
STES: A Stream Cipher Based Low Cost Scheme for Securing

Stored Data

Debrup Chakraborty1, Cuauhtemoc Mancillas-López1, Palash Sarkar2

1 Department of Computer Science, CINVESTAV-IPN,
Av. IPN 2508 San Pedro Zacatenco, Mexico City 07360

Mexico
debrup@cs.cinvestav.mx, mancilla@computacion.cs.cinvestav.mx

2 Applied Statistics Unit
Indian Statistical Institute

203 B.T. Road, Kolkata 700108
India

palash@isical.ac.in

Abstract. The problem of securing data present on USB memories and SD cards has not been ade-
quately addressed in the cryptography literature. While the formal notion of a tweakable enciphering
scheme (TES) is well accepted as the proper primitive for secure data storage, the real challenge is to
design a low cost TES which can perform at the data rates of the targeted memory devices. In this
work, we provide the �rst answer to this problem. Our solution, called STES, combines a stream cipher
with a XOR universal hash function. The security of STES is rigorously analyzed in the usual manner of
provable security approach. By carefully de�ning appropriate variants of the multi-linear hash function
and the pseudo-dot product based hash function we obtain controllable trade-o�s between area and
throughput. We combine the hash function with the recent hardware oriented stream ciphers, namely
Mickey, Grain and Trivium. Our implementations are targeted towards two low cost FPGAs � Xilinx
Spartan 3 and Lattice ICE40. Simulation results demonstrate that the speed of encryption/decryption
matches the data rates of di�erent USB and SD memories. We believe that our work opens up the
possibility of actually putting FPGAs within controllers of such memories to perform low-level in-place
encryption.
keywords: Tweakable enciphering scheme, stream ciphers, disk encryption, USB memory, SD card,
FPGA.

1 Introduction

Traditionally, cryptography has been mainly used to secure data in transit. In the last decade,

however, there has been an increase in interest in securing stored data. This interest is re�ected in

some recent standardizing e�orts [4] and a galaxy of algorithms that have been proposed for securing

stored data [17, 26, 27, 32, 37, 41]. A consensus has been reached among researchers that a type of

symmetric encryption scheme, called Tweakable Enciphering Scheme (TES) [26], is appropriate for

the application of encrypting data stored in storage devices which have a sector-wise organization

including hard disks and NAND �ash memories.

The speci�c application which a TES is meant to serve is called low level disk encryption or

in-place disk encryption [26]. In this application, it is assumed that the encryption/decryption

algorithm resides in the disk controller and it views the storage media as a collection of sectors. The

disk controller encrypts the data before writing and decrypts it after reading and before sending it

to the operating system. This generic model of disk encryption is independent of other details like

operating systems, �le system types, etcetera.

Almost all the known constructions of TES use a block cipher as a building block. Some schemes

like CMC, EME, EME* use only block ciphers, whereas schemes such as XCB [32], HCTR [41],

HCH [17], TET [25], HEH [36,37] use a block cipher along with a suitable hash function. In terms

of e�ciency, the current state-of-the-art for the cost of encryption/decryption per block is either 2

block cipher calls [24, 26, 27]; or, 1 block cipher call plus 1 GF (2n) multiplication, where n is the

size of the underlying block cipher [37].

Though there has been an active e�ort in designing new TES, there are only a few works which

report e�cient implementations of such schemes. To our knowledge the only works which report

implementations of TES in hardware are [15,31]. The designs in [31] are targeted towards the Xilinx

Virtex 4 family of FPGAs while the designs in [15] were targeted towards the Virtex 5 family. The

throughput reported in [15] is very encouraging as for all reported designs more than 10 Gbits/sec

of throughput is obtained. The best design in terms of speed provides a throughput of more than

15 Gbits/sec. These implementations are prototypical studies and they �rmly demonstrate that the

speed of TES can match the data rates of modern day disc controllers.

We note that the studies are targeted towards high end FPGAs and so it may not be cost

e�cient for large scale deployment in commercial hard disks. On the other hand, the design philoso-

phies adopted in these works can be easily adopted for design of ASICs. One can then expect the

throughput rates to be higher as ASICs are capable of operating at much higher frequencies com-

pared to FPGAs. Use of ASIC on the other hand, will involve a longer design cycle and the loss of

recon�gurability.

1.1 The Case for Low Cost Solutions

Storage is an integral part of numerous modern devices. For example, non-trivial storage is provided

in modern smart phones and cameras. Even personal bio-medical instruments such as meters for

measuring serum glucose or blood pressure have facilities for storing past readings. From a user

point of view, the data present on the smart phone of a top political or business personality is no

less sensitive than the data present on his or her lap top. With devices being increasingly inter-

connected and also connected to the net, it may be easy for a piece of malware to load itself into a

smart phone and transmit sensitive data. Keeping the stored data in an encrypted form provides a

baseline protection to such malicious activity.

Most resource constrained devices do not have hard disks but rely on �ash memories. NAND

type �ash memory has a similar organization as hard disks. Consequently, TES algorithms that are

applicable for hard disks can also be applied here. But, one needs to keep in mind the constraints

in these devices in terms of area and power utilization. A signi�cant increase in the area will lead

to an increase in both the cost and the size of the device. Further, a high demand on power will

drain out the battery much sooner. Both of these will negatively impact the utility of the device to

the user.

A basic constraint for deployment of any cryptographic protection mechanism is that the per-

formance of the system should not degrade. In the context of stored data, this means that the speed

of encryption and decryption should match the raw data rates of the device. Further, any solution

whose cost is high is unlikely to be adopted. All of these lead to the following question.

Is it possible to design a scheme for securing stored data under the following constraints?

1. The area and power requirement must be low.

2. The actual cost of implementation must be low.

3. The speed should match the data rates of the target device.

1.2 Contributions of this work

In this paper, we provide an a�rmative answer to the above question through a new construction of

a TES (which we call STES) using hardware oriented stream ciphers. Here we provide an overview

of the several aspects of the solution. Details are worked out over the rest of the paper.

The application that we have in mind is to encrypt �ash memories which have a block-wise

organization. Our target applications include USB memories and memory cards like those speci�ed

in the SD standard [5]. The SD standard classi�es memory cards into four categories based on their

speeds. These categories are named as normal speed, high speed, ultra high speed-I (UHS I) and

ultra high speed II and the required bus speeds are 12.5 MB/sec; 25 MB/sec; 50-104 MB/sec; and

156-312 MB/sec respectively. The UHS-II category of devices are only recommended for special

applications like storing high quality streaming video etc.

These speed requirements are to be contrasted with the speeds of modern hard disks using

technologies like serial ATA and native command queuing which can achieve data rates of more

than 3 Gigabits/sec (the SATA revision 2 speci�es a speed of 6 Gigabits/sec). So, for encryption

of SD cards, the speed of encryption is not much demanding, and is much less than the speeds

achieved by the TES implementations reported in [15,31]. As discussed above, speed is only one of

the issues. The designs in [15,31] are neither low area nor low power. Being targeted towards Virtex

4 and 5 FPGAs, these are not also low cost. Hence, in terms of only speed of constrained devices,

the designs in [15,31] are really an over-engineering.

Low cost designs: Our target platform is low cost yet performant FPGAs. Examples are the Xilinx

Spartan 3 and Lattice ICE40 FPGAs [30]. It may be possible to put such an FPGA in a personal

device like a smart phone. TES designs targeted towards such platforms can be directly deployed

to small devices.

Low area/power: As mentioned earlier, most TES designs are based on block ciphers. Only one

work [39] outlines a TES which uses a stream cipher supporting an initialization vector (IV). The

stream cipher based construction in [39] has a bug and the corrected construction appears in [38].

This is the starting point of our work. The description in [38, 39] is at a high level using a stream

cipher and a hash function. We mention below our choice of the stream cipher, the design of the

hash function and the consequent development of a new TES scheme that we call STES. The details

of our construction are su�ciently di�erent from that in [38,39] to necessitate a separate complete

security analysis.

The eStream [3] Pro�le-2 portfolio provides three stream ciphers which have very small hardware

footprint, namely Grain128, Mickey 2.0 and Trivium. We consider all these three candidates and

later describe implementation results using varying opportunities for parallelism.

The TES construction requires a hash function with provably low collision and di�erential prob-

abilities. Usual polynomial hash is one way to design such a hash function. But, this requires a �nite

�eld multiplier over GF (2ℓ), where ℓ is the IV length of the underlying stream cipher. This may not

be a good choice for low area/power designs. Instead, we chose the multi-linear hash function [14,20]

for implementation. When used directly, this also requires a GF (2ℓ) multiplier. We, however, use

the so-called Toeplitz version of this hash function, where it is possible to use a GF (2d) multiplier

where d is a divisor of ℓ. We call d to be the data path of the hash function. By varying d, we can

achieve a nice trade-o� between the size of the area and the throughput of the hash function. The

theoretical possibility of obtaining a hardware e�cient hash function using a Toeplitz version of the

multi-linear hash was indicated in [35].

Another interesting hash function is based on Winograd's pseudo-dot product [42] and has been

mentioned in [9]. Again a direct implementation of this hash function requires a GF (2ℓ) multiplier,

whereas using a Toeplitz version (suggested in [35]) one can use a GF (2d) multiplier for some d

dividing ℓ. For a �xed message of a particular length, the total number of multiplications required

by the pseudo-dot product based hash function is about half that required by the multi-linear

hash function. This seems to suggest that the pseudo-dot product hash function should be the

one of choice. Somewhat surprisingly, we show that from the point of view of parallel hardware

implementation, there is no signi�cant di�erence in speed of the two functions. But the pseudo

dot product hash functions gives some advantage over the multilinear ones in terms of area when

implemented with larger data paths.

Later, we present di�erent design decisions for the hash function and the implementation results.

We believe that our implementation of the hash functions is of independent interest and will be useful

for other applications. There is no work in the literature which provides such a careful hardware

implementation of the multi-linear and the pseudo-dot product hash function as we do.

