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Abstract: In this paper, we focus on a novel technique called cube-linear attack, which is obtained by combining 
the cube and linear attacks together, is first proposed to deal with the probabilistic polynomial, aiming to 
furthermore mine the available secret information. Based on different combination ways of the two attacks, 
moreover, two cube-linear schemes are discussed. Naturally, we can use cube-linear attack as an unordinary trick 
in linear cryptanalysis, which has never been considered by the previous linear cryptanalysis yet. As a new 
contribution to linear cryptanalysis, it is beneficial to allow for a reduction in the amount of data required for a 
successful attack in specific circumstances. Applying our method to a reduced-round Trivium, as an example, we 
get better linear cryptanalysis results. More importantly, we believe that the novel linear cryptanalysis technique 
introduced in this paper can be extended to other ciphers. In other words, it is worth considering for our method 
in linear cryptanalysis. 
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1. Introduction 

Linear cryptanalysis is an effective known-plaintext attack against block ciphers. At present, the 
attack has been adapted to stream ciphers [Golić, 94, Golić, 02, Muller, 05, Shahram, 05, Turan, 07]. 
Matsui and Yamagishi [Matsui, 92] in 1992 introduced the idea of linear cryptanalysis in an attack on 
FEAL [Shimizu, 87]. The techniques used in this attack were refined by Matsui and used dramatic 
effect on Data Encryption Standard (DES), eventually leading to the first experimental cryptanalysis 
of the cipher reported in the open community [Matsui, 93, Matsui, 94]. 

Subsequently, several refinements to the basic idea of linear cryptanalysis have been suggested to 
improve the efficiency of the attacks, either in specific circumstances or in all cases. In 1994, Kaliski 
and Robshaw [Kaliski, 94] proposed an extension based on the use of multiple linear approximations. 
Martin Hellman and Susan K. Langford [Langford, 94] in 1994 introduced the differential-linear 
attack which is a mix of both differential cryptanalysis and linear cryptanalysis. In 1996, Kundsen and 
Robshaw [Knudsen, 96] introduced the idea of extending Matsui’s linear cryptanalytic techniques to 
the more general case in which non-linear relations are also considered. In [Bogdanov, 11], 
zero-correlation linear cryptanalysis, the counterpart of impossible differential cryptanalysis in the 
domain of linear cryptanalysis, was proposed by Bogdanov and Rijmen, resulting in a faster attack for 
some ciphers. 
1.1 Motivation and Contribution 

As introduced above, there have been several extensions to linear cryptanalysis at present. 
Nevertheless, is there any other method able to be exploited as a new contribution to linear 
cryptanalysis? Namely, is there any available information unexposed by the previous linear 
cryptanalysis? 

In this paper, we answer this question positively. Generally speaking, linear cryptanalysis exploits 
specific correlations between the input and the output of cryptographic primitives. For almost any 
cryptographic scheme, each output bit can be described by a multivariate polynomial over GF(2) of 
public variables and secret variables. When launching a linear attack, we can in specific scenarios 
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obtain an explicit description of multivariate polynomial. For the tweakable polynomial, it is cube 
attack proposed in [Dinur, 09] that is a very powerful tool to recover the key information. Once 
recovering the key information contained in the polynomial, the degrees of non-linear monomials 
involving these recovered bits will decrease, even fall to zero. It’s just the desired purposes. As we 
know, the cube attack technique is used to deal with such a polynomial with probability one. Due to 
the above polynomial usually obtained with probability less than one after some approximations, 
however, the actual use of cube attack has to be adapted for the lower overheads. Here, we combine 
the cube and linear attacks together to recover the available key information, called cube-linear attack. 
Subsequent analysis also proves that our method works well. Since there is still some key information 
able to be recovered by cube-linear attack, which has never been considered by the previous linear 
cryptanalysis yet, we deeply confirm that there must be more or less improvements for the subsequent 
linear cryptanalysis. 

Particularly based on different combination ways of cube and linear attacks, two schemes A and B 
are given in order to achieve a lower data complexity required for a successful attack. The data 
complexity and the success rate of each scheme are discussed only when all the derived polynomials 
defined by any determined cube index are independent. Otherwise, the situations are too complicated 
to obtain any concrete results about the data complexity and the success rate of the two schemes, if 
using the existing theory (See Section 3). A detailed description of our theory appears in Section 3. 

Afterwards, an improved linear cryptanalysis technique is proposed using the cube-linear attack. 
As an application, we cryptanalyze the security of the eSTREAM finalist Trivium against linear 
cryptanalysis. Three linear approximations with the same average bias 2-23.2 are found and four key 
bits are recovered for the reduced version of Trivium with the initialization of 288 rounds (out of 
1152). The data complexity 247.2 IVs is enough to achieve this result with 97.8% success rate, 
improving the previous linear cryptanalysis results. Although a few better cryptanalytic results on 
Trivium had been published several years earlier using other attacks [Vielhaber, 07, Dinur, 09], 
however, we believe that our methods are meaningful from the point of view of improving linear 
cryptanalysis.  

Notably, there are some differences between cube attack and our method, although based on the 
same essence of higher order differential cryptanalysis. For convenient to introduce, we follow the 
relevant concepts and terminology of cube attack. In order not to cause misunderstanding, however, it 
is necessary to explain the differences as follows. Firstly, as stated previously, the cube attack is 
applied to a polynomial with the probability one, while what our method copes with is the 
probabilistic polynomial. Secondly, the primary costs of cube attack lie in searching for the 
appropriate cube indexes, while our method focuses on dealing with an explicit polynomial. More 
importantly, we argue that it is not appropriate to make comparisons between cube attack and linear 
cryptanalysis, since they are two different methods. In terms of the cryptanalysis, one in fact should 
try various kinds of methods and what we do in this paper is to put forward a trick called cube-linear 
attack which could exactly result in more efficient linear cryptanalysis. In other words, it is worth 
considering for our method in launching linear attacks on other ciphers. 

