
1

A Novel Technique in Linear Cryptanalysis

Wen-Long Sun
(Information Science and Technology Institute, Zhengzhou, China

swl_cipher@163.com)
Jie Guan

(Information Science and Technology Institute, Zhengzhou, China
guanjie007@163.com)

Lin Ding
(Information Science and Technology Institute, Zhengzhou, China

dinglin_cipher@163.com)

Abstract: In this paper, we focus on a novel technique called cube-linear attack, which is obtained by combining
the cube and linear attacks together, is first proposed to deal with the probabilistic polynomial, aiming to
furthermore mine the available secret information. Based on different combination ways of the two attacks,
moreover, two cube-linear schemes are discussed. Naturally, we can use cube-linear attack as an unordinary trick
in linear cryptanalysis, which has never been considered by the previous linear cryptanalysis yet. As a new
contribution to linear cryptanalysis, it is beneficial to allow for a reduction in the amount of data required for a
successful attack in specific circumstances. Applying our method to a reduced-round Trivium, as an example, we
get better linear cryptanalysis results. More importantly, we believe that the novel linear cryptanalysis technique
introduced in this paper can be extended to other ciphers. In other words, it is worth considering for our method
in linear cryptanalysis.

Keywords: Cryptanalysis, Linear Cryptanalysis, Cube-Linear Attack, Trivium, Stream Cipher

1. Introduction

Linear cryptanalysis is an effective known-plaintext attack against block ciphers. At present, the
attack has been adapted to stream ciphers [Golić, 94, Golić, 02, Muller, 05, Shahram, 05, Turan, 07].
Matsui and Yamagishi [Matsui, 92] in 1992 introduced the idea of linear cryptanalysis in an attack on
FEAL [Shimizu, 87]. The techniques used in this attack were refined by Matsui and used dramatic
effect on Data Encryption Standard (DES), eventually leading to the first experimental cryptanalysis
of the cipher reported in the open community [Matsui, 93, Matsui, 94].

Subsequently, several refinements to the basic idea of linear cryptanalysis have been suggested to
improve the efficiency of the attacks, either in specific circumstances or in all cases. In 1994, Kaliski
and Robshaw [Kaliski, 94] proposed an extension based on the use of multiple linear approximations.
Martin Hellman and Susan K. Langford [Langford, 94] in 1994 introduced the differential-linear
attack which is a mix of both differential cryptanalysis and linear cryptanalysis. In 1996, Kundsen and
Robshaw [Knudsen, 96] introduced the idea of extending Matsui’s linear cryptanalytic techniques to
the more general case in which non-linear relations are also considered. In [Bogdanov, 11],
zero-correlation linear cryptanalysis, the counterpart of impossible differential cryptanalysis in the
domain of linear cryptanalysis, was proposed by Bogdanov and Rijmen, resulting in a faster attack for
some ciphers.
1.1 Motivation and Contribution

As introduced above, there have been several extensions to linear cryptanalysis at present.
Nevertheless, is there any other method able to be exploited as a new contribution to linear
cryptanalysis? Namely, is there any available information unexposed by the previous linear
cryptanalysis?

In this paper, we answer this question positively. Generally speaking, linear cryptanalysis exploits
specific correlations between the input and the output of cryptographic primitives. For almost any
cryptographic scheme, each output bit can be described by a multivariate polynomial over GF(2) of
public variables and secret variables. When launching a linear attack, we can in specific scenarios

2

obtain an explicit description of multivariate polynomial. For the tweakable polynomial, it is cube
attack proposed in [Dinur, 09] that is a very powerful tool to recover the key information. Once
recovering the key information contained in the polynomial, the degrees of non-linear monomials
involving these recovered bits will decrease, even fall to zero. It’s just the desired purposes. As we
know, the cube attack technique is used to deal with such a polynomial with probability one. Due to
the above polynomial usually obtained with probability less than one after some approximations,
however, the actual use of cube attack has to be adapted for the lower overheads. Here, we combine
the cube and linear attacks together to recover the available key information, called cube-linear attack.
Subsequent analysis also proves that our method works well. Since there is still some key information
able to be recovered by cube-linear attack, which has never been considered by the previous linear
cryptanalysis yet, we deeply confirm that there must be more or less improvements for the subsequent
linear cryptanalysis.

Particularly based on different combination ways of cube and linear attacks, two schemes A and B
are given in order to achieve a lower data complexity required for a successful attack. The data
complexity and the success rate of each scheme are discussed only when all the derived polynomials
defined by any determined cube index are independent. Otherwise, the situations are too complicated
to obtain any concrete results about the data complexity and the success rate of the two schemes, if
using the existing theory (See Section 3). A detailed description of our theory appears in Section 3.

Afterwards, an improved linear cryptanalysis technique is proposed using the cube-linear attack.
As an application, we cryptanalyze the security of the eSTREAM finalist Trivium against linear
cryptanalysis. Three linear approximations with the same average bias 2-23.2 are found and four key
bits are recovered for the reduced version of Trivium with the initialization of 288 rounds (out of
1152). The data complexity 247.2 IVs is enough to achieve this result with 97.8% success rate,
improving the previous linear cryptanalysis results. Although a few better cryptanalytic results on
Trivium had been published several years earlier using other attacks [Vielhaber, 07, Dinur, 09],
however, we believe that our methods are meaningful from the point of view of improving linear
cryptanalysis.

Notably, there are some differences between cube attack and our method, although based on the
same essence of higher order differential cryptanalysis. For convenient to introduce, we follow the
relevant concepts and terminology of cube attack. In order not to cause misunderstanding, however, it
is necessary to explain the differences as follows. Firstly, as stated previously, the cube attack is
applied to a polynomial with the probability one, while what our method copes with is the
probabilistic polynomial. Secondly, the primary costs of cube attack lie in searching for the
appropriate cube indexes, while our method focuses on dealing with an explicit polynomial. More
importantly, we argue that it is not appropriate to make comparisons between cube attack and linear
cryptanalysis, since they are two different methods. In terms of the cryptanalysis, one in fact should
try various kinds of methods and what we do in this paper is to put forward a trick called cube-linear
attack which could exactly result in more efficient linear cryptanalysis. In other words, it is worth
considering for our method in launching linear attacks on other ciphers.

