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Abstract. A pseudo-random number generator (PRNG) is a deterministic algorithm that produces numbers
whose distribution is indistinguishable from uniform. A formal security model for PRNGs with input was proposed
in 2005 by Barak and Halevi (BH). This model involves an internal state that is refreshed with a (potentially
biased) external random source, and a cryptographic function that outputs random numbers from the continually
internal state. In this work we extend the BH model to also include a new security property capturing how it
should accumulate the entropy of the input data into the internal state after state compromise. This property
states that a good PRNG should be able to eventually recover from compromise even if the entropy is injected
into the system at a very slow pace, and expresses the real-life expected behavior of existing PRNG designs.
Unfortunately, we show that neither the model nor the specific PRNG construction proposed by Barak and Halevi
meet this new property, despite meeting a weaker robustness notion introduced by BH. From a practical side,
we also give a precise assessment of the security of the two Linux PRNGs, /dev/random and /dev/urandom. In
particular, we show several attacks proving that these PRNGs are not robust according to our definition, and do
not accumulate entropy properly. These attacks are due to the vulnerabilities of the entropy estimator and the
internal mixing function of the Linux PRNGs. These attacks against the Linux PRNG show that it does not satisfy
the "robustness" notion of security, but it remains unclear if these attacks lead to actual exploitable vulnerabilities
in practice. Finally, we propose a simple and very efficient PRNG construction that is provably robust in our new
and stronger adversarial model. We present benchmarks between this construction and the Linux PRNG that
show that this contruction is on average more efficient when recovering from a compromised internal state and
when generating cryptographic keys. We therefore recommend to use this construction whenever a PRNG with
input is used for cryptography.
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1 Introduction

Generating random numbers is an essential task in cryptography. Random numbers are necessary not only
for generating cryptographic keys, but are also needed in steps of cryptographic algorithms or protocols
(e.g. initialization vectors for symmetric encryption, password generation, nonce generation, . . . ). Cryptog-
raphy practitioners usually assume that parties have access to perfect randomness. However, quite often this
assumption is not realizable in practice and random bits in protocols are generated by a Pseudo-Random
Number Generator (PRNG). When this is done, the security of the scheme depends of course in a crucial way
on the quality of the (pseudo-)randomness generated. If a user has access to a truly random bit-string, he
can use a deterministic (or cryptographic) PRNG to expand this short seed into a longer sequence which dis-
tribution is indistinguishable from the uniform distribution to a computationally-bounded adversary (which
does not know the seed). However, in many situations, it is unrealistic to assume that users have access
to secret and perfect randomness. In a PRNG with input, one only assumes that users can store a secret
internal state and have access to a (potentially biased) random source.

In spite of being widely deployed in practice, PRNGs with input were only formalized by Barak and
Halevi in 2005 [BH05]. They proposed a security notion, called robustness, to capture the fact that the bits
generated should look random to an observer with (partial) knowledge of the internal state and (partial)
control of the entropy source. Combining theoretical and practical analysis of PRNGs with input, this paper



presents an extension of the Barak-Halevi security model and analyses the Linux PRNGs /dev/random and
/dev/urandom.
Randomness weaknesses in cryptography. The lack of insurance about the generated random numbers
can cause serious damages in cryptographic protocols, and vulnerabilities can be exploited by attackers.
One striking example is the recent failure in the Debian Linux distribution [CVE08], where a commented
code in the OpenSSL PRNG with input led to insufficient entropy gathering and then to concrete attacks
on TLS and SSH protocols. More recently, Lenstra, Hughes, Augier, Bos, Kleinjung and Wachter [LHA+12]
showed that a non-negligible percentage of RSA keys share prime factors. Heninger, Durumeric, Wustrow and
Halderman [HDWH12] presented an analysis of the behavior of Linux PRNG that explains the generation
of low entropy keys when these keys are generated at boot time. Moreover, cryptographic algorithms are
highly vulnerable to weaknesses in the underlying random number generation process. For instance, several
works demonstrated that if nonces for DSS signature algorithm are generated with a weak pseudo-random
number generator then the secret key can be quickly recovered after seeing a few signatures (see [NS02]
and references therein). This illustrates the need for precise evaluation of PRNGs based on clear security
requirements.
Security Models. Descriptions of PRNGs with input are given in various standards [Kil11,ISO11,ESC05].
They identified the following core components: the entropy source which is the source of randomness used
by the generator to update an internal state which consists of all the parameters, variables, and other stored
values that the PRNG uses for its operations.

Several desirable security properties for PRNGs with input have been identified in various standards
([ISO11,Kil11,ESC05,BK12]). These standards consider adversaries with various means: those who have
access to the output of the generator; those who can control (partially or totally) the source of the generator
and those who can control (partially or totally) the internal state of the generator (and combination of them).
Several security notions have been defined:
– Resilience: an adversary must not be able to predict future PRNG outputs even if he can influence the

entropy source used to initialize or refresh the internal state of the PRNG;
– Forward security ( resp. backward security): an adversary must not be able to predict past (resp. future)

outputs even if he can compromise the internal state of the PRNG.
Desai, Hevia and Yin [DHY02] modelled a PRNG as an iterative algorithm and formalized the above

security properties in this context. Barak and Halevi [BH05] model a PRNG with input as a pair of algo-
rithms (refresh, next) and define a new security property called robustness that implies resilience, forward
and backward security. This property actually assesses the behavior of a PRNG after compromise of its
internal state and responds to the guidelines for developing PRNG given by Kelsey, Schneier, Wagner and
Hall [KSWH98].
Linux PRNG. In Unix-like operating systems, a PRNG with input was implemented for the first time
for Linux 1.3.30 in 1994. The entropy source comes from device drivers and other sources such as latencies
between user-triggered events (keystroke, disk I/O, mouse clicks, . . . ). It is gathered into an internal state
called the entropy pool. The internal state keeps an estimate of the number of bits of entropy in the internal
state and (pseudo-)random bits are created from the special files /dev/random and /dev/urandom. Barak and
Halevi [BH05] discussed briefly the PRNG /dev/random but its conformity with their robustness security
definition is not formally analyzed.
The first security analysis of these PRNGs was given in 2006 by Gutterman, Pinkas and Reinman [GPR06].
It was completed in 2012 by Lacharme, Röck, Strubel and Videau [LRSV12]. Gutterman et al. [GPR06]
presented an attack based on kernel version 2.6.10 for which a fix has been published in the following
versions. Lacharme et al. [LRSV12] gives a detailed description of the operations of the PRNG and provides
a result on the entropy preservation property of the mixing function used to refresh the internal state.
Our Contributions. From a theoretical side, we propose a new formal security model for PRNGs with
input, which encompasses all previous security notions [BH05]. This new property captures how a PRNG
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with input should accumulate the entropy of the input data into the internal state. This property was not
initially formalized in [BH05] but it actually expresses the real expected behavior of a PRNG after a state
compromise, where it is expected that the PRNG quickly recovers enough entropy.

On a practical side, we give a precise assessment of the security of the two Linux PRNGs, /dev/random
and /dev/urandom. In particular, we prove that these PRNGs are not robust and do not accumulate entropy
properly. These properties are due to the behavior of the entropy estimator and the internal mixing function
of the Linux PRNGs. We also analyze the PRNG with input proposed by Barak and Halevi. This scheme was
proven robust in [BH05] but we prove that it does not generically satisfy our expected property of entropy
accumulation. On the positive side, we propose a PRNG construction that is robust in the standard model
and in our new stronger adversarial model.

Finally, we propose benchmarks between our PRNG construction and the Linux PRNG and we show that
our PRNG construction is far more efficient than the Linux PRNG to recover from a compromised internal
state and to generate cryptographic keys.

2 Preliminaries

Probabilities. When X is a distribution, or a random variable following this distribution, we denote x $← X
when x is sample according to X. We denote by M(X) the distribution probability of the output of the
Turing machine M , while running on the input x drawn according to X, and with its random coins (if any).
The notation X ← Y says that X is assigned with the value of the variable Y , and that X is a random
variable with distribution equal to that of Y . For a variable X and a set S (e.g., {0, 1}m for some integer m),
the notation X $← S denotes both assigning X a value uniformly chosen from S and letting X be a uniform
random variable over S. The uniform distribution over n bits is denoted Un.
Indistinguishability. Two distributions X and Y are said (t, ε)-computationally indistinguishable, (that we
denote CDt(X,Y ) ≤ ε), if for any distinguisher A running within time t, Pr[A(X) = 1]−Pr[A(Y ) = 1] ≤ ε.
When t =∞, meaning A is unbounded, we say that X and Y are ε-close, and their statistical distance is at
most ε: SD(X,Y ) ≤ ε. SD(X,Y |Z) ≤ ε (resp. CDt(X,Y |Z) ≤ ε) is a shorthand for SD((X,Z), (Y,Z)) ≤ ε
(resp. CDt((X,Z), (Y,Z)) ≤ ε.
Entropy. For a discrete distribution X over a set S, we denote its min-entropy by

H∞(X) = min
x

$←X
{− log Pr[X = x]} (1)

A distribution X is called a k-source if H∞(X) ≥ k. We also define worst-case min-entropy of X conditioned
on another random variable Z by:

H∞(X|Z) = − log

([
max
x,z

Pr[X = x|Z = z]

])
(2)

It is worth noting that conditional min-entropy is defined more conservatively than usual, so that it satisfies
the following relations (the first of which, called the chain rule, is not true for the “average-case” variant of
conditional min-entropy):

H∞(X,Z)−H∞(Z) ≥ H∞(X|Z) ≥ H∞(X,Z)− |Z| ≥ H∞(X)− |Z| (3)

where |Z| is the bit-length of Z.
Extractors. Let H = {hX : {0, 1}n → {0, 1}m}X∈{0,1}d be a hash function family. We say that H is a
(k, ε)-extractor if for any random variable I over {0, 1}n with H∞(I) ≥ k, the distributions (X,hX(I)) and
(X,U) are ε-close where X is uniformly random over {0, 1}d and U is uniformly random over {0, 1}m. We
say that H is ρ-universal if for any inputs I 6= I ′ ∈ {0, 1}n we have Pr

X
$←{0,1}d

[hX(I) 6= hX(I ′)] ≤ ρ.
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Lemma 1 (Leftover-Hash Lemma). Assume that H is ρ-universal where ρ = (1+α)2−m for some α > 0.
Then, for any k > 0, it is also a (k, ε)-extractor for ε = 1

2

√
2m−k + α.

See Theorem 8.37 in [Sho06] for a nicely explained proof of the above lemma.

Pseudorandom Generators. We say that a function G : {0, 1}m → {0, 1}m is a (deterministic) (t, ε)-
pseudorandom generator (PRG) if CDt(G(Um),Un) ≤ ε.
Game Playing Framework. For our security definitions and proofs we use the code-based game playing
framework of [BR06]. A game GAME has an initialize procedure, procedures to respond to adversary oracle
queries, and a finalize procedure. A game GAME is executed with an adversary A as follows. First, initialize
executes, and its outputs are the inputs to A. Then A executes, its oracle queries being answered by the
corresponding procedures of GAME. When A terminates, its output becomes the input to the finalize proce-
dure. The output of the latter is called the output of the game, and we let GAMEA ⇒ y denote the event
that this game output takes value y. In the next section, for all GAME ∈ {RES,FWD,BWD,ROB, SROB},
AGAME denotes the output of the adversary. We let AdvGAME

A = 2× Pr[GAMEA ⇒ 1]− 1. Our convention is
that Boolean flags are assumed initialized to false and that the running time of the adversary A is defined as
the total running time of the game with the adversary in expectation, including the procedures of the game.

3 PRNG with Input: Modeling and Security

In this section we give formal modeling and security definitions for PRNGs with input.

Definition 1 (PRNG with input). A PRNG with input is a triple of algorithms G = (setup, refresh, next)
and a triple (n, `, p) ∈ N3 where:
– setup: it is a probabilistic algorithm that outputs some public parameters seed for the generator.
– refresh: it is a deterministic algorithm that, given seed, a state S ∈ {0, 1}n and an input I ∈ {0, 1}p,

outputs a new state S′ = refresh(S, I) = refresh(seed, S, I) ∈ {0, 1}n.
– next: it is a deterministic algorithm that, given seed and a state S ∈ {0, 1}n, outputs a pair (S′, R) =

next(S) = next(seed, S) where S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}` is the output.
The integer n is the state length, ` is the output length and p is the input length of G.