As mentioned earlier, the stream cipher based TES construction in [39] is at high level. The

actual issue of choosing the hash function is not adequately addressed. The multi-linear and the

pseudo-dot product hash function that we use requires a long hash key. Due to its length, the key

cannot be stored and has to be generated using the stream cipher itself. As a result, the security

proof in [39] does not apply any more. We carefully work out the complete proof and obtain a

security bound which improves upon the ones given in [38,39].

The result of all this is that STES is a low power/area design and can be implemented in low cost

FPGA. Further, this is achieved while retaining the usual guarantee of rigorous security analysis.

To a designer, STES holds out the dual attractiveness of formal security analysis combined with

low cost and low area/power implementations.

2 Preliminaries

In this section we give an overview of the basic primitives used for the new construction. For a

binary string X, bits(X, i, j) denotes the binary string formed by the substring of X extending from

position i to position j. For binary strings X and Y , X||Y denotes the concatenation of X and Y .

We shall often treat n bit binary strings as elements in GF (2n), and for X,Y ∈ {0, 1}n, X ⊕Y and

X · Y (or sometimes XY) would mean the addition and multiplication in GF (2n).

2.1 Stream Ciphers with IV

Modern stream ciphers, such as those in the eStream [3] portfolio, take as input a short secret key

K and a short initialization vector (IV) and produce a �long� and random looking string of bits.

Let SCK : {0, 1}ℓ → {0, 1}L be a stream cipher with IV, i.e., for every choice of K from a certain

pre-de�ned key space K, SCK maps an ℓ-bit IV to an output string of length L bits. The length L

is assumed to be long enough for practical sized messages to be encrypted. For our application, the

length of L is determined by the length of the sector. By SCi
K(IV) we shall denote the �rst i bits

of the output of SCK(IV).

2.2 Multilinear Universal Hash

A keyed hash function is chosen from an indexed family {Hτ}τ of hash functions. The key τ is

chosen uniformly at random from the index set. Suppose the range consists of ℓ-bit strings. The

hash function is said to be universal if for distinct X and X ′, Pr[Hτ (X) = Hτ (X
′)] = 1/2ℓ;

further it is said to be XOR universal (XU), if for distinct X and X ′ and any ℓ-bit string Y ,

Pr[Hτ (X)⊕Hτ (X
′) = Y] = 1/2ℓ.

We will be interested in a particular type of hash function called the multi-linear function [14,

20]. The following de�nition is a variant based on the so-called Toeplitz construction. An MLUH

(Multilinear Universal Hash) with data path d uses an (m + b − 1)d-bit key K to map a dm-bit

message M to a db-bit digest. The message M is written as M = M1||M2|| · · · ||Mm and the key K

is written as K = K1||K2|| . . . ||Km+b−1, where each Mi and Kj are d bits long. We de�ne

MLUHd,b
K (M) = h1||h2|| · · · ||hb,

where

h1 = M1 ·K1 ⊕M2 ·K2 ⊕ ...⊕Mm ·Km

h2 = M1 ·K2 ⊕M2 ·K3 ⊕ ...⊕Mm ·Km+1

· · · · ·
hb = M1 ·Kb ⊕M2 ·Kb+1 ⊕⊕Mm ·Kb+m−1.

 (1)

The additions and multiplications are in the �eld GF(2d). Note that the message and key lengths

are multiples of d. This restriction can be lifted by appropriate padding. We do not perform this,

since for our application it is easy to ensure that the condition holds.

It is not di�cult to show that an MLUH is an XU function. More speci�cally for a uniform

random key K, any pair of distinct messages M1,M2 and any α

Pr
K
[MLUHd,b

K (M1)⊕MLUHd,b
K (M2) = α] ≤ 1

2db
. (2)

The XOR universal property for a more general version of the multi-linear hash function has been

proved in [35].

2.3 Pseudo-Dot Product Based Universal Hash

Another construction of hash function can be based on Winograd's pseudo-dot product [42]. This has

been pointed out in [9]. We describe the Toeplitz variant of the pseudo-dot product construction as

mentioned in [35]. This will be denoted by PD. The PD construction uses an (m+2b−2)d-bit key K

to map a dm-bit message M to a db-bit digest. The message M is written as M = M1||M2|| · · · ||Mm

and the key K is written as K = K1||K2|| . . . ||Km+2b−2, where each Mi and Kj are d-bit strings.

We de�ne

PDd,b
K (M) = h1||h2||...||hb

where

h1 = (M1 ⊕K1)(M2 ⊕K2)⊕ (M3 ⊕K3)(M4 ⊕K4)⊕ ...⊕ (Mm−1 ⊕Km−1)(Mm ⊕Km)

h2 = (M1 ⊕K3)(M2 ⊕K4)⊕ (M3 ⊕K5)(M4 ⊕K6)⊕ ...⊕ (Mm−1 ⊕Km+1)(Mm ⊕Km+2)

· · · · ·
hb = (M1 ⊕K2b−1)(M2 ⊕K2bb)⊕ ...⊕ (Mm−1 ⊕Km+2b−3)(Mm ⊕Km+2b−2)

 (3)

The PD function is also an XU hash function and can be proved by a simple probability calculation.

2.4 Tweakable Enciphering Scheme

A tweakable enciphering scheme is a pair of indexed family of functions (EK ,DK)K∈K. For each K

in K,
EK ,DK : Tweak×Msg → Cpr

where Tweak, Msg and Cpr are non-empty �nite sets of binary strings. The set K is called the key

space, Tweak is the tweak space, Msg is the message space and Cpr is the ciphertext space. The

functions have to satisfy the following condition. For �xed K ∈ K and T ∈ Tweak,

1. EK(T, ·) and DK(T, ·) are length preserving permutations.

2. DK(T,EK(T,X)) = X.

Usually EK(T,X) and DK(T, Y) are written as ET
K(X) and DT

K(Y) respectively. E is called the

encryption function and D is called the decryption function.

The applicability to disk encryption comes via the following relation. For encryption, the tweak

T is taken to be the sector address and the message X is taken to be the content of the sector. Let

Y be the output of the encryption of X under the tweak T and the secret key K. By the length

preserving constraint, this Y is of the same length as that of X. The value of X is overwritten using

Y in the sector pointed to by T . Thus, after the whole disk is encrypted, it consists only of the

encrypted values. Note that the encryption is done sector-wise and so decryption can also be done

sector-wise. This means that the value Y in a particular sector with address T can be decrypted

without disturbing the values of the other sectors.

In a typical in-place disk encryption application, the sectors are individually encrypted and stored

in the encrypted form. The encryption/decryption module resides just above the disk controller. An

encrypted sector read by the disk controller is decrypted by the module and returned to the calling

routine. Similarly, the writing of any sector to the disk is �rst encrypted by the module and then

the disk controller writes it to the appropriate sector. This mode of operation ensures that if the

disk is accessed without the secret key, then it appears to be random.

In the de�nition of TES, Tweak, Msg and Cpr are mentioned to be non-empty �nite sets of binary

strings. For disk encryption applications,Msg = Cpr and is the set of all binary strings whose lengths

are equal to the length of a sector. Similarly, Tweak is taken to be the set of all binary strings of

some �xed length ℓ where 2ℓ is greater than the number of sectors in a disk.

3 Construction of STES

The description of the encryption algorithm using STES is given in Figure 1 and a schematic diagram

is shown in Figure 3. The construction is parameterised by a stream cipher SC supporting ℓ-bit IVs,

a hash function MLUH with data path d and a �xed ℓ-bit string fStr. This is emphasized by writing

STES[SC,MLUH, fStr]. When one or more of the parameters are clear from the context, we drop

these for simplicity of notation; if all three parameters are clear, then we simply write STES. We

assume that d | ℓ. Plaintexts and tweaks are �xed length messages. If P is any plaintext and T is any

tweak, then we also assume that d | (|P |+ |T | − 2ℓ). For practical implementations, the restrictions

on d are easy to ensure as we discuss later.

The secret key for STES is the secret key K of the underlying stream cipher. In this context, we

would like to mention the role that the parameter fStr can play. From the point of view of the formal

security analysis, there is no restriction on fStr. Thus, this can be used as a secret customisation

option. In other words, for actual deployment, one may choose a uniform random value for fStr and

keep it secret. This provides an additional layer of obscurity over and above the provable security

analysis that we perform. There is another advantage to using fStr as part of the secret key. The

security bound that is obtained is in terms of the IV length ℓ and the number of queries for which

security holds can be obtained as a function of 2ℓ. The key length |K| should be at least ℓ for the

analysis to be meaningful. If the key length is equal to ℓ, then certain �out of model� attacks may

apply as has been pointed out in [18]. Increasing the key length by keeping fStr as part of the secret

key will help in preventing such attacks.

Apart from the secret key K, the input to the encryption algorithm of STES is the tweak T

and a plaintext P . Similarly, the input to the decryption algorithm of STES consists of T and the

ciphertext C.

The encryption algorithm begins with some length calculations, and �xes values for the variables

ℓ1, ℓ2 and ℓ3 which determine the key lengths necessary for the di�erent calls to MLUH made later

in the algorithm. Next, the input plaintext is parsed into three parts P1, P2 and P3 where P1 and

P2 are both ℓ bits long and P3 is |P | − 2ℓ bits long. In Line 9, (ℓ1 + ℓ2) bits are generated from the

stream cipher SCK using the fStr as input. These bits are parsed into two strings τ ′ and τ ′′ which

are later used as keys for MLUH.

The part P3 of the message and the tweak T is hashed using the MLUH and mixed with the

message parts P1 and P2 to generate two strings A1 and A2. These strings are used as an input to

the function Feistel which is described in Figure 2. The function Feistel receives two keys K and τ ′′

and it mixes the input strings A1 and A2 by appropriate use of the hash MLUH and the stream

cipher SC. The inverse function for Feistel is also shown in Figure 2.