1.2 Organization

This paper is organized as follows. In Section 2 we briefly review cube attack and linear cryptanalysis.
Afterwards, we describe the cube-linear attack and propose an improved linear cryptanalysis in
Section 3. In Sections 4, we apply our method to a specific analysis of Trivium. Finally, we make a
few concluding remarks in Section 5.

2. Cube Attack and Linear Cryptanalysis

2.1 A Review of Cube Attack

Cube attack [Dinur, 09], first formalized by Itai Dinur and Adi Shamir at EUROCRYPT 2009, is a
generic type of algebraic attack that may be applied against any cryptosystem, provided that the

3

attacker has access to a bit of information that can be represented by a “low-degree” multivariate
polynomial over GF(2). In essential, the cube attack, similar to AIDA [Vielhaber, 07], is closely
related to the previously known attack—the higher order differential attacks [Lai, 94].
In almost any cryptographic scheme, each output bit iz can be described by a multivariate master

polynomial over GF(2) of public variables 1 2, , , mv v vL being bits of the plaintext for block cipher or

bits of the initial vector for stream cipher and depending on secret variables 1 2, , , nx x xL being bits

of the key: 1 1(, , , , ,)i m nz p v v x x= K K .
To simplify our notation, we now ignore the distinction between public and private variables.

Given a multivariate master polynomial with n variables 1(, ,)np x xK over GF(2) in algebraic normal

form (ANF), and a term It containing variables from an index subset I that are multiplied together,

the polynomial can be written as the sum of terms which are supersets of I and terms that miss at
least one variable from I :

1 () 1(, ,) (, ,)n I S I np x x t P q x xº × +K K

where ()S IP is called the superpoly of I in p . Note that the superpoly of I in p is a

polynomial that does not contain any common variable with It , and each term in 1(, ,)nq x xK does

not contain at least one variable form I .
Any subset I of size s defines a s-dimensional Boolean cube of 2s vectors IC in which we

assign all the possible combinations of 0/1 values to variables in I , and leave all the other variables
undetermined. Any vector Iv CÎ defines a new derived polynomial vp with n s- variables

(whose degree may be the same or lower than the degree of the original polynomial). Summing these
derived polynomials over all the 2s possible vectors in IC , we end up with a new polynomial, which

is denoted by I vp p
D

=å .

Theorem1. [Dinur, 09] For any polynomial p and subset of variables I , ()I S Ip pº modulo 2.

The attack is a known plaintext one and it has two phases. In the first preprocessing phase the task is
to find as many maxterms It and corresponding linear superpolys ()S IP as possible. In the next

online phase, the attacker solves the system of linear equations obtained and gets some values about
the secret variables.

2.2 A Review of Linear Cryptanalysis

The basic idea behind linear cryptanalysis is to find some linear approximations to the action of
cryptographic primitives. In other words, the attack exploits some statistical correlations between
input and output bits. For a cryptographic primitive with k-bit key 1 2(, , ,)kk k kK , n-bit plaintext

1 2(, , ,)np p pK and ciphertext 1 2(, , ,)nc c cK , the aim of the attack is to find the index sets , ,I J L
such that

 j l i
j J l L i I

p c k
Î Î Î

Å =å å å (1)

holds with probability 1 2 , 0p e e= + ¹ .
For an iterated block cipher or stream cipher, linear cryptanalysis is usually executed as follows.

By looking for and combining the linear or nonlinear approximations of different rounds, the final
linear approximations of the whole cipher can be found with probability calculated according to
Lemma 1 (Piling-Up Lemma).

4

Lemma1. [Matsui, 93] For each value (1)i n£ £ , let iX be a random variable, independent of iX

for all j i¹ , such that (0) , (1) 1i i i iP X p P X p= = = = - . Then

()1
1 2

1

1
(0) 2 1 2

2

n
n

n i
i

P X X X p-

=

Å Å Å = = + -ÕK

Algorithm1: Determination of Key Information
T : = # of plaintexts (out of N) such that the left side of (1) is equal to 0.
IF 2T N>

THEN guess 0ik =å (when 1 2p >) or 1 (otherwise)

ELSE guess 1ik =å (when 1 2p >) or 0 (otherwise)

END
Given an effective linear approximation, it is possible to determine one bit of information about

the key ii I
k

Îå with the help of Algorithm 1 [Matsui, 93], the indices I being fixed by linear

expression; its core is a maximum-likelihood.

The success rate to recover the key ii I
k

Îå is as follows [Matsui, 93], which is related to both

data complexity N (the number of plaintext/ciphertext pairs) and bias e :
2 2

2

1

2
x

N
e dx

e
g

p

¥
-

-
= ò

The most important goal of linear cryptanalysis is to find the best linear approximation, i.e. the
linear expression which holds with bigger bias. However, there have thus far no optimal algorithms to
find the best linear approximations. In this paper, we tentatively put forward a novel technique as a
contribution to linear cryptanalysis, namely cube-linear attack to be introduced next.

3. An Improved Linear Cryptanalysis

3.1 Cube-Linear Attack

This subsection provides the basic idea of our cube-linear attack to deal with the probabilistic
polynomial usually emerging in linear cryptantlysis. Generally speaking, linear cryptanalysis exploits
specific correlations between the input and the output of cryptographic primitives. For almost any
cryptographic scheme, each output bit can be described by a multivariate master polynomial over
GF(2) of public variables and secret variables. During the linear attack, we can in specific scenarios
obtain such an explicit description of polynomial (,)iz p v k= with probability p* which is easily

split into the form 1 () 1(, ,) (, ,)n I S I np x x t P q x xº × +K K for any term It based on cube attack.

Naturally, we can determine the maxterm It leading to an expression ()S IP of which the degree

()()S Id P is one. Furthermore, the key information contained in ()S IP can be recovered. As we know,

the cube attack is usually used to deal with such a polynomial with probability one. Due to the above
polynomial usually holding with probability less than one after some approximations, however, the
actual use of cube attack has to be adapted. Here, we combine the cube and linear attacks together in
order to achieve a lower data complexity required for a successful attack. Based on the different
combination ways of the two approaches, we give two schemes, Scheme A and Scheme B, to recover
the information unexposed by the previous linear cryptanalysis techniques under the following
assumption.
Assumption1. All the derived polynomials defined by any determined maxterm It are independent.