1.2 Organization 

This paper is organized as follows. In Section 2 we briefly review cube attack and linear cryptanalysis. 
Afterwards, we describe the cube-linear attack and propose an improved linear cryptanalysis in 
Section 3. In Sections 4, we apply our method to a specific analysis of Trivium. Finally, we make a 
few concluding remarks in Section 5. 

2. Cube Attack and Linear Cryptanalysis 

2.1 A Review of Cube Attack 

Cube attack [Dinur, 09], first formalized by Itai Dinur and Adi Shamir at EUROCRYPT 2009, is a 
generic type of algebraic attack that may be applied against any cryptosystem, provided that the 
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attacker has access to a bit of information that can be represented by a “low-degree” multivariate 
polynomial over GF(2). In essential, the cube attack, similar to AIDA [Vielhaber, 07], is closely 
related to the previously known attack—the higher order differential attacks [Lai, 94]. 
In almost any cryptographic scheme, each output bit iz  can be described by a multivariate master 

polynomial over GF(2) of public variables 1 2, , , mv v vL  being bits of the plaintext for block cipher or 

bits of the initial vector for stream cipher and depending on secret variables 1 2, , , nx x xL  being bits 

of the key: 1 1( , , , , , )i m nz p v v x x= K K . 
To simplify our notation, we now ignore the distinction between public and private variables. 

Given a multivariate master polynomial with n variables 1( , , )np x xK over GF(2) in algebraic normal 

form (ANF), and a term It  containing variables from an index subset I  that are multiplied together, 

the polynomial can be written as the sum of terms which are supersets of I  and terms that miss at 
least one variable from I : 

1 ( ) 1( , , ) ( , , )n I S I np x x t P q x xº × +K K  

where ( )S IP  is called the superpoly of I  in p . Note that the superpoly of I  in p  is a 

polynomial that does not contain any common variable with It , and each term in 1( , , )nq x xK  does 

not contain at least one variable form I . 
Any subset I  of size s defines a s-dimensional Boolean cube of 2s vectors IC  in which we 

assign all the possible combinations of 0/1 values to variables in I , and leave all the other variables 
undetermined. Any vector Iv CÎ defines a new derived polynomial vp  with n s- variables 

(whose degree may be the same or lower than the degree of the original polynomial). Summing these 
derived polynomials over all the 2s possible vectors in IC , we end up with a new polynomial, which 

is denoted by I vp p
D

=å . 

Theorem1. [Dinur, 09] For any polynomial p and subset of variables I , ( )I S Ip pº modulo 2. 

The attack is a known plaintext one and it has two phases. In the first preprocessing phase the task is 
to find as many maxterms It  and corresponding linear superpolys ( )S IP  as possible. In the next 

online phase, the attacker solves the system of linear equations obtained and gets some values about 
the secret variables. 

2.2 A Review of Linear Cryptanalysis 

The basic idea behind linear cryptanalysis is to find some linear approximations to the action of 
cryptographic primitives. In other words, the attack exploits some statistical correlations between 
input and output bits. For a cryptographic primitive with k-bit key 1 2( , , , )kk k kK , n-bit plaintext 

1 2( , , , )np p pK  and ciphertext 1 2( , , , )nc c cK , the aim of the attack is to find the index sets , ,I J L  
such that 

                          j l i
j J l L i I

p c k
Î Î Î

Å =å å å                          (1) 

holds with probability 1 2 , 0p e e= + ¹ . 
For an iterated block cipher or stream cipher, linear cryptanalysis is usually executed as follows. 

By looking for and combining the linear or nonlinear approximations of different rounds, the final 
linear approximations of the whole cipher can be found with probability calculated according to 
Lemma 1 (Piling-Up Lemma). 
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Lemma1. [Matsui, 93] For each value (1 )i n£ £ , let iX  be a random variable, independent of iX  

for all j i¹ , such that ( 0) , ( 1) 1i i i iP X p P X p= = = = - . Then 

( )1
1 2

1

1
( 0) 2 1 2

2

n
n

n i
i

P X X X p-

=

Å Å Å = = + -ÕK  

Algorithm1: Determination of Key Information 
T : = # of plaintexts (out of N) such that the left side of (1) is equal to 0. 
IF 2T N>  

THEN guess 0ik =å (when 1 2p > ) or 1 (otherwise) 

ELSE guess 1ik =å (when 1 2p > ) or 0 (otherwise) 

END 
Given an effective linear approximation, it is possible to determine one bit of information about 

the key ii I
k

Îå  with the help of Algorithm 1 [Matsui, 93], the indices I  being fixed by linear 

expression; its core is a maximum-likelihood. 

The success rate to recover the key ii I
k

Îå  is as follows [Matsui, 93], which is related to both 

data complexity N (the number of plaintext/ciphertext pairs) and bias e : 
2 2

2

1

2
x

N
e dx

e
g

p

¥
-

-
= ò  

The most important goal of linear cryptanalysis is to find the best linear approximation, i.e. the 
linear expression which holds with bigger bias. However, there have thus far no optimal algorithms to 
find the best linear approximations. In this paper, we tentatively put forward a novel technique as a 
contribution to linear cryptanalysis, namely cube-linear attack to be introduced next. 

3. An Improved Linear Cryptanalysis 

3.1 Cube-Linear Attack 

This subsection provides the basic idea of our cube-linear attack to deal with the probabilistic 
polynomial usually emerging in linear cryptantlysis. Generally speaking, linear cryptanalysis exploits 
specific correlations between the input and the output of cryptographic primitives. For almost any 
cryptographic scheme, each output bit can be described by a multivariate master polynomial over 
GF(2) of public variables and secret variables. During the linear attack, we can in specific scenarios 
obtain such an explicit description of polynomial ( , )iz p v k=  with probability p* which is easily 

split into the form 1 ( ) 1( , , ) ( , , )n I S I np x x t P q x xº × +K K  for any term It  based on cube attack. 

