z×n /±1 (for Blum integers n), and subgroups QRn, Jn, and
Jn/±1 = QRn/±1. Also visualized is the action of the squaring operation (see Corollaries 1
and 2).

and gcd(n, x0 + x1). Square roots in Z×n /±1 can be efficiently computed if the factors of n = pq
are known.

Corollary 1 (Squaring in Z×n /±1, QRn/±1, QRn/±1). Let n be a Blum integer. The squaring
operation Z×n /±1 → QRn/±1 : {±x} 7→ {±x}2 is a 2:1 mapping. Moreover, squaring is a 1:1
function from QRn/±1 to QRn/±1 and from QRn/±1 to QRn/±1. These relations are illustrated
in Figure 8 (right).

Lemma 6 (Computing square roots in Z×n /±1 is hard). Let n be a Blum integer. Computing
square roots in Z×n /±1 is as hard as factoring n.

Lemma 7 (Samplability and decidability). Let n be a Blum integer and t ∈ Z×n be fixed with(
t
n

)
= −1. The algorithm that samples a←R Zn and returns {±a} generates a distribution that

is statistically indistinguishable from uniform on Z×n /±1. If the algorithm is modified such that it
returns {±a} if

(
a
n

)
= +1 and {±ta} if

(
a
n

)
= −1, then the output is statistically indistinguishable

from uniform on QRn/±1. Elements in QRn/±1 can be sampled correspondingly. Sets QRn/±1

and QRn/±1 are efficiently decidable (within Z×n /±1) by equations (1) and (2).

We anticipate the following result from Appendix B.

Lemma 8 (Indifferentiable hashing into QRn/±1). There exist efficient functions ` and ϕ :
{0, 1}`(n) → QRn/±1 such that if a hash function h : {0, 1}∗ → {0, 1}`(n) behaves like a (pro-
grammable) random oracle then so does H = ϕ ◦ h : {0, 1}∗ → QRn/±1.

Remark 1 (Representation of elements). An efficient and compact way to represent elements
{±x} ∈ Z×n /±1 is by the binary encoding of x = min{x, n − x} ∈ [1, (n − 1)/2], as proposed
by [GMR88]. The corresponding decoding procedure is x 7→ {x,−x}.

6.2 Construction of Blum-2:1-TDF from sign-agnostic quadratic residues

We use the tools from Section 6.1 to construct a factoring-based extractable 2:1-TDF, which
will map Z×n /±1 → QRn/±1. While the Apply algorithm corresponds to the squaring operation,
extractability will be possible given distinct square roots of an element.

Construction 2 (Blum-2:1-TDF). Define algorithms Blum-2:1-TDF = (TdGen, SampleA,SampleB,
Apply,Reverse,Decide,Extract) as follows:

• TdGen(1λ): Pick random Blum integer n = pq of length λ such that p < q. Pick t ∈ Z×n
with

(
t
n

)
= −1. Return pub← (n, t) and td← (p, q). We will use sets A0(pub) := QRn/±1,

A1(pub) := QRn/±1, A(pub) := Z×n /±1, and B(pub) := QRn/±1.
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• SampleA(pub, d): Implement SampleA(pub, 0), SampleA(pub, 1), and SampleA(pub) using
the samplers for sets QRn/±1, QRn/±1, and Z×n /±1 from Lemma 7.

• SampleB(pub): Implement SampleB(pub) using the sampler for set QRn/±1 from Lemma 7.

• Apply(pub, {±a}): Return {±b} ← {±a}2.

• Reverse(td, {±b}, d): By Lemma 5, element {±b} ∈ QRn/±1 has exactly two square roots:
{±a0} ∈ QRn/±1 and {±a1} ∈ QRn/±1. Return {±ad}.

• Decide(pub, {±a}): Return 0 if {±a} ∈ QRn/±1; otherwise return 1.

• Extract(pub, {±a0}, {±a1}): Both gcd(n, a0−a1) and gcd(n, a0 +a1) are non-trivial factors
of n = pq. Return td∗ ← (p, q) such that p < q.

These algorithms are all efficient. Correctness of Blum-2:1-TDF and the various security
properties follow straightforwardly from the number-theoretic facts established in Sections 6.1.
The proof appears in Appendix C.3.

Theorem 2 (Security and extractability of Blum-2:1-TDF). Blum-2:1-TDF is samplable (Def. 15),
(second) preimage resistant (Def. 16) under the assumption that factoring is hard, and extractable
(Def. 17).

Remark 2 (Choice of element t). In Construction 2, public element t can be any quadratic
non-residue; small values likely exist and might be favorable for storage efficiency. Observe that,
if p ≡ 3 mod 8 and q ≡ 7 mod 8, for t = 2 we always have

(
t
n

)
= −1, so there is not need to

store t at all.

7 Double-authentication-preventing signatures from extractable
2:1-TDFs

We now come to the central result of this paper, a double-authentication-preventing signature
generically constructed from any extractable 2:1 trapdoor function; of course factoring-based
Blum-2:1-TDF from the previous section is a suitable candidate for instantiating the scheme.

Construction 3 (DAPS from extractable 2:1-TDF). Let λ be a security parameter, and let λ2

and λh be parameters polynomially dependent on λ. Let X = (TdGen,SampleA,SampleB,Apply,
Reverse,Decide) be an extractable 2:1 trapdoor function and let H# : {0, 1}∗ → {0, 1}λh be a
hash function. For each pub output by TdGen, let Hpub : {0, 1}∗ → B(pub) be a hash function.
Double-authentication-preventing signature scheme 2:1-DAPS consists of the algorithms specified
in Figure 9.