Before moving to defining our security notions, we notice that there are two adversarial entities we need
to worry about: the adversary A whose task is (intuitively) to distinguish the outputs of the PRNG from
random, and the distribution sampler D whose task is to produce inputs I1, I2, . . . , which have high entropy
collectively, but somehow help A in breaking the security of the PRNG. In other words, the distribution
sampler models potentially adversarial environment (or “nature”) where our PRNG is forced to operate.
Unlike prior work, we model the distribution sampler explicitly, and believe that such modeling is one of the
important technical and conceptual contributions of our work.

3.1 Distribution Sampler

The distribution sampler D is a stateful and probabilistic algorithm which, given the current state σ, outputs
a tuple (σ′, I, γ, z) where:

– σ′ is the new state for D.
– I ∈ {0, 1}p is the next input for the refresh algorithm.
– γ is some fresh entropy estimation of I, as discussed below.
– z is the leakage about I given to the attacker A.
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We denote by qD the upper bound on number of executions of D in our security games, and say that D is
legitimate if:1

H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ1, . . . , γqD) ≥ γj (4)

for all j ∈ {1, . . . , qD} where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qD} and σ0 = 0.
We now explain the reason for explicitly requiring D to output the entropy estimate γj used in (4). Most

complex PRNGs, including the Linux RNG, are worried about the situation where the system might enter
a prolonged state where no new entropy is inserted in the system. Correspondingly, such PRNGs typically
include some ad hoc entropy estimation procedure E whose goal is to block the PRNG from outputting
output value Rj until the state has not accumulated enough entropy γ∗ (for some entropy threshold γ∗).
Unfortunately, it is well-known that even approximating the entropy of a given distribution is a computa-
tionally hard problem [SV03]. This means that if we require our PRNG G to explicitly come up with such
a procedure E, we are bound to either place some significant restrictions (or assumptions) on D, or rely on
some hoc and non standard assumptions. Indeed, as part of this work we will demonstrate some attacks on
the entropy estimation of the Linux RNG, illustrating how hard (or, perhaps, impossible?) it is to design
a sound entropy estimation procedure E. Finally, we observe that the design of E is anyway completely
independent of the mathematics of the actual refresh and next procedures, meaning that the latter can and
should be evaluated independently of the “accuracy” of E.

Motivated by these considerations, we do not insist on any “entropy estimation” procedure as a mandatory
part of the PRNG design, allowing us to elegantly side-step the practical and theoretical impossibility of
sound entropy estimation. Instead, we chose to place the burden of entropy estimations on D itself, which
allows us to concentrate on the provable security of the refresh and next procedures. In particular, in our
security definition we will not attempt to verify if D’s claims are accurate (as we said, this appears hopeless
without some kind of heuristics), but will only require security when D is legitimate, as defined in (4).
Equivalently, we can think that the entropy estimations γj come from the entropy estimation procedure E
(which is now “merged” with D), but only provide security assuming that E is correct in this estimation
(which we know is hard in practice, and motivates future work in this direction).

However, we stress that: (a) the entropy estimates γj will only be used in our security definitions, but
not in any of the actual PRNG operations (which will only use the “input part” I returned by D); (b) we
do not insist that a legitimate D can perfectly estimate the fresh entropy of its next sample Ij , but only
provide a lower bound γj that D is “comfortable” with. For example, D is free to set γj = 0 as many times as
it wants and, in this case, can even choose to leak the entire Ij to A via the leakage zj !2 More generally, we
allow D to inject new entropy γj as slowly (and maliciously!) as it wants, but will only require security when
the counter c keeping track of the current “fresh” entropy in the system3 crosses some entropy threshold γ∗

(since otherwise D gave us “no reason” to expect any security).

Remark 1. Notice, since in our syntax we did not want to assume that D knows a bound on the number of
calls qD made to it, we let D compute the values (I, γ, z) (and update its state σ) one-by-one. This seems to
suggest that our attacker A needs to make j calls D to eventually learn the “leaked” values γj and zj . However,
from a technical point of satisfying the worst-case legitimacy condition (4), we can assume without loss of
generality (wlog) that A learns all the qD values (γj , zj) in the very first leakage z1. Indeed, in its very first
iterationD could (wlog) compute all qD iterations, and set the modified first leakage z′1 = (γ1, z1, . . . , γqD , zqD)
(and subsequent z′2 = . . . = z′qD = ∅) without affecting the bound in (4).

1 Since conditional min-entropy is defined in the worst-case manner in (2), the value γj in the bound below should not be
viewed as a random variable, but rather as an arbitrary fixing of this random variable.

2 Jumping ahead, setting γj = 0 corresponds to the bad-refresh(Ij) oracle in the earlier modeling of [BH05], which is not
explicitly provided in our model.

3 Intuitively, “fresh” refers to the new entropy in the system since the last state compromise.
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3.2 Security Notions

In the literature, four security notions for a PRNG with input have been proposed: resilience (RES), forward
security (FWD), backward security (BWD) and robustness (ROB), with the latter being the strongest notion
among them. We now define the analogs of this notions in our stronger adversarial model, later comparing
our modeling with the prior modeling of [BH05]. Each of the games below is parametrized by some parameter
γ∗ which is part of the claimed PRNG security, and intuitively measures the minimal “fresh” entropy in the
system when security should be expected. In particular, minimizing the value of γ∗ corresponds to a stronger
security guarantee. When γ∗ is clear from the context, we omit it for the game description (e.g., write ROB
instead of ROB(γ∗)).

All four security games (RES(γ∗), FWD(γ∗), BWD(γ∗), ROB(γ∗)) are described using the game playing
framework discussed earlier, and share the same initialize and finalize procedures in Figure 1 below. As we
mentioned, our overall adversary is modeled via a pair of adversaries (A,D), where A is the actual attacker
and D is a stateful distribution sampler. We already discussed the distribution sampler D, so we turn to the
attacker A, whose goal is to guess the correct value b picked in the initialize procedure, which also returns
to A the public value seed, and initializes several important variables: corruption flag corrupt, “fresh entropy
counter” c, state S and sampler’s D initial state σ.4 In each of the games (RES, FWD, BWD, ROB), A has
access to several oracles depicted in depicted in Figure 2. We briefly discuss these oracles:

proc. initialize

seed
$← setup; σ ← 0; S $← {0, 1}n; c← n; corrupt← false; b $← {0, 1}

OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Fig. 1. Procedures initialize and finalize for G = (setup, refresh, next)

proc. D-refresh

(σ, I, γ, z)
$← D(σ)

S ← refresh(S, I)
c← c+ γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
IF corrupt = true,

RETURN
(S,R0)← next(S)

R1
$← {0, 1}`

OUTPUT Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c← 0
OUTPUT R

proc. get-state
c← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c← 0, corrupt← true
S ← S∗

Fig. 2. Procedures in games RES(γ∗), FWD(γ∗), BWD(γ∗), ROB(γ∗) for G = (setup, refresh, next)

– D-refresh. This is the key procedure where the distribution sampler D is run, and where its output I is
used to refresh the current state S. Additionally, one adds the amount of fresh entropy γ to the entropy
counter c, and resets the corrupt flag to false when c crosses the threshold γ∗. The values of γ and the
leakage z are also returned to A. We denote by qD the number of times A calls D-refresh (and, hence, D),
and notice that by our convention (of including oracle calls into run-time calculations) the total run-time
of D is implicitly upper bounded by the run-time of A.

– next-ror/get-next. These procedures provide A with either the real-or-random challenge (provided that
corrupt = false) or the true PRNG output. As a small subtlety, a “premature” call to get-next before

4 With a slight loss of generality, we assume that when S is random it is safe to set the corruption flag corrupt to false.

6



corrupt = false resets the counter c to 0, since then A might learn something non-trivial about the
(low-entropy) state S in this case.5 We denote by qR the total number of calls to next-ror and get-next.

– get-state/set-state. These procedures provide A with the ability to either learn the current state S, or
set it to any value S∗. In either case c is reset to 0 and corrupt is set to true. We denote by qS the total
number of calls to get-state and set-state.

We can now define the corresponding security notions for PRNGs with input. For convenience, in the sequel
we sometime denote the “resources” of A by T = (t, qD, qR, qS).

Definition 2 (Security of PRNG with input). A pseudo-random number generator with input G =
(setup, refresh, next) is called (T = (t, qD, qR, qS), γ∗, ε)-robust (resp. resilient, forward-secure, backward-
secure), if for any attacker A running in time at most t, making at most qD calls to D-refresh, qR calls
to next-ror/get-next and qS calls to get-state/set-state, and any legitimate distribution sampler D inside the
D-refresh procedure, the advantage of A in game ROB(γ∗) (resp, RES(γ∗), FWD(γ∗), BWD(γ∗)) is at most
ε, where:
– ROB(γ∗) is the unrestricted game where A is allowed to make the above calls.
– RES(γ∗) is the restricted game where A makes no calls to get-state/set-state (i.e., qS = 0).
– FWD(γ∗) is the restricted game where A makes no calls to set-state and a single call to get-state (i.e.,
qS = 1) which is the very last oracle call A is allowed to make.

– BWD(γ∗) is the restricted game where A makes no calls to get-state and a single call to set-state (i.e.,
qS = 1) which is the very first oracle call A is allowed to make.

Intuitively, (a) resilience protects the security of the PRNG when not corrupted against arbitrary distri-
bution samplers D, (b) forward security protects past PRNG outputs in case the state S gets compromised,
(c) backward security security ensures that the PRNG can successfully recover from state compromise, pro-
vided enough fresh entropy is injected into the system, (d) robustness ensures arbitrary combination of the
above. Hence, robustness is the strongest and the resilience is the weakest of the above four notions. In par-
ticular, all our provable constructions will satisfy the robustness notion, but we will use the weaker notions
to better pinpoint some of our attacks.

3.3 Comparison to Barak-Halevi Model

Barak-Halevi Construction. We briefly recall the elegant construction of PRNG with input due to Barak
and Halevi [BH05], since it will help us illustrate the key new elements (and some of the definitional choices)
of our new model. This construction (which we call BH) involves a randomness extraction function Extract :
{0, 1}p −→ {0, 1}n and a standard deterministic PRG G : {0, 1}n −→ {0, 1}n+`. As we explain below, the
modeling of [BH05] did not have an explicit setup algorithm, and the refresh and next algorithms are given
below:
– refresh(S, I) = G′(S ⊕ Extract(I))
– next(S) = G(S)

Above G′ denotes the truncation of G to the first n output bits. However, as we explain later, we will
also consider the “simplified BH” construction, where G′ is simply the identity function (i.e., refresh(S, I) =
S ⊕ Extract(I)).
Entropy Accumulation. Barak and Halevi proved the robustness of this construction in a model very
similar to ours (indeed, their model was the inspiration for this work), but with several important differences.
The most crucial such difference involves the modeling of the inputs Ij which are fed to the refresh procedure.
Unlike our modeling, where the choice of such inputs and their “fresh entropies” γj is completely left to the

5 We could slightly strengthen our definition, by only reducing c by ` bits in this case, but chose to go for a more conservative
notion.
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distribution sampler D (via the D-refresh procedure), the BH modeling only considered the following two
extremes of our model. The attacker could either call the good-refresh procedure, which must produce an
input I of fresh entropy γ higher than the entropy threshold γ∗, or call the bad-refresh procedure with an
arbitrary, maliciously specified input I∗. Informally, the call to bad-refresh should not compromise the PRNG
security whenever the compromised flag corrupt = false, while the call to good-refresh should result in an
immediate “recovery”, and always resets corrupt = true.

Hence, our key conceptual strengthening of the work of [BH05] will require security even if the entropy
is accumulated slowly (and maliciously!), as opposed to in “one shot” (or “delayed” by calls to bad-refresh).
Namely, we insist that a good PRNG with input should be able to recover from compromise as long as the
total amount of fresh entropy accumulated over some potentially long period of time crosses the threshold
γ∗, instead of insisting that there must be one very high-entropy sample to aid the recovery. We informally
term this new required property of PRNGs with input (which is very closely related to our formal notion of
backward security) entropy accumulation, and notice that practical PRNGs, such a the Linux PRNG, seem
to place a lot of (heuristic) effort in trying to achieve this property.