Fig. 1. STES: A TES using SC and MLUH. The ℓ-bit string fStr is a parameter to the whole construction. The length
of the IV of SC is ℓ and the data path of MLUH is d.

STES.EncryptSTES.EncryptSTES.EncryptTK(P)

1. b← ℓ
d
;

2. b1 ← |P |+|T |−2ℓ
d

;
3. ℓ1 ← (b1 + b− 1)d;
4. ℓ2 ← (2b− 1)d;
5. ℓ3 ← |P | − 2ℓ;

6. P1 ← bits(P, 1, ℓ); /* |P1| = ℓ) */
7. P2 ← bits(P, ℓ+ 1, 2ℓ); /* |P2| = ℓ */
8. P3 ← bits(P, 2ℓ+ 1, |P |); /* |P3| = ℓ3 */

9. τ ← SCℓ1+ℓ2+ℓ
K (fStr);

10. τ ′ ← bits(τ, 1, ℓ1);
11. β ← bits(τ, ℓ1 + 1, ℓ1 + ℓ);
12. τ ′′ ← bits(τ, ℓ1 + ℓ+ 1, ℓ1 + ℓ+ ℓ2);

13. Z1 ← MLUHd,b
τ ′ (P3||T)⊕ β;

14. A1 ← P1;
15. A2 ← P2 ⊕ Z1;
16. (B1, B2,W)← Feistelℓ,dK,τ ′′(A1, A2, ℓ3);
17. C3 ← P3 ⊕W ;
18. Z2 ← MLUHd,b

τ ′ (C3||T)⊕ (β ≪ 1);
19. C1 ← B1 ⊕ Z2;
20. C2 ← B2;
returnreturnreturn(C1||C2||C3);

STES.DecryptSTES.DecryptSTES.DecryptTK(C)

1. b← ℓ
d
;

2. b1 ← |C|+|T |−2ℓ
d

;
3. ℓ1 ← (b1 + b− 1)d;
4. ℓ2 ← (2b− 1)d;
5. ℓ3 ← |C| − 2ℓ;

6. C1 ← bits(C, 1, ℓ); /* |C1| = ℓ) */
7. C2 ← bits(C, ℓ+ 1, 2ℓ); /* |C2| = ℓ */
8. C3 ← bits(C, 2ℓ+ 1, |C|); /* |C3| = ℓ3 */

9. τ ← SCℓ1+ℓ2+ℓ
K (fStr);

10. τ ′ ← bits(τ, 1, ℓ1);
11. β ← bits(τ, ℓ1 + 1, ℓ1 + ℓ);
12. τ ′′ ← bits(τ, ℓ1 + ℓ+ 1, ℓ1 + ℓ+ ℓ2);

13. Z2 ← MLUHd,b
τ ′ (C3||T)⊕ (β ≪ 1);

14. B1 ← C1 ⊕ Z2;
15. B2 ← C2;
16. (A1, A2,W)← InvFeistelℓ,dK,τ ′′(B1, B2, ℓ3);
17. P3 ← C3 ⊕W ;
18. Z1 ← MLUHd,b

τ ′ (P3||T)⊕ β;
19. P1 ← A1;
20. P2 ← A2 ⊕ Z1;
returnreturnreturn(P1||P2||P3);

Fig. 2. The Feistel network (and its inverse) constructed using a stream cipher and a MLUH. The variable ℓ is the
length of an IV for SC and d is the data path of MLUH. This de�nition is di�erent from the usual Feistel construction:
a positive integer i is provided as an additional input and a binary string W of length i is returned as an additional
output.

FeistelK,τ ′′(A1, A2, i)

1. H1 ← MLUHd,b
τ ′′ (A1);

2. F1 ← H1 ⊕A2;
3. (G1,W)← SCℓ+i

K (F1);
4. F2 ← A1 ⊕G1;
5. G2 ← SCℓ

K(F2);
6. B2 ← F1 ⊕G2;
7. H2 ← MLUHd,b

τ ′′ (B2);
8. B1 ← H2 ⊕ F2;
returnreturnreturn(B1, B2,W);

InvFeistelK,τ ′′(B1, B2, i)

1. H2 = MLUHd,b
τ ′′ (B2);

2. F2 = H2 ⊕B1;
3. G2 = SCℓ

K(F2);
4. F1 = B1 ⊕G2;
5. (G1,W) = SCℓ+i

K (F1);
6. A1 = F2 ⊕G1;
7. H1 = MLUHd,b

τ ′′ (A1);
8. A2 ← H1 ⊕ F1;
returnreturnreturn(A1, A2,W);

The call to Feistel also returns the string W of length equal to ℓ3 which is the length of P3. This

string W is XORed with P3 to obtain C3. The Feistel network produces two more ℓ bit outputs B1

and B2. B1 and B2 are used to produce the ciphertexts C1 and C2 respectively.

From the description given in Figures 1 and 2, it may appear that the string W of length ℓ3 is

required to be actually returned to the main body of the algorithm. This, however, is not the case.

For example, depending on the speci�c design choices it may be possible to compute W (in line 3,

Fig. 2) and Z2 (in line 19, Fig. 1) in parallel.

SCK

SCK

Hτ’’

Hτ’’

H ’τ

H ’τ

β<<<1

P1 P2 P3

β
H

Z

G

F

B

Z
C C

W

A

1

C

1 1

1 F1

2 G2

H2 2B

2

2 31

1

Fig. 3. Schematic diagram of the encryption algorithm of STES.

3.1 Variant of STES Using PD

The description of the algorithm STES can be modi�ed by using the pseudo dot-product hash PD

which is described in Section 2.2. If PD is used instead of MLUH the key lengths required are to

be suitably changed. For hashing m blocks (where each block is d bits long) of message the PD

construction requires m + 2b − 2 blocks of keys, where bd is the length of the output. Hence the

parameter ℓ1 in Line 4 must be �xed to b1+2b−2 and ℓ2 to (4b−2)d. All the calls to MLUH should

be replaced by PD in the algorithm STES and in the function Feistel with the same parameters as

it appears in the descriptions. This variant is formally denoted as STES[SC,PD, fStr].

3.2 Some Characteristics of the Construction

Hash keys: The hash keys τ ′ and τ ′′ are generated using call SCK(fStr). If it is possible to store τ ′

and τ ′′, then the call to SC in Line 9 is not required and this will gain some e�ciency. But, as the

key τ ′ is much larger in size compared to K, for most applications this will not be practical. Using

a register to store this key within the FPGA will greatly push up the area requirement. For designs

targeted at small area implementations, it is necessary to generate the hash key on the �y.

Message length: STES is de�ned only for �xed length messages. This is because our intended

application is encryption of disks and �ash memories where the message is a sector and has a �xed

length. It is possible to extend the construction to accommodate variable length messages as has

been done in [39]. This, however, results in slightly more computation than the �xed length case.

Since, variable length messages is not required in our context, we chose to cut out the additional

complexity of padding and formatting from the algorithm.

E�ciency: The computationally costly operations that take place in the algorithm are the calls

to the stream cipher and the hash functions. There is one call to the stream cipher from the main

body of the algorithm to generate the hash keys and the other two calls are part of the function

Feistel. It is to be noted that in real life stream ciphers are quite fast in generation of the outputs,

but when a stream cipher is called on di�erent initialization vectors then there is a signi�cant time

required for initialization. The three calls to the stream cipher required in STES are all on di�erent

initialization vectors. Hence, stream cipher initializations occupy a signi�cant amount of the time

required for STES.

The hash functionsMLUH and PD can be implemented very e�ciently in hardware with a proper

choice of the data path d. The choice of d dictates the amount of parallelism possible. Recall that

the main goal of the construction is to enable a hardware realization which uses small amount of

hardware resources. A proper choice of the stream cipher and the data path can help in realizing a

circuit with adequate throughput but with a small hardware footprint. These issues are discussed

in details in Section 6 where we demonstrate that STES meets the expected e�ciency requirements

both in terms of time and circuit size.

Parallelism: There exist ample scope to exploit parallelism in the construction of STES. In the

hardware implementation that we present later, we decided to use two stream cipher cores, our

speci�c design choices give rise to an architecture where decryption is a bit faster than encryption.

This characteristic of the design has some good practical implications, as read speeds in memory

are faster than the write speeds and it is expected that a typical block would be read many more

times than it would be written.

4 Security of STES

In this section, we state the usual security theorem for STES. To do this, we need to introduce

the appropriate notions of security of a stream cipher with IV and that of a tweakable enciphering

scheme.

4.1 Pseudo-Random Function

Let Dom and Ran be two non-empty �nite sets of binary strings. Let fK be an indexed set of functions

where fK : Dom → Ran and K is chosen from some index set K. The notion of pseudo-random

function (PRF) is formalized in the following manner.

Let K be chosen uniformly at random from K. An adversary A has to distinguish fK from a

uniform random function f∗ where f∗ is chosen uniformly at random from the set of all functions

from Dom to Ran. A is a probabilistic algorithm which has oracle access to either fK or f∗. Suppose

the oracle is fK . The adversary A submits queries X1, . . . , Xq to the oracle and gets back the

responses fK(X1), . . . , fK(Xq). A can make the queries in an adaptive manner, i.e., it can decide

on the i-th query after receiving the responses to the �rst (i−1) queries. Without loss of generality,

we will assume that the queries are distinct. At the end of the interaction, A outputs a bit.

Let Pr[AfK ⇒ 1] denote the probability that A outputs 1 after interacting with fK . This

probability is over the randomness of fK (arising from the random choice of K) as well as the

randomness of A.

Similarly, let A interact with f∗ and let Pr[Af∗ ⇒ 1] denote the probability that A outputs 1

after interacting with f∗. The advantage of A in distinguishing fK from the uniform random f∗ is

de�ned as follows.