The basic idea of the signing algorithm is as follows. From any given subject, the signer
derives message-independent signing elements b1, . . . , bλh ∈ B. The signer also hashes subject
and message to a bit string d1 . . . dλh ; for each bit di, she finds the preimage ai of the signing
element bi which is in the di partition of A; either in A0 or A1. The signature σ is basically
the vector of these preimages. Intuitively, the scheme is unforgeable because it is hard to
find preimages of signing elements bi without knowing the trapdoor. Moreover, the scheme is
extractable because the signing elements bi are only dependent on the subject, so the signatures
of two different messages for the same subject use the same bi. But, assuming collision resistance
of H#, at least one different di is used in the two signatures, so two distinct preimages of bi are
involved, which allows anyone to recover the trapdoor.
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KGen(1λ) : Return (sk, vk) = (td, pub) where (td, pub)←R TdGen(1λ2)

Sign(sk, subj,msg) :
1 s← Reverse(td, Hpub(subj), 0)
2 (d1, . . . , dλh)← H#(subj, s,msg)
3 For 1 ≤ i ≤ λh :
4 bi ← Hpub(subj, s, i)
5 ai ← Reverse(td, bi, di)
6 Return σ ← (s, a1, . . . , aλh)

Ver(vk, subj,msg, σ) :
1 Parse (s, a1, . . . , aλh)← σ
2 If Decide(pub, s) 6= 0, return 0
3 If Apply(pub, s) 6= Hpub(subj), return 0
4 (d1, . . . , dλh)← H#(subj, s,msg)
5 For 1 ≤ i ≤ λh :
6 If Apply(pub, ai) 6= Hpub(subj, s, i), return 0
7 If Decide(pub, ai) 6= di, return 0
8 Return 1

Figure 9: Double-authentication-preventing signature scheme 2:1-DAPS

We give further explanation on the subject-dependent value s that we embed into every
signature. Consider the standard security reduction for proving FDH-TDP signatures unforge-
able [BR96], and in particular how adversary’s queries to random oracle H are answered. Usually,
random oracle H is programmed such that H(m) = g(x), where m is the queried message, g is
the TDP, and x is sampled uniformly from the domain of g. This construction exploits that
g (as opposed to g−1) can be efficiently computed without knowledge of any trapdoor, and
it ensures that the simulation ‘knows’ the preimage of hash values H(m), for all messages m.
When switching to 2:1-TDFs, however, we observe that this method of reduction does not work
satisfyingly: While for any H query a corresponding preimage a ∈ A of the 2:1-TDF could
be uniformly sampled, it might be related value a′ ∈ A, a x∼ a′, that needs to be revealed in
later queries to the signing oracle. But computing a′ from a, or even jointly sampling them, is
infeasible without knowledge of 2:1-TDF’s trapdoor. In our DAPS construction, value s ensures
that the simulation is not required to program Hpub oracle until the point where it learns subj
and msg, i.e. learns which preimage it will have to reveal. For further details we refer to the
proof of Theorem 3.

7.1 Unforgeability of 2:1-DAPS

We next establish existential unforgeability of 2:1-DAPS (cf. Definition 7). The proof proceeds
by changing the EUF simulation so that it performs all operations without using the signing
key and without (noticeably) changing the distribution of verification key and answers to A’s
oracle queries; these changes cannot be detected if 2:1-TDF X is samplable. From any forgery
crafted by adversary A, either a preimage or second preimage of X, or a collision of H# can be
extracted. Observe that, by Lemma 2, it suffices to require second preimage resistance of X in
Theorem 3. The detailed proof appears in Appendix C.4.

Theorem 3 (2:1-DAPS is EUF). In the setting of Construction 3, if X is samplable and
second preimage resistant, H# is collision-resistant, and Hpub is a random oracle, then double-
authentication-preventing signature 2:1-DAPS is existentially unforgeable under adaptive chosen
message attacks. More precisely, for any efficient EUF algorithm A making at most q1 queries
to Hpub(·) and qS queries to OSign oracle, there exist efficient distinguishers DA and DB and
efficient algorithms B1, B2, and C such that

Succ EUF
2:1-DAPS,A(λ) ≤ (q1 + (λh + 1)qS + 1) Dist

SampleA,U(A)
X,DA (λ2)

+ (q1 + (λh + 1)qS) Dist
SampleB ,U(B)
X,DB (λ2)

+ q1Succ INV-1
X,B1 (λ2) + 2qSλh Succ INV-2

X,B2 (λ2) + Succ CR
H#,C(λh) ,
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where Succ CR
H#,C(λh) is the success probability of algorithm C in finding collisions of hash

function H#.

Here we assume that the random oracle Hpub mapping onto B(pub) = QRn/±1 is constructed
from a random oracle onto bitstrings as proposed in Appendix B.

Remark 3 (2:1-DAPS is deterministic and S-EUF). Note that 2:1-DAPS is not only deterministic
but also unique [Cor02], and in particular strongly unforgeable.

7.2 Double-signature extractability of 2:1-DAPS

Assuming collision resistance of H#, two signatures for different messages but the same subject
result in some index i where the hashes H#(subj, s,msg1) and H#(subj, s,msg2) differ. The
corresponding ith values ai in the two signatures can be used to extract the signing key. This is
the intuition behind Theorem 4; the detailed proof appears in Appendix C.5.

Theorem 4 (2:1-DAPS is DSE∗). In the setting of Construction 3, if X is extractable and H# is
collision-resistant, then double-authentication-preventing signature 2:1-DAPS is double-signature
extractable with trusted setup. More precisely, with the notation from Theorem 3, there exists an
efficient algorithm Extract (described in the proof of the theorem) and an efficient algorithm C
such that, for all algorithms A, Succ DSE∗

DAPS,A(λ) ≤ Succ CR
H#,C(λh).

Observe that the double-signature extractability of 2:1-DAPS in Theorem 4 relies on the
assumption that signer’s verification key is well-formed. When instantiated with Blum-2:1-TDF,
this means assuming that signer’s public information n is a Blum integer, as extractability of
Blum-2:1-TDF is guaranteed only in this case. Well-formedness can be shown using interactive
or non-interactive zero-knowledge proofs. In particular, there is an interactive zero-knowledge
protocol of van de Graaf and Peralta [vP88] for demonstrating that an integer n is of the form
prqs where p and q are both primes such that p ≡ q ≡ 3 mod 4, which can be combined with
the interactive protocol of Boyar et al. [BFL91] for demonstrating that an integer n is square-
free, to ultimately show that a modulus n is a Blum integer. Alternatively, a non-interactive
zero-knowledge proof for the well-formedness of a Blum integer was given by De Santis et
al. [DDP94], and for products of safe primes (which includes Blum integers) by Camenisch and
Michels [CM99].

7.3 Efficiency of construction based on sign-agnostic quadratic residues

Table 1 shows the size of verification keys, signing keys, and signatures, and the cost of signature
generation and verification for the 2:1-DAPS based on Blum-2:1-TDF, with abstract results
as well as results with 1024- and 2048-bit keys. We assume the element representation from
Remark 1, the verification key optimization from Remark 2, and an implementation of random
oracle Hpub as described in Appendix B.

We also report the results of our implementation of DAPS using the libgcrypt cryptographic
library.6 As libgcrypt does not have routines for square roots or Jacobi symbols, we implemented
our own, and we expect that there may be space for improvement with optimized implementations
of these operations. Timings reported are an average of 50 iterations, performed on a 2.6
GHz Intel Core i7 (3720QM) CPU, using libgcrypt 1.5.2, compiled in x86 64 mode using
LLVM 3.3 and compiler flag -O3. Source code for our implementation is available online at
http://eprints.qut.edu.au/73005/.