Unfortunately, we will show that the BH construction is not entropy accumulating, in general. Hence,
their construction does not necessarily meet our stronger notion of robustness (or even backward security).
Before presenting our attack on the BH construction, though, we discuss some other less critical differences
between our models, since they will also help to simplify our presentation of the attack.

Entropy Estimates. Related to the above, [BH05] did not require D to explicitly output the entropy esti-
mate γ. As we mentioned, though, this was replaced by the implicit requirement that the call to good-refresh
must produce an input I with fresh entropy γ ≥ γ∗. In contrast, our explicit modeling (justified in detail
in Section 3.1) allows us to meaningfully formalize the notion of “entropy accumulation”, by keeping a well
defined fresh entropy counter c, and resetting corrupt = false when c ≥ γ∗.
Importance of setup. As we mentioned, the modeling of [BH05] did not have an explicit setup algorithm
to initialize public parameters seed. Instead, they assumed that the required randomness extractor Extract
in their construction is good enough to extract nearly ideal randomness from any high-entropy distribution
I output by the good-refresh procedure. Ideally, we would like to make no other assumptions about I except
its min-entropy. Unfortunately, it is well known that no deterministic extractor is capable to simultaneously
extract good randomness from all efficiently samplable high-entropy distributions (e.g., consider nearly full
entropy distribution I which is random, except the first bit of Extract(I) is 0). This leaves us with two options.
The first option, which seemed to be the preferred choice by [BH05], is to restrict the family of permitted
high-entropy distributions I. While following this option is theoretically possible in our model as well, we
find it to be somewhat restrictive and cumbersome to define, since we would like to allow our distribution
sampler to output “variable-length” high-entropy distributions, where entropy might be accumulated very
slowly over time.

Instead, we chose to follow the second option, which is much more universally accepted in the randomness
extractor literature [NZ96]: to assume the existence of the setup procedure which will output some public
parameters seed which could be used by the procedures next and refresh. Applied to the construction of
[BH05], for example, this will allow one to consider a seeded extractor Extract inside their refresh procedure,
which can now extract entropy from all high-entropy distributions (see the resulting definition of seeded (k, ε)-
extractors in Section 2). As a warning, this nice extra generality comes at a price that the public parameter
seed is not passed to the distribution sampler D, since otherwise D can still produce high-entropy (but
adversarial) samples I such that next(refresh(0n, I)) always starts with a 0 bit. Although slightly restrictive,
this elegantly side-steps the impossibility result above, while accurately modeling many real-life situations,
where it is unreasonable to assume that the “nature” D would somehow bias its samples I depending on
some random parameter seed chosen inside the initialization procedure.

State Pseudorandomness. Barak and Halevi [BH05] also insisted that the state S is indistinguishable
from random once corrupt = false. While true in their specific construction (analyzed in their weaker model),
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we think that demanding this property is simultaneously too restrictive and also not very well motivated as
the mandatory part of a general security definition. For example, imagine a PRNG where the state S includes
a (never random) Boolean flag which keeps track if the last PRNG call was made to the next procedure. We
see a potential efficiency benefit gained by keeping such a flag (e.g., adding this flag will allow us to speed up
the subsequent next procedure in our main construction in Section 4), but see no reason why storing such a
harmless flag makes such this PRNG design “insecure”. In fact, even ignoring the “harmless flag” optimization
above, our main construction in Section 4 also will not satisfy this property the very moment corrupt = false.
Instead, we will only make S pseudorandom when the first call to next is made, which will be sufficient to
ensure the security of generated bits R anyway.

Indeed, we believe it is better to leave it to the RNG designers to decide on a particular form of state
pseudorandomness which will aid their security proof, like “ignoring” the harmless flag, or waiting until
the first call to next in our construction, etc. For example, in Section 3.4 we will define two simpler, but
more specialized notions of RNG security called “preserving” and “recovering” security. Both of these notions
will demand a certain carefully chosen form of state pseudorandomness (and more!) in a way that, when
taken together, will automatically imply our notion of robustness. In particular, our main construction will
satisfy both of these specialized notions, without satisfying the strict (but not important by itself) state
pseudorandomness notion from [BH05].

Interestingly, looking at the analysis of [BH05], the (truncated) PRG G′ inside the refresh procedure is
only needed to ensure the state pseudorandomness of their construction. In other words, if one drops (only
the) state pseudorandomness from the BH model, the “simplified BH” construction is already robust in their
model. Motivated by this, we first give a very strong attack on the simplified BH construction in our stronger
model, for any extractor Extract and PRG G. This already illustrates the main difference between our models
in terms of entropy accumulation. Then we show a more artificial (but still valid) attack on the “full BH”
construction.

Attack on Simplified BH. Consider the following very simple distribution sampler D. At any time period,
it simply sets I = αp (meaning bit α concatenated p times) for a fresh and random bit α, and also sets entropy
estimate γ = 1 and leakage z = ∅. Clearly, D is legitimate, as the min-entropy of I is 1, even conditioned
on the past and the future. Hence, for any entropy threshold γ∗, the simplified BH construction must regain
security after γ∗ calls to the D-refresh procedure following a state compromise. Now consider the following
simple attacker A attacking the backward security (and, thus, robustness) of the simplified BH construction.
It calls set-state(0n), and then makes γ∗ calls to D-refresh followed by many calls to next-ror. Let us denote
the value of the state S after j calls to D-refresh by Sj , and let Y (0) = Extract(0p), Y (1) = Extract(1p).
Then, recalling that refresh(S, I) = S⊕Extract(I) and S0 = 0n, we see that Sj = Y (α1)⊕ . . .⊕Y (αj), where
α1 . . . αj are random and independent bits. In particular, at any point of time there are only two possible
values for Sj : if j is even, then Sj ∈ {0n, Y (0) ⊕ Y (1)}, and, if j is odd, then Sj ∈ {Y (0), Y (1)}. In other
words, despite receiving γ∗ random and independent bits from D, the refresh procedure failed to accumulate
more than 1 bit of entropy in the final state S∗ = Sγ∗ . In particular, after γ∗ calls to D-refresh, A can simply
try both possibilities for S∗ and easily distinguish real from random outputs with advantage arbitrarily close
to 1 (by making enough calls to next-ror).

This shows that the simplified BH construction is never backward secure, despite being robust (modulo
state pseudorandomness) in the model of [BH05].

Attack on “Full” BH. The above attack does not immediately extend to the full BH construction, due
to the presence of the truncated PRG G′. Instead, we show a less general attack for some (rather than
any) extractor Extract and PRG G. For Extract, we simply take any good extractor (possibly seeded) where
Extract(0p) = Extract(1p) = 0n. Such an extractor exists, since we can take any other initial extractor
Extract′, and simply modify it on inputs 0p and 1p, as above, without much affecting its extraction properties
on high-entropy distributions I. By the same argument, we can take any good PRG G where G(0n) = 0n+`,
which means that G′(0n) = 0n.
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With these (valid but artificial) choices of Extract and G, we can keep the same distribution sampler
D and the attacker A as in the simplified BH example. Now, however, we observe that the state S always
remains equal to 0n, irrespective of whether is it updated with I = 0p or I = 1p, since the new state
S′ = G′(S ⊕ Extract(I)) = G′(0n ⊕ 0n) = 0n = S. In other words, we have not gained even a single bit of
entropy into S, which clearly breaks backward security in this case as well!

One may wonder if we can have a less obvious attack for any Extract andG, much like in the simplified BH
case. This turns out to be an interesting and rather non-trivial question. Indeed, the value of the state Sj after
j calls to D-refresh with inputs I1 . . . Ij is equal to the “CBC-MAC” computation, with input Y = (Y1 . . . Yj)
and the initial value S0, where Yj = Extract(Ij):

Sj = G′(Yj ⊕G′(Yj−1 . . .⊕G′(Y1 ⊕ S0) . . .))

Moreover, we only care about the case when H∞(I) ≥ γ∗, which, under appropriate assumptions on Extract,
would translate to a high-entropy guarantee on Y . In this case, it is tempting to use the work of [DGH+04],
who showed that the CBC-MAC is a good randomness extractor on high-entropy inputs Y , provided that
the truncated PRG G′ is modeled as a random permutation. This result gives us hope that the full BH
construction might be secure in our model, possibly under strong enough assumptions on the PRG G and/or
the extractor Extract. Unfortunately, aside from assuming that G′ is (close to) a random permutation, we
cannot directly use the results of [DGH+04], since the initial state S0 could be set by A in a way correlated
with the inputs Yj , as well as the “block cipher” G′ (which invalidates the analysis of [DGH+04]).

Instead of following this interesting, but rather speculative direction, in Section 4 we give an almost
equally simple construction which is provably robust in the standard model, without any idealized assump-
tions.

3.4 Simpler Notions of PRNG Security

We define two properties of a PRNG with input which are intuitively simpler to analyze than the full
robustness security. We show that these two properties, taken together, imply robustness.
Recovering Security. We define a notion of recovering security. It considers an attacker that compromises
the state to some arbitrary value S0. Following that, sufficiently many D-refresh calls with sufficient entropy
are made so as to set the corrupt flag to false and resulting in some updated state S. Then the output
(S∗, R) ← next(S) looks indistinguishable from uniform. The formal definition is slightly more complicated
since the attacker also gets to adaptively choose when to start using D-refresh calls to update the state.
Formally, we consider the following security game with an attacker A, a sampler D, and bounds qD, γ∗.
– The challenge chooses a seed seed

$← setup, and a bit b $← {0, 1} uniformly at random. It sets σ0 := 0.
For k = 1, . . . , qD, the challenger computes

(σk, Ik, γk, zk)← D(σk−1).

– The attacker A gets seed and γ1, . . . , γqD , z1, . . . zqD . It gets access to an oracle get-refresh() which initially
sets k := 0 on each invocation increments k := k+1 and outputs Ik. At some point the attacker A outputs
a value S0 ∈ {0, 1}n and an integer d such that k + d ≤ qD and

∑k+d
j=k+1 γj ≥ γ∗.

– For j = 1, . . . , d, the challenger computes

Sj := refresh(Sj−1, Ik+j , seed).

If b = 0 it sets (S∗, R) ← next(Sd) and if b = 1 is sets (S∗, R) ← {0, 1}n+` uniformly at random. The
challenger gives Ik+d+1, . . . , IqD , and (S∗, R) to A.

– The attacker A outputs a bit b∗.
We define the advantage of the attacker A and sampler D in the above game as |2 Pr[b∗ = b]− 1|.
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Definition 3 (Recovering Security). We say that PRNG with input has (t, qD, γ
∗, ε)-recovering security

if for any attacker A and legitimate sampler D, both running in time t, the advantage of the above game with
parameters qD, γ∗ is at most ε.

Preserving Security. We define a simple notion of preserving security. Intuitively, it says that if the state
S0 starts uniformly random and uncompromised, and then is refreshed with arbitrary (adversarial) samples
I1, . . . , Id resulting in some final state Sd, then the output (S∗, R) ← next(Sd) looks indistinguishable from
uniform.

Formally, we consider the following security game with an attacker A.
– The challenger chooses an initial state S0 ← {0, 1}n, a seed seed← setup, and a bit b← {0, 1} uniformly

at random.
– A gets seed and specifies arbitrarily long sequence of values I1, . . . , Id with Ij ∈ {0, 1}n for all j ∈ [d].
– The challenger sequentially computes

Sj = refresh(Sj−1, Ij , seed)

for j = 1, . . . , d. If b = 0, A is given (S∗, R) = next(Sd) and if b = 1, A is given (S∗, R)← {0, 1}n+`.
– A outputs a bit b∗.
We define the advantage of the attacker A in the above game as |2 Pr[b∗ = b]− 1|.

Definition 4 (Preserving Security). A PRNG with input has (t, ε)-preserving security if the advantage
of any attacker A running in time t in the above game is at most ε.

We now show that, taken together, recovering and preserving security notions imply the full notion of
strong robustness.