5

3.1.1 Description of Scheme A

Scheme A, the adapted cube attack, can also be considered as “cube-linear-cube attack”,
corresponding to the three steps of Scheme A. The below analysis show more detailed explanations
about Scheme A. Based on the split polynomial ()(,) (,)I S Ip v k t P q v kº × + as above, we can easily

determine the maxterm It leading to an expression ()S IP of which the degree ()()S Id P is one.

Correspondingly, I and IC are all distinct. Running all the possible values of IC , any vector

Iv CÎ can define a derived polynomial vp with probability *
vp (*

vp represents the probability of

vp when IC takes the value v in condition that the polynomial (,)iz p v k= holds with

probability p*). Denote |vK the XOR of all the monomials involving only the key in the derived

polynomial |vp . Then |vK can be determined with the help of Algorithm 1, since the derived

polynomial |vp is a linear approximation when considering |vK as a single variable. Similar to

cube attack, we obtain a new linear equation when summing all the recovered |vK .

SCHEME A

Step1. Determine the maxterm It .

Step2. Recover |vK in each derived polynomial |vp by Algorithm 1.

Step3. Sum all the recovered |vK , then we know the value |
I

vv C
K

Îå .

Theorem2. Data complexity of Scheme A is ()()22 1 2 1 *

0 0
1 2

s s

A v vv v
N N O p

-- -

= =
= = -å å , and the

success rate of Scheme A is ()2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ , where vN and vg are respectively

referred to as the data complexity and success rate to recover |vK using Algorithm 1, and s is the

size of index subset I .
Proof. Since the probability of each derived polynomial vp is *

vp , the data complexity to recover

|vK is easily calculated as ()-2* 1 2v vN O p= - with a confident success rate vg according to

Algorithm 1. The total data complexity of Scheme A is obviously

()()22 1 2 1 *

0 0
1 2

s s

A v vv v
N N O p

-- -

= =
= = -å å .

Let *
vg be the failure rate to recover |vK , then * 1v vg g= - . For simplicity, we may as well

denote “0” and “1” the right value of |vK , and the wrong value of |vK respectively. Then the

probability to recover the right value of |vK and the wrong value of |vK using Algorithm 1 are

()| 0v vp K g= = and () *
| 1v vp K g= = . Based on the Assumption 1, we deduce that all the

recovered |vK independently hold each other. So the success rate of Scheme A is

() ()2 12 1 2 1
0 0

0 1 2 2 1 2
ss s

A vvv v
p Kg g

-- -
= =

= = = + -ÕÅ by Piling-Up Lemma. □

6

3.1.2 Description of Scheme B

SCHEME B

Step1. Determine the maxterm It .

Step2. Sum all the derived polynomials |vp , then we have () |
I

S I vv C
p p

D

Î
=å .

Stpe3. Recover the key information contained in ()S Ip by Algorithm 1.

Corresponding to the above three steps, Scheme B can be considered as “cube-linear attack”. The first
two steps are actually the use of cube attack, then the key information contained in ()S Ip can be

determined with the help of Algorithm 1.

Theorem3. The data complexity of Scheme B is () 2
2 12 1 *

0
2 1 2

ss

B vv
N O p

-
--
=

æ ö
= -ç ÷

è ø
Õ with a confident

success rate Bg .

Proof. Under the above Assumption 1, all the derived polynomials vp defined by Iv CÎ

independently hold with probability *
vp . So the bias that () |

I
S I vv C

p p
Î

= å holds is calculated as

2 12 1 *

0
2 1 2

ss

vv
p

--
=

-Õ due to Piling-up Lemma. Using Algorithm 1, the data complexity BN to

recover the key information contained in ()S Ip with a confident success rate Bg is

() 2
2 12 1 *

0
2 1 2

ss

vv
O p

-
--
=

æ ö
-ç ÷

è ø
Õ . □

3.1.3 Comments on Scheme A and Scheme B

It should be noted that the recovered information using Scheme A is the same as Scheme B.

Theorem4. When the probability of each derived polynomial *
vp satisfies * 1.51 2 2vp -- £ , then

2 1

2

2
s

s

A BN N
-

£ (the equality sign holds when * 1.51 2 2vp -- =), where AN and BN respectively

represent the data complexity of Scheme A and Scheme B, and s is the size of index subset I .

Proof. According to Theorem 2 and Theorem 3, ()()22 1 *

0
1 2

s

A vv
N O p

--

=
= -å and

() 2
2 12 1 *

0
2 1 2

ss

B vv
N O p

-
--
=

æ ö
= -ç ÷

è ø
Õ . Let () 2

*2 1 2v vx p
-

= × - , then (1,)vx Î +¥ , ()2 1

0
4

s

A vv
N x

-

=
= å

and ()2 1

0
4

s

B vv
N x

-

=
= ×Õ . If A BN N= and all vx share the same value, we deduce (2 1)2

ss
vx -= .

When (2 1)2
ss

vx -³ , we have the following
2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 1 0 12 1 2 1 2 2

1 1 1

1 1 1 1
2 1

2 2 2 2

s

s

s

s

s s s

vv

vv

i i

s
s s s s

x x x x

x x xx

x x x x x x x x x x x

-

= -
-

-
=

- +- - -

+ + +
=

= + + + +

£ + + + + = × =

å
Õ

L
L

L LL L L L

L L

Specially, when 2vx ³ , i.e. * 1.51 2 2vp -- £ , the following

7

2 1

0 10 2 1

2 1
0 1 2 1

0

1 2 0 1 1 1 0 12 1 2 1 2 2

2 1 2 1 2 1 2 1

1 1 1

1 1 1 2

2 2 2 2

s

s

s

s

s s s

s s s s

vv

vv

i i

s

x x x x

x x xx

x x x x x x x x x x x

-

= -
-

-
=

- +- - -

- - - -

+ + +
=

= + + + +

£ + + + + =

å
Õ

L
L

L LL L L L

L L

holds, i.e.
2 1

2

2
s

s

A BN N
-

£ . □

We have proved that
2 1

2

2
s

s

A B BN N N
-

£ £ only when the probability *
vp of each derived

polynomial satisfies * 1.51 2 2vp -- £ . The results haven’t yet been given for the remaining scenarios.