6http://www.gnu.org/software/libgcrypt/
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With 1024-bit signing and verification keys, a signature is about 20 KiB in size, and takes
about 0.341 s to generate and 0.105 s to verify. While our scheme is less efficient than a regular
signature scheme, we believe these timings are still in the acceptable range; this holds in particular
if our scheme is used to implement CA functionality where signature generation happens rarely
and verification results can be cached.

Table 1: Efficiency of 2:1-DAPS based on sign-agnostic quadratic residues

General analysis libgcrypt implementation

λh — 160 160
λ2 (size of n in bits) — 1024 2048

Key generation time — 0.097 s 0.759 s
Signing key size (bits) log2 n 1024 2048
Verification key size (bits) log2 n 1024 2048

Signature generation cost (λh + 1) · Jac, (λh + 1) · sqrt 0.341 s 1.457 s
Signature size (bits) (λh + 1) log2 n 164 864 = 20 KiB 329 728 = 40 KiB

Signature verification cost (2λh + 1) · Jac, (λh + 1) · sqr 0.105 s 0.276 s

Legend: Jac: computation of Jacobi symbol modulo n; sqrt: square root modulo n; sqr:
squaring modulo n.

8 Applications

DAPS allows applications that employ digital signatures for establishing unique bindings between
digital objects to provide self-enforcement for correct signer behaviour, and resistance by signers
to coercion or the “compelled certificate creation attack” [SS12]. Whenever the verifier places
high value on the uniqueness of the binding, it may be worthwhile to employ DAPS instead of
traditional digital signatures, despite the potential for increased damage in the case of accidental
errors by the signer.

It should be noted that use of DAPS may impose an additional burden on honest signers:
they need to maintain a list of previously signed subjects to avoid double signing. Some signers
may already do so, but the importance of the correctness of this list is increased with DAPS.
As noted below, signers may wish to use additional protections to maintain their list of signed
subjects, for example by cryptographically authenticating it using a message authentication code
with a key in the same hardware security module as the main signing key.

In this section, we examine a few cryptographic applications involving unique bindings and
discuss the potential applicability of DAPS.

8.1 Certificate authorities

The potential use of DAPS for certificate authorities has been discussed in some detail in the
Introduction.

DAPS could be used to ensure that certification authorities in the web PKI behave as
expected. For example, by having the subject consist of the domain name and the year, and the
message consist of the public key and other certificate details, a CA who signs one certificate
for “www.example.com” using DAPS cannot sign another for the same domain and time period
without invalidating its own key. A CA using DAPS must then be stateful, carefully keeping
track of the previous subjects signed and refusing to sign duplicates. In commercial certificate
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authorities, where the signing is done on a hardware security module (HSM), the list of subjects
signed should be kept under authenticated control of the HSM.

A DAPS-based PKI would need to adopt an appropriate convention on validity peri-
ods to accommodate expiry of certificates without permitting double-signing. For exam-
ple, a DAPS PKI may use a subject with a low-granularity non-overlapping validity period
(“www.example.com‖2015”) since high-granularity overlapping validity periods in the subject give
a malicious CA a vector for issuing two certificates without signing the exact same subject twice
(“www.example.com‖20150501-20160430” versus “www.example.com‖20150502-20160501”).

Furthermore, a DAPS-based PKI could support revocation using standard mechanisms such
as certificate revocation lists. Reissuing could be achieved by including a counter in the DAPS
subject (e.g., “www.example.com‖2015‖0”) and using DAPS-based revocation to provide an
unambiguous and unalterable auditable chain from the initial certificate to the current one.

One of the major problems with multi-CA PKIs such as the web PKI is that clients trust
many CAs, any one of which can issue a certificate for a particular subject. A DAPS-based
PKI would prevent one CA from signing multiple certificates for a subject, but not other CAs
from also signing certificates for that subject. We could consider a multi-CA PKI in which other
DAPS-based CAs agree to issue a “void certificate” for a domain name when presented with a
valid certificate from another CA, thereby disqualifying them from issuing future signatures on
that subject. In general, though, coordination of CAs is challenging. We believe it remains a
very interesting open question to find cryptographic constructions that solve the multi-CA PKI
problem.

8.2 Time-stamping

A standard approach to preventing time-stamping authorities from “changing the past” is
to require that, when a digital signature is constructed that asserts that certain pieces of
information x exist at a particular time t, the actual message being signed must also include the
(hash of) messages authenticated in the previous time periods. The authority is prevented from
trying to change the past and assert that x′ 6= x existed at time t because the signatures issued
at time periods t+ 1, t+ 2, . . . chain back to the original message x.

DAPS could be used to alternatively discourage time-stamping authority fraud by having the
subject consist of the time period t and the message consist of whatever information x is to be
signed at that time period. A time-stamping authority who signs an assertion for a given time
period using DAPS cannot sign another for the same time period without invalidating its own
key. Assuming an honest authority’s system is designed to only sign once per time period, the
signer need not statefully track the list of all signed subjects, since time periods automatically
increment.

8.3 Hybrid DAPS + standard signatures

DAPS could be combined with a standard signature scheme to provide more robustness in the
case of an accidental error, but also provide a clear and quantifiable decrease in security due to
a double signing, giving users a window of time in which to migrate away from the signer.

We can achieve this goal by augmenting a generic standard signature scheme with our
factoring-based DAPS as follows. The signer publishes a public key consisting of the standard
signature’s verification key, the 2:1-DAPS verification key n, and a verifiable Rabin encryption
under key n of, say, the first half of the bits of the standard scheme’s signing key. The hybrid
DAPS signature for a subject/message pair would consist of the standard scheme’s signature on
subject and message concatenated, and the DAPS signature on separated subject and message.
If two messages are ever signed for the same subject, then the signer’s DAPS secret key can
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be recovered, which can then be used to decrypt the Rabin ciphertext containing the first half
of the standard scheme’s signing key. This is not quite enough to readily forge signatures, but
it substantially and quantifiably weakens trust in this signer’s signatures, making it clear that
migration to a new signer must occur but still providing a window of time in which to migrate.
As the sketched combination of primitives exhibits non-standard dependencies between different
secret keys, a thorough cryptographic analysis of the construction is indispensable.