Theorem 1. If a PRNG with input has both (t, qD, γ
∗, εr)-recovering security and (t, εp)-preserving security,

then it is ((t′, qD, qR, qS), γ∗, qR(εr + εp))-robust where t′ ≈ t.

3.5 Proof of Theorem 1

We will refer to the attacker’s queries to either the get-next or next-ror oracle in the robustness game as “next
queries”. We assume that the attacker makes exactly qR of them. We say that a next query is uncompromised
if corrupt = false during the query, and we say it is compromised otherwise. Without loss of generality, we
will assume that all compromised next queries that the attacker makes are to get-next and not next-ror (since
next-ror does not do/output anything when corrupt = true).

We partition the uncompromised next queries into two subcategories: preserving and recovering. We
say that an uncompromised next query is preserving if the corrupt flag remained set to false throughout
the entire period between the previous next query (if there is one) and the current one. Otherwise, we
say that an uncompromised next query is recovering. With any recovering next query, we can associate a
corresponding most recent entropy drain (mRED) query which is the most recent query to either get-state,
set-state, get-next that precedes the current next query. An mRED query must set the cumulative entropy
estimate to c = 0. Moreover, with any recovering next query, we associate a corresponding sequence of
recovering samples Ī = (Ij , . . . , Ij+d−1) which are output by all the calls to the D-refresh oracle that precede
the recovering next query, but follow the associated mRED query. It is easy to see that any such sequence of
recovering samples Ī must satisfy the entropy requirements

∑j+d−1
i=j γi ≥ γ∗ where the ith call to D-refresh

oracle outputs (Ii, γi, zi).
We define several hybrid games. Let Game 0 be the real-or-random security game as defined in Figure 2.

Let Game i be a modification of this game where, for the first i next queries, if the query is uncompromised,
then the challenger always chooses (S,R) ← {0, 1}`+n uniformly at random during the query rather than
using the next() function. As an intermediate, we also define a hybrid Game (i + 1

2), which lies between
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Game i and Game (i + 1). In particular, in Game (i + 1
2), if the (i + 1)st next query is preserving than

the challenger acts as in Game(i+ 1) and chooses a random S,R, and otherwise it acts as in Game i and
follows the original oracle specification. In all of these games, the output of the game is the output of the
finalize oracle at the end, which is 1 if the attacker correctly guesses the challenge bit, and 0 otherwise.

We claim that for all i ∈ {0, . . . , qR − 1}, Game i is indistinguishable from Game (i+ 1
2), that in turn

is indistinguishable from Game (i+ 1).

Claim. Assuming that the PRNG has (t, εp)-preserving security, then for any attacker/distinguisher A,D
running in time t′ ≈ t, we have |Pr[(Game i) = 1]− Pr[(Game i+ 1

2) = 1]| ≤ εp.

Proof. Fix attacker/sampler pair A,D running in time t′. Note that the two games above only differ in the
special case where the (i+ 1)st next query made by A is preserving. Therefore, we can assume w.l.o.g. that
A ensures this is always the case, as it can only maximize advantage.

We define an attacker A′ that has advantage εp in the preserving security game. The attacker A′ gets a
value seed from its challenger and passes it to A. Then A′ begins running A and simulating all of the oracles
in the robustness security game. It chooses a random “challenge bit” b $← {0, 1}. It simulates all oracle calls
made by A until the (i + 1)st next query as in Game i. In particular, it simulates calls to D-refresh using
the code of the sampler D and updating its state. Note that A′ has complete knowledge of the sampler state
σ and the PRNG state S at all times. During the (i+ 1)st next query made by A, the attacker A′ takes all
the samples I1, . . . , Id which were output by D in between the ith and (1 + 1)st next query and gives these
to its challenger. It gets back a value (S∗, R0). If the (i+ 1)st next query made by A is next-ror the attacker
A′ also chooses R1

$← {0, 1}` and gives Rb to A where b is challenge bit randomly picked by A′. In either
case, A′ sets the new PRNG state to S∗ and continues running the game, simulating all future oracle calls
made by A as in Game i. Finally, if A outputs the bit b∗, the attacker A′ outputs the bit b̃∗ which is set to
1 iff b = b∗.

Notice that if the challenge bit of the challenger for A′ is b̃ = 0 then this exactly simulates Game i for A
and if the challenge bit is b̃ = 1 then this exactly simulatesGame i+1. In particular, we can think of the state
immediately following the ith next query as being the challenger’s randomly chosen value S0

$← {0, 1}n, the
state immediately preceding the (i+ 1)st next query being Sd which refreshes S0 with the samples I1, . . . , Id,
and the state immediately following the query as being either (S∗, R0)← next(Sd) when b̃ = 0 (as in Game
i) or (S∗, R0)

$← {0, 1}n+` when b = 1 (as in Game i+ 1). Therefore we have

| Pr [(Game i+ 1/2) = 1]− Pr [(Game i) = 1] | =
∣∣∣ Pr[b = b∗|b̃ = 0]− Pr[b = b∗ | b̃ = 1]

∣∣∣
=
∣∣∣ 2 Pr[b̃∗ = b̃]− 1

∣∣∣
≤ εp.

Claim. If the PRNG is (t, qD, γ
∗, εr)-recovering secure, then for any attacker/distinguisher A,D running in

time t′ ≈ t, we have |Pr[(Game i+ 1
2) = 1]− Pr[(Game i+ 1) = 1]| ≤ εr.

Proof. Fix attacker/sampler pair A,D running in time t′. Note that the two games above only differ in the
special case where the (i+ 1)st next query made by A is recovering. Therefore, we can assume w.l.o.g. that
A ensures this is always the case, as it can only maximize advantage.

We define an attacker A′ such that A′,D has advantage εr in the recovering security game. The attacker
A′ gets a value seed from its challenger and passes it to A. Then A′ begins running A and simulating all
of the oracles in the robustness security game. In particular, it chooses a random “challenge bit” b $← {0, 1}
and state S $← {0, 1}n. It simulates all oracle calls made by A until right prior to the (i + 1)st next query

12



as in Game i. To simulate calls to D-refresh, the attacker A′ outputs the values γk, zk that it got from
its challenger in the beginning, but does not immediately update the current state S. Whenever A makes
an oracle call to get-state, get-next, next-ror, set-state, A’ first makes sufficiently many calls to its get-refresh
oracle so as to get the corresponding samples Ik that should have been sampled by these prior D-refresh calls,
and refreshes its state S accordingly before processing the current oracle call. When A makes its (i + 1)st
next query, the attacker A′ looks back and finds the most recent entropy drain (mRED) query that A made,
and sets S0 to the state of the PRNG immediately following that query. Assume A made d calls to D-refresh
between the mRED query and the i + 1st next query (these are the “recovering samples”). Then A’ gives
(S0, d) to its challenger and gets back (S∗, R0) and Ik+d+1, . . . , IqD . It chooses R1

$← {0, 1}`. If the (i+ 1)st

next query made by A is next-ror the attacker A′ also chooses R1
$← {0, 1}` and gives Rb to A, where b is

challenge bit randomly picked by A′ in the beginning. In either case, A′ sets the new PRNG state to S∗ and
continues running the game, simulating all future oracle calls made by A as in Game i+ 1 using the values
Ik+d+1, . . . , IqD to simulate D-refresh calls. Finally, if A outputs the bit b∗, the attacker A′ outputs the bit
b̃∗ which is set to 1 iff b = b∗.

Notice that if the challenge bit of the challenger for A′ is b̃ = 0 then this exactly simulates Game
i + 1/2 for A and if the challenge bit is b̃ = 1 then this exactly simulates Game i + 1. In particular, we
can think of the state immediately immediately following the mRED query as S0 and the state immediately
preceding the (i+ 1)st next query being Sd which refreshes S0 with the samples Ik+1, . . . , Ik+d, and the state
immediately following the query as being either (S∗, R0) ← next(Sd) when b̃ = 0 (as in Game i + 1/2) or
(S∗, R0)

$← {0, 1}n+` when b = 1 (as in Game i + 1). Also, we note that A′ is a valid attacker since the
recovering samples must satisfy

∑k+d
j=k+1 γj ≥ γ∗ if the (i+ 1)st next query is recovering. Therefore we have:

| Pr [(Game i+ 1/2) = 1]− Pr [(Game i) = 1] | =
∣∣∣ Pr[b = b∗|b̃ = 0]− Pr[b = b∗ | b̃ = 1]

∣∣∣
=
∣∣∣ 2 Pr[b̃∗ = b̃]− 1

∣∣∣
≤ εr.

Combining the above two claims, and using the hybrid argument, we get:

|Pr[(Game 0) = 1]− Pr[(Game qR) = 1]| ≤ qR(εr + εp).

Moreover Game qR is completely independent of the challenger bit b. In particular, all next-ror queries
return a random R

$← {0, 1}` independent of the challenge bit b. Therefore, we have Pr[(Game qR) =
1] = 1

2 . Combining with the above, we see that the attacker’s advantage in the original robustness game is∣∣Pr[(Game 0) = 1]− 1
2

∣∣ ≤ qR(εr + εp).

4 Provably Secure Construction

Let G : {0, 1}m → {0, 1}n+` be a (deterministic) pseudorandom generator where m < n. We use the
notation [y]m1 to denote the first m bits of y ∈ {0, 1}n. Our construction of PRNG with input has parameters
n (state length), ` (output length), and p = n (sample length), and is defined as follows:
– setup(): Output seed = (X,X ′)← {0, 1}2n.
– S′ = refresh(S, I): Given seed = (X,X ′), current state S ∈ {0, 1}n, and a sample I ∈ {0, 1}n, output:
S′ := S ·X + I, where all operations are over F2n .

– (S′, R) = next(S): Given seed = (X,X ′) and a state S ∈ {0, 1}n, first compute U = [X ′ · S]m1 . Then
output (S′, R) = G(U).
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Notice that we are assuming each input I is in {0, 1}n. This is without loss of generality: we can take shorter
inputs and pad them with 0s, or take longer inputs and break them up into n-bit chunks, calling the refresh
procedure iteratively on each chunk.

On-line Extractor. Let’s look at what happens if we start in some state S and call the refresh procedure
d-times with the samples Id−1, . . . , I0 (it will be convenient to index these in reverse order). Then the new
state at the end of this process will be

S′ := S ·Xd + Id−1 ·Xd−1 + · · ·+ I1 ·X + I0.

Let Ī := (Id−1, . . . , I0) be the concatenation of all d samples. In the analysis we rely on the fact that
the polynomial evaluation hash function defined by hX(Ī) :=

∑d−1
j=0 Ij · Xj is (d/2n)-universal meaning

that the probability of any two distinct inputs colliding is at most d/2n over the random choice of X. In
particular, we can think of our refresh procedure as computing this hash function in an on-line manner,
processing the inputs Ij one-by-one without knowing the total number of future samples d, and keeping
only a short local state.6 In particular, the updated state after the d refreshes is S′ = S · Xd + hX(Ī).
Unfortunately, hX(·) is not sufficiently universal to make it a good extractor, and therefore we cannot argue
that S′ itself is random as long as Ī has entropy. Therefore, we need to apply an additional hash function
h′X′(Y ) = [X ′ · Y ]m1 which takes as input Y ∈ {0, 1}n and outputs a value hX′(Y ) ∈ {0, 1}m. We show
that the composition function h∗X,X′(Ī) = h′X′(hX(Ī)) is a good randomness extractor. Therefore, during the
evaluation of (S′′, R) = next(S′), the value

U = [X ′ · S′]m1 = [X ′ · S ·Xd]m1 + h∗X,X′(Ī)

is uniformly random as long as the refreshes Ī jointly have sufficient entropy. This is the main idea behind
our construction. We formalize this via the following lemma, which provides the key to proving our main
theorem.

Lemma 2. Let d, n,m be integers, let X,X ′, Y ∈ F2n, Ī = (Id−1, . . . , I0) ∈ Fd2n. Define the hash function
families:

hX(Ī) :=

d−1∑
j=0

Ij ·Xj , h′X′(Y ) := [X ′ · Y ]m1 .

h∗X,X′(Ī) := h′X′(hX(Ī)) =

X ′ · d−1∑
j=0

Ij ·Xj

m
1

.