Advprff (A) = Pr[AfK ⇒ 1]− Pr[Af∗ ⇒ 1]. (4)

Let Advprff (t, q, σ) be the supermum of the advantages of all adversaries running in time t,

making q queries and providing a total of σ bits in all its queries. The quantity σ is called the query

complexity. Note that Advprff (t, q, σ) is always positive even though the quantity de�ned in (4) can

sometimes be negative. The value of Advprff (t, q, σ) is called the PRF-bound for f .

4.2 Stream Cipher With IV

Recall that for a key K from the key space K, a stream cipher with IV is a function SCK :

{0, 1}ℓ → {0, 1}L. The basic idea of security is that for a uniform random K and for distinct

inputs IV1, . . . , IVq, the strings SCK(IV1), . . . , SCK(IVq) should appear to be independent and uni-

form random to an adversary. This is formalised by requiring a stream cipher to be a PRF. See [8]

for further discussion on this issue. AdvprfSC (t, q, σ) denotes the PRF-advantage of SC against any

adversary that runs in time t, makes q queries and has query complexity σ.

4.3 Tweakable Enciphering Scheme

Consider a TES = (EK ,DK)K∈K. Let K be chosen uniformly at random and an adversary A is

given access to the oracles (EK ,DK). A query to EK is a pair (T,X) and a query to DK is a pair

(T, Y), where T is a tweak, X is a message and Y is a ciphertext. Appropriate responses to the

queries are provided to the adversary A.

Note that A is allowed to make the queries in an adaptive manner, i.e., for the i-th query it can

decide on whether to send it to EK or DK and the content of the query based on the responses it

has received to the previous (i− 1) queries. The restrictions are that no two queries to EK should

be equal; no two queries to DK should be equal; if Y has been obtained as a response to a query

(T,X) to EK , then the query (T, Y) to DK is not allowed; and similarly, if X has been obtained

as a response to a query (T, Y) to DK , then the query (T,X) to EK is not allowed. These queries

are pointless as the adversary already knows the answer to these queries. Let Pr[AEK ,DK ⇒ 1] be

the probability that A outputs 1 after interacting with the oracles EK and DK .

For each tweak T , let Π(T, ·) be a length preserving permutation chosen uniformly at random

from the set of all length preserving permutations from Dom to Ran. By Π we denote the collection

{Π(T, ·)}T∈Tweak of all these tweak-indexed uniform random length preserving permutations. For

each T , let Π−1(T, ·) be the inverse of Π(T, ·) and let Π−1 be the collection {Π−1(T, ·)}T∈Tweak.

Suppose EK and DK are replaced by Π and Π−1 respectively and consider the interaction of A
with Π and Π−1. Let Pr[AΠ,Π−1 ⇒ 1] be the probability that A outputs 1 after such interaction.

The advantage of A is de�ned as follows.

Adv±p̃rpTES (A) = Pr[AEK ,DK ⇒ 1]− Pr[A$(·,·),$(·,·) ⇒ 1]. (5)

De�ne Adv±p̃rpTES (t, q, σ) to be the supremum of the advantages of all adversaries which run in time

t, make a total of q queries and send a total of σ bits in all the queries. Security of a scheme against

an adversary which has access to both the encryption and the decryption oracles is called security

as a strong pseudo-random permutation.

Suppose now that the oracles EK and DK are replaced by two oracles which return independent

and uniform random strings on any input. More precisely, if (T,X) is a query to EK , then an

independent and uniform random string of length equal to the length of X is returned; if (T, Y)

is a query to DK , then similarly, an independent and uniform random string of length equal to

the length of Y is returned. Let Pr[A$(·,·),$(·,·) ⇒ 1] be the probability that A outputs 1 after such

interaction. The advantage of A is de�ned as follows.

Adv±rndTES (A) = Pr[AEK ,DK ⇒ 1]− Pr[A$(·,·),$(·,·) ⇒ 1]. (6)

De�ne Adv±rndTES (t, q, σ) to be the supremum of all advantages of adversaries which run in time t,

make a total of q queries and send a total of σ bits in all the queries.

The ±rnd and ±p̃rp advantages are related as follows.

Adv±p̃rpTES (A) ≤ Adv±rndTES (A) +

(
q

2

)
1

2ℓ
. (7)

For a proof of (7) see [16,27].

4.4 Security Statement for STES

The following theorem speci�es the security of STES.

Theorem 1. Let SCK : {0, 1}ℓ → {0, 1}L be a stream cipher with IV and H be one of the hash

functions MLUH or PD. For σ ≥ q ≥ 1 and t ≥ 1,

Adv±p̃rpSTES[SC,H,fStr](t, q, σ) ≤ AdvprfSC (t
′, q, σ) +

9q2

2ℓ+1
. (8)

Here t′ is t+ t′′, where t′′ is the time to process q queries using STES[SC,H, fStr].

The theorem guarantees that if the stream cipher acts like a random function then, for any arbitrary

adversary which makes a reasonable number of queries, the advantage of distinguishing STES[SC]

from a tweak-indexed family of length preserving permutations is small. The proof of the theorem

consists of a standard game transition argument and a combinatorial analysis of some collision

probabilities. The proof is given in Section 5.

5 Proof of Theorem 1

In the proof, the string fStr will be �xed and so we will not explicitly mention this as a parameter to

STES. The analysis of the proof will be done assuming the hash function H to be MLUH. Essentially

the same analysis also holds when H is instantiated as PD.

Let δ be a uniform random function from {0, 1}ℓ to {0, 1}L, i.e., δ is chosen uniformly at random

from the set of all functions from {0, 1}ℓ to {0, 1}L. This means that for distinct inputs X1, . . . , Xq,

the values δ(X1), . . . , δ(Xq) are independent and uniform random. This property will be used in the

argument below. In the �rst step of the proof, the stream cipher SC is replaced by δ. Note that this

is only a conceptual step and there is no need to obtain the actual construction. In fact, there is no

need to even chose the whole of δ and its behavior can be simulated in an incremental fashion as

follows. Keep a list of hitherto generated pairs of inputs and outputs; for any input, one needs to

check whether it has already occurred and if so, return the corresponding output; if not, return an

independent and uniform random string.

Denote by STES[δ,H] the corresponding construction. It is quite standard to argue that the

following inequality holds.

Adv±p̃rpSTES[SC,H](t, q, σ) ≤ AdvprfSC (t
′, q, σ) + Adv±p̃rpSTES[δ,H](t, q, σ). (9)

The idea is that if there is an adversary which can distinguish between STES[SC] and STES[δ],

then that adversary can be used to distinguish between SC and a uniform random function and so

breaks the PRF-property of SC. The parameters q and σ carry over directly whereas the parameter t

increases to t′ since during the simulation, each query has to be processed using either the encryption

or the decryption algorithm of STES[SC,H].

The construction STES[δ] is parameterized by the uniform random function δ. Unlike SC, there

is no computational assumption on δ. Basically, the computational aspect is taken care of by the

bound on the PRF-advantage of SC. So, the rest of the proof proceeds in an information theoretic

manner. The time parameter in Adv±p̃rpSTES[δ](t, q, σ) is redundant, since allowing unlimited time does

not help the adversary. So, we drop t and use the notation Adv±p̃rpSTES[δ](q, σ). The main part of the

proof is to show the following.

Adv±p̃rpSTES[δ](t, q, σ) ≤
9q2

2ℓ+1
. (10)

From (7), we have

Adv±p̃rp
STES[δ](q, σ) ≤ Adv±rnd

STES[δ](σ) +

(
q

2

)
1

2ℓ
. (11)

So, the task reduces to upper bounding Adv±rnd
STES[δ]. In other words, this is to show that the advantage

of an adversary in distinguishing STES[δ] from oracles which simply return independent and uniform

random strings is small. The proof now proceeds via a sequence of games as described below.

In each game, the adversary A makes a total of q queries. For convenience of description, we

introduce a variable tys for each s = 1, . . . , q. The value of tys = enc (resp. tys = dec) denotes the

corresponding query to be an encryption (resp. decryption) query. At the end of each game, the

adversary outputs a bit. By Pr[AG ⇒ 1] we denote the event that the adversary outputs 1 in Game

G where G is one of G0, G1 or G2.

The �rst game G0 is depicted in Figure 4. Game G0 is just the rewrite of the algorithm of STES

in Fig. 1, but we replace the stream cipher SC by a uniform random function δ. The random function

is constructed on the �y using the subroutine δ(), which is also shown in Figure 4. The subroutine

δ() maintains a table T , indexed on the strings in {0, 1}ℓ and is initially unde�ned everywhere. In

the table T [] the subroutine keeps information regarding the values returned by it corresponding

to the inputs. When called on an input X ∈ {0, 1}ℓ, δ() checks if T [X] is unde�ned; if so, then it

returns a random string in {0, 1}L and stores the returned value in T [X]; otherwise, it returns T [X]

and sets a �ag labeled bad to true. Note that game G0 is a perfect simulation of STES instantiated

with the random function δ. Hence, if A is the adversary interacting with G0, and if we denote the

encryption and decryption procedures of STES[δ] as Πδ and Π−1δ respectively, then we have

Pr[AG0 ⇒ 1] = Pr[AΠδ(.,.),Π
−1
δ (.,.) ⇒ 1]. (12)

We change game G0 to game G1 by eliminating the boxed entry in game G0. G1 is shown in

Figure 4. With this change, the games G0 and G1 executes in the same manner unless the bad �ag

is set to true. Hence, using the di�erence Lemma (see [7, 40])

|Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]| ≤ Pr[AG1 sets bad]. (13)

In Game G1, the responses received by A are random strings as C1, C2 and C3 are all outputs

of δ() xor-ed with other independent strings. Also, in Game G1, δ() responds with random strings

irrespective of the inputs it receives.

Now, we do a purely syntactic change to G1 to obtain G2 which is shown in Figure 5. In G2,

when an encryption or decryption query from A is received, a random string of the length equal to

that of the message/cipher length is returned immediately. After all the q queries of the adversary

have been answered, the game enters the �nalization phase. The �nalization of G2 runs in two

phases. In the �rst phase, based on the query and the response, the internal random variables in

the algorithm are adjusted and these values are inserted in the D. In Phase 2, if there is a collision

within D, i.e., two random variables in D take the same value, then the bad �ag is set to true.