9 Conclusions

We have introduced a new type of signatures, double-authentication-preventing signatures, in
which a subject/message pair is signed. In certain situations, DAPS can provide greater
assurance to verifiers that signers behave honestly since there is a great disincentive for signers
who misbehave: if a signer ever signs two different messages for the same subject, then enough
information is revealed to allow anyone to forge arbitrary signatures or even fully recover the
signer’s secret key. Although this leads to less robustness in the face of accidental behaviour, it
also provides a mechanism for self-enforcement of correct behaviour and gives trusted signers
such as certificate authorities an argument to resist coercion and the compelled certificate
creation attack.

Our construction is based on a new primitive called extractable 2:1 trapdoor function. We
have shown how to instantiate this using an algebraic reformulation of sign-agnostic quadratic
residues modulo Blum integers; the resulting DAPS is unforgeable assuming factoring is hard,
with reasonable signature sizes and computation times.

We believe DAPS can be useful in scenarios where trusted authorities are meant to make
unique bindings between identifiers and digital objects. This includes the cases of certificate
authorities in PKIs who are supposed to make unique bindings between domain names and
public keys, and time-stamping authorities who are supposed to make unique bindings between
time periods and pieces of information.

Besides the practical applications of DAPS, several interesting theoretical questions arise
from our work. Are there more efficient constructions of DAPS? How else can extractable 2:1
trapdoor functions be instantiated? Given that DAPS and double-spending-resistant digital cash
use similar number-theoretic primitives, can DAPS be used to generically construct untraceable
digital cash? Can these techniques be applied to key generation in the identity-based setting?
Can DAPS be adapted to provide assurance in a multi-CA setting?
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A Basic results from number theory

We recall some definitions and results (without proof) from number theory as well as establish
notation that we use in the paper. We refer the reader to classic textbooks on cryptogra-
phy [MvOV01, Ch. 2–3], [KL07, Ch. 7, 11], or on number theory [IR90] for details.

Fact 1 (Quadratic residues modulo p). Let p be a prime number. The group of quadratic
residues modulo p is denoted by QRp =

{
x2 : x ∈ Z×p

}
. The Legendre symbol

( ·
p

)
: Z×p →

{−1, 1} : a 7→
(
a
p

)
= a(p−1)/2 serves as an indicator function for QRp: a ∈ QRp ⇔

(
a
p

)
= 1. We

have |QRp| = |Z×p |/2 = (p− 1)/2. If p ≡ 3 mod 4 then −1 6∈ QRp, in which case
(−a
p

)
= −

(
a
p

)
for all a ∈ Z×p . The Legendre symbol can be efficiently computed.

Fact 2 (Structure of Zn and Z×n ). Let n be an RSA modulus, that is, n = pq is the product
of distinct prime numbers p and q. When p ≡ q ≡ 3 mod 4, n is called a Blum integer. The
Chinese Remainder Theorem states that Zn ∼= Zp × Zq (as rings), and hence Z×n ∼= Z×p × Z×q (as
groups). An isomorphism ψ : Zn → Zp × Zq is given by x 7→ (x mod p, x mod q). Both ψ and
ψ−1 can be efficiently computed if the factors of n = pq are known.

Fact 3 (Quadratic residues modulo n). Let n = pq be an RSA modulus. Then QRn ={
x2 : x ∈ Z×n

}
denotes the group of quadratic residues modulo n. The Jacobi symbol

( ·
n

)
:

Z×n → {−1, 1} : a 7→
(
a
n

)
is defined by

(
a
n

)
=
(a mod p

p

)(a mod q
q

)
. Although

(
a
n

)
= 1 for all

a ∈ QRn, the Jacobi symbol does not serve as an indicator for QRn: if n is a Blum integer, then
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(−1
n

)
= 1 and thus

(
a
n

)
=
(−a
n

)
for all a ∈ Z×n , but fact a ∈ QRn ⇒ −a 6∈ QRn implies that at

most one of a, a′ can be in QRn. If n is a Blum integer such that p ≡ 3 mod 8 and q ≡ 7 mod 8,
then

(
2
n

)
= −1. The Jacobi symbol can be efficiently computed, even if the factorization of n is

not known.
The set Jn =

{
a ∈ Z×n :

(
a
n

)
= 1
}

is a subgroup of Z×n , and QRn is a subgroup of Jn. Define
Jn = Z×n \ Jn and QRn = Jn \ QRn. If we set ϕ(n) = (p − 1)(q − 1) then |Z×n | = ϕ(n),
|Jn| = |Jn| = ϕ(n)/2, and |QRn| = |QRn| = ϕ(n)/4. These relations are illustrated in Figure 8
(left).

Fact 4 (Square roots in Z×n ). Let n be an RSA modulus. Every element y ∈ QRn has exactly
four square roots in Z×n , namely {±x0,±x1}, where x0, x1 ∈ Z×n . If n is a Blum integer, then(
x0
n

)
6=
(
x1
n

)
and exactly one of {±x0,±x1} is in QRn. Since (x0 − x1)(x0 + x1) ≡ x2

0 − x2
1 ≡

y − y ≡ 0 mod n, non-trivial divisors of n are given by gcd(n, x0 − x1) and gcd(n, x0 + x1).
Square roots modulo n can be efficiently computed if the factors of n = pq are known.

Corollary 2 (Squaring in Z×n , Jn, and QRn). Let n be an RSA modulus. The squaring operation
Z×n → QRn : x 7→ x2 is a 4:1 mapping. If n is a Blum integer, then squaring is a 2:1 function
from Jn to QRn, while squaring is a 1:1 function both from QRn to QRn and from QRn to
QRn. These relations are illustrated in Figure 8 (left).

Fact 5 (Computing square roots in Z×n is hard). Let n be an RSA modulus. Computing square
roots modulo n is as hard as factoring n. In particular, given an algorithm A that computes
square roots of elements in QRn, factors of n can be found by randomly picking x ←R Z×n
and running x′ ←R A(n, x2) to obtain a second, potentially different, square root of x2. With
probability 1/2, x′ 6≡ ±x; by Fact 4, a non-trivial factor of n is given by gcd(n, x− x′).

Fact 6 (Samplability and decidability of Zn, Z×n , Jn, Jn). Let n = pq be an RSA modulus,
t ∈ Z×n a fixed element with

(
t
n

)
= −1, and `� log n. Identify set {0, 1}` with [0, 2`− 1] using a

canonical bijection and consider functions

E : {0, 1}` → Zn : r 7→ r mod n

F : Z×n → Jn : x 7→
{
x if

(
x
n

)
= +1

xt if
(
x
n

)
= −1

.