With regard to the success rate of the two schemes, ()2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ , whereas Br is

equal to vr depending on the relationship between the data complexity and the bias. If no more
plaintext/ciphertext pairs, the success rate of Scheme A will be lower than Scheme B. Table 1
provides some comparisons between Scheme A and Scheme B in the same level of success rate.

Table 1. Comparison Between Scheme A and Scheme B
* 1 2vp -

s

2-1.3 2-3 2-6 2-9 Success
Rate/%

AN BN AN BN AN BN AN BN

1 24 23.2 27.4 210 213.4 222 219.4 234

97.7 2 25.3 24.4 28.7 218 214.7 242 220.7 266

3 26.5 26.8 29.9 228 215.9 282 221.9 2130

It shows that Scheme A is in fact more superior in the major scenarios because of the following
reasons. First of all, since the probability of the derived polynomial *

vp in the common cases satisfies
* 1.51 2 2vp -- << , this means that A BN N<< according to our calculations. Secondly, the success

rate Ar wouldn’t quickly decrease since ()2 12 1

0
1 2 2 1 2

ss

A vv
g g

--
=

= + -Õ . Meanwhile, it can be

enhanced through increasing a few plaintext/ciphertext pairs by the theory of linear cryptanalysis.
Taken together, however, this should depend on the particular situation that when to choose Scheme A
or Scheme B.
REMARK1. For both Scheme A and Scheme B, the first thing in practice we need to do after
determining the maxterm It is to verify that whether Assumption 1 comes into existence or not. If it
is tenable, then we have the above theorems. Otherwise, the situations are too complicated to obtain
any concrete results about the data complexity and success rate of the two schemes using the present
theory.
3.2 An Improved Linear Cryptanalysis

In the probabilistic polynomial, it is the key information recovered by our cube-linear attack that has
never been exposed by the previous linear cryptanalysis, thus we confirm that the cube-linear attack
indeed provides us with a paradise of improvement for the linear cryptanalysis. Overall, the improved
linear cryptanalysis technique can be summarized as follows.

8

AN IMPROVED LINEAR CRYPTANALYSIS
When obtaining a polynomial (,)iz p v k= with probability p*
Step1. Verify that whether Assumption 1 comes into existence or not, if it is tenable, go on next;
Otherwise, our theory won’t work.
Step2. Based on Theorem 2, 3 and 4, choose a better scheme (Scheme A or Scheme B) to recover
the key information.
Step3. Combining the recovered key information, carry on linear cryptanalysis and look for its
linear approximation r .

Denote E the event that a recovery of as many key information as possible through calling Scheme
A or Scheme B. EN and Eg are referred to as the data complexity and the success rate that the

event E holds. Let Nr and rg respectively denote the data complexity and the success rate to

determine the combined key information in the linear approximation r using Algorithm 1.

Theorem5. For the improved linear cryptanalysis as above, the data complexity N is EN Nr+ and

the success rate g is E rg g× at least.

Proof. With regard to the improved linear cryptanalysis, the data complexity N sticks out a mile to
be EN Nr+ . As to the success rate g , it consists of the two parts as follows. If the event E holds,

then the final linear approximation r must be right. Otherwise, the final linear approximation r
must be wrong, but it is also possible that we can successfully determine the combined key
information in the linear approximation r using Algorithm 1. For example, we have the following

m n j i
j J i I

z iv k iv k
Î Î

= + +å å

where nk can be recovered by adopting cube-linear attack, n IÏ . We suppose the right and the

wrong value of nk are “0” and “1” respectively. If the value of nk recovered by us is 1, we obtain a

wrong linear approximation m j ij J i I
z iv iv k

Î Î
= + +å å . Fortunately, when all the data used by

Algorithm 1 satisfies the condition that 0miv = , we can also successfully determine the information

ii I
k

Îå . For the former situation, the success rate is E rg g× ; While for the latter one, when we ensure

that the event E hold with high level of success rate, it can be omitted. Therefore, the success rate is at
least E rg g× . □

As an application, we will cryptanalyze the security of the eSTREAM finalist Trivium against
linear cryptanalysis in the next section.

4. Improved Linear Cryptanalysis of Reduced Trivium

4.1 Trivium Stream Cipher

Trivium [Cannière, 05], a hardware-oriented stream cipher, was designed by De Canniѐre and Preneel
and was selected for the final eSTREAM portfolio [eSTREAM, 04]. It takes a 80-bit key K and a
80-bit initial value IV as input. The internal state consists of 288 bits which are aligned in three
non-linear feedback shift registers of lengths 93, 84 and 111, respectively. It is claimed to be suitable
to generate up to 264 bits of keystream from a pair of key and IV. They are initialized as follows:

1 2 93 1 80(, , ,) (, , ,0, ,0)s s s k k¬L L L
94 177 1 80(, ,) (, , ,0, ,0)s s iv iv¬L L L
178 288(, ,) (0, ,0,1,1,1)s s ¬L L

The state is then updated iteratively by the following round transformation:

1 66 93t s s¬ +

9

2 162 177t s s¬ +
3 243 288t s s¬ +

1 2 3z t t t¬ + +
1 66 91 92 93 171t s s s s s¬ + × + +
2 162 175 176 177 264t s s s s s¬ + × + +
3 243 286 287 288 69t s s s s s¬ + × + +

1 2 93 3 1 92(, , ,) (, , ,)s s s t s s¬L L
94 95 177 1 94 176(, , ,) (, , ,)s s s t s s¬L L

178 179 288 2 178 287(, , ,) (, , ,)s s s t s s¬L L

No output is produced during the first 1152 rounds. After this initialization phase the value of z
is output as the key stream at each round.
4.2 Description of Attack Process

For 288-round Trivium, the following

 1 288 288 288 288 288 288(66) (93) (162) (177) (243) (288)z s s s s s s= + + + + + (2)

holds, where ()ts i is the thi internal state bit at time t .