Then the hash-family H = {h∗X,X′} is 2−m(1 + d · 2m−n)-universal. In particular it is a (k, ε)-extractor
as long as:

k ≥ m+ 2 log(1/ε) + 1 , n ≥ m+ 2 log(1/ε) + log(d) + 1.

Proof. For the first part of the lemma, fix any

Ī = (Id−1, . . . , I0) 6= Ī ′ = (I ′d−1, . . . , I
′
0).

6 The fact that polynomial evaluation can be computed in such on-line manner is called Horner’s method. It has countless
applications in algorithm design and many areas of computer science.
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Then:

Pr
X,X′

[h∗X,X′(Ī) = hX,X′(Ī
′)] ≤ Pr

X
[hX(Ī) = hX(Ī ′)] + Pr

X,X′

hX′(Y ) = hX′(Y
′)

∣∣∣∣∣∣
Y 6= Y ′

Y := hX(Ī),
Y ′ := hX(Ī ′)


≤ Pr

X

d−1∑
j=0

(Ij − I ′j) ·Xj = 0

+ 2−m

≤ d/2n + 2−m = 2−m(1 + d2m−n).

For proving the second part, we use the fact that hX,X′ is 2−m(1 + α)-universal for α = d · 2m−n. Hence, it
is also a (k, ε)-extractor where ε ≤

√
2m−k + α =

√
2m−k + d2m−n (See Lemma 1). This is ensured by our

parameter choice.

The proof of Lemma 2 will be crucially used in establishing our main theorem below.

Theorem 2. Let n > m, `, γ∗ be integers. Assume that G : {0, 1}m → {0, 1}n+` is a deterministic (t, εprg)-
pseudorandom generator. Let G = (setup, refresh, next) be defined as above. Then G is a ((t′, qD, qR, qS), γ∗, ε)-
robust PRNG with input where t′ ≈ t, ε = qR(2εprg+q2Dεext+2−n+1) as long as γ∗ ≥ m+2 log(1/εext)+1, n ≥
m+ 2 log(1/εext) + log(qD) + 1.

We present the proof in the next Section, but now make a few comments. First, it is instructive to split
the security bound on ε into two parts (ignoring the “truly negligible” term qR ·2−n+1): “computational” part
εcomp = 2qR ·εprg and “statistical” part εstat = qRq

2
D ·εext, so that ε ≈ εcomp+εstat. Notice, the computational

term εcomp is already present in any “input-free” PRNG (or “stream cipher”), where the state S is assumed
to never be compromised (so there is no refresh operation) and next(S) = G(S). Also, such stream cipher
has state length n = m. Thus, we can view the statistical term εstat = qRq

2
D · εext and the “state overhead”

n − m = 2 log(1/εext) + log(qD) + 1 as the “price” one has to pay to additionally recover from occasional
compromise (using fresh entropy gathered by the system).

Second, to slightly reduce the number of parameters in Theorem 2, we can let k be our “security parameter”
and set qD = qR = qS = 2k and εext = 2−4k. Then we see that εstat = 23k · 2−4k = 2−k, εcomp = 2k+1εprg and
we can set n = m+ 2 log(1/εext) + log(qD) + 1 = m+ 9k + 1 and γ∗ = m+ 2 log(1/εext) + 1 = m+ 8k + 1.
Summarizing all of these, we get the following Corollary.

Corollary 1. Let k,m, `, n be integers, where n ≥ m + 9k + 1. Assume that G : {0, 1}m → {0, 1}n+` is a
deterministic (t, εprg)-pseudorandom generator. Then G is a ((t′, 2k, 2k, 2k),m+8k+1, 2k+1 ·εprg+2−k)-robust
PRNG with input, having n-bit state and `-bit output, where t′ ≈ t.

Coming back to our comparison with the stream ciphers (or “input-free” PRNGs), we see that we can
achieve statistical security overhead εstat = 2−k (with qD = qR = qS = 2k) at the price of state overhead
n−m = 9k + 1 (and where entropy threshold γ∗ = m+ 8k + 1 = n− k).
Practical Efficiency Optimization. Notice, our current next operation consists of the “randomness ex-
traction” step U = [X ′ ·S]m1 followed by the “PRG step” (S′, R) = G(U). As explained above, the extraction
step is needed to ensure that G is applied to a statistically random value U . However, after the first call
to next is completed, the entire state S becomes pseudorandom (assuming, of course, that corrupt = false).
Hence, after the first call to next there is no need to apply the extraction step again, and we can simply
set U = [S]m1 . Namely, if the we call next “prematurely” (i.e., corrupt = true), then we anyway reset the
counter c = 0 and start accumulating entropy “from scratch”, and, otherwise, the first m bits of S become
pseudorandom anyway, so the extraction step becomes redundant from now on.
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Moreover, for subsequent calls we do not even need out PRG G to stretch from m to n+ ` bits, but can
use some (possibly faster) PRG G′ from m bits to m+ ` bits.7 Indeed, we can let (U,R) = G′([S]m1 ) and set
[S]m1 = U , which is all we need to ensure subsequent calls to next use a pseudorandom seed value.

Summarizing the above discussion, in the optimized version we can add a Boolean flag last to our state,
which is set to true (only) if the last call to G was next. When next is called then, if last = false, we implement
the same extraction and PRG step as above: U = [X ′ · S]m1 , (S′, R) = G(U). However, if last = true, we let
(U,R) = G′([S]m1 ) and set [S]m1 = U . (Either way, we set last = true.)

Aside from noticeably improved efficiency, this version has the advantage of having the same complexity
of next (after the first call) as traditional stream ciphers (i.e., “input-free PRNGs”). Thus, we add the ability
to recover from compromise without any effect on the efficiency of the actual random number generation!

4.1 Proof of Theorem 2

We show that G satisfies (t′, qD, γ
∗, (εprg + q2Dεext))-recovering security and (t′, (εprg + 2−n+1))-preserving

security. Theorem 2 then follows directly from Theorem 1.

Claim. The PRNG G has (t′, εprg + 2−n+1)-preserving security.

Proof. Let Game 0 be the original preserving security game: the game outputs a bit which is set to 1 iff the
attacker guesses the challenge bit b∗ = b. If the initial state is S0

$← {0, 1}n, the seed is seed = (X,X ′), and
the adversarial samples are Id−1, . . . , I0 (indexed in reverse order where Id−1 is the earliest sample) then the
refreshed state that incorporates these samples will be Sd := S0 ·Xd +

∑d−1
j=0 Ij ·Xj . As long as X 6= 0, the

value Sd is uniformly random (over the choice of S0). We consider a modified Game 1, where the challenger
simply chooses Sd

$← {0, 1}n and we have

|Pr[(Game 0) = 1]− Pr[(Game 1) = 1]| ≤ 2−n.

Let U = [Sd ·X ′]m1 be the value computed by the challenger during the computation (S,R)← next(Sd) when
the challenge bit is b = 0. Then, as long as X ′ 6= 0, the value U is uniformly random (over the choice Sd).
Therefore, we can define Game 2 where the challenger choose U $← {0, 1}n during this computation and we
have:

|Pr[(Game 1) = 1]− Pr[(Game 2) = 1]| ≤ 2−n.

Finally (S,R) = next(Sd, seed) = G(U). Then (S,R) is (t, εprg) indistinguishable from uniform. Therefore
we can consider a modified Game 3 where the challenger just choosing (S,R) at random even when the
challenge bit is b = 0. Since the attacker runs in time t′ ≈ t, we have:

|Pr[(Game 3) = 1]− Pr[(Game 2) = 1]| ≤ εprg.

Since Game 3 is independent of the challenge bit b, we have Pr[(Game 3) = 1] = 1
2 and therefore

|Pr[(Game 0) = 1]− 1
2 | ≤ εprg + 2−n+1.

Claim. The PRNG G has (t′, qD, γ
∗, (εprg + q2Dεext))-recovering security.

Proof. Let Game 0 be the original recovering security game: the game outputs a bit which is set to 1 iff the
attacker guesses the challenge bit b∗ = b. We define Game 1 where, during the challenger’s computation of
(S∗, R) ← next(Sd) for the challenge bit b = 0, it chooses U $← {0, 1}m uniformly at random rather than
setting U := [X ′ · Sd]m1 . We argue that

|Pr[(Game 0) = 1]− Pr[(Game 1) = 1]| ≤ q2Dεext.
7 For example, if G is implemented by an `-bit block cipher in the counter mode, we need 1+n/` block cipher calls to implement
G, and only 1 +m/` calls to implement G′. Hence, we save about 9k/` calls when using parameters of Corollary 1.
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The loss of q2D comes from the fact that the attacker can choose the index k and the value d adaptively
depending on the seed. In particular, assume that the above does not hold. Then there must exist some
values k∗, d∗ ∈ [qD] such that the above distance is greater than εext conditioned on the attacker making
exactly k∗ calls to get-refresh and choosing d∗ refreshes in the game. We show that this leads to a contradiction.
Fix the distribution on the subset of samples Ī = (Ik∗+1, . . . , Ik+d∗) output by D during the first step of the
game, which must satisfy

H∞(Ī | γ1, . . . , γqD , z1, . . . , zqD) ≥ γ∗.

By Lemma 2, the function hX,X′(Ī) is a (γ∗, εext)-extractor, meaning that (X,X ′, hX,X′(Ī)) is εext-close to
(X,X ′, Z) where Z is random an independent of X,X ′. Then, for any fixed choice of k∗, d∗, the way we
compute U in Game 0:

U := [X ′ · Sd]m1 = [X ′ · S0Xd]m1 + hX,X′(Ī)

is εexst close to a uniformly random U as chosen in Game 1. This leads to a contradiction, showing that the
equation holds.

Finally, we define Game 2 where, during the challenger’s computation of (S∗, R) ← next(Sd) for the
challenge bit b = 0, it chooses (S∗, R) uniformly at random instead of (S∗, R)← G(U) as in Game 1. Since
the attacker runs in time t′ ≈ t, we have:

|Pr[(Game 2) = 1]− Pr[(Game 1) = 1]| ≤ εprg.

Since Game 2 is independent of the challenge bit b, we have Pr[(Game 2) = 1] = 1
2 and therefore

|Pr[(Game 0) = 1]− 1
2 | ≤ εprg.

5 Analysis of the Linux PRNGs

The Linux operating system contains two PRNGs with input, /dev/random and /dev/urandom. They are
part of the kernel and used in the OS security services or some cryptographic libraries. We give a precise
description8 of them in our model as a triple LINUX = (setup, refresh, next) and we prove the following
theorem:

Theorem 3. The Linux PRNGs /dev/random and /dev/urandom are not robust.

Since the actual generator LINUX does not define any seed (i.e. the algorithm setup always output the empty
string), as mentioned above, it cannot achieve the notion of robustness. However, in Sections 5.8 and 5.8, we
additionally mount concrete attacks that would work even if LINUX had used a seed in the underlying hash
function or mixing function. The attacks exploit two independent weaknesses, in the entropy estimator and
the mixing functions, which would need both to be fixed in order to expect the PRNGs to be secure.

5.1 General Overview

Security Parameters. The LINUX PRNG uses parameters n = 6144, ` = 80, p = 96. The parameter n can
be modified (but requires kernel compilation), and the parameters ` (size of the output) and p (size of the
input) are fixed. The PRNG outputs the requested random numbers by blocks of ` = 80 bits and truncates
the last block if needed.
Internal State. The internal state of LINUX PRNG is a triple S = (Si, Su, Sr) where |Si| = 4096 bits,
|Su| = 1024 bits and |Sr| = 1024 bits. New data is collected in Si, which is named the input pool. Output is
generated from Su and Sr which are named the output pools. When a call to /dev/urandom is made, data is
generated from the pool Su and when a call to /dev/random is made, data is generated from the pool Sr.
8 All descriptions were done by source code analysis. We refer to version 3.7.8 of the Linux kernel.
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Functions refresh and next. There are two refresh functions, refreshi that initializes the internal state and
refreshc that updates it continuously. There are two next functions, nextu for /dev/urandom and nextr for
/dev/random.