As G1 and G2 provide the same view to the adversary and di�er only in the way they are

written, we have

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1] and Pr[AG1 sets bad] = Pr[AG2 sets bad]. (14)

Moreover, when A interacts with G2 it gets random strings as responses to all its queries, and so

Pr[AG2 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1]. (15)

Hence, using (13), (14) and (15), we have

Adv±rnd
STES[δ](A) = Pr[AΠδ(.,.),Π

−1
δ (.,.) ⇒ 1]− Pr[A$(.,.),$(.,.) ⇒ 1]

≤ Pr[AG2 sets bad]. (16)

Subroutine δ(X)

01. Y
$← {0, 1}L;

02. if X ∈ D then bad← true; Y ← T [X] ; end if;

03. T [X]← Y ; D ← D ∪ {X};
04. return Y ;

Initialization:

for all X ∈ {0, 1}ℓ, T [X]← undef; endfor

bad← false; D ← {fStr};
τ ← δ(fStr);

τ ′ ← bits(τ, 1, ℓ1);

τ ′′ ← bits(τ, ℓ1 + 1, ℓ1 + ℓ2);

β ← bits(τ, ℓ1 + ℓ2 + 1, ℓ1 + ℓ2 + ℓ);

FeistelFeistelFeistelK,τ ′′ (As
1, A

s
2, ℓ3)

201. bs ← ⌈ ℓ
d
⌉

202. Hs
1 ← MLUHd,b

τ ′′ (A
s
1);

203. F s
1 ← Hs

1 ⊕As
2;

204. (Gs
1,W

s)← bits(δ(F s
1), 1, ℓ+ ℓ3);

205. F s
2 ← As

1 ⊕Gs
1;

206. Gs
2 ← bits(δ(F s

2), 1, ℓ);

207. Bs
2 ← F s

1 ⊕Gs
2;

208. Hs
2 ← MLUHd,b

τ ′′ (B
s
2);

209. Bs
1 ← Hs

2 ⊕ F s
2 ;

210. returnreturnreturn(Bs
1 , B

s
2 ,W

s);

InvFeistelInvFeistelInvFeistelK,τ ′′ (Bs
1 , B

s
2 , ℓ3)

201. bs ← ⌈ ℓ
d
⌉;

202. Hs
2 = MLUHd,b

τ ′′ (B
s
2);

203. F s
2 = Hs

2 ⊕Bs
1 ;

204. Gs
2 = bits(δ(F s

2), 1, ℓ);

205. F s
1 = Bs

1 ⊕Gs
2;

206. (Gs
1,W

s) = bits(δ(F s
1), 1, ℓ+ ℓ3);

207. As
1 = F s

2 ⊕Gs
1;

208. Hs
1 = MLUHd,b

τ ′′ (A
s
1);

209. As
2 ← Hs

1 ⊕ F s
1 ;

210. returnreturnreturn(As
1, A

s
2,W

s);

Response to the sth query:

Case tys = enc:

100. P s
1 ← bits(P s, 1, ℓ); /* |P1| = ℓ) */

101. P s
2 ← bits(P s, ℓ+ 1, 2ℓ); /* |P2| = ℓ */

102. P s
3 ← bits(P s, 2ℓ+ 1, |P |); /* |P3| = ℓ3 */

103. Zs
1 ← MLUHd,b

τ ′ (P s
3 ||T s)⊕ β;

104. As
1 ← P s

1 ;

105. As
2 ← P s

2 ⊕ Zs
1 ;

106. (Bs
1 , B

s
2 ,W

s)← Feistelℓ,d
K,τ ′′ (A

s
1, A

s
2, ℓ3);

107. Cs
3 ← P s

3 ⊕W s;

108. Zs
2 ← MLUHd,b

τ ′ (Cs
3 ||T s)⊕ (β ≪ 1);

109. Cs
1 ← Bs

1 ⊕ Zs
2 ;

110. Cs
2 ← Bs

2 ;

returnreturnreturn(Cs
1 ||Cs

2 ||Cs
3);

Case tys = dec:

100. Cs
1 ← bits(Cs, 1, ℓ); /* |P1| = ℓ) */

101. Cs
2 ← bits(Cs, ℓ+ 1, 2ℓ); /* |P2| = ℓ */

102. Cs
3 ← bits(Cs, 2ℓ+ 1, |P |); /* |P2| = ℓ3 */

103. Zs
2 ← MLUHd,b

τ ′ (Cs
3 ||T s)⊕ (β ≪ 1);

104. Bs
1 ← Cs

1 ⊕ Zs
1 ;

105. Bs
2 ← Cs

2 ;

106. (As
1, A

s
2,W

s)← InvFeistelℓ,d
K,τ ′′ (A

s
1, A

s
2, ℓ3);

107. P s
3 ← Cs

3 ⊕W s;

108. Zs
1 ← MLUHd,b

τ ′ (P s
3 ||T s)⊕ β;

109. P s
1 ← As

1;

110. P s
2 ← As

2 ⊕ Zs
1 ;

returnreturnreturn(P s
1 ||P s

2 ||P s
3);

Fig. 4. Games G0 and G1. The full description is of Game G0; Game G1 is obtained by removing the boxed entry
in Line 02.

5.1 Collision Analysis

The rest of the proof is devoted to computing a bound on Pr[AG2 sets bad]. Here A is an arbitrary

adversary which asks q queries each consisting of a message/cipher of length mℓ bits and a tweak of

ℓ bits. If COLLD denotes the event that there is a collision in D as described in the Game G2, then

Pr[AG2 sets bad] = Pr[COLLD]. (17)

Initialization:

D $← {fStr}; τ ′ $← {0, 1}ℓ1 ; τ ′′ $← {0, 1}ℓ2 ; β $← {0, 1}ℓ;
Response to the sth query:

Case tys = enc:

101. Cs $← {0, 1}|P |

102. Cs
1 ← bits(Cs, 1, ℓ);

103. Cs
2 ← bits(Cs, ℓ+ 1, 2ℓ);

104. Cs
3 ← bits(Cs, 2ℓ+ 1, |P |);

returnreturnreturn(Cs
1 ||Cs

2 ||Cs
3);

Case tys = dec:

101. P s $← {0, 1}|C|

102. P s
1 ← bits(P s, 1, ℓ);

103. P s
2 ← bits(P s, ℓ+ 1, 2ℓ);

104. P s
3 ← bits(P s, 2ℓ+ 1, |C|);

returnreturnreturn(P s
1 ||P s

2 ||P s
3);

Finalization:

FIRST PHASE

for s← 1 to q do

Case tys = enc:

F s
1 ← P s

2 ⊕ β ⊕MLUHd,b
τ ′ (P s

3 ||T s)⊕MLUHd,b
τ ′′ (P

s
1);

F s
2 ← Cs

1 ⊕ (β ≪ 1)⊕MLUHd,b
τ ′ (Cs

3 ||T s)⊕MLUHd,b
τ ′′ (C

s
2);

D ← D ∪ {F s
1 , F

s
2 };

Case tys = dec:

F s
2 ← Cs

1 ⊕ (β ≪ 1)⊕MLUHd,b
τ ′ (Cs

3 ||T s)⊕MLUHd,b
τ ′′ (C

s
2);

F s
1 ← P s

2 ⊕ β ⊕MLUHd,b
τ ′ (P s

3 ||T s)⊕MLUHd,b
τ ′′ (P

s
1);

D ← D ∪ {F s
1 , F

s
2 };

endfor;

SECOND PHASE

bad← false;

if (two variables in D are equal) then bad← true;

Fig. 5. Game G2.

We shall now concentrate on �nding an upper bound for Pr[COLLD]. The following simple result

states a property of rotation that we will require later.

Lemma 1. If β is chosen uniformly at random from {0, 1}ℓ and X is any ℓ-bit string, then Pr[β⊕
(β ≪ 1) = X] = 1/2ℓ−1.

The set D is as follows:

D = {F s
1 , F

s
2 : 1 ≤ s ≤ q} ∪ {fStr}.

Here fStr is a �xed string while the other elements of D are random variables. All variables in D
are distributed over {0, 1}ℓ. As mentioned earlier, the proof is using MLUHd,b

τ (X) to instantiate

Hτ (X), Essentially the same arguments hold when the PD construction is used to instantiate H.

The variables in D can be expressed in terms of the plaintext and ciphertext blocks as follows.

F s
1 = P s

2 ⊕ β ⊕Hτ ′(P
s
3 ||T s)⊕Hτ ′′(P

s
1),

F s
2 = Cs

1 ⊕ (β ≪ 1)⊕Hτ ′(C
s
3 ||T s)⊕Hτ ′′(C

s
2).

Noting the following points will help in following the analysis.

1. In Game G2, the string τ = τ ′||τ ′′||β is selected uniformly at random and is independent of all

other variables.

2. If tys = enc, then (Cs
1 , C

s
2 , C

s
3) is uniformly distributed and independent of all other variables;

if tys = dec, then (P s
1 , P

s
2 , P

s
3) is uniformly distributed and independent of all other variables.

3. In response to each query, A receives either (Cs
1 , C

s
2 , C

s
3) or (P s

1 , P
s
2 , P

s
3). These variables are

independent of τ and so the queries made by A are also independent of τ .

Using the randomness of β, the following immediately holds.

Claim 2. For any X ∈ D \ {fStr}, Pr[X = fStr] = 1
2ℓ
.

This disposes o� the cases of fStr colliding with any variable in D. From the second point mentioned

above, the following result is easily obtained.

Claim 3. 1. If one of tys or tyt equals dec and s ̸= t, then Pr[F s
1 = F t

1] = 1/2ℓ.

2. If one of tys or tyt equals enc and s ̸= t, then Pr[F s
2 = F t

2] = 1/2ℓ.