The output 1z is the sum bits of bits 288 288 288 288 288(66), (93), (162), (177), (243)s s s s s and

288 (288)s . The algebraic normal form of 1z is found exhaustively in terms of the internal state bit at
144t = as [Turan, 07]:

1 144 144 144 144 144 144 144 144 144

144 144 144 144 144 144 144 144 144

144 144 144 1

(6) (16) (17) (31) (32) (33) (57) (82) (83)

(84) (96) (97) (98) (99) (111) (129) (142) (143)

(144) (150) (162)

z s s s s s s s s s

s s s s s s s s s

s s s s

= + × + × + + + × +
+ + × + + + + × +
+ + + 44 144 144 144 144

144 144 144 144 144 144 144 144

(163) (164) (165) (186) (192)

(208) (209) (210) (231) (235) (236) (237) (252)

s s s s

s s s s s s s s

× + + + +
× + + + × + +

(3)

and its closest linear approximation [Turan, 07] is

1 144 144 144 144 144 144 144

144 144 144 144 144 144

144 144 144 144 144

(6) (33) (57) (84) (96) (99) (111)

(129) (144) (150) (162) (165) (186)

(192) (210) (231) (237) (252)

z s s s s s s s

s s s s s s

s s s s s

= + + + + + + +
+ + + + + +
+ + + +

 (4)

with bias 2-9.
Since the aim of the attack is to obtain an linear approximation based on key, IV and output bits,

the linear approximation given above is to be rewritten in terms of 0 ()s i , 1, 2, ,80i = L and

94,95, ,173i = L . The remaining terms are omitted since they are assigned to constants during the
initialization. Then we have the right equation (5) (See Appendix) [Sun, 12], whereas it should be
noted that there is something wrong, which will affect the subsequent results, in the one given by
Turan and Kara [Turan, 07].

Next, we show that there are still some improvements for our purpose when using cube-linear
attack. For the sake of analysis, denote monomialsK and monomialsIV the XOR of monomials involving
only key bits, and the XOR of monomials involving only IV bits respectively. Set the XOR of the
remaining monomials as ()monomials

IV K× . Then, Eq.(5) is written as follows.

10

()
25 14 25 41 26 13 26 40

31 20 31 47 3

1

2 19 32 46 32 44 45

4

25 39 40 26 38 39

31 45 46

9 38 49

monomials monomials monomials monomialsmonomials

iv k iv k iv

z K IV IV K K IV

iv k k iv k k

iv k k

k iv k

iv k iv k iv k iv k iv k k

iv k iv

= + + × = + +

× × × × + × × × × +
× × × × × × × × +

×

+ + + +
+ + + + +

+ 49 63 64 50 62 6365 50 37 50 64

70 59 76 65 77 68 471 5

k iv k iv k

iv k iv k iv k

iv k k iv k k

iv k

× × × + × × × × +
× × ×+ + + ×

+ + +

 (6)

Observing Eq.(6), it is easy to split it into the form 1 () 1(, ,) (, ,)n I S I np x x t P q x x= × +K K and to

determine that whether there is such an index subset I which leads to a linear expression ()S IP or not,

based on the basic idea of cube attack. Actually, the four index subsets {70}, {71}, {76}, and {77} in
Eq.(6) are available to separately recover k58, k59, k64, and k65. Taking the index subset I={77} as a
case in point , we will explain how to recover k64 utilizing our method.
Step 1: Determine the index subset I = {77}, and correspondingly, CI = {iv77}.
Step 2: According to cube attack, we can assign the other public variables any values except the
variables belonging to CI. For simplicity, set these IV bits iv25, iv26, iv31, iv32, iv49 and iv50 zeros, and
the other IV bits any binary values.
a) When iv77=0, i.e. (iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76, iv77)=(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), the

following
 monomialsK z= (7)
holds with bias 2-9, where z represents the XOR of all the known variables in Eq.(6) after assigning
IV.
b) When iv77=1, i.e. (iv25, iv26, iv31, iv32, iv49, iv50, iv70, iv71, iv76, iv77)=(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), the

following
 64 monomialsk K z¢+ = (8)

holds with bias of 2-9, where z¢ represents the XOR of all the known variables in Eq.(6) after
assigning IV.

Note that Eq.(7) and Eq.(8) are independent, since the key bit 64k can be considered as a random
variable. According to Theorem 4 and Table 1, Scheme A can here achieve a lower data complexity in
the same level of success rate compared to Scheme B. Therefore, we can separately recover monomialsK

and 64 monomialsk K+ with 99.77% success rate according to Scheme A, requiring the same data
complexity 219 IVs.
Step 3: From the above analysis, the following

() ()64 64 monomials monomialsk k K K= + +

holds with 99.54% success rate, requiring 220 IVs. Here, the total success rate 99.54% is
approximately calculated as 0.99772 since the failure rate (1-0.9977) is so small that (1-0.9977)2 can
be ignored according to Theorem 2.

Similarly, when we choose the other index subsets {70}, {71} and {76}, k58, k59, and k65 can be
recovered correspondingly. Therefore, we can simultaneously recover four key bits k58, k59, k64, and
k65 with 98.17% (0.99778) success rate, requiring about 221.32 IVs (19 21.325 2 2´ »). Table 2 gives these
results.

Table2. The Key Information Recovered

(iv25,iv26,iv31,iv32,iv49,iv50,iv70,iv71,iv76,iv77)
Information
Recovered

Bias
Data

Complexity
Success
Rate /%

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) monomialsK 92- 192 99.77

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0) 59monomialsK k+ 92- 192 99.77

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 58monomialsK k+ 92- 192 99.77

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0) 65monomialsK k+ 92- 192 99.77

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1) 64monomialsK k+ 92- 192 99.77

11

4.3 Search Better Linear Approximations

The above analysis provides us with a paradise of improvement for searching better linear
approximations. Note that, we aren’t aware of the exact values of these recovered four key bits
depending on the concrete scenarios. Therefore, we now have to consider about all 16 possible values
of these four bits. In the following, we take (k58, k59, k64, k65) = (1, 1, 1, 1) for an example to illustrate
how to find linear approximations with bigger bias.
Return (k58, k59, k64, k65) = (1, 1, 1, 1) to Eq.(5), we have the equation (9) (See Appendix).