Naturally, we can determine the maxterm It  leading to an expression ( )S IP  of which the degree 

( )( )S Id P  is one. Furthermore, the key information contained in ( )S IP  can be recovered. As we know, 

the cube attack is usually used to deal with such a polynomial with probability one. Due to the above 
polynomial usually holding with probability less than one after some approximations, however, the 
actual use of cube attack has to be adapted. Here, we combine the cube and linear attacks together in 
order to achieve a lower data complexity required for a successful attack. Based on the different 
combination ways of the two approaches, we give two schemes, Scheme A and Scheme B, to recover 
the information unexposed by the previous linear cryptanalysis techniques under the following 
assumption. 
Assumption1. All the derived polynomials defined by any determined maxterm It  are independent. 



5 
 

3.1.1 Description of Scheme A 

Scheme A, the adapted cube attack, can also be considered as “cube-linear-cube attack”, 
corresponding to the three steps of Scheme A. The below analysis show more detailed explanations 
about Scheme A. Based on the split polynomial ( )( , ) ( , )I S Ip v k t P q v kº × +  as above, we can easily 

determine the maxterm It  leading to an expression ( )S IP  of which the degree ( )( )S Id P  is one. 

Correspondingly, I  and IC  are all distinct. Running all the possible values of IC , any vector 

Iv CÎ  can define a derived polynomial vp  with probability *
vp  ( *

vp  represents the probability of 

vp  when IC  takes the value v  in condition that the polynomial ( , )iz p v k=  holds with 

probability p*). Denote |vK  the XOR of all the monomials involving only the key in the derived 

polynomial |vp . Then |vK  can be determined with the help of Algorithm 1, since the derived 

polynomial |vp  is a linear approximation when considering |vK  as a single variable. Similar to 

cube attack, we obtain a new linear equation when summing all the recovered |vK . 

SCHEME A 

Step1. Determine the maxterm It . 

Step2. Recover |vK  in each derived polynomial |vp  by Algorithm 1. 

Step3. Sum all the recovered |vK , then we know the value |
I

vv C
K

Îå . 

Theorem2. Data complexity of Scheme A is ( )( )22 1 2 1 *

0 0
1 2

s s

A v vv v
N N O p

-- -

= =
= = -å å , and the 

success rate of Scheme A is ( )2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ , where vN  and vg  are respectively 

referred to as the data complexity and success rate to recover |vK  using Algorithm 1, and s  is the 

size of index subset I . 
Proof. Since the probability of each derived polynomial vp  is *

vp , the data complexity to recover 

|vK  is easily calculated as ( )-2* 1 2v vN O p= -  with a confident success rate vg  according to 

Algorithm 1. The total data complexity of Scheme A is obviously 

( )( )22 1 2 1 *

0 0
1 2

s s

A v vv v
N N O p

-- -

= =
= = -å å . 

Let *
vg  be the failure rate to recover |vK , then * 1v vg g= - . For simplicity, we may as well 

denote “0” and “1” the right value of |vK , and the wrong value of |vK  respectively. Then the 

probability to recover the right value of |vK  and the wrong value of |vK  using Algorithm 1 are 

( )| 0v vp K g= =  and ( ) *
| 1v vp K g= = . Based on the Assumption 1, we deduce that all the 

recovered |vK  independently hold each other. So the success rate of Scheme A is 

( ) ( )2 12 1 2 1
0 0

0 1 2 2 1 2
ss s

A vvv v
p Kg g

-- -
= =

= = = + -ÕÅ  by Piling-Up Lemma.                     □ 
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3.1.2 Description of Scheme B 

SCHEME B 

Step1. Determine the maxterm It . 

Step2. Sum all the derived polynomials |vp , then we have ( ) |
I

S I vv C
p p

D

Î
=å . 

Stpe3. Recover the key information contained in ( )S Ip  by Algorithm 1. 

Corresponding to the above three steps, Scheme B can be considered as “cube-linear attack”. The first 
two steps are actually the use of cube attack, then the key information contained in ( )S Ip  can be 

determined with the help of Algorithm 1. 

Theorem3. The data complexity of Scheme B is ( ) 2
2 12 1 *

0
2 1 2

ss

B vv
N O p

-
--
=

æ ö
= -ç ÷

è ø
Õ  with a confident 

success rate Bg . 

Proof. Under the above Assumption 1, all the derived polynomials vp  defined by Iv CÎ  

independently hold with probability *
vp . So the bias that ( ) |

I
S I vv C

p p
Î

= å  holds is calculated as 

2 12 1 *

0
2 1 2

ss

vv
p

--
=

-Õ  due to Piling-up Lemma. Using Algorithm 1, the data complexity BN  to 

recover the key information contained in ( )S Ip  with a confident success rate Bg  is 

( ) 2
2 12 1 *

0
2 1 2

ss

vv
O p

-
--
=

æ ö
-ç ÷

è ø
Õ .                                                         □ 

3.1.3 Comments on Scheme A and Scheme B 

It should be noted that the recovered information using Scheme A is the same as Scheme B. 

Theorem4. When the probability of each derived polynomial *
vp  satisfies * 1.51 2 2vp -- £ , then 

2 1

2

2
s

s

A BN N
-

£  (the equality sign holds when * 1.51 2 2vp -- = ), where AN  and BN  respectively 

represent the data complexity of Scheme A and Scheme B, and s  is the size of index subset I . 