3. If tys = enc or tyt = dec, then Pr[F s
2 = F t

1] = 1/2ℓ.

By the above claims, we are left only with the following cases to settle.

1. s ̸= t, tys = tyt = enc and possible collision between F s
1 and F t

1.

2. s ̸= t, tys = tyt = dec and possible collision between F s
2 and F t

2.

3. tys = enc, tyt = dec and possible collision between F s
1 and F t

2.

These are settled by the following two claims.

Claim 4. 1. If s ̸= t and tys = tyt = enc, then Pr[F s
1 = F t

1] ≤ 1
2ℓ
.

2. If s ̸= t and tys = tyt = dec, then Pr[F s
2 = F t

2] ≤ 1
2ℓ
.

Proof. We provide the details of only the �rst point, the second point being similar. Consider

two encryption queries (P s, T s) and (P t, T t), where P s = P s
1 ||P s

2 ||P s
3 and P t = P t

1||P t
2||P t

3. Then

(P s, T s) ̸= (P t, T t) as A is not allowed to repeat queries. Recall

As
1 = P s

1 ; A
s
2 = P s

2 ⊕ β ⊕Hτ ′(P
s
3 ||T s

3); F
s
1 = As

2 ⊕Hτ ′′(A
s
1).

We compute as follows.

Pr[F s
1 = F t

1] = Pr
[
P s
2 ⊕Hτ ′(P

s
3 ||T s

3)⊕Hτ ′′(P
s
1) = P t

2 ⊕Hτ ′(P
t
3||T t

3)⊕Hτ ′′(P
t
1)
]
. (18)

There are three cases to consider.

Case 1. P s
1 ̸= P t

1: In this case, the XOR universality of H keyed by τ ′′ shows the result.

Case 2. P s
1 = P t

1, (P
s
3 ||T s

3) ̸= (P t
3||T t

3): In this case, the XOR universality of H keyed by τ ′ shows

the result.

Case 3. P s
1 = P t

1, (P
s
3 ||T s

3) = (P t
3||T t

3): Since (P s, T s) ̸= (P t, T t), it must hold that P s
2 ̸= P t

2 and

so in this case the probability in 18 is 0. ⊓⊔

Claim 5. If tys = enc and tyt = dec, then Pr[F s
1 = F t

2] ≤ 1
2ℓ−1 .

Proof. We consider an encryption query (P s, T s) and a decryption query (Ct, T t), where P s =

P s
1 ||P s

2 ||P s
3 and Ct = Ct

1||Ct
2||Ct

3. As before, recall the following expressions for F s
1 and F t

2.

F s
1 = P s

2 ⊕ β ⊕Hτ ′(P
s
3 ||T s)⊕Hτ ′′(P

s
1),

F t
2 = Ct

1 ⊕ (β ≪ 1)⊕Hτ ′(C
t
3||T s)⊕Hτ ′′(C

t
2).

Let rest1 = P s
2 ⊕Hτ ′(P

s
3 ||T s) ⊕Hτ ′′(P

s
1) and rest2 = Ct

1 ⊕Hτ ′(C
t
3||T s) ⊕Hτ ′′(C

t
2). Note that β is

independent of rest1 and rest2. So,

Pr[F s
1 = F t

2] = Pr[β ⊕ (β ≪ 1) = rest1 ⊕ rest2] ≤
1

2ℓ−1
.

The last inequality follows from Lemma 1. ⊓⊔
Based on the Claims 2 to 5, we can conclude that for distinct X,Y ∈ D \ {fStr}, Pr[X = Y] ≤

1/2ℓ−1. There are a total of 2q+1 elements in D. The element fStr in D is equal to any of the other

elements with probability 1/2ℓ and this contributes 2q/2ℓ to Pr[COLLD]. Combining this with the

probability of the other kinds of collisions is done as follows.

Pr[COLLD] ≤ 2q

2ℓ
+

(
2q

2

)
1

2ℓ−1
≤ 4q2

2ℓ
.

Using (11), (16), (17) and (19)

Adv
±p̃rp
STES[δ]

(A) ≤ 4q2

2ℓ
+

(
q

2

)
1

2ℓ
≤ 9q2

2ℓ+1
.

Since A is an arbitrary adversary making q queries, the theorem follows. ⊓⊔

6 Hardware Implementation of STES

STES can be instantiated in various ways by plugging in di�erent possibilities for the stream cipher

and the hash function. There are, however, some common design ideas. The goal of this section is to

describe the basic ideas behind the di�erent implementations. Since we have implemented a number

of designs, it is not possible to describe the details of all the designs. Neither is this necessary.

From our descriptions of certain speci�c designs, it is possible to understand the details of the other

designs. Results, however, are presented for all the implementations and these are consistent with

our design goals of low area/power implementations.

Below we describe our basic design decisions. Then comes the descriptions of individual imple-

mentations of the di�erent hash functions and the stream ciphers followed by the description for

the STES implementation and the data �ow and timing analysis.

6.1 Basic Design Decisions

The important design decisions are the following.

Message length: Our target is encryption of �xed size blocks. So, STES has been designed for

�xed length messages. In particular, we consider the message length to be 512 bytes. This value

matches the current size of memory blocks. It is to be observed that the design philosophies are

quite general and can be scaled suitably for other message lengths.

Stream cipher:We chose the following stream ciphers: Grain128 [28], Trivium [13] and Mickey128 2.0 [6].

These are the eStream [3] �nalists of hardware oriented designs. There are several works in the lit-

erature which reports compact hardware implementations of these ciphers [11,19,22].

There are di�erent ways to implement these ciphers with varying amount of hardware cost.

In particular, Grain128 and Trivium is amenable to parallelization and one can adopt strategies

to design hardware which can give an output of only one bit per clock as in [11] or exploit the

parallelization and increase the data-path to give more throughput at the cost of more hardware as

in [28] and [13]. For instantiations with Grain128 and Trivium we tried di�erent data paths for the

stream ciphers and thus implemented multiple designs which provide a wide range of throughput.

As mentioned in [29], there exists no trivial way to parallelize Mickey. So, our implementations of

Mickey uses a data path of one bit. The various parameters considered for implementing the stream

ciphers are shown in Table 1.

Hash function: The main component required to implement MLUH of PD is a �nite �eld mul-

tiplier. In Section 2.2, we describe MLUH parameterized on the data path d, which signi�es that

the multiplications in MLUH with data path d take place in the �eld GF (2d). We consider values

of d equal to 4, 8, 16, 32 and 40. The corresponding irreducible polynomials used to perform �eld

multiplications are given in Table 2. The number of multipliers used for implementing the MLUH

varies with the value of the data path.

The case of PD is a bit curious. For implementing PD with data path d we use multipliers in

GF (2
d
2). This decision was taken to make the design suitable for STES. Note that in case of PD

each multiplication requires two message and key blocks which is not the case in MLUH. As the

message and key blocks are generated on the �y hence this design helps in preventing data stalls in

the circuit. This issue is discussed in more details in Sec. 6.2.

Target FPGA: We target our designs for Xilinx Spartan 3 and Lattice ICE40 FPGAs. The ra-

tionale is that these are considered suitable for implementing hardware/power constrained designs.

Moreover, they are cheap and one can consider deploying these FPGAs directly into a commercial

device. In particular, in Spartan III the LUTs within SLICEM can be used as a 16×1-bit distributed

RAM or as a 16-bit shift register (SRL16 primitive). This functionality of a 16-bit shift register has

been previously exploited to achieve compact implementations of stream ciphers [11]. We follow this

suggestion.

The ICE40 FPGAs does not provide such functionalities. On the other hand, their architectural

design speci�cally supports low power implementations. Our experimental results also suggest that

they are much more competitive in this respect compared to Spartan 3 devices. To the best of

our knowledge, there are no previous work reporting stream cipher implementation on this class of

FPGAs.

Field |IV | |K| Data paths used

(bits) (bits) (bits)

Trivium 80 80 1, 4, 8, 16, 40

Grain128 96 128 1, 4, 8, 16, 32

Mickey128-2.0 96 128 1
Table 1. Speci�c parameters used to implement Trivium, Grain128 and Mickey128 2.0.

Field Irreducible Field Irreducible

Polynomial Polynomial

GF (24) x4 + x+ 1 GF (220) x20 + x3 + 1

GF (28) x8 + x4 + x3 + x+ 1 GF (232) x32 + x7 + x3 + x+ 1

GF (216) x16 + x5 + x3 + x+ 1 GF (240) x40 + x5 + x4 + x3 + 1
Table 2. Irreducible Polynomials.

6.2 Implementation of the Universal Hash Function

Implementations of the two hash functions MLUH and PD are described separately. In both cases,

the size of the digest is equal to ℓ which is the size of the IV of the stream cipher.

Design of MLUH: An MLUH with data path d denotes that the multiplications are performed in

GF (2d). We choose d such that d divides ℓ and as before, we denote b = d/ℓ. For convenience of

exposition, we recall the description of MLUHd
K(M) from 1.

h1 = M1 ·K1 ⊕M2 ·K2 ⊕ ...⊕Mm ·Km

h2 = M1 ·K2 ⊕M2 ·K3 ⊕ ...⊕Mm ·Km+1

· · · · ·
hb = M1 ·Kb ⊕M2 ·Kb+1 ⊕⊕Mm ·Kb+m−1.

 (19)

The basic strategy for the above computation is to apply b di�erent multipliers. For a �xed ℓ,

since b = d/ℓ, as d grows, the value of b decreases. The computation proceeds column-wise. The b

multiplications M1 ·K1,M1 ·K2, . . . ,M1 ·Kb are performed �rst. Since there are b multipliers, these

can be done in parallel. The results of these multiplications are stored separately. In the next step,

the products M2 ·K2,M2 ·K3, . . . ,M2 ·Kb+1 are again performed in parallel and these results are

xor-ed with the previous results. This is continued until all columns have been computed.