Observing Eq.(9), 34 linear, 48 quadratic terms and 18 cubic terms are included in it. The linear
approximation of Eq.(9) can be naturally found as

 1 3 6 15 21 27 30 3937 38 54 57 63 67 68 69 72

4

3

6 21 24 30 3 93 39 45 51 71 7250 70 76 77 78

z =1 k k k k k k k k kk k k k k k k iv

iv iv iv iv iv iv i iv iv iv iv iv ivv iv iv iv

+ + + + + + + + + +

+ +

+ + + + + + + +

+ + + + + + ++ + + + + +
(10)

with bias 65 48 18 56.562 (0.25) (0.375) 2-× × = , assuming all nonlinear terms are independent.
According to Eq.(3) ~ Eq.(10), the bias that Eq.(10) holds can be calculated as

29 56.56 64.56 402 2 2 2 2 2IVe -- - - -= × × = < = (IV is referred to as the size of IV, and especially it is 80

bits for Trivium). The bias is too little to be used to recover any information about the key.
Nevertheless, we can increase the magnitude of the bias when allowed to choose some special key bits
and IV bits.

Denote { | 0 ,1 80}K i ik k iW = = £ £ and { | 0 , 1 80}IV i iiv iv iW = = £ £ the set of the key bits

chosen to zeros, and the set of those IV bits chosen to zeros respectively. KW and IVW separately

represent the size of KW and IVW , and 1n and 2n are referred to as the individual quantity of the

remaining quadratic terms and the cubic terms after choosing KW and IVW . The bias of a linear
approximation of Eq.(9) is calculated as follows:

1 2 1 2 1 2() 1 992 2 2 (0.25) (0.375) (0.5) (0.75)n n n n n ne + - +-= × × × × = ×

When given KW and IVW , we can make use of Algorithm 2 [Sun, 12] (See Appendix) to

choose KW and IVW . Algorithm 2 takes finding better linear approximations as a criterion and the
main idea is to select such a bit which can eliminate the most amount of nonlinear monomials when
it’s set zero. There are also more detailed rules to deal with more complicated scenarios. In short,
Algorithm 2 has proved to be the best approach to look for linear approximations when given KW

and IVW . When 10KW = and 10IVW = , Table 3 provides the chosen KW and IVW using

Algorithm 2.
Table 3. (,)K IVW W and Corresponding Biase

(, 10)IV IVW W = (, 10)K KW W = Biase

iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55
k13 k19 k23 k38

k40 k45 k46 k50 k63

k5 2-23
k67 2-23
k68 2-23

According to the different KW of Table 3, three linear approximations with the same bias 2-23 are
found:

1 3 6 15 21 27 30 3937 38 54 57

63 67 68 69 72

4

3 6 21 24 30 3

9

3

39 45 51 71 7250 70 76 77 78

z =1 k k k k

k k k k k

k k k k k k k

iv iv iv iv iv iv

iv i iv iv iv iv iv ivv iv iv iv

+ + + + + + + +
+ + + +

+ + + +
+ + + +

+ + + + + + +

+ + +

+ + +

37 38 54 57

63 68 69 72

49 50 7

1 3 6

0 76 77 7

15 21 27 30 39

3 6 21 24 30 33 39

45 51 71 72 8

z =1 k k k k k k k

iv iv iv iv iv iv iv

iv i

k k k k

k k k k

iv iv iv iv ivv iv iv iv

+ + + + + + + +
+ + + + +

+ + + +
+ + + +

+ + + + + + +

+ +

+ +

12

37 38 54 57

63 67 69 72

49 50 7

1 3 6

0 76 77 7

15 21 27 30 39

3 6 21 24 30 33 39

45 51 71 72 8

z =1 k k k k k k k

iv iv iv iv iv iv iv

iv i

k k k k

k k k k

iv iv iv iv iv iv iv v vi

+ + + + + + + +
+ + + + + +

+ + + +
+ + + + +

+ ++ + + + + + +

Similarly, when (k58, k59, k64, k65) takes the other 15 possible values, linear approximations can also
be found as the same method. The corresponding results are concluded in Table 4.

Table 4. Different 58 59 64 65(, , ,)k k k k and Corresponding (,)K IVW W

(k58,k59,k64,k65) (), 10IV IVW W = (), 10K KW W = Bias

(0, 0, 0, 0)(0, 1, 0, 0)
(1, 0, 0, 0)(1, 1, 0, 0)

iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55
k13 k19 k23 k38

k39 k40 k45 k46 k50

k5 2-23
k67 2-23
k68 2-23

(0, 0, 1, 1)(0, 1, 1, 1)
(1, 0, 1, 1)(1, 1, 1, 1)

iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55
k13 k19 k23 k38

k40 k45 k46 k50 k63

k5 2-23
k67 2-23
k68 2-23

(0, 0, 0, 1)(0, 1, 0, 1)
(1, 0, 0, 1)(1, 1, 0, 1)

iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55
k13 k19 k38 k39

k40 k45 k46 k50 k62

k5 2-23
k67 2-23
k68 2-23

(0, 0, 1, 0)(0, 1, 1, 0)
(1, 0, 1, 0)(1, 1, 1, 0)

iv10 iv13 iv25 iv31 iv34

iv37 iv40 iv50 iv54 iv55
k13 k19 k38 k39

k40 k45 k46 k50 k63

k5 2-24
k67 2-24
k68 2-24

From Table 4, we observe that three linear approximations with the same bias can be found for each
(k58, k59, k64, k65), whereas 2-23 and 2-24 are the biggest and the smallest bias of all the linear
approximations found. Note that for the sake of comparison with the previous results, the average bias
2-23.2 is used to describe our results due to the “undetermined” (k58, k59, k64, k65).
4.4 Comparison with Previous Results

For the reduced version of 288-round Trivium, Turan et al. in [Turan, 07] found a linear
approximation with bias of 2-31 when 10KW = and 10IVW = . In [Jia, 11], Jia et al. presented a

multiple linear attack on 288-round Trivium, resulting in another linear approximation with the same
bias 2-31 when 10KW = and 13IVW = . In our [Sun, 12], Algorithm 2 was applied to look for linear

approximations. As a result, three linear approximations with the same bias 2-25 were found
when 10KW = and 10IVW = , and three ones with the same bias 2-22 were found

when 10KW = and 13IVW = . While in this paper, we find linear approximations with bigger bias.