Mixing Function. The PRNG uses a mixing function M, described in Section 5.6, to mix new data in the
input pool and to transfer data between the pools.

Entropy Estimator. The PRNG uses an entropy estimator, described in Section 5.4, to estimate the
entropy of the collected input and to continuously estimates the entropy of the pools. With these estimations,
the PRNG controls the transfers between the pools and how new input is collected. This is illustrated in
Figure 3 and described in details in Section 5.3 but at high level, the main principles are:
– New inputs are ignored when the input pool contains enough entropy. Otherwise, the estimated entropy

of the input pool is increased with new input.
– Entropy estimation of the output pool is decreased on generation.
– Data is transfered from the input pool to the output pools if they require entropy.
– When the pools do not contain enough entropy, no output can be generated with /dev/random and it

blocks whereas /dev/urandom always generates output.
The technical internal parameters that are the entropy estimations are named Ei (entropy estimator of Si),
Eu (of Su), Er (of Sr).

(I)

(0, I)
refreshi→ S (S, I)

refreshc→ S′

(Si → S′i)

(Su → S′u)(Sr → S′r)

S
nextr→ (S′, R) S
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/dev/random /dev/urandom

(I) (Si, Su, Sr)
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′
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no

S
nextr→ (S′, R)

Fig. 3. Relations between functions and pools for LINUX

5.2 The refreshi and refreshc Functions

The PRNG LINUX contains two refresh functions. A first refresh function, refreshi, is used to generate the
first internal state of the PRNG and the second one, refreshc, is used to refresh continuously the PRNG with
new input.

Internal State Initialisation with refreshi. To generate the first internal state with refreshi, LINUX
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collects device-specific data using a built-in function called add_device_randomness and refreshes Si and
Sn with them. The data is derived from system calls, a call to variable jiffies, which gives the number of
CPU cycles since system start-up and is represented by 32 bits, and a call to system function get_cycles,
that gives the number of clock ticks since system start-up, which also returns 32 bits. The two values are
xor-ed together, giving a new 32-bit input data that is generated twice for Si and Sn and mixed for each
pool. Then LINUX collects system data and refreshes the three pools Si, Sn and Sb with them using built-
in function init_std_data. The data is derived from system calls, a call to function ktime_get_real, which
returns 64 bits and a call to function utsname, which returns 3120 bits. The two are concatenated, giving
3184 bits. This input data is generated for each pool and mixed with M, implemented in the built-in function
mix_pool_bytes. Finally, the generated input is I = (utsname‖ktime_get_real‖get_cycles⊕ jiffies) for Si and
Sn, and I = (utsname‖ktime_get_real) for Sr. In all cases, refreshi(0, I) = M(0, I). The entropy estimator is
not used during this process, so Ei = Eu = Er = 0.

Algorithm 1 Internal State Initialisation with refreshi
Require: I1 = [utsname‖ktime_get_real‖get_cycles⊕ jiffies], I2 = [utsname‖ktime_get_real], S = ∅
Ensure: S = (Si, Su, Sr)
Si = M(I1, 0)
Sr = M(I2, 0)
Su = 0
return S = (Si, Su, Sr)

Internal State Update with refreshc. The refreshc function uses system events that are collected by
three built-in functions: add_input_randomness, add _interrupt_randomness and add_disk_randomness. All
of them call another built-in function, add_timer _randomness, which builds a 96 bits input data containing
the collected event mapped to a specific value num coded in 32 bits, concatenated with jiffies and get_cycles.
Finally, the generated input is then given by I = [num‖jiffies‖get_cycles]. If the estimated entropy is above
the default value 3584, this input is ignored (except 1 input over 4096). The entropy estimator Ent described
in Section 5.4 is used to estimate the entropy of the new input and is added to Ei.

Algorithm 2 Internal State Update with refreshc
Require: I = [num‖jiffies‖get_cycles], S = (Si, Su, Sr)
Ensure: S′ = (S′i, S

′
u, S

′
r)

if Ei ≥ 3584 then
S′i = Si

else
e = Ent(I)
S′i = M(I, Si)
Ei = e+ Ei

end if
(S′u, S

′
r) = (Su, Sr)

return S′ = (S′i, S
′
u, S

′
r)

Remark 2. Starting from version 3.6.0 of the kernel, LINUX involves a particular behavior of add_interrupt
_randomness which collects system events and gather them in a dedicated 128 bits pool fast_pool without
calling add_timer _randomness. In this case, the input is I = fast_pool.

For all these inputs, refreshc(Si, I) = M(Si, I) and LINUX estimates the entropy of the data collected by
add_timer _randomness and estimates every input collected from fast_pool to 1 bit.
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Remark 3. Starting from version 3.2.0 of the kernel, for both /dev/urandom and /dev/random, there is an
additional input specific for x86 architectures for which a hardware random number generator is available.
In this case, the output of the PRNG is mixed with M when this generator is used for refreshi and the output
is mixed with the output of LINUX when used with next. For this specific architecture, denoting Ihd the
input generated by the hardware random number generator, refreshi(Si, Ihd) = M(Si, Ihd) and nexthd(S) =
[Ihd||next(S)].

5.3 The nextu and nextr Functions

The next functions use built-in functions random_read and urandom_read that are user interfaces to read data
from /dev/random and /dev/urandom, respectively. A third kernel interface, get_random_bytes(), allows to
read from /dev/urandom. The three rely on the same built-in function extract_buf that calls the mixing
function M, a hash function H (the SHA1 function) and a folding function F(w0, · · · , w4) = (w0 ⊕ w3, w1 ⊕
w4, w2[0···15] ⊕ w2[16···31]).

PRNG Ouput with /dev/random. Let us describe the transfers when t bytes are requested from the
blocking pool. If Er ≥ 8t, then the output is generated directly from Sr: LINUX first calculates a hash
across Sr, then mixes this hash back with Sr, hashes again the output of the mixing function and folds
the result in half, giving R = F ◦ H ◦ M(Sr,H(Sr)) and S′r = M(Sr,H(Sr)). This decreases Er by 8t and
the new value is Er − 8t. If Er < 8t, then depending on Ei, data is transferred from Si to Sr. Let αr =
min(min(max(t, 8), 128), bEi/8c).
– If αr ≥ 8, then αr bytes are transferred between Si and Sr (so at least 8 bytes and at most 128 bytes

are transferred between Si and Sr, and Si can contain 0 entropy. The transfer is made in two steps:
first LINUX generates from Si an intermediate data Ti = F ◦ H ◦M(Si,H(Si)) and then it mixes it with
Sr, giving the intermediate states S′i = M(Si,H(Si)) and S∗r = M(Sr, Ti). This decreases Ei by 8αr
and increases Er by 8αr. Finally LINUX outputs t bytes from S∗r , this produces the final output pool
S′r = M(S∗r ,H(S∗r )) and R = F ◦ H ◦M(S∗r ,H(S∗r )). This decreases Er by 8t.

– If αr < 8, then LINUX blocks and waits until Si gets refreshed with I and until αr ≥ 8.

Algorithm 3 Output Generation with nextr
Require: t, S = (Si, Su, Sr)
Ensure: R, S′ = (S′i, S

′
u, S

′
r)

αr = min(min(max(t, 8), 128), bEi/8c)
if αr ≥ 8 then
Ti = F ◦ H ◦M(Si,H(Si))
S′i = M(Si,H(Si))
S∗r = M(Sr, Ti)
Ei = Ei − 8αr

Er = Er + 8αr

S′r = M(S∗r ,H(S∗r ))
R = F ◦ H ◦M(S∗r ,H(S∗r ))
Er = Er − 8t

else
Blocks until αr ≥ 8

end if
S′u = Su

return R, S′ = (S′i, S
′
u, S

′
r)

PRNG Ouput with /dev/urandom. Similarly, let us describe the transfers when t bytes are requested
from the non-blocking pool. If Eu ≥ 8t then LINUX applies the same process as in the non-blocking case,
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outputs R = F ◦ H ◦M(Su,H(Su))) and sets S′u = M(Su,H(Su)). If Eu < 8t then LINUX behaves differently.
Let αu = min(min(max(t, 8), 128), bEi/8c − 16):
– If αu ≥ 8, the process is the same as in the non-blocking case, but with Su, Eu and αu instead of Sr, Er

and αr.
– If αu < 8, then LINUX outputs the requested bytes from Su without transferring data from Si. Hence

LINUX behaves as if Eu ≥ 8t: R = F ◦ H ◦M(Su,H(Su)), and S′u = M(Su,H(Su)). This decreases Eu by
8t and the new value is 0.

Algorithm 4 Output Generation with nextu
Require: t, S = (Si, Su, Sr)
Ensure: R, S′ = (S′i, S

′
u, S

′
r)

αu = min(min(max(t, 8), 128), bEi/8c − 16)
if αu ≥ 8 then
Ti = F ◦ H ◦M(Si,H(Si))
S′i = M(Si,H(Si))
S∗u = M(Su, Ti)
Ei = Ei − 8αu

Eu = Eu + 8αu

S′u = M(S∗u,H(S∗u))
R = F ◦ H ◦M(S∗u,H(S∗u))
Eu = Eu − 8t

else
R = F ◦ H ◦M(Su,H(Su))
Eu = 0

end if
S′r = Sr

return R, S′ = (S′i, S
′
u, S

′
r)

This illustrates the difference between /dev/urandom and /dev/random: If the estimated entropy of the
blocking pool Sr is less than 8t and no transfer is done, then /dev/random blocks, whereas /dev/urandom
does never block and outputs the requested t bytes from the non-blocking pool Su.

5.4 The Entropy Estimator

A built-in estimator Ent is used to give an estimation of the entropy of the input data used to refresh Si.
It is implemented in function add_timer_randomness which is used to refresh the input pool. A timing tn
is associated with each event (system or user call) that is used to refresh the internal state. Entropy is
estimated when new input data is used to refresh the internal state, entropy is not estimated using input
distribution but only using the timings of the data. A description of the estimator is given in [GPR06],
[LRSV12] and [GLSV12]. The estimator takes as input a sequence of inputs Ii = [num‖jiffies‖get_cycles],
it calculates differences between timings of events, where t0, t1, t2, . . . are the jiffies associated with each
input: δi = ti − ti−1, δ2i = δi − δi−1, δ3i = δ2i − δ2i−1. Then, it calculates ∆i = min(|δi|, |δ2i |, |δ3i |) and finally
applies a logarithmic function to give the estimated entropy Hi = 0 if ∆i < 2, Hi = 11 if ∆i > 212, and
Hi = blog2(∆i)c otherwise.

5.5 The Folding and the Hash Functions

The folding function F and the hash function H are used when random bytes are generated by LINUX and
when data is transferred from Si to Sr or Su. The folding function is implemented in built-in function
extract_buf. It take as input five 32-bit words and output 80 bits of data. This function F is defined by
F(w0, w1, w2, w3, w4) = (w0 ⊕ w3, w1 ⊕ w4, w2[0···15] ⊕ w2[16···31]), where wi for i ∈ {0, . . . , 4} are the input
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Algorithm 5 Entropy Estimator Ent
Require: Ii = [num‖jiffies‖get_cycles]
Ensure: Hi = Ent(Ii)
ti = jiffies
δi = ti − ti−1

δ2i = δi − δi−1

δ3i = δ2i − δ2i−1

∆i = min(|δi|, |δ2i |, |δ3i |)
if ∆i < 2 then Hi = 0
if ∆i > 212 then Hi = 11
else Hi = blog2(∆i)c
return Hi = Ent(Ii)

words.

The hash function H is implemented in the built-in function extract_buf by a call to a Linux system function
sha_transform that implements function SHA1, defined in [SHA95].

5.6 The Mixing Function

The Mixing function M is the core of LINUX PRNG. It is implemented in the built-in function mix_pool_bytes.
It is used in two contexts, once to refresh the internal state with new intput and secondly to transfer data
between the input pool and the output pools. We give a complete description of M as it is used to refresh
the input pool Si, its description when it is used to transfer data between pools differs only from internal
parameters.