In Figure 6, we showcase the above strategy of computing MLUH with a speci�c architecture for

d = 8 and ℓ = 80, so that b = 10, i.e., there are 10 multipliers where each multiplier can multiply

two elements of GF (28). The whole architecture consists of ten 8-bit registers, ten multipliers and

ten 8-bit accumulators. All the registers are connected in cascade forming a 10-stage �rst in �rst out

(FIFO) structure with parallel access to all states. In Figure 6, the registers are labeled as regk1,

regk2, . . ., regk10. These registers are used to store ten 8-bit blocks of the key. Each multiplier

takes one of its inputs from the FIFO structure and the other takes its input directly from the input

line mi. Initially all registers in the FIFO and accumulators have zero value.

The FIFO is fed with the key blocks K1,K2, . . . , etcetera, one in each cycle through the input

line depicted ki in the �gure. After ten clock cycles, the FIFO is full, i.e, the registers contain

the key blocks K1,K2, . . . ,K10 and the input line mi contains the message block M1 and the

multiplications in the �rst column of MLUH are performed. Then each product is accumulated in

the respective accumulators. In the next clock, the FIFO contains the key blocks K2, . . .K11 and the

input line mi contains the message block M2; the second column of multiplications are computed

and these results are accumulated in the respective registers. This is continued until all the columns

have been processed. The �nal output of MULH is obtained by concatenating the �nal values in

the accumulators. The control unit is not shown in the �gure, it consist of a counter and some

comparators.

Fig. 6. Architecture of MLUH

Design of PD: For hashing a m-block message to a b block output, where each block in d bit long,

MLUH requires mb multiplications in GF (2d). In comparison, PD requires only mb
2 multiplications

(assuming m is even). So, the total number of multiplications required by PD is about half that of

MLUH. This suggests that PD should be the design of choice. But, that is not necessarily true, at

least in our context, as we describe below.

Each multiplication in PD is of the form (Mi ⊕Kj)(Mi+1 ⊕Kj+1). So, performing this multi-

plication requires two blocks of message and key material. In contrast, for MLUH a multiplication

can be performed when one block of message and key are available. This di�erence is important.

In STES, PD is to be used in conjunction with a stream cipher. For the second hashing in the

encryption algorithm, the message and key blocks to be used by PD are obtained as an output from

the stream cipher. To keep this balance, we decided to construct a PD with d/2 bit multipliers when

the message and key blocks are considered to be d bit blocks. Here we showcase an architecture for

PD with 4 bit multipliers which produces a 80 bit output. Later, we use this PD construction with

a stream cipher with a 8 bit data path to construct STES.

We implement the PD as is shown in Figure 7. The methodology adopted is the same as in case

of the architecture of MLUH (shown in Figure 6), in the sense that here also we compute column

wise. But as we use 4 bit multipliers, to get a 80 bit output we require 20 multipliers. We assume

that the key blocks (Kj) and message blocks (Mi) are obtained as 8 bit blocks, but we treat each

multiplication as (MH
i ⊕KH

j)(ML
i ⊕KL

j), where Mi = MH
i ||ML

i and Kj = KH
j ||KL

j and |MH
i | =

|ML
i | = |KH

j | = |KL
j | = 4. Here we have twenty registers named regK1, regK2, . . . , regK20, each

of length 8 bits connected in a cascade forming a FIFO as in case of MLUH architecture. These

registers contains the key blocks, and the message blocks are obtained from the input lines mH
i and

mL
i .

This 4 bit design of the PD is not more e�cient than the MLUH architecture. Though the 4 bit

multipliers used in PD are smaller than the 8 bit multipliers but we require the double of them and

also the double amount of registers and the extra xors required at the input of the multipliers makes

this PD architecture marginally more costly than the MLUH architecture. Moreover the number of

clock cycles required in this case is also same as in case of MLUH.

Our experiments (presented later) shows PD to be more e�cient in terms of area for higher data

paths. This can be explained by an intuitive argument. The asymptotic area complexity of a k bit

multiplier is super-linear in k, thus the total area of a k bit multiplier is expected to be larger than

two k/2-bit multipliers for large values of k.

Fig. 7. Architecture of PD.

The multipliers used in both PD and MLUH are Karatsuba multipliers, they were implemented

following the same design strategy as presented in [15]. The irreducible polynomials used to im-

plement the multipliers are listed in the Table 2, also these multipliers are smaller than the ones

presented in [15] as they operates on smaller numbers. To keep the speed high and seeing that there

are no dependencies between multiplications in MLUH and PD, after a careful re-timing process

the multipliers for d > 4 were divided into almost balanced pipeline stages, the speci�c number of

stages used in each implementation is reported in Tables 3 and 4.

6.3 Implementation of stream ciphers

In this work we consider three stream ciphers: Trivium, Grain128 and Mickey128-2.0. These stream

ciphers are the eStream hardware based stream ciphers and are in general very easy to implement

in hardware as they are constructed using simple structures like shift registers and some simple

Boolean functions. All these three stream ciphers can be implemented using a shift register as a

basic primitive.

We implement the stream cipher using various data paths, here by a data path we mean the

number of bits of output the stream cipher can produce in each clock cycle. A lower data path

uses less parallelism and thus can be implemented with fewer hardware resources. The various data

paths that we consider for the three stream ciphers along with some other important parameters

are depicted in Table 1.

For all the three stream ciphers, the bit-wise versions (i.e. the ones with data path of one bit)

can be implemented in a very compact way in Spartan-3 devices. Spartan-3 FPGAs can con�gure

the Look-Up Table (LUT) in a SLICEM slice as a 16-bit shift register without using the �ip-�ops

available in each slice. Shift-in operations are synchronous with the clock, and output length is

dynamically selectable. A separate dedicated output allows the cascading of any number of 16-bit

shift registers to create whatever size shift register is needed. Each con�gurable logic block can

be con�gured using four of the eight LUTs as a 64-bit shift register. Such an usage of the LUT in

Spartan-3 is called a SRL16 primitive [43]. This SRL16 primitive can be used to implement the shift

registers of the stream ciphers [11]. SRL16 supports only a single entry and a single bit shift, so if

the data path is more than 1 then this primitive cannot be used and then the shift registers must be

implemented using simple LUTs. We implemented bit-wise versions of Trivium and Grain128 using

SRL16 primitive. A bit-wise version of Mickey128 2.0 was also implemented, but the structure of

Mickey128 2.0 does not allow e�cient use of SRL16. Also, we did not implement Mickey128-2.0

with data paths more than 1, as such parallelization in Mickey is not straight forward to obtain.

Here, as an example we will explain in details the a speci�c architecture of Trivium with a 2-bit

datapath. The internal state of Trivium is a 288-bit shift register, for implementation purposes

it is divided into a three registers SR1, SR2 and SR3 as shown in Figure 8. All the three shift

registers have two inputs and two outputs and in each clock cycle their internal states are shifted

by two positions. Initially SR1 and SR2 are initialized with the 80 bit key K and the 80 bit IV

respectively. SR3 has as initial value the string 13||0108. In the Figure 8 it can be seen that for each

shift register its feedback functions depends on some bits from it and a function computed with

some bits from the previous register. For example, the feedback of shift register SR3 depends on

some bits of SR2 and two bits from itself. It is easy to see in Figure 8 that the feedback functions

for all registers and the function to compute the �nal outputs Seven and Sodd are replicated two

times, just they have di�erent inputs. In the case of Gran128 the way to increment the datapath also

consist of replicating the feedback functions of shift registers and the output function. Increasing

the datapath of Grain128 and Trivum brings a signi�cant increase in throughput since it reduces

the time used for setup and give a parallel output for the stream.

6.4 Implementation of STES

We implemented STES with all the three stream ciphers with the data-paths speci�ed in Table 1.

When we consider a stream cipher with data path d in implementing STES then we use the hash

function with the same value of the data path, i.e., we use multipliers in GF (2d) if the hash function

is MLUH, and if it is PD then the multipliers are in GF (2
d
2).

We will explain in details a 8-bit data path implementation using Trivium and MLUH, but

for other instantiations of stream ciphers and hash the basic design remains the same. Note that

Trivium uses a 80 bit IV and a 80 bit key.

In the Figure 9 we show the generic architecture for encrypting/decrypting with STES, we shall

explain the architecture with reference to the algorithm of STES (Figure 1) and the Feistel network

(Figure 2).

016768

6465

91 90 89
92

01
6768

757682 81 80
83

10 107 108 109

11064 65
85 86

SR1SR2

SR3

Fig. 8. Architecture for Trivium.

The circuit presented in Figure 9 consists of the following basic elements:

1. The MLUH constructed with 8 bit multipliers as discussed in Section 2.2. In the diagram this

component is labeled MLUH.

2. Two stream cipher cores labeled SC1 and SC2.

3. Two 80 bit registers RegH1 and RegH2 which are used to store the output of MLUH.

4. Four registers labeled regF1, regF2, regKh and regβ. All these registers are 80 bit long and

are formed by ten registers each of eight bits connected in cascade, so that they can be used as

a FIFO queue. The same structure was used in the design of MLUH and PD.

5. One special register regβ1 which is able to store a 80-bit data and rotate it in one bit position.

This register outputs 8-bit data each clock cycle when the control input ce is activated.

6. Seven multiplexers labeled 1, 2, 3, 4, 5, 6 and 7.

7. The control unit whose details are not shown in the Figure.

8. The connections between MLUH and the registers RegH1, RegH2 have a data path of 80

bits. All other connections have a data path of 8 bits.

9. The input lines Mi, IV and K which receives the data and tweak, the initialization vector and

the key respectively.

10. The output line Ci which outputs the cipher.

TheMLUH computes the MLUH, it receives as inputs message blocks Mi, tweak blocks Ti and

key blocks Ki and give as output the result of MLUH in its output port S. The register RegH1 and

RegH2 receive the output from S as input, in this case |S| = 80 bits. The registers RegH1 and

RegH2 are designed to give eight bit blocks as outputs in each clock cycle in their output port BO.