Proof. According to Theorem 2 and Theorem 3, ( )( )22 1 *

0
1 2

s

A vv
N O p

--

=
= -å  and 

( ) 2
2 12 1 *

0
2 1 2

ss

B vv
N O p

-
--
=

æ ö
= -ç ÷

è ø
Õ . Let ( ) 2

*2 1 2v vx p
-

= × - , then (1, )vx Î +¥ , ( )2 1

0
4

s

A vv
N x

-

=
= å  

and ( )2 1

0
4

s

B vv
N x

-

=
= ×Õ . If A BN N=  and all vx  share the same value, we deduce (2 1)2

ss
vx -= . 

When (2 1)2
ss

vx -³ , we have the following 
2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 1 0 12 1 2 1 2 2

1 1 1

1 1 1 1
2 1

2 2 2 2

s

s

s

s

s s s

vv

vv

i i

s
s s s s

x x x x

x x xx

x x x x x x x x x x x

-

= -
-

-
=

- +- - -

+ + +
=

= + + + +

£ + + + + = × =

å
Õ

L
L

L LL L L L

L L

 

Specially, when 2vx ³ , i.e. * 1.51 2 2vp -- £ , the following 
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2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 1 0 12 1 2 1 2 2

2 1 2 1 2 1 2 1

1 1 1

1 1 1 2

2 2 2 2

s

s

s

s

s s s

s s s s

vv

vv

i i

s

x x x x

x x xx

x x x x x x x x x x x

-

= -
-

-
=

- +- - -

- - - -

+ + +
=

= + + + +

£ + + + + =

å
Õ

L
L

L LL L L L

L L

 

holds, i.e. 
2 1

2

2
s

s

A BN N
-

£ .                                                           □ 

We have proved that 
2 1

2

2
s

s

A B BN N N
-

£ £  only when the probability *
vp  of each derived 

polynomial satisfies * 1.51 2 2vp -- £ . The results haven’t yet been given for the remaining scenarios. 

With regard to the success rate of the two schemes, ( )2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ , whereas Br  is 

equal to vr  depending on the relationship between the data complexity and the bias. If no more 
plaintext/ciphertext pairs, the success rate of Scheme A will be lower than Scheme B. Table 1 
provides some comparisons between Scheme A and Scheme B in the same level of success rate. 

Table 1. Comparison Between Scheme A and Scheme B 
* 1 2vp -  

s 

2-1.3 2-3 2-6 2-9 Success 
Rate/% 

AN  BN  AN  BN  AN  BN  AN  BN  

1 24 23.2 27.4 210 213.4 222 219.4 234 

97.7 2 25.3 24.4 28.7 218 214.7 242 220.7 266 

3 26.5 26.8 29.9 228 215.9 282 221.9 2130 

It shows that Scheme A is in fact more superior in the major scenarios because of the following 
reasons. First of all, since the probability of the derived polynomial *

vp  in the common cases satisfies 
* 1.51 2 2vp -- << , this means that A BN N<<  according to our calculations. Secondly, the success 

rate Ar  wouldn’t quickly decrease since ( )2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ . Meanwhile, it can be 

enhanced through increasing a few plaintext/ciphertext pairs by the theory of linear cryptanalysis. 
Taken together, however, this should depend on the particular situation that when to choose Scheme A 
or Scheme B. 
REMARK1. For both Scheme A and Scheme B, the first thing in practice we need to do after 
determining the maxterm It  is to verify that whether Assumption 1 comes into existence or not. If it 
is tenable, then we have the above theorems. Otherwise, the situations are too complicated to obtain 
any concrete results about the data complexity and success rate of the two schemes using the present 
theory. 
3.2 An Improved Linear Cryptanalysis 

In the probabilistic polynomial, it is the key information recovered by our cube-linear attack that has 
never been exposed by the previous linear cryptanalysis, thus we confirm that the cube-linear attack 
indeed provides us with a paradise of improvement for the linear cryptanalysis. Overall, the improved 
linear cryptanalysis technique can be summarized as follows. 
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AN IMPROVED LINEAR CRYPTANALYSIS 
When obtaining a polynomial ( , )iz p v k=  with probability p* 
Step1. Verify that whether Assumption 1 comes into existence or not, if it is tenable, go on next; 
Otherwise, our theory won’t work. 
Step2. Based on Theorem 2, 3 and 4, choose a better scheme (Scheme A or Scheme B) to recover 
the key information. 
Step3. Combining the recovered key information, carry on linear cryptanalysis and look for its 
linear approximation r . 

Denote E the event that a recovery of as many key information as possible through calling Scheme 
A or Scheme B. EN  and Eg  are referred to as the data complexity and the success rate that the 

event E holds. Let Nr  and rg  respectively denote the data complexity and the success rate to 

determine the combined key information in the linear approximation r  using Algorithm 1. 

Theorem5. For the improved linear cryptanalysis as above, the data complexity N  is EN Nr+  and 

the success rate g  is E rg g×  at least. 

Proof. With regard to the improved linear cryptanalysis, the data complexity N  sticks out a mile to 
be EN Nr+ . As to the success rate g , it consists of the two parts as follows. If the event E holds, 

then the final linear approximation r  must be right. Otherwise, the final linear approximation r  
must be wrong, but it is also possible that we can successfully determine the combined key 
information in the linear approximation r  using Algorithm 1. For example, we have the following 

m n j i
j J i I

z iv k iv k
Î Î

= + +å å  

where nk  can be recovered by adopting cube-linear attack, n IÏ . We suppose the right and the 

wrong value of nk  are “0” and “1” respectively. If the value of nk  recovered by us is 1, we obtain a 

wrong linear approximation m j ij J i I
z iv iv k

Î Î
= + +å å . Fortunately, when all the data used by 

Algorithm 1 satisfies the condition that 0miv = , we can also successfully determine the information 

ii I
k

Îå . For the former situation, the success rate is E rg g× ; While for the latter one, when we ensure 

that the event E hold with high level of success rate, it can be omitted. Therefore, the success rate is at 
least E rg g× .                                                                      □ 

As an application, we will cryptanalyze the security of the eSTREAM finalist Trivium against 
linear cryptanalysis in the next section. 