What’s more, the additional four key bits are recovered. These results are summarized in Table 5.
Obviously, our attack is better than the others.

Table 5. Comparison with Previous Results

 (KW , IVW) Bias
Number of

Approximations
Data

Complexity
Success
Rate /%

Turan et al. [Turan, 07] (10,10) 2-31 1 262 97.7
Sun et al. [Sun, 12] (10,10) 2-25 3 250 97.7
This Paper (10,10) 2-23.2 3 247.2 97.8
Jia et al. [Jia, 11] (10,13) 2-31 2 261 97.7
Sun et al. [Sun, 12] (10,13) 2-22 3 244 97.7
This Paper (10,13) 2-20.2 3 241.2 97.8

13

5. Conclusions

In cryptography, linear cryptanalysis is the most basic cryptanalysis approach aiming to find the linear
relation between outputs and inputs. A variety of refinements to the attack have been suggested in the
past. In this paper, a novel technique called cube-linear attack is first proposed to deal with a
probabilistic polynomial and furthermore to mine the available information unexposed by the previous
linear cryptanalysis. As a new contribution to linear cryptanalysis, it is beneficial to allow for a
reduction in the amount of data required for a successful attack in specific circumstances. Applying
our method to a specific analysis of Trivium, we get better linear cryptanalysis results so far. Although
a few better cryptanalytic results on Trivium had been published several years earlier using other
attacks, however, we believe that our methods are meaningful from the point of view of improving
linear cryptanalysis and can be extended to other ciphers. In other words, it is worth considering for
our method in launching linear attack on a cryptographic primitive.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61202491).

References

[Golić, 94] J. Dj. Golić. Linear Cryptanalysis of Stream Ciphers. Fast Software Encryption, pp. 154-169,
December 14-16, 1994.
[Golić, 02] J. Dj. Golić, Bagini. V., Morgari, G. Linear Cryptanalysis of Bluetooth Stream Cipher. EUROCRYPT,
pp. 238-255, April 28 –May 2, 2002.
[Muller, 05] Muller, F., Peyrin, T. Linear Cryptanalysis of TSC Family of Stream Ciphers. ASIACRYPT, pp.
373-394, December 4-8, 2005.
[Shahram, 05] Shahram Khazaei, Mehdi Hassanzadeh. Linear Sequential Circuit Approximation of the Trivium
Stream Ciphers. eSTREAM, ECRYPT Stream Cipher Project Report 2005/063 http://www.ecrypt.eu.org/stream/.
2005
[Turan, 07] Turan M S and Kara O. Linear Approximations for 2-round Trivium. Workshop on The State of the
Art of Stream Cipher (SASC2007), pp. 22-31, January 31 - February 1, 2007.
[Matsui, 92] M. Matsui, A. Yamagishi. A New Method for Known Plaintext Attack of FEAL Cipher.
EUROCRYPT, pp. 81-91, May 24-28, 1992.
[Shimizu, 87] A. Shimizu and S. Miyaguchi. Fast Data Encipherment Algorithm FEAL. EUROCRYPT, pp.
267-280, April 13-15, 1987.
[Matsui, 93] M. Matsui, Linear Cryptanalysis Method for DES Cipher. EUROCRYPT, pp. 386-397, May 23-27,
1993.
[Matsui, 94] M. Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard. CRYPTO, pp.
1-11, August 21-25, 1994.
[Kaliski, 94] Kaliski, B.S., Robshaw, M.J.B. Linear Cryptanalysis using Multiple Approximations. CRYPTO, pp.
26-39, August 21-25, 1994.
[Langford, 94] S. Langford, M. Hellman. Differential-Linear Cryptanalysis. CRYPTO 1994, pp. 17-26, August
21-25, 1994.
[Knudsen, 96] Knudsen, L.R., Robshaw. M.J.B. Non-linear Approximations in Linear Cryptanalysis.
EUROCRYPT. pp. 224-236, May 12-16, 1996.
[Bogdanov, 11] Bogdanov, A., Rijmen, V. Linear Hulls with Correlation Zero and Linear Cryptanalysis of Block
Ciphers. Cryptology ePrint Archive: Report 2011/123. 2011
[Dinur, 09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. EUROCRYPT. pp.
278-299, April 26-30, 2009.
[Vielhaber, 07] Vielhaber, M. Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryptology
ePrint Archive Report 2007/413. 2007.
[Lai, 94] Lai, X. Higher Order Derivatives and Differential Cryptanalysis. Communications and Cryptography.
Vol.276, pp. 227-233,1994.
[Cannière, 05] Ch. De Cannière and B. Preneel. Trivium. TRIVIUM-Specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/030 (2005) http://www.ecrypt.eu.org/stream.
[eSTREAM, 04] eSTREAM, The ECRYPT Stream Cipher Project. IST-2002-507932[EB/OL], Available at

14

http://www.ecrypt.eu.org/stream, 2004.
[Sun, 12] Sun Wen-long, Guan Jie, Liu Jiandong. Linear Cryptanalysis of Simplified Trivium. Chinese Journal of
Computers. vol.35, No.9, pp. 1890-1896, 2012. (in Chinese)
[Jia, 11] Jia Yan-yan, Hu Yu-pu, Yang Wen-feng, Gao Jun-tao. Linear Cryptanalysis of 2-round Trivium with
Multiple Approximations. Journal of Electronics & Information Technology, Vol.33, No.1, pp. 223-227, 2011.
(in Chinese)
[Maximov, 07] Maximov A, Biryukov A. Two Trivial Attacks on Trivium. Workshop on The State of the Art of
Stream Ciphers (SASC2007), pp. 1-16, January 31 - February 1, 2007.
[Raddum, 06] Raddum H. Cryptanalytic Results on Trivium. eSTREAM, ECRYPT Stream Cipher Project,
Report 2006/039, 2006.