A common method (see [Des95, Sho05] and [NIS12, §B.5.1.3]) for sampling random elements x
from Zn is to pick a seed r ←R {0, 1}` and to output x = E(r). The resulting distribution is
statistically close to uniform [Sho05]. If p and q grow exponentially in a security parameter, then
|Z×n |/|Zn| = 1− (p+ q − 1)/pq becomes negligibly close to 1, so function E can be used without
modification for sampling from Z×n with a distribution statistically close to uniform. Note that
membership in Z×n can be efficiently decided since Z×n = {x ∈ Zn : gcd(x, n) = 1}.

Elements in Jn and Jn can be efficiently recognized by evaluating the Jacobi symbol. Moreover,
it is not difficult to see that elements y can be uniformly sampled from Jn by picking a random
x←R Z×n and outputting y = F (x). Elements from Jn can be sampled in a similar fashion.

It is widely believed that, unless the factorization of n is known, distinguishing elements
in QRn from elements in QRn is a hard problem. It also seems to be infeasible to sample elements
from QRn without knowing a square root of these samples.

B Indifferentiable hashing onto QRn/±1

Specific applications of the group of sign-agnostic quadratic residues modulo a Blum integer n,
including our constructions in Sections 5 and 7, might rely on the existence of a hash function
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H : {0, 1}∗ → QRn/±1. Moreover, the corresponding security arguments might require modeling
H as a random oracle, as in Theorem 3. We show in the following how to construct such hash
functions onto QRn/±1 from a hash function onto bitstrings.

Let `� log n be an integer and assume h : {0, 1}∗ → {0, 1}` is a hash function that may be
modeled as a random oracle. From h, we construct H : {0, 1}∗ → QRn/±1 as H = G ◦F ◦E ◦ h,
where

E : {0, 1}` → Zn , F : Z×n → Jn , G : Jn → QRn/±1

are the functions specified by Fact 6 and (implicitly) by Lemma 7 (observe that E maps onto
Zn, not onto Z×n as syntactically required for composing E with F ; however, as described in
Fact 6, operations involving elements from Zn are statistically indistinguishable from operations
involving elements from Z×n ).

This method of constructing hash functions follows Boneh and Franklin [BF01] and Brier et
al. [BCI+10, BCI+09]. Specifically, Brier et al. show that if function ϕ = G ◦ F ◦ E is an
admissible encoding and h is a random oracle, then H = ϕ ◦ h is indifferentiable from a random
oracle [BCI+09, §3]. To program H, we can take a preimage of ϕ and program h accordingly.
We reproduce the definition and main theorem from [BCI+09] as follows.

Definition 18 (Admissible encoding [BCI+09]). A function ϕ : S → R between finite sets is an
admissible encoding if it satisfies the following properties:

(1) Computable: ϕ is computable in deterministic polynomial time.

(2) Regular: for s uniformly distributed in S, the distribution of ϕ(s) is statistically indistin-
guishable from the uniform distribution in R.

(3) Samplable: there is an efficient randomized algorithm I such that, for any r ∈ R, I(r)
induces a distribution that is statistically indistinguishable from the uniform distribution in
ϕ−1(r).

Theorem 5 (Construction of random oracle [BCI+09]). Let ϕ : S → R be an admissible
encoding. If h : {0, 1}∗ → S is a random oracle, then the construction H(m) = ϕ(h(m)) is
statistically indifferentiable from a random oracle.

As admissibility is a transitive property, it suffices to show that E,F,G are admissible
encodings. Define corresponding inversion algorithms IE , IF , IG as

IE : Zn → [0, 2` − 1] : x 7→ x+ kn (k ←R [0, b2`/nc − 1])

IF : Jn → Z×n : x 7→ x/tb (where b←R {0, 1})
IG : QRn/±1 → Jn : {±x} 7→ (−1)b · x (b←R {0, 1})

(and observe that IG is actually well-defined). Functions E,F,G and inversion algorithms
IE , IF , IG are clearly efficient. While the regularity of F and G is obvious, function E is
regular by Fact 6. It is also easy to see that E,F,G are samplable. Thus E,F,G are admissible
encodings, and so is ϕ = G ◦F ◦E. Hence H = ϕ ◦h : {0, 1}∗ → QRn/±1 behaves like a random
oracle by Theorem 5.

C Proofs

C.1 Proofs from Section 4

C.1.1 Proof of Lemma 1

We only prove the first inequality; the remaining two follow analogously. Define the required dis-
tinguishers as D′A(a) = DB(Apply(a)) and D′B(b) = DB(b), where we assume implicit parameter
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‘pub’. After observing that Apply is 2:1 and hence we have that Dist
U(B),Apply(U(A))
X,D (λ) = 0 for

any distinguisher D, the triangle inequality shows

Dist
SampleB ,SampleAB
X,DB (λ) ≤ Dist

SampleB ,U(B)
X,DB (λ)

+ Dist
U(B),Apply(U(A))
X,DB (λ)

+ Dist
Apply(U(A)),Apply(SampleA)
X,DB (λ)

= Dist
SampleB ,U(B)
X,D′B

(λ)

+ Dist
U(A),SampleA
X,D′A

(λ) .

C.1.2 Proof of Lemma 2

Construct INV-2 algorithm B and distinguisher DB as follows: Upon receiving (pub, a), B
computes b← Apply(pub, a) and outputs a′ ←R A(pub, b). For any element b to be decided, DB
outputs 1 iff Apply(pub,A(pub, b)) = b. Inspection shows

Dist
SampleB ,SampleAB
X,DB (λ)

=

∣∣∣∣ Pr
[
(td, pub)←R TdGen(1λ); b←R SampleB(pub) : DB(pub, b) = 1

]
−Pr

[
(td, pub)←R TdGen(1λ); b←R SampleAB(pub) : DB(pub, b) = 1

] ∣∣∣∣
=
∣∣∣Succ INV-1

X,A (λ)− Pr
[
Exp INV-2∗

X,B (λ) = 1
]∣∣∣ ,

where Exp INV-2∗
X,B is identical to Exp INV-2

X,B (cf. Figure 6) except that it returns 1 iff (a x∼ a′∨a = a′).

As Apply is 2:1, we have Pr
[
Exp INV-2∗

X,B (λ) = 1
]

= 2 ·Pr
[
Exp INV-2

X,B (λ) = 1
]

= 2 ·Succ INV-2
X,B (λ).

We combine these results to obtain

Dist
SampleB ,SampleAB
X,DB (λ) =

∣∣Succ INV-1
X,A (λ)− 2 Succ INV-2

X,B (λ)
∣∣ .

The statement of Lemma 2 follows immediately.