4. Improved Linear Cryptanalysis of Reduced Trivium 

4.1 Trivium Stream Cipher 

Trivium [Cannière, 05], a hardware-oriented stream cipher, was designed by De Canniѐre and Preneel 
and was selected for the final eSTREAM portfolio [eSTREAM, 04]. It takes a 80-bit key K and a 
80-bit initial value IV as input. The internal state consists of 288 bits which are aligned in three 
non-linear feedback shift registers of lengths 93, 84 and 111, respectively. It is claimed to be suitable 
to generate up to 264 bits of keystream from a pair of key and IV. They are initialized as follows: 

1 2 93 1 80( , , , ) ( , , ,0, ,0)s s s k k¬L L L  
94 177 1 80( , , ) ( , , ,0, ,0)s s iv iv¬L L L  
178 288( , , ) (0, ,0,1,1,1)s s ¬L L  

The state is then updated iteratively by the following round transformation: 

1 66 93t s s¬ +  
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2 162 177t s s¬ +  
3 243 288t s s¬ +  

1 2 3z t t t¬ + +  
1 66 91 92 93 171t s s s s s¬ + × + +  
2 162 175 176 177 264t s s s s s¬ + × + +  
3 243 286 287 288 69t s s s s s¬ + × + +  

1 2 93 3 1 92( , , , ) ( , , , )s s s t s s¬L L  
94 95 177 1 94 176( , , , ) ( , , , )s s s t s s¬L L  

178 179 288 2 178 287( , , , ) ( , , , )s s s t s s¬L L  
 

No output is produced during the first 1152 rounds. After this initialization phase the value of z  
is output as the key stream at each round. 
4.2 Description of Attack Process 

For 288-round Trivium, the following 
 
              1 288 288 288 288 288 288(66) (93) (162) (177) (243) (288)z s s s s s s= + + + + +             (2) 

holds, where ( )ts i  is the thi  internal state bit at time t . 

The output 1z  is the sum bits of bits 288 288 288 288 288(66), (93), (162), (177), (243)s s s s s  and 

288 (288)s . The algebraic normal form of 1z  is found exhaustively in terms of the internal state bit at 
144t =  as [Turan, 07]: 
 

  

1 144 144 144 144 144 144 144 144 144

144 144 144 144 144 144 144 144 144

144 144 144 1

(6) (16) (17) (31) (32) (33) (57) (82) (83)

(84) (96) (97) (98) (99) (111) (129) (142) (143)

(144) (150) (162)

z s s s s s s s s s

s s s s s s s s s

s s s s

= + × + × + + + × +
+ + × + + + + × +
+ + + 44 144 144 144 144

144 144 144 144 144 144 144 144

(163) (164) (165) (186) (192)

(208) (209) (210) (231) (235) (236) (237) (252)

s s s s

s s s s s s s s

× + + + +
× + + + × + +

(3) 

and its closest linear approximation [Turan, 07] is 
 

             
1 144 144 144 144 144 144 144

144 144 144 144 144 144

144 144 144 144 144

(6) (33) (57) (84) (96) (99) (111)

(129) (144) (150) (162) (165) (186)

(192) (210) (231) (237) (252)

z s s s s s s s

s s s s s s

s s s s s

= + + + + + + +
+ + + + + +
+ + + +

        (4) 

with bias 2-9. 
Since the aim of the attack is to obtain an linear approximation based on key, IV and output bits, 

the linear approximation given above is to be rewritten in terms of 0 ( )s i , 1, 2, ,80i = L  and 

94,95, ,173i = L . The remaining terms are omitted since they are assigned to constants during the 
initialization. Then we have the right equation (5) (See Appendix) [Sun, 12], whereas it should be 
noted that there is something wrong, which will affect the subsequent results, in the one given by 
Turan and Kara [Turan, 07]. 

Next, we show that there are still some improvements for our purpose when using cube-linear 
attack. For the sake of analysis, denote monomialsK  and monomialsIV  the XOR of monomials involving 
only key bits, and the XOR of monomials involving only IV bits respectively. Set the XOR of the 
remaining monomials as ( )monomials

IV K× . Then, Eq.(5) is written as follows. 



10 
 

               

( )
25 14 25 41 26 13 26 40

31 20 31 47 3

1

2 19 32 46 32 44 45

4

25 39 40 26 38 39

31 45 46

9 38 49

monomials monomials monomials monomialsmonomials

iv k iv k iv

z K IV IV K K IV

iv k k iv k k

iv k k

k iv k

iv k iv k iv k iv k iv k k

iv k iv

= + + × = + +

× × × × + × × × × +
× × × × × × × × +

×

+ + + +
+ + + + +

+ 49 63 64 50 62 6365 50 37 50 64

70 59 76 65 77 68 471 5

k iv k iv k

iv k iv k iv k

iv k k iv k k

iv k

× × × + × × × × +
× × ×+ + + ×

+ + +

      (6) 

Observing Eq.(6), it is easy to split it into the form 1 ( ) 1( , , ) ( , , )n I S I np x x t P q x x= × +K K  and to 

determine that whether there is such an index subset I which leads to a linear expression ( )S IP  or not, 

based on the basic idea of cube attack. Actually, the four index subsets {70}, {71}, {76}, and {77} in 
Eq.(6) are available to separately recover k58, k59, k64, and k65. Taking the index subset I={77} as a 
case in point , we will explain how to recover k64 utilizing our method. 
Step 1: Determine the index subset I = {77}, and correspondingly, CI = {iv77}. 
Step 2: According to cube attack, we can assign the other public variables any values except the 
variables belonging to CI. For simplicity, set these IV bits iv25, iv26, iv31, iv32, iv49 and iv50 zeros, and 
the other IV bits any binary values. 
a) When iv77=0, i.e. (iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76, iv77)=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the 

following 
                                     monomialsK z=                                 (7) 
holds with bias 2-9, where z  represents the XOR of all the known variables in Eq.(6) after assigning 
IV. 
b) When iv77=1, i.e. (iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76, iv77)=(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), the 

following 
                                   64 monomialsk K z¢+ =                              (8) 

holds with bias of 2-9, where z¢  represents the XOR of all the known variables in Eq.(6) after 
assigning IV.  