The function M takes as input I of size one byte, the input pool Si that is considered as a table of 128
32-bits words. It selects 7 words in Si and mixes them with I and replace one word of Si with the result.
The pool Si therefore maintains an internal parameter, named k, which is used to select the word that will
be modified. Another internal parameter, named d, is used in function M. This parameter is a multiple of 7
used in a rotation done at word level. We name the rotation of d bits Rd. The mixing function involves the
following operations:
– The byte containing the entropy source is converted into a 32-bit word, using standard C implicit cast,

and rotated by d bits. Before initialization, d = 0, and each time the mixing function M is used, d is
incremented using k : if k = 0 mod 128 then d = d+ 14 mod 32 and d = d+ 7 mod 32 otherwise.

– The obtained word is xor-ed with words from the pool. If we note S0, . . . , S127 the words of Si, chosen
words will be Sk+j mod 128 for j ∈ {0, 1, 25, 51, 76, 103}9.

– The obtained word is mixed with a built-in table (named twist table). This table contains the binary
representations of the monomials {0, α32∗j}, j = 1, . . . 7, in the field (F2)/(Q), where Q(x) = x32 + x26 +
x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 is the CRC32 polynomial used
for Ethernet protocol [Koo02]. Denoting the primitive element α, this operation can be described as
W → W.α3 + R(Q(W,α29).α32, Q), where Q(A,B) (resp. R(A,B)) the quotient (resp. the remainder) in
polynomial division A/B.

– Then the word at index k in Si is replaced by the previously generated word and k is incremented.

5.7 Distributions Used for Attacks

Distributions Used in Attacks based on the Entropy Estimator As shown in Section 5.4, LINUX uses
an internal Entropy Estimator on each input that continuously refreshes the internal state of the PRNG. We
show that this estimator can be fooled in two ways. First, it is possible to define a distribution of zero entropy
9 Similarly, the words chosen from Sr and Su will be Sk+j mod 32 for j ∈ {0, 1, 7, 14, 20, 26}.
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Algorithm 6 The Mixing function
Require: I, S = (S0, . . . , Sk, . . . , S127)
Ensure: S′

W = Rd[0||I]
if k = 0 mod 128 then d = d+ 14 mod 32 else d = d+ 7 mod 32 end if
W =W ⊕ Sk+j mod 128, j ∈ {0, 1, 25, 51, 76, 103}
W =W.α3 + R(Q(W,α29).α32, Q)
S′k =W
k = k + 1
return S = (S0, . . . , S

′
k, . . . , S127)

that the estimator will estimate of high entropy, secondly, it is possible to define a distribution of arbitrary
high entropy that the estimator will estimate of zero entropy. This is due to the estimator conception: as it
considers the timings of the events to estimate their entropy, regular events (but with unpredictable data)
will be estimated with zero entropy, whereas irregular events (but with predictable data) will be estimated
with high entropy. These two distributions are given in Lemma 3 and 4.

Lemma 3. There exists a stateful distribution D0 such that H∞(D0) = 0, whose estimated entropy by LINUX
is high.

Proof. Let us define the 32-bits word distribution D0. On input a state i, D0 updates its state to i+ 1 and
outputs a triple (i+1, [W i

1,W
i
2,W

i
3])

$← D0(i), where W 0
1 = 212,W i

1 = bcos(i).220c+W i−1
1 ,W i

2 = W i
3 = 0. For

each state, D0 outputs a 12-bytes input containing 0 bit of random data, we have H∞(D0) = 0 conditioned
on the previous and the future outputs (i.e. D0 is legitimate only with γi = 0 for all i). Then ∆i > 212 and
Hi = 11.

Lemma 4. There exists a stateful distribution D1 such that H∞(D1) = 64, whose estimated entropy by
LINUX is null.

Proof. Let us define the 32-bits word distribution D1. On input a state i, D1 updates its state to i+ 1 and
outputs a triple: (i + 1, [W i

1,W
i
2,W

i
3])

$← D1(i),where Wi = i,W2
$← U32 and W3

$← U32. For each state,
D1 outputs a 12-bytes input containing 8 bytes of random data, we have H∞(D1) = 64 conditioned on the
previous and the future outputs (i.e. D1 is legitimate with γi = 64 for all i). Then δi = 1, δ2i = 0, δ2i−1 = 0,
δ3i = 0, ∆i = 0 and Hi = 0.

Distribution Used in Attack based on the Mixing Function As shown in Section 5.6, LINUX uses an
internal Mixing function M, used to refresh the internal state with new intput and to transfer data between
the pools. It is possible to define a distribution of arbitrary high entropy for which the Mixing function is
completely counter productive, i.e. the entropy of the internal state does not increase, whatever the size of
the input is. This is due to the conception of the Mixing function and its linear structure. This distribution
is given in Lemma 5.

Lemma 5. There exists a stateful distribution D2 such that H∞(D2) = 1, for which H∞(S) = 1 after t
refresh, for arbitrary high t.

Proof. Let us define the byte distributions Bi,b and Bi,$:

Bi,b = {(0, · · · , b, · · · , 0), bi ← b, bj = 0 if i 6= j}
Bi,$ = {(b0, · · · , b7), bi

$← {0, 1}, bj = 0 if i 6= j}
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Let us define the 12 bytes distribution D2. On input a state i, D2 updates its state to i+ 1 and outputs 12
bytes:

(i+ 1, [Bi
0, . . . , B

i
11])

$← D2(i),where B10i
4 ← B7,$,

B10i
5 ← B3,b, B10i+2

4 ← B2,b, B10i+4
7 ← B5,b,

B10i+6
6 ← B1,b, B10i+8

10 ← B0,b,with b = Bi
4,7

For each state i, D2 outputs a 12-bytes input containing 1 bit of random data (for i = 0 mod 10) or 0 bit of
random data (for i 6= 0 mod 10).
If d = 0, k = 127 and S is known, and noting St = refresh(S, refresh(St−1, [Bt−1

0 , . . . , Bt−1
11 ])), St =

St0, . . . , S
t
127, then St contains 1 random bit in word St127, at position 10, for all t. Distribution outputs

are illustrated in Figure 4.

B0
4 ← B7,$ :

R0

⊕

⊕

T

Position = 10

S127, S0, S24, S50, S75, S102 :

S127 ⊕ S0 ⊕ S24 ⊕ S50 ⊕ S75 ⊕ S102 ⊕ R0(B
0
0) :

S′127 :

B0
5 ← B3,b :

R7

⊕

⊕

⊕

T

S′127 :

S0, S24, S50, S75, S102 :

S′127 ⊕ S0 ⊕ S24 ⊕ S50 ⊕ S75 ⊕ S102 ⊕ R0(B
0
0) :

S′126 :

Fig. 4. Distribution D2: output of B0
4 and B0

5

5.8 Attack Descriptions

In this section we describe attacks on LINUX that prove Theorem 3. The first two attacks use distributions
that fools the PRNG Entropy Estimator and the last attack uses the distribution for which the Mixing
function is counter productive. For this last attack, we show indeed that LINUX is not even backward secure.

Attacks Based on the Entropy Estimator As shown in Section 5.7, it is possible to build a distribution
D0 of null entropy for which the estimated entropy is high (cf. Lemma 3) and a distribution D1 of high
entropy for which the estimated entropy is null (cf. Lemma 4). It is then possible to mount attacks on both
/dev/random and /dev/urandom, which show that these two generators are not robust.

/dev/random is not robust. Let us consider an adversary A against the robustness of the generator
/dev/random, and thus in the game ROB(γ∗), that makes the following oracle queries: one get-state, several
next-ror, several D-refresh and one final next-ror.
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Then the state (Si, Sr, Su), the parameters k, d, Ei, Eu, Er and the counter c defined in ROB(γ∗) evolve the
following way:

– get-state: After a state compromise, A knows all parameters (but needs Si, Sr, Ei, Er) and c = 0.
– next-ror: After bEi/10c+ bEr/10c queries to next-ror, Ei = Er = 0, A knows Si and Sr and c = 0.
– D-refresh: In a first stage, A refreshes LINUX with input from D0. After 300 queries, Ei = 3584 and
Er = 0. A knows Si and Sr and c = 0.
In a second stage, A refreshes LINUX with input J $← U128. As Ei = 3584, these inputs are ignored as
long as I contains less than 4096 bytes. After 30 queries, A knows Si and Sr and c = 3840.

– next-ror: Since Er = 0, a transfer is necessary between Si and Sr before generating R. Since Ei = 3584,
then αr = 10, such a transfer happens. But as A knows Si and Sr, then A knows R.

Therefore, in the game ROB(γ∗) with b = 0, A obtains a 10-bytes string in the last next-ror-oracle that is
predictable, whereas when b = 1, this event occurs only with probability 2−80. It is therefore straightforward
for A to distinguish the real and the ideal world.

/dev/urandom is not robust. Similarly, let us consider an adversary A against the robustness of the gener-
ator /dev/urandom in the game ROB(γ∗) that makes the following oracle queries: one get-state that allows
it to know Si, Su, Ei, Eu; bEi/10c+ bEu/10c next-ror, making Ei = Eu = 0; 100 D-refresh with D1; and one
next-ror, so that R will only rely on Su as no transfer is done between Si and Su since Ei = 0. Then A is
able to generate a predictable output R and to distinguish the real and the ideal worlds in ROB(γ∗).

Attack based on the Mixing Function. In [LRSV12], a proof of state entropy preservation is given for one
iteration of the mixing function M, assuming that the input and the internal state are independent, that is:
H∞(M(S, I)) ≥ H∞(S) and H∞(M(S, I)) ≥ H∞(I). We show that without that independence assumption
and with more than one iteration of M, the LINUX PRNG does not recover from state compromise. This
contradicts the backward security and therefore the robustness property.

LINUX is not backward secure. As shown in Section 5.7, with Lemma 5, it is possible to build an input
distribution D2 with arbitrary high entropy such that, after several D-refresh, H∞(S) = 1. Let us consider
an adversary A that generates an input data of distribution D2, and that makes the following oracle queries:
set-refresh, and γ∗ calls to D-refresh followed by many calls to next-ror. Then the state (Si, Sr, Su), the
parameters k, d, Ei, Eu, Er and the counter c of BWD(γ∗) evolve the following way:

– set-refresh: A sets Si = 0, Sr = Su = 0, d = 0 and k = 127, and c = 0.
– D-refresh: A refreshes LINUX with D2. After γ∗ oracle queries, until c ≥ γ∗, the new state still satisfies

H∞(S) = 1.
– next-ror: Since H∞(S) = 1, H∞(R) = 1.

Therefore, in the game BWD(γ∗) with b = 0, A always obtains an output in the last next-ror query with
H∞(R) = 1, whereas in b = 1, this event occurs only with negligible probability. It is therefore straightforward
for A to distinguish the real and the ideal world.

6 Benchmarks Between LINUX and our Construction

In this section we present efficiency benchmarks between our construction G and LINUX. These benchmarks
are based on a very optimistic hypothesis concerning LINUX and even with this hypothesis, our construction
G appears to be more efficient. As shown in Section 6.4, a complete internal state accumulation is on average
two times faster for G than for LINUX and as shown in Section 6.5, a 2048-bits key generation is on average
ten times faster for G than for LINUX.
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6.1 Security Bounds

We will now instantiate our main construction presented in Corollary 1 for various values of “security pa-
rameter” k using AES_128 in counter mode to out pseudorandom generator G. Namely, we set m = ` = 128
(recall, m is the PRG input size, and ` in the output size), and let G(U) = AESU (0) . . .AESU (i− 1), where
i = d(n+128)/128e is the number of calls to AES_128 to get one 128-bit output. Recall also from Corollary 1
that we set the state length n = m+ 9k + 1 = 9k + 129, which gives i = 2 + d(9k + 1)/128e.

We are now ready to instantiate Corollary 1 (for various values of k), except we need to set the security
εprg of our counter-mode PRG in terms of the security of AES. This turns out to be a slightly subtle issue,
which we discuss at the end of this section, in part because it is based on assumptions, and also because
the “provable term” εcomp = 2k+1εprg seems to be overly pessimistic and does not correspond to an actual
attack. Hence, for now we will optimistically assume that, for the values of security parameter k we consider,
we have εcomp ≤ εstat = 2−k, so that ε = εcomp + εstat ≈ εstat = 2−k.