C.1.3 Proof of Lemma 3

Construct algorithm A as follows: Upon receiving (pub, b), A runs a′ ←R SampleA(pub) and
lets B compute a′′ ←R B(pub, a′) such that a′ x∼ a′′. Then A computes td′ ← Extract(pub, a′, a′′)
and inverts challenge b via Reverse(td′, b, 0). Algorithm A is successful in finding a preimage
for b whenever B is successful in finding a second preimage for a′, that is, Succ INV-1

X,A (λ) =

Succ INV-2
X,B (λ).

C.2 Proofs from Section 5

C.2.1 Proof of Theorem 1

Fix an efficient adversary A. Without loss of generality we assume that each of A’s queries to
the signature oracle is preceeded by a query on the same message to random oracle Hpub. We
also assume that A doesn’t make redundant queries (i.e., doesn’t query multiple times the same
message to Hpub or to OSign oracle; note that signature generation in 2:1-Sig is deterministic), and
that A queries Hpub(msg∗) before outputting forgery candidate (msg∗, σ∗). We finally assume
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that the output distribution of random oracle Hpub is the one induced by SampleB algorithm;
see Appendix B for the construction of such a random oracle.

The proof proceeds with a sequence of games.
Game G0 is the regular unforgeability game from Figure 1.
Game G1 is like G0 except that in the specification of the OSign oracle we replace PRF F by

a random function ϕ : {0, 1}∗ → {0, 1}; by a standard argument we obtain∣∣∣SuccG0
Σ,A(λ)− SuccG1

Σ,A(λ)
∣∣∣ ≤ Adv prf

F,C(λf ) ,

for an efficient PRF distinguisher C.
Game G2 is like G1 except that we change the way random oracle Hpub is implemented.

Concretely, instead of assigning values Hpub(msg) using the SampleB algorithm, we compute
amsg ←R SampleA(pub, d) for d = ϕ(msg) and return b = Apply(pub, amsg). We obtain∣∣∣SuccG1

Σ,A(λ)− SuccG2
Σ,A(λ)

∣∣∣ ≤ qH ·Dist
SampleB ,SampleAB
X,DB (λ2) ,

for some efficient distinguisher DB.
In Game G2, this new way of processing Hpub queries allows us to accurately answer signature

queries without requiring knowledge of td. Let (msg∗, σ∗) denote a valid forgery in game G2.
We then have Apply(pub, amsg∗) = Apply(pub, σ∗) (by the validity of the forgery) and, with
probability (close to) 1/2, Decide(pub, amsg∗) 6= Decide(pub, σ∗) (as bit ϕ(msg∗) remains hidden
from A). If this condition is met it allows the extraction of td from amsg∗ and σ∗. Once td
is known, winning the INV-2 game is trivial: SuccG2

Σ,A(λ) ≤ 2 · Succ INV-2
X,B (λ2) for an efficient

INV-2 solver B.

C.3 Proofs from Section 6

C.3.1 Proof of Lemma 4

“⊆”: Let {±y} ∈ QRn/±1 be arbitrary. Without loss of generality assume y ∈ QRn, i.e. there
exists x ∈ Z×n with x2 = y. But then {±x} ∈ Z×n /±1 and {±x}2 = {±(x2)} = {±y}. “⊇”:
Fix an element {±x} ∈ Z×n /±1 and let y ∈ Z×n be the (unique) value such that y = x2. Then
y ∈ QRn and {±x}2 = {±y} ∈ QRn/±1.

C.3.2 Proof of Lemma 5

Let {±y} ∈ QRn/±1 be arbitrary. Without loss of generality assume y ∈ QRn. By Fact 4 there
exist exactly four square roots {±x0,±x1} of y in Z×n . These correspond to the two elements
{±x0}, {±x1} ∈ Z×n /±1. Fact 4 further states that

(
x0
n

)
6=
(
x1
n

)
, that is, one of {±x0}, {±x1} is

in QRn/±1 and the other in QRn/±1, by equation (1). Factorization and computation of square
roots immediately follow from Fact 4.

C.3.3 Proof of Lemma 6

Assume towards contradiction the existence of an efficient algorithm A that computes square
roots of elements in QRn/±1. By picking {±x} ∈ Z×n /±1 at random and running {±x′} ←R

A(n, {±x}2) we obtain a second, potentially different, square root of {±x}2. By Corollary 1, with
probability 1/2 we have {±x′} 6= {±x} and thus obtain the factorization of n by Lemma 5.
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C.3.4 Proof of Lemma 7

By Fact 6, the distribution of a is statistically close to uniform on Z×n . Mapping a 7→ {±a} is 2:1,
so it preserves uniformity, i.e. the sampler for Z×n /±1 has the required property. For the QRn/±1

sampler we notice that if
(
a
n

)
= +1, then {±a} is already close to uniform in Jn/±1 = QRn/±1.

If
(
a
n

)
= −1, then

(
ta
n

)
= +1; since multiplication by t is a permutation of Zn, ta is close to

uniformly distributed in Jn, so {±ta} is close to uniformly distributed in Jn/±1 = QRn/±1. A
similar argument holds for the QRn/±1 sampler.

C.3.5 Proof of Theorem 2

Samplability. That Dist
SampleA,U(A)
X and Dist

SampleB ,U(B)
X are negligible for all efficient distin-

guishers is precisely the statement of Lemma 7.
(Second) preimage resistance. By Lemma 2 it suffices to show second preimage resistance.

Given an arbitrary element {±x0} ∈ Z×n /±1, assume an efficient adversary could compute
{±x1} ∈ Z×n /±1 such that {±x0} x∼ {±x1}, i.e., such that {±x0} 6= {±x1} and {±x0}2 = {±x1}2.
By Lemma 5, this suffices for factoring n.

Extractability. Given are {±x0}, {±x1} ∈ Z×n /±1 such that {±x0} x∼ {±x1}, i.e. such that
{±x0} 6= {±x1} and {±x0}2 = {±x1}2. By Lemma 5, this suffices for factoring n and recovering
trapdoor td = (p, q).

C.4 Proof of unforgeability (Theorem 3)

We use a sequence of games; underlining colors are used to highlight
::::::::
changes and additions

between games. Let A be an adversary for experiment Exp EUF
2:1-DAPS. Without loss of generality

we assume that A queries its OSign oracle at most once per subject. We further assume that the
distribution of random oracle Hpub is the one induced by SampleB algorithm; see Appendix B
for the construction of such a random oracle. Let Si be the event that game i outputs 1 when
running A.