Appendix

A. The equation (5) and equation (9) appearing in this paper are as follows.

Equation (5) is

1 3 6 15 21 27 30 39 3 6 21

24 30 33 39 45 51 72 4 5 13 14 13 41 16

17 19 20 22 23 25 26 28 29

54 57 67 68 69 72

78 14 40

3419 47 20 46 3

1z k k k k k k k iv iv iv

iv iv iv iv iv iv iv k k k k k k k

k k k k k k k

k k k

k k k k

k k k

iv k k

k k k k

= + + + + + + + + + + +
+ + + + + + × + ×

+ + + + + +
+ + ++ × × + ×

+ × × × + × + × + × + ×+ + 5 37 38

43 44 49 50 52 53 58 59 61 62

64 65 67 68 70 71 10 11 13 14 25 26

3

31 32

34 35 37 3

7

65 38 64 39 40 45 46 63

64 77 64

418 40 56

k k

k k k k k k k k k k

k k k k k k iv iv iv iv iv iv iv iv

iv iv iv iv iv i

k

k k k k k k k k

k iv k

iv ivv

+ × ×
× × + × × + × + × + × + × ×

+ × + × + × + × + × + × + ×

+
+ + + +

+

+

× +

× + × + × × 49 50 58 59 61 62

67 68 70 71 73 74 13 39 40 14 38

55 54 55

76 65 19 45 46

63 64 70 59 38 39 40 38 39 41 44 45 4

39 20

44 45 37 38 62 63 6

iv iviv iv iv iv iv iv

iv iv iv iv iv iv k k k k k k k

k k k

iv k k k k

k k iv k k kk k k k k k k kk

k

k

+ × + × × + × +
× + × + × × + × × + × × × × +

+
+ +

+

×

× + × × × × × × × + × × + × ×+ ++

44 45 47 71 58 62 63 65 40 54 55

53 54 56 25 39 40 26

62 63 64 41 53 54 53

54 55 25 14 25 41 26 13 26 40

31 20 3

38

39 31 45 461 47 3

k k iv k k k k iv iv iv

iv iv iv iv k k iv

k k k iv iv iv iv

iv iv iv k iv k iv k iv k k

k iv k i ivv k k ivk

× × × × + × × × + × × + × × ×

× + × × + × × × × + × × × ×

+ × × × ×

+ + +

+ + + +

+ + + 2 46 32 19 32 44 45 49 38 49

65 50 3749 63 64 50 62 6350 64iv k k

k iv k iv k k iv k iv

k i iv kv k iv kk

+ + +
+ +

× × × × + × ×
× × + × × × ×+

 (5)

Equation (9) is

1 3 6 15 21 27 30 39

3 6 21 24 30 33 39 45 51 71 72

4 5 13 14 13 41 1

37 38 54 57 63 67 68 69 72

49 50 70 76

77 7 6 18 1 7 1 0 924 94 0 1

1z k k k k k k k

iv iv iv iv iv iv iv i

k k k k k k k k k

iv iv iv iv

iv

v iv iv iv

k kiv k k kk k k k k k k k

= + + + + + + + + +

+ + + + + + + + +
× +

+ + + + + + + +

+ + + + + +
+ + × + + +× × + × + × × 22 23

25 26 28 29 34 35 37 38 37 43 44

49 50 52 53 61 62 67 68 70 71 10 11 70 71 10 11 13 14

25 26 31 3

47

20 46 63 39

2

40

34 35 3

6

3

4

7

5 4

k k

k k k k k k k k k k k

k k k k k k k k k k iv iv k k iv iv iv iv

iv iv iv iv iv iv i

k

k k k k k k

v

k

iv

+

+ +

× +

× + × + × + × + × × × + × × +
× + × + × + × + × + × +

+

+

× + × + × +

× × + × + × 8 40 56 49 50

58 59 61 62 67 68

41 55 54 55

19

45 46 38 39 40 38

70 71 73 74 13 39 40 14 38 39

20 44 45 38 62 639 41 44 45 43 44 45

47

6

iv iv iv iv

iv iv iv iv iv iv iv iv iv iv k k k

iv iv iv iv

k

k k k k k k k k k k k

k k k

k k k k k k k k

k

+ × × + × + ×
× + × + × + × + × + × × + × × ×

× + × × × × × × + × × + × × + ×

+
+

×

+

+ +

+ 41 53 54 53 54 55 25 14 25 41

26 13 26 40 31 20 31 47 32

40 54 55 53 54 56

25 39 40 26 38 39 31

46 32 19 32 44 45 49

45 46

49 638

iv iv iv iv iv iv iv k iv k

iv k iv k iv k iv k iv

iv iv iv iv iv

k iv k iv k k i

iv

iv k k iv k k iv k k

iv kv k

× × + × × × × + × × + × ×
× × + × × × × + × × × × ×

× × × +

+ + +
+ + + + +

+ + × + × 503 50 6 6337 2i kiv k v k+ × × ×+

 (9)

15

B.
Algorithm 2 [Sun, 12]：Algorithm to Search Best Linear Approximations

Reset KW and IVW ;

Input : Kn and IVn (sizes of KW and IVW to choose respectively)

Step1: Reset W and P , count the frequency of each bit in all non-linear monomials, put the bits with the
highest frequency in W ;

Step2:

1.When 1W = , determine the type of the bit in W , if it is key bit, then put it to KW , otherwise IVW ;

2.When 2W ³ ,count the frequency of quadratic term of each bit in W , put the bits with the highest

frequency in P :

2.2.1 If 1P = , determine type of the bit in P , if it is key bit, then put it to KW , otherwise IVW ;

2.2.2 If 2P ³ , choose arbitrarily one bit in P , and determine type, if it is key bit, put it in KW ,

otherwise IVW ;

Step3: Calculate the polynomial again, based on the chosen KW and IVW ;

Step4:

if ()() & &()K K IV IVn nW < W <

Return to Step1;

else if ()() & &()K K IV IVn nW = W ¹

Stop searching the key bits, return to Step1, and continue to search the IV bits;

else if ()() & &()K K IV IVn nW ¹ W =

Stop searching the IV bits, return to Step1, and continue to search the key bits;

else if ()() & &()K K IV IVn nW = W =

Output: ()(,),K IV eW W

End