Note that Eq.(7) and Eq.(8) are independent, since the key bit 64k  can be considered as a random 
variable. According to Theorem 4 and Table 1, Scheme A can here achieve a lower data complexity in 
the same level of success rate compared to Scheme B. Therefore, we can separately recover monomialsK  

and 64 monomialsk K+  with 99.77% success rate according to Scheme A, requiring the same data 
complexity 219 IVs. 
Step 3: From the above analysis, the following 

( ) ( )64 64 monomials monomialsk k K K= + +  

holds with 99.54% success rate, requiring 220 IVs. Here, the total success rate 99.54% is 
approximately calculated as 0.99772 since the failure rate (1-0.9977) is so small that (1-0.9977)2 can 
be ignored according to Theorem 2. 

Similarly, when we choose the other index subsets {70}, {71} and {76}, k58, k59, and k65 can be 
recovered correspondingly. Therefore, we can simultaneously recover four key bits k58, k59, k64, and 
k65 with 98.17% (0.99778) success rate, requiring about 221.32 IVs ( 19 21.325 2 2´ » ). Table 2 gives these 
results. 

Table2. The Key Information Recovered 

(iv25,iv26,iv31,iv32,iv49,iv50,iv70,iv71,iv76,iv77) 
Information 
Recovered 

Bias 
Data 

Complexity 
Success 
Rate /% 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) monomialsK  92-  192  99.77 

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 59monomialsK k+  92-  192  99.77 

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 58monomialsK k+  92-  192  99.77 

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0) 65monomialsK k+  92-  192  99.77 

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 64monomialsK k+  92-  192  99.77 



11 
 

4.3 Search Better Linear Approximations 

The above analysis provides us with a paradise of improvement for searching better linear 
approximations. Note that, we aren’t aware of the exact values of these recovered four key bits 
depending on the concrete scenarios. Therefore, we now have to consider about all 16 possible values 
of these four bits. In the following, we take (k58, k59, k64, k65) = (1, 1, 1, 1) for an example to illustrate 
how to find linear approximations with bigger bias. 
Return (k58, k59, k64, k65) = (1, 1, 1, 1) to Eq.(5), we have the equation (9) (See Appendix).  

Observing Eq.(9), 34 linear, 48 quadratic terms and 18 cubic terms are included in it. The linear 
approximation of Eq.(9) can be naturally found as 

  1 3 6 15 21 27 30 3937 38 54 57 63 67 68 69 72

4

3

6 21 24 30 3 93 39 45 51 71 7250 70 76 77 78

z =1 k k k k k k k k kk k k k k k k iv

iv iv iv iv iv iv i iv iv iv iv iv ivv iv iv iv

+ + + + + + + + + +

+ +

+ + + + + + + +

+ + + + + + ++ + + + + +
(10) 

with bias 65 48 18 56.562 (0.25) (0.375) 2-× × = , assuming all nonlinear terms are independent. 
According to Eq.(3) ~ Eq.(10), the bias that Eq.(10) holds can be calculated as 

29 56.56 64.56 402 2 2 2 2 2IVe -- - - -= × × = < =  ( IV  is referred to as the size of IV, and especially it is 80 

bits for Trivium). The bias is too little to be used to recover any information about the key. 
Nevertheless, we can increase the magnitude of the bias when allowed to choose some special key bits 
and IV bits. 

Denote { | 0 ,1 80}K i ik k iW = = £ £  and { | 0 , 1 80}IV i iiv iv iW = = £ £ the set of the key bits 

chosen to zeros, and the set of those IV bits chosen to zeros respectively. KW  and IVW  separately 

represent the size of KW  and IVW , and 1n  and 2n  are referred to as the individual quantity of the 

remaining quadratic terms and the cubic terms after choosing KW and IVW . The bias of a linear 
approximation of Eq.(9) is calculated as follows: 

1 2 1 2 1 2( ) 1 992 2 2 (0.25) (0.375) (0.5) (0.75)n n n n n ne + - +-= × × × × = ×  

When given KW  and IVW , we can make use of Algorithm 2 [Sun, 12] (See Appendix) to 

choose KW  and IVW . Algorithm 2 takes finding better linear approximations as a criterion and the 
main idea is to select such a bit which can eliminate the most amount of nonlinear monomials when 
it’s set zero. There are also more detailed rules to deal with more complicated scenarios. In short, 
Algorithm 2 has proved to be the best approach to look for linear approximations when given KW  

and IVW . When 10KW =  and 10IVW = , Table 3 provides the chosen KW  and IVW  using 

Algorithm 2. 
Table 3. ( , )K IVW W and Corresponding Biase  

( , 10)IV IVW W =  ( , 10)K KW W =  Biase  

iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 
k13 k19 k23 k38  

k40 k45 k46 k50 k63 

k5 2-23 
k67 2-23 
k68 2-23 

According to the different KW of Table 3, three linear approximations with the same bias 2-23 are 
found: 

1 3 6 15 21 27 30 3937 38 54 57

63 67 68 69 72

4

3 6 21 24 30 3

9

3

39 45 51 71 7250 70 76 77 78

z =1 k k k k

k k k k k

k k k k k k k

iv iv iv iv iv iv

iv i iv iv iv iv iv ivv iv iv iv

+ + + + + + + +
+ + + +

+ + + +
+ + + +

+ + + + + + +

+ + +

+ + +

 