Game 0. This is the original EUF experiment for 2:1-DAPS. For clarity, we reproduce it in
full detail:

1 (td, pub)←R TdGen(1λ2)
2 (subj∗,msg∗, σ∗)←R AOSign,Hpub(pub)
3 If A queries Hpub(subj):
4 If (subj, b) ∈ HList1, return b to A
5 b←R SampleB(pub)
6 Append (subj, b) to HList1

7 Return b to A
8 If A queries Hpub(subj, s, i):
9 If (subj, s, i, bi) ∈ HList3, return bi to A

10 bi ←R SampleB(pub)
11 Append (subj, s, i, bi) to HList3

12 Return bi to A
13 If A queries OSign(subj,msg):
14 Append (subj,msg) to SignedList
15 s← Reverse(td, Hpub(subj), 0)
16 (d1, . . . , dλh)← H#(subj, s,msg)
17 bi ← Hpub(subj, s, i) for all 1 ≤ i ≤ λh
18 ai ← Reverse(td, bi, di) for all 1 ≤ i ≤ λh
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19 σ ← (s, a1, . . . , aλh)
20 Return σ to A
21 Return 1 iff all the following hold:
22 - Ver(pub, subj∗,msg∗, σ∗) = 1
23 - (subj∗,msg∗) 6∈ SignedList
24 - ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1

By definition,
Pr[S0] = Succ EUF

2:1-DAPS,A(λ) . (3)

Game 1. In this game, we change the simulator so that it performs all operations without
using the signing key. We also change the random oracles that currently sample from set B
with SampleB(pub) algorithm to instead use, in some occasions, the hybrid construction from
Definition 14. These changes will not be detected unless one can either invert the 2:1-TDF or
can distinguish the two sampling methods.

1
::::::::::::::::::::::
(·, pub)←R TdGen(1λ2)

2 (subj∗,msg∗, σ∗)←R AOSign,Hpub(pub)
3 If A queries Hpub(subj):
4 If (subj, a, b) ∈ HList1, return b to A
5

:::::::::::::::::::::
a←R SampleA(pub, 0)

6
:::::::::::::::::
b← Apply(pub, a)

7 Append (subj, a, b) to HList1

8 Return b to A
9 If A queries Hpub(subj, s, i):
10 If (subj, s, i, ·, bi) ∈ HList3, return bi to A
11 bi ←R SampleB(pub)
12 Append (subj, s, i, ·, bi) to HList3

13 Return bi to A
14 If A queries OSign(subj,msg):
15 Append (subj,msg) to SignedList
16 t← Hpub(subj)
17 Event F1: Abort if there exists (subj, s′, ·, ·, ·) ∈ HList3 such that Apply(pub, s′) = t.
18 Retrieve (subj, s, t) from HList1

19 (d1, . . . , dλh)← H#(subj, s,msg)
20

:::::::::::::::::::::
ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh

21
::::::::::::::::::
bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh

22 Append (subj, s, i, ai, bi) to HList3 for all 1 ≤ i ≤ λh
23 σ ← (s, a1, . . . , aλh)
24 Return σ to A
25 Return 1 iff all the following hold:
26 - Ver(pub, subj∗,msg∗, σ∗) = 1
27 - (subj∗,msg∗) 6∈ SignedList
28 - ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1

Analysis of distribution of values given to A in game 1. First, we show that the
distribution of values returned to A in game 1 is indistinguishable from in game 0. Let us
consider each of the values given to A in turn. Suppose abort event F1 does not occur.

Of key importance in the following is Lemma 1, which gives an upper-bound on the dis-
tinguishability of values returned by SampleB(pub) from values returned by running a ←R
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SampleA(pub) and then returning Apply(pub, a).

• pub in line 1: This value is distributed identically to game 0.

• Hpub(subj) queries: These values are always consistent with other queries in this game.
Any algorithm that distinguishes the values used for this query in this game from the
previous game allows us to construct a distinguisher DB between SampleA0

B and SampleB.

• OSign(subj,msg) queries: These values are always consistent with Hpub(subj) queries. More-
over, they are also consistent with Hpub(subj, s, i) queries unless the OSign(subj,msg) query
is asked after an Hpub(subj, s′, i) query with Apply(pub, s′) = Hpub(subj). As this case is
covered by the F1 event, we disregard it for now. Any algorithm that distinguishes the
values used for this query in this game from the previous game allows us to construct a
distinguisher DB between SampleA0

B and SampleB or between SampleA1
B and SampleB.

Thus,

|Pr[S0]− Pr[S1]| ≤ (q1 + (λh + 1)qS) Dist
SampleAB ,SampleB
X,DB (λ2) + Pr[F1] . (4)

Analysis of abort event F1. We claim that, if A makes at most q1 queries to its Hpub(·)
oracle, then we can construct an efficient algorithm B1 against preimage resistance of 2:1-TDF
X such that

Pr[F1] ≤ q1 Succ INV-1
X,B1 (λ2) . (5)

Proof of claim: Let (pub, b∗) be the INV-1 challenge. Construct B1 as a modification of game 1
in which B1 guesses a value ̂←R [1, q1] and, upon A’s ̂th (unique) query to Hpub(·), B1 returns
the challenge value b∗ to A instead of following the algorithm in game 1. If event F1 occurs, then
with probability 1/q1 the value subj for which it occurs is the value of subj that was queried to
the ̂th Hpub(·) query. But then there is some (subj, s′, ·, ·, ·) ∈ HList3 such that Apply(pub, s′) =
Hpub(subj) = b∗. In other words, s′ in an inverse of b∗, and hence B1 has successfully inverted

the INV-1 challenge, winning Exp INV-1
X,B1 (λ2). Thus, Pr[F1] ≤ q1 Pr

[
Succ INV-1

X,B1 (λ2) = 1
]
.

Game 2. In this game, we place an additional condition on the simulator to output 1, namely
that the signature returned by the adversary must include an s value which was previously
queried to Hpub. However, since the s value for a subject is only known to the challenger before
an OSign query, no adversary should be able to construct a valid signature without querying
OSign.