With this in mind, we will consider setting the security level k to three values: 40 (“medium”), 50 (“high”)
and 64 (“unbreakable”). Recalling that n = m + 9k + 1 = 9k + 129, γ∗ = m + 8k + 1 = 8k + 129, and
i = 2 + d(9k + 1)/128e, we get:

– Medium Security εstat = 2−40 (qR = qS = qD = 240): we get n = 489, γ∗ = 449, i = 5.
– High Security εstat = 2−50 (qR = qS = qD = 250): we get n = 579, γ∗ = 529, i = 6.
– Unbreakable Security εstat = 2−64 (qR = qS = qD = 264): we get n = 705, γ∗ = 641, i = 7.

To perform benchmarks between LINUX and generator G, we instantiated G with AES function in counter
mode and the fields F2489 (defined by the polynom X489 +X83 + 1), F2579 (defined by the polynom X579 +
X12 + X9 + X7 + 1) and F2705 (defined by the polynom X705 + X17 + 1). We set the output size of AES
function equal to 128 bits and we describe this instantiation with G = (setup, refresh, next), where:

– setup = (X,X ′)
$← {0, 1}489+489 (resp. {0, 1}579×579, {0, 1}705×705);

– refresh(S, I) = S ·X + I ∈ F2489 (resp. F2579, F2705);
– next(S) : U = [S ·X ′]1281 , (S′, R) = (AESU (0), . . . ,AESU (4)) (resp. AESU (5)), AESU (6)).

Computational Term εcomp. We now come back to estimating the computational term εcomp = 2k+1εprg,
and our optimistic assumption that εcomp = 2k+1εprg ≤ εstat = 2−k, which is equivalent to εprg ≤ 2−2k−1.
Since we also want the running time t ≥ qR = 2k, we essentially need our pseudorandom generator G to
be (2k, 2−2k)-secure. However, it is easy to notice that any (2k, εprg)-secure PRG with an m-bit key cannot
have security εprg < 2k−m, since the attacker in time 2k can exhaustively try 2k out of 2m key to achieve
advantage 2k−m. This means that we need to have 2−2k ≥ 2k−m, or k ≤ m/3. For example, when using
AES_128 in counter mode, this seems to suggest we can have εcomp ≤ εstat only for k ≤ 42 = b128/3c, which
is not the case for our high and unbreakable security settings.

However, we believe that the above analysis is overly pessimistic. Indeed, in theory, if we want to use a
given PRG in a stream cipher mode ((S,R)← G(S)) for 2k times, we can only claim “union bound” security
2kεprg, which, as we saw, is only possible when k ≤ m/3. Although tight in theory, the bound does not seem
to correspond to any concrete attack when used with most “real-world” PRGs (such as AES_128 in counter
mode). For example, for k = 64 (our “unbreakable” setting), the bound 2kεprg ≥ 264 ·2−64 = 1, which suggests
(if the bound was tight!) that one can break a stream cipher built from AES_128 in the counter mode in
264 queries with advantage 1. However, we are presently not aware of any attack achieving advantage even
2−64, let alone 1. To put it differently, we think that our original assumption that εcomp ≤ εstat for k = 64
seems reasonable based on our current knowledge, even though theoretical analysis suggests that there is
little point to set k > 42.

Based on this discussion, we suggest the following recipe when instantiating our construction with a
particular pseudorandom G. Instead of directly looking at the term εcomp = 2k+1εprg when examining a
candidate value of security parameter k, one should ask the following question instead: based on the current
knowledge, what is the largest value of k (call it k∗) so that no attacker can achieve advantage better than

26



2−k when G is used in the stream cipher mode for 2k times? When this k∗ is determined, there is no point
to set k > k∗, as this only increases the state length n and degrades the efficiency of the PRNG, without
increasing its security ε beyond 2−k

∗ (as εcomp ≤ 2−k
∗ anyway). However, setting k ≤ k∗ will result in final

security ε ≈ 2−k while improving the efficiency of the resulting PRNG (i.e., state length n = m + 9k + 1,
γ∗ = m+ 8k + 1, and the complexity of refresh and next).

With this (somewhat heuristic) recipe, we believe setting k∗ = 64 was a fair and reasonable choice when
using AES_128 in counter mode to implement G.

6.2 Hypothesis

For LINUX, we made the (optimitic) hypothesis that for the given input distribution, the mixing function
of LINUX accumulates the entropy in the internal state, that is H∞(M(S, I)) = H∞(S) + H∞(I) if S
and I are independent, and that the SHA1 function used for transfer between the pools and output is a
perfect extractor, that is H∞(SHA1(S∗)) = 160 if H∞(S∗) = 160. Of course, both of these hypotheses are
extremely strong, but we make them to achieve the most optimistic (and probably unrealistic!) estimates
when comparing LINUX with our construction G.

6.3 Implementation

We implemented LINUX with functions extract_buf and mix_pool_bytes that we extracted from the source
code and we implemented G using fb_mul_lodah and fb_add from RELIC open source library [AG] (that
we extended with the fields F2489 , F2579 and F2705), aes_setkey_enc and aes_crypt_ctr from PolarSSL open
source library [Pol]. CPU cycle count was done using ASM instruction RDTSC. Implementation was done on
a x86 Ubuntu workstation. All code was written in C, we used gcc C compiler and linker, code optimization
flag O2 was used to build the code.

6.4 Benchmarks on the Accumulation Process

First benchmarks are done on the accumulation process. We simulated a complete accumulation of the
internal state for LINUX and G with an input containing one bit of entropy per byte. For G, by Theorem 2,
8 inputs of size 449 bits (resp. 579, 705 bits) are necessary to recover from an internal state compromise,
whereas by hypothesis, for LINUX, b160/12c = 13 inputs of size 12 bits are necessary to recover from an
internal state compromise and transfers need to be done between the input pool and the output pools.

For LINUX, denoting St = (Sti , S
t
u, S

t
r), where Sti , S

t
u and Str are the successive states of the input pool, the

non-blocking output pool and the blocking output pool, respectively, we implemented the following process,
starting from a compromised internal state (S0

i , S
0
u, S

0
r ), of size 6144 bits, and using successive inputs of size

12 bytes, that we denote It:
1. Refresh S0

i with I0, · · · , I13: Sti = M(St−1i , It−1). By hypothesis, H∞(S13
i ) = 168.

2. Transfer 1024 bits from S13
i to Sr. The transfer is made by blocks of 80 bits, therefore, 13 transfers

are necessary. Each transfer is done in two steps: first LINUX generates from S13
i an intermediate data

T 13
i = F ◦ H ◦M(S13

i ,H(S13
i )) and then it mixes it with Sr, giving the new states S14

i = M(S13
i ,H(S13

i ))
and S14

r = M(S13
r , T

13
i ). Then by hypothesis, H∞(S13

r ) = 80. After repeating these steps 12 times, by
hypothesis, H∞(S26

r ) = 1024.
3. Repeat step 2. for Su instead of Sr. By hypothesis, H∞(S39

u ) = 1024.
After this process, by hypothesis, H∞(S39) = 6144 is maximal.

For G, denoting St the successive states of the internal state, we implemented the following process, starting
from a compromised internal state S0, of size 489 bits (resp. 579, 705 bits), and using successive inputs It,
of size 489 bits (resp. 579, 705 bits): Refresh S0 with I0, · · · , I7: Si = Si−1 ·X + Ii−1. After this process,
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by Theorem 2, H∞(S8) = 489 (resp. 579, 705 bits) is maximal.

The number of CPU cycles to perform these processes on LINUX and G (with internal state size 705 bits)
are presented in Figure 5. We first implemented 100 complete accumulations processes for LINUX and G and
we compared one by one each accumulation. As shown on the left part of Figure 5, a complete accumulation
in the internal state of G needs on average two times less CPU cycles than a complete accumulation the
internal state of LINUX. Then we analysed one accumulation in detail or LINUX and G. As shown on the
right part of Figure 5, a complete accumulation in the internal state of LINUX needs more CPU because of
the transfers between the input pool and the two output pools done in steps 2. and 3, it also shows that the
refresh function of G is similar as the Mixing function M of LINUX.

# of acc.

CPU Cycles

0

2 ×107

4 ×107

6 ×107

0 25 50 75 100

G(705)

LINUX

100 accumulations for LINUX and G

% of acc.

CPU Cycles

0% 25% 50% 75% 100%
0

2 ×107

4 ×107

6 ×107

Step 1.

Steps 2. and 3.

G(705)

LINUX

One accumulation for LINUX and G

Fig. 5. Accumulation Process

6.5 Benchmarks on the Generation Process

Second benchmarks are done on the generation process. We simulated the generation of 2048-bits keys K
for LINUX and G. For G, 16 calls to next are necessary, as each call outputs 128 bits. For LINUX, each call
to next outputs 80 bits, therefore 12 calls are first necessary, then 1024 bits need to be transfered from the
input pool to the output pool, then 12 new calls to next are necessary.

For LINUX, denoting Rt the successive ouputs, we implemented the following process, starting from an
internal state (S0

i , S
0
r , S

0
u), where we suppose at least 1024 bits of entropy are accumulated in the output

pool S0
r and 4096 bits of entropy are accumulated in the input pool S0

i :
1. Set R0 = F ◦ H ◦M(S0

r ,H(S0
r ))

2. Repeat step 1. 12 times and set K0 = [R0|| . . . ||R12]10241 .
3. Transfer 1024 bits from S0

i to S0
r . The transfer is made by blocks of 80 bits, therefore, 13 transfers

are necessary. Each transfer is done in two steps: first LINUX generates from S0
i an intermediate data

T 0
i = F ◦ H ◦M(S0

i ,H(S0
i )) and then it mixes it with S0

r , giving the new states S1
i = M(S1

i ,H(S1
i )) and

S1
r = M(S0

r , T
0
i ). Then by hypothesis, H∞(S1

r ) = 80. After repeating these steps 12 times, by hypothesis,
H∞(S13

r ) = 1024.
4. Set R13 = F ◦ H ◦M(S13

r ,H(S13
r ))

5. Repeat step 1. 12 times and set K1 = [R13|| . . . ||R25]10241 .
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6. Set K = [K0||K1]

After this process, H∞(K) = 2048.

For G, we implemented the following process (using the Practical Efficiency Optimization presented in Section
4, starting from an internal state S0, of size 489 bits (resp. 579, 705 bits), where we suppose at least γ∗ = 449
(resp. 529, 641 bits) bits of entropy are accumulated:
1. Set U = [S · X ′]1281 and (S1, R0) = (AESU (0), . . . ,AESU (4)) (resp. AESU (5)), AESU (6)) and set the

Boolean flag last = true.
2. Set (U,R) = (AESU (0),AESU (1)) and set [S]1281 = U .
3. Repeat step 2. 14 times.
After this process, H∞(K) = 2048.

The number of cycles to perform these processes on LINUX and G (with internal state size 705 bits) are
presented in Figure 6. We first implemented the generation of 100 2048-bits keys and we compared one by
one each generation. As shown on the left part of Figure 6, 2048-bits key generation with G needs on average
ten times less CPU cycles than with LINUX. Then we analysed one accumulation in detail or LINUX and G.
As shown on the right part of Figure 6, a 2048-bits key generation needs more CPU for LINUX.
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LINUX

One key generation for LINUX and G

Fig. 6. Generation Process

7 Conclusion

We have proposed a new property for PRNG with input, that captures how it should accumulate the entropy
of the input data into the internal state. This property actually expresses the real expected behavior of a
PRNG after a state compromise, where it is expected that the PRNG quickly recovers enough entropy. We
gave a precise assessment of Linux PRNG /dev/random and /dev/urandom security. In particular, we prove
that these PRNGs are not robust. These properties are due to the behavior of the entropy estimator and
the mixing function used to refresh its internal state. As pointed by Barak and Halevi [BH05], who advise
against using run-time entropy estimation, we have shown vulnerabilities on the entropy estimator due to
its use when data is transferred between pools in Linux PRNG. We therefore recommend that the functions
of a PRNG do not rely on such an estimator.
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Finally, we proposed a construction that meets our new property in the standard model and we showed
that it is noticeably more efficient than the Linux PRNGs. We therefore recommend to use this construction
whenever a PRNG with input is used for cryptography.
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