37 38 54 57

63 68 69 72

49 50 7

1 3 6

0 76 77 7

15 21 27 30 39

3 6 21 24 30 33 39

45 51 71 72 8

z =1 k k k k k k k

iv iv iv iv iv iv iv

iv i

k k k k

k k k k

iv iv iv iv ivv iv iv iv

+ + + + + + + +
+ + + + +

+ + + +
+ + + +

+ + + + + + +

+ +

+ +
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37 38 54 57

63 67 69 72

49 50 7

1 3 6

0 76 77 7

15 21 27 30 39

3 6 21 24 30 33 39

45 51 71 72 8

z =1 k k k k k k k

iv iv iv iv iv iv iv

iv i

k k k k

k k k k

iv iv iv iv iv iv iv v vi

+ + + + + + + +
+ + + + + +

+ + + +
+ + + + +

+ ++ + + + + + +

 

Similarly, when (k58, k59, k64, k65) takes the other 15 possible values, linear approximations can also 
be found as the same method. The corresponding results are concluded in Table 4. 

Table 4. Different 58 59 64 65( , , , )k k k k and Corresponding ( , )K IVW W  

(k58,k59,k64,k65) ( ), 10IV IVW W =  ( ), 10K KW W =  Bias 

(0, 0, 0, 0)(0, 1, 0, 0) 
(1, 0, 0, 0)(1, 1, 0, 0) 

iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 
k13 k19 k23 k38 

k39 k40 k45 k46 k50 

k5 2-23 
k67 2-23 
k68 2-23 

(0, 0, 1, 1)(0, 1, 1, 1) 
(1, 0, 1, 1)(1, 1, 1, 1) 

iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 
k13 k19 k23 k38 

k40 k45 k46 k50 k63 

k5 2-23 
k67 2-23 
k68 2-23 

(0, 0, 0, 1)(0, 1, 0, 1) 
(1, 0, 0, 1)(1, 1, 0, 1) 

iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 
k13 k19 k38 k39 

k40 k45 k46 k50 k62 

k5 2-23 
k67 2-23 
k68 2-23 

(0, 0, 1, 0)(0, 1, 1, 0) 
(1, 0, 1, 0)(1, 1, 1, 0) 

iv10 iv13 iv25 iv31 iv34 

iv37 iv40 iv50 iv54 iv55 
k13 k19 k38 k39 

k40 k45 k46 k50 k63 

k5 2-24 
k67 2-24 
k68 2-24 

From Table 4, we observe that three linear approximations with the same bias can be found for each 
(k58, k59, k64, k65), whereas 2-23 and 2-24 are the biggest and the smallest bias of all the linear 
approximations found. Note that for the sake of comparison with the previous results, the average bias 
2-23.2 is used to describe our results due to the “undetermined” (k58, k59, k64, k65). 
4.4 Comparison with Previous Results 

For the reduced version of 288-round Trivium, Turan et al. in [Turan, 07] found a linear 
approximation with bias of 2-31 when 10KW = and 10IVW = . In [Jia, 11], Jia et al. presented a 

multiple linear attack on 288-round Trivium, resulting in another linear approximation with the same 
bias 2-31 when 10KW = and 13IVW = . In our [Sun, 12], Algorithm 2 was applied to look for linear 

approximations. As a result, three linear approximations with the same bias 2-25 were found 
when 10KW = and 10IVW = , and three ones with the same bias 2-22 were found 

when 10KW = and 13IVW = . While in this paper, we find linear approximations with bigger bias. 

What’s more, the additional four key bits are recovered. These results are summarized in Table 5. 
Obviously, our attack is better than the others. 

Table 5. Comparison with Previous Results 

 ( KW , IVW ) Bias 
Number of 

Approximations 
Data 

Complexity 
Success 
Rate /% 

Turan et al. [Turan, 07] (10,10) 2-31 1 262 97.7 
Sun et al. [Sun, 12] (10,10) 2-25 3 250 97.7 
This Paper (10,10) 2-23.2 3 247.2 97.8 
Jia et al. [Jia, 11] (10,13) 2-31 2 261 97.7 
Sun et al. [Sun, 12] (10,13) 2-22 3 244 97.7 
This Paper (10,13) 2-20.2 3 241.2 97.8 
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5. Conclusions 

In cryptography, linear cryptanalysis is the most basic cryptanalysis approach aiming to find the linear 
relation between outputs and inputs. A variety of refinements to the attack have been suggested in the 
past. In this paper, a novel technique called cube-linear attack is first proposed to deal with a 
probabilistic polynomial and furthermore to mine the available information unexposed by the previous 
linear cryptanalysis. As a new contribution to linear cryptanalysis, it is beneficial to allow for a 
reduction in the amount of data required for a successful attack in specific circumstances. Applying 
our method to a specific analysis of Trivium, we get better linear cryptanalysis results so far. Although 
a few better cryptanalytic results on Trivium had been published several years earlier using other 
attacks, however, we believe that our methods are meaningful from the point of view of improving 
linear cryptanalysis and can be extended to other ciphers. In other words, it is worth considering for 
our method in launching linear attack on a cryptographic primitive. 
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Appendix 

A. The equation (5) and equation (9) appearing in this paper are as follows. 
 

Equation (5) is 
 

  