1 (·, pub)←R TdGen(1λ2)
2 (subj∗,msg∗, σ∗)←R AOSign,Hpub(pub)
3 If A queries Hpub(subj):
4 If (subj, a, b) ∈ HList1, return b to A
5 a←R SampleA(pub, 0)
6 b← Apply(pub, a)
7 Append (subj, a, b) to HList1

8 Return b to A
9 If A queries Hpub(subj, s, i):

10 If (subj, s, i, ai, bi) ∈ HList3, return bi to A
11 ai ←R SampleA(pub, 0)
12 bi ← Apply(pub, ai)
13 Append (subj, s, i, ai, bi) to HList3

14 Return bi to A
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15 If A queries OSign(subj,msg):
16 Append (subj,msg) to SignedList
17 t← Hpub(subj)
18 Event F1: Abort if there exists (subj, s′, ·, ·, ·) ∈ HList3 such that Apply(pub, s′) = t.
19 Retrieve (subj, s, t) from HList1

20 (d1, . . . , dλh)← H#(subj, s,msg)
21 ai ← SampleA(pub, di) for all 1 ≤ i ≤ λh
22 bi ← Apply(pub, ai) for all 1 ≤ i ≤ λh
23 Append (subj, s, i, ai, bi) to HList3 for all 1 ≤ i ≤ λh
24 σ ← (s, a1, . . . , aλh)
25 Return σ to A
26 Return 1 iff all the following hold:
27 - Ver(pub, subj∗,msg∗, σ∗) = 1
28 - (subj∗,msg∗) 6∈ SignedList
29 - ∀ subj,msg0,msg1 : (subj,msg0), (subj,msg1) ∈ SignedList⇒ msg0 = msg1

30 - Event ¬F2: ∀ i ∃ (subj∗, s∗, i, a∗i , bi) ∈ HList3 : Apply(pub, a∗i ) = bi

Analysis of difference in success probabilities in game 1 and game 2. The messages
that A sees in game 2 have exactly the same distribution as in game 1. The only difference is
the additional condition ¬F2 for the experiment to output 1. Clearly, then,

|Pr[S1]− Pr[S2]| ≤ Pr[F2] . (6)

If event F2 occurs, then there is some i such that A never queried Hpub(subj∗, s∗, i) but,
since the signature σ∗ verified, Apply(pub, a∗i ) = Hpub(subj∗, s∗, i). In other words, the value
bi = Hpub(subj∗, s∗, i) was first computed when the challenger tried to verify the signature in
step 26. If bi had been picked uniformly at random, the probability of it being guessed would
be 1/|B|. If bi had been picked using SampleB, the probability of it being guessed would have
been at most the probability of a uniform bi being guessed plus the probability of distinguishing

the uniform distribution from SampleB’s distribution, namely: 1/|B|+ Dist
U(B),SampleB
X,D1

B
(λ2) for

an efficient distinguisher D1
B. Finally, if bi had been picked using SampleAB (which is indeed

the case), the probability of it being guessed would have been at most the probability of
a uniform bi being guessed plus the probability of distinguishing the uniform distribution
from SampleB’s distribution plus the probability of distinguishing SampleB’s distribution from
SampleAB’s distribution, namely:

Pr[F2] ≤ 1

|B|
+ Dist

U(B),SampleB
X,D1

B
(λ2) + Dist

SampleB ,SampleAB
X,D2

B
(λ2) . (7)

Analysis of success in game 2. Claim: For every probabilistic algorithm A making qS
queries to OSign, there exists probabilistic algorithms B2 and C with running time linear in that
of A such that

Pr[S2] ≤ 2qSλh Succ INV-2
X,B2 (λ2) + Succ CR

H#,C(λh) . (8)

Proof of claim: We will construct an adversary B2 for Exp INV-2
X,· (λ2) using algorithm A. Let

(pub, a∗) be the challenge received by B2 in Exp INV-2
X,B2 (λ2).

Next, B2 guesses a value ̂←R [1, qS ] and, upon A’s ̂th query to OSign, B2 further guesses a
value ı̂←R [1, λh]. If dı̂ 6= Decide(pub, a∗), then B2 aborts. Otherwise, it sets aı̂ ← a∗.

Suppose game 2 outputs 1. Then A has output (subj∗,msg∗, σ∗) which is a valid signature
under pub, was not signed by OSign, and there was no double signature for any subject queried to
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OSign. Moreover, since neither event F1 nor F2 occurred, A must have queried OSign(subj∗,msg′)
for some msg′ 6= subj∗. With probability 1/qS , A issued this query on its ̂th to OSign. If this
was not the case, then B2 aborts.

Now, either H#(subj∗, s∗,msg∗) = H#(subj∗, s∗,msg′), or not. If so, then a collision has been
found in H#, then this experiment serves as an efficient algorithm C which finds collisions in H#.
Hence, suppose no such collision occurs, namely that H#(subj∗, s∗,msg∗) 6= H#(subj∗, s∗,msg′).
In particular, there is some bit i where H#(subj∗, s∗,msg∗) and H#(subj∗, s∗,msg′) differ. With
probability 1/λh, i = ı̂. When this is the case, we have that ai

x∼ a∗. This is a solution to the
INV-2 challenge a∗, which B2 outputs to win Exp INV-2

X,B2 (λ2).
By the argument above, if B2 correctly guesses ̂ and ı̂, and if Decide(pub, a∗) = dı̂, then

whenever A wins game 2, B wins Exp INV-2
X,B2 (λ2).

Final result. The final result follows from combining equations (4) through (8) and applying
Lemma 1.

C.5 Proof of double-signature extractability (Theorem 4)

We propose the following DSE∗ extractor (cf. Definition 10):

• Extract(pub, (subj,msg1, σ1), (subj,msg2, σ2)) : Parse (s1, a
1
1, . . . , a

1
λh

) ← σ1 and (s2, a
2
1,

. . . , a2
λh

) ← σ2. Let (d1
1, . . . , d

1
λh

) ← H#(subj, s1,msg1) and (d2
1, . . . , d

2
λh

) ← H#(subj, s2,

msg2). Let i ∈ [1, λh] be such that d1
i 6= d2

i . Use 2:1-TDF’s Extract algorithm to output
td← Extract(pub, a1

i , a
2
i ).

It is straightforward to see that this is a valid extractor. Given two valid subject-message-signature
tuples (subj,msg1, σ1) and (subj,msg2, σ2) for which msg1 6= msg2, except with negligible proba-
bility, H#(subj, s1,msg1) 6= H#(subj, s2,msg2). Assume no such collision occurs and the hash
values are (d1

1, . . . , d
1
λh

) and (d2
1, . . . , d

2
λh

). Then there exists some position i ∈ [1, λh] such that

d1
i 6= d2

i .
Now, since both σ1 and σ2 are valid, we have that Apply(pub, a1

i ) = Hpub(subj, s1, i) =
Hpub(subj, s2, i) = Apply(pub, a2

i ), but Decide(pub, a1
i ) 6= Decide(pub, a2

i ). In other words, a1
i

x∼ a2
i .

Thus, 2:1-TDF’s Extract(pub, a1
i , a

2
i ) returns the trapdoor td corresponding to pub.
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