1 3 6 15 21 27 30 39 3 6 21

24 30 33 39 45 51 72 4 5 13 14 13 41 16

17 19 20 22 23 25 26 28 29

54 57 67 68 69 72

78 14 40

3419 47 20 46 3

1z k k k k k k k iv iv iv

iv iv iv iv iv iv iv k k k k k k k

k k k k k k k

k k k

k k k k

k k k

iv k k

k k k k

= + + + + + + + + + + +
+ + + + + + × + ×

+ + + + + +
+ + ++ × × + ×

+ × × × + × + × + × + ×+ + 5 37 38

43 44 49 50 52 53 58 59 61 62

64 65 67 68 70 71 10 11 13 14 25 26

3

31 32

34 35 37 3

7

65 38 64 39 40 45 46 63

64 77 64

418 40 56

k k

k k k k k k k k k k

k k k k k k iv iv iv iv iv iv iv iv

iv iv iv iv iv i

k

k k k k k k k k

k iv k

iv ivv

+ × ×
× × + × × + × + × + × + × ×

+ × + × + × + × + × + × + ×

+
+ + + +

+

+

× +

× + × + × × 49 50 58 59 61 62

67 68 70 71 73 74 13 39 40 14 38

55 54 55

76 65 19 45 46

63 64 70 59 38 39 40 38 39 41 44 45 4

39 20

44 45 37 38 62 63 6

iv iviv iv iv iv iv iv

iv iv iv iv iv iv k k k k k k k

k k k

iv k k k k

k k iv k k kk k k k k k k kk

k

k

+ × + × × + × +
× + × + × × + × × + × × × × +

+
+ +

+

×

× + × × × × × × × + × × + × ×+ ++

44 45 47 71 58 62 63 65 40 54 55

53 54 56 25 39 40 26

62 63 64 41 53 54 53

54 55 25 14 25 41 26 13 26 40

31 20 3

38

39 31 45 461 47 3

k k iv k k k k iv iv iv

iv iv iv iv k k iv

k k k iv iv iv iv

iv iv iv k iv k iv k iv k k

k iv k i ivv k k ivk

× × × × + × × × + × × + × × ×

× + × × + × × × × + × × × ×

+ × × × ×

+ + +

+ + + +

+ + + 2 46 32 19 32 44 45 49 38 49

65 50 3749 63 64 50 62 6350 64iv k k

k iv k iv k k iv k iv

k i iv kv k iv kk

+ + +
+ +

× × × × + × ×
× × + × × × ×+

  (5) 

 
Equation (9) is 
 

   

1 3 6 15 21 27 30 39

3 6 21 24 30 33 39 45 51 71 72

4 5 13 14 13 41 1

37 38 54 57 63 67 68 69 72

49 50 70 76

77 7 6 18 1 7 1 0 924 94 0 1

1z k k k k k k k

iv iv iv iv iv iv iv i

k k k k k k k k k

iv iv iv iv

iv

v iv iv iv

k kiv k k kk k k k k k k k

= + + + + + + + + +

+ + + + + + + + +
× +

+ + + + + + + +

+ + + + + +
+ + × + + +× × + × + × × 22 23

25 26 28 29 34 35 37 38 37 43 44

49 50 52 53 61 62 67 68 70 71 10 11 70 71 10 11 13 14

25 26 31 3

47

20 46 63 39

2

40

34 35 3

6

3

4

7

5 4

k k

k k k k k k k k k k k

k k k k k k k k k k iv iv k k iv iv iv iv

iv iv iv iv iv iv i

k

k k k k k k

v

k

iv

+

+ +

× +

× + × + × + × + × × × + × × +
× + × + × + × + × + × +

+

+

× + × + × +

× × + × + × 8 40 56 49 50

58 59 61 62 67 68

41 55 54 55

19

45 46 38 39 40 38

70 71 73 74 13 39 40 14 38 39

20 44 45 38 62 639 41 44 45 43 44 45

47

6

iv iv iv iv

iv iv iv iv iv iv iv iv iv iv k k k

iv iv iv iv

k

k k k k k k k k k k k

k k k

k k k k k k k k

k

+ × × + × + ×
× + × + × + × + × + × × + × × ×

× + × × × × × × + × × + × × + ×

+
+

×

+

+ +

+ 41 53 54 53 54 55 25 14 25 41

26 13 26 40 31 20 31 47 32

40 54 55 53 54 56

25 39 40 26 38 39 31

46 32 19 32 44 45 49

45 46

49 638

iv iv iv iv iv iv iv k iv k

iv k iv k iv k iv k iv

iv iv iv iv iv

k iv k iv k k i

iv

iv k k iv k k iv k k

iv kv k

× × + × × × × + × × + × ×
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   (9) 
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B. 
Algorithm 2 [Sun, 12]：Algorithm to Search Best Linear Approximations 

Reset KW and IVW ; 

Input : Kn and IVn  (sizes of KW and IVW to choose respectively) 

Step1: Reset W and P , count the frequency of each bit in all non-linear monomials, put the bits with the 
highest frequency in W ; 

Step2: 

1.When 1W = , determine the type of the bit in W , if it is key bit, then put it to KW , otherwise IVW ; 

2.When 2W ³ ,count the frequency of quadratic term of each bit in W , put the bits with the highest 

frequency in P : 

2.2.1 If 1P = , determine type of the bit in P , if it is key bit, then put it to KW , otherwise IVW ; 

2.2.2 If 2P ³ , choose arbitrarily one bit in P , and determine type, if it is key bit, put it in KW , 

otherwise IVW ; 

Step3: Calculate the polynomial again, based on the chosen KW and IVW ; 

Step4: 

if ( )( ) & &( )K K IV IVn nW < W <  

Return to Step1; 

else if ( )( ) & &( )K K IV IVn nW = W ¹  

Stop searching the key bits, return to Step1, and continue to search the IV bits; 

else if ( )( ) & &( )K K IV IVn nW ¹ W =  

Stop searching the IV bits, return to Step1, and continue to search the key bits; 

else if ( )( ) & &( )K K IV IVn nW = W =  

Output: ( )( , ),K IV eW W  

End 
 