TheMLUH receives its input from the 3×1 multiplexer labeled 1. Notice, that in the algorithm of

STES, the MLUH is called on three di�erent inputs. Multiplexer 1 helps in selecting these inputs.

In the algorithm MLUH is called on two di�erent keys τ ′ and τ ′′, thus, MLUH can receive the key

from two di�erent sources: the key τ ′ is received directly from the output of the stream cipher SC1

or SC2. The key τ ′′ is received either directly from stream cipher SC1 or from the register regKh

which is used to store τ ′′. To accommodate these selection of keys the input port Ki of MLUH

receives the input from the 2× 1 multiplexer 5.

We use two stream ciphers SC1 and SC2. Both take the key from the input line K of the circuit.

SC1 receives the IV from multiplexer 2, it selects between input line IV or F1. Multiplexer 3 feeds

the IV to the stream cipher SC2, it selects between IV or F2.

In the algorithm of STES we can see that the output of MLUH is xored with the value of β or

β ≪ 1 depending which hash is computed Z1 or Z2 and whether encryption or decryption mode is

being executing. The selection between these two values is made with Multiplexer 7.

In the encryption mode the stream W is generated using SC2 but in the decryption mode it is

generated by SC1. Multiplexer 6 is used to select the correct stream cipher to produce the cipher

text or plain text.

Next we explain the data-�ow of the architecture of the Figure 9 with reference to the algorithm

in Figure 1.

Fig. 9. Architecture of complete STES

6.5 Data Flow and Timing Analysis

In this section we shall discuss the data �ow in the circuit presented in Figure 9 and also discuss the

parallelism that we achieve using the circuit and the latency of the various operations, we present

a time diagram depicting the time taken by each operation in terms of clock cycles in Figure 10. In

Figure 10 the basic operations are depicted with rectangles and the numbers inside the rectangles

denotes the time required for the operation in clock cycles.

We consider encryption of a message P of length 4096 bits. As per the algorithm P is parsed into

three blocks P1, P2, P3, where |P1| = |P2| = ℓ = 80 and |P3||T | = 4016. The encryption procedure

starts with the computation of the key bits τ = τ ′||β||τ ′′ using the stream cipher SC1. It is required

to generate 540 bytes of key material using the stream cipher. Our implementation for Trivium

takes 154 cycles for key setup, and to generate 540 bytes it again takes 540 cycles. The key bytes

generated by SC1 is parsed as τ ′, β and τ ′′. The key bytes τ ′ are not stored and are immediately

fed to theMLUH as it gets generated. Note, that these key bytes are used again and then they are

again generated using SC1 or SC2. Storage of this huge key material would amount to more area of

the circuit in terms of extra registers hence we decided against the option of storing it. β is stored

in regβ and β ≪ 1 in regβ1.

τ ′′ is used twice inside the Feistel network, and the size of τ ′′ is much smaller than τ ′, hence it

is stored in regKh.

As soon as the key set up phase of SC1 is over, in each clock it generates one byte of key

material and these key materials gets stored in the FIFO register of MLUH one byte per cycle.

After 10 cycles the FIFO is full and thus the MLUH can start computing Z1. It takes 513 cycles

to complete the computation of MLUH and it runs in parallel with the stream cipher, note that

to �nish to compute Z1 we need β, to generate β 10 clock cycles more are necessaries therefore in

Figure 10 the computation of Z1 takes 523 clock cycles. We store Z1 ⊕ β (i.e., the MLUH part of

Z1) in RegH1.

Once β has been computed the stream cipher SC1 starts generating the τ ′′ part of the key.

τ ′′ and A1 = P1 are fed to MLUH to compute H1 (line 1 of Fig. 2), H1 is stored in the register

RegH2. Using the value of H1 in RegH2 and the values in RegH1 and regβ F1 is computed,

and stored in regF1. The value of F1 is then fed to SC2 as an initialization vector to compute G1.

After the initialization of SC2 is completed and it starts producing G1, then computation of F2 is

started and stored in RegF2, in parallel it is fed to SC1 for computation of G2. After G1 has been

produced, SC2 is inactivated using the control input ce. This inactivation is done as the following

bits of the stream correspond to W , which is produced later. When the initialization process of

SC1 ends, G2 starts getting computed and it is used with the value stored in regF1 to compute B2

which is given as ciphertext output C2. Also B2 is fed to the MLUH to compute H2 using the key

stored in regKh. When H2 is ready it is stored in RegH2. This almost completes the evaluation of

the Feistel in line 16 of the algorithm in Fig. 1, the computation up to this stage is shown as Fiestel

in Fig. 10 and it takes 350 cycles. For convenience B2 is computed along with C1 later. After the

Fiestel part is completed, SC1 generates the key τ ′ for the MLUH computation in line 18, after

the initialization of SC1, SC2 is activated to generate W . Using W and input P3 the output C3||T
is computed and fed to MLUH. When all C3||T are processed by MLUH the result is stored in

RegH1.

Finally output C1 is computed using the values stored in RegH1, RegH2, regβ1 and RegF2.

The total time taken to encrypt 512 bytes is 1705 cycles.

Decryption process: There are some di�erences in the data �ow when the decryption process

is performed. The most signi�cant is inside the Feistel network. For decryption W is computed with

SC1 hence SC2 can be used to compute the key τ ′. The initialization process of SC2 is realized

in parallel with a part of initialization of SC1 and the computation of H2, this represent a saving

of one stream cipher initialization which is 154 clock cycles in case of Trivium. This di�erence is

depicted in Figure 10 with the dashed box in τ ′ computation. Thus, for our circuit the process takes

1551 clock cycles.

Fig. 10. Time diagram for encrypting 512 bytes with STES. For decryption the timings are similar, but only the
boxed part is not required.

7 Experimental Results

We implemented STES on two di�erent families of FPGAs: Lattice ICE40 and Xilinx Spartan 3. For

Spartan 3 we used the device xc3s400-fg456 and in case of Lattice ICE40 we selected LP8KCM225.

The place and route results in case of Spartan 3 were generated using Xilinx-ISE version 10.1.

For ICE40 we used Silicon Blue Tech iCEcube release 2011.12.19577. We measured the power

consumption of the circuits using Xilinx Xpower Analyzer for Spartan 3 and Power Estimator of

iCEcube for ICE40.

For our implementations we report performance in terms of throughput, area and power-consumption.

In case of Spartan 3 we report area in terms of number of slices and for ICE40 we report in terms

of number of logic cells. It is to be noted that size of a Spartan 3 slice is almost equal to twice the

size of a ICE40 logic cell.

In this section we present the experimental results in two parts. First in Section 7.1 we report

performance data of the primitives, i.e., the stream ciphers and the hash function and in Section

7.2 we report results of STES using various instantiations of the primitives.

7.1 Primitives

In the Tables 3 and 4 we show the performance results of MLUH and PD implementations. For all

the cases, we consider hashing a message of 4016 bits to 80 bits. In the Tables MLUH-db represents

an MLUH with a d bit data path. And PD-db represents a PD construction with d bit data path

and multipliers in GF (2
d
2)(see the architecture discussed in Section 6.2).

It is clear from the Tables that in both Spartan 3 and ICE40 with the increase in data path

the throughput increases at the cost of area. For MLUH-1b, we obtain a very high frequency, as

in this case the multiplier is only an AND gate. As the data path increases, the complexity of the

circuit implementing the multiplication grows which increases the critical path of the circuit. For

16, 32 and 40 bit implementations we break the critical path of the multiplier by dividing it into

balanced pipeline stages, the number of pipeline stages were carefully selected to maintain a high

operating frequency. This is the reason why all 8, 16, 32 and 40 bit implementations operate on

similar frequencies on both Spartan 3 and ICE40.

In Table 4 the performance of PD is shown. For 4 bit data paths, the size of PD is a bit bigger

than MLUH but for bigger data paths the size of PD is smaller. This conforms to the argument that

we provided in Section 6.2. The number of cycles required to compute PD is same as of MLUH, but

due to the more complex circuitry of PD it operates in a bit lower frequencies and thus achieves

lesser throughput than MLUH.

Primitive

SPARTAN 3 LATTICE ICE40
Slices Freq. Pipeline Thrghpt Logic Freq. Pipeline Thrghpt

(MHz) Stages (Mbps) Cells (MHz) Stages (Mbps)

MLUH-1b 158 215.11 0 210.90 325 189.78 0 189.78
MLUH-4b 247 183.76 0 720.68 419 179.50 0 703.97
MLUH-8b 452 177.46 1 1389.24 772 172.89 1 1353.46
MLUH-16b 737 175.24 2 2773.07 1638 170.52 2 2644.05
MLUH-40b 1410 173.89 3 6625.64 2756 174.80 3 6622.31

Table 3. Performance of MLUH on Spartan 3 and Lattice ICE40.

Primitive

SPARTAN 3 LATTICE ICE40
Slices Freq. Pipeline Thrghpt Logic Freq. Pipeline Thrghpt

(MHz) Stages (Mbps) Cells (MHz) Stages (Mbps)

PD-4b 266 172.65 0 690.60 490 170.68 0 669.38
PD-8b 364 167.50 0 1340.00 748 161.49 0 1266.68
PD-16b 710 169.87 1 2707.34 1023 165.71 1 2589.46
PD-40b 922 172.18 2 6623.32 1832 159.29 2 6127.48

Table 4. Performance of PD on Spartan 3 and Lattice ICE40.

In case of both MLUH and PD we can see that the number of logic cells required for ICE40

FPGA is almost double than the slices required in Spartan 3. It is to be noted that a logic cell

in ICE40 has much lesser components than in a Spartan 3 slice, which explains the di�erence in

area in the two families. Moreover, the ICE40 implementations operate at a little lower frequencies

compared to the Spartan 3 implementations, this can also be explained by the fact that as a ICE40

has lesser components so the critical path of the implementations in ICE40 are more complex in

terms of logic resources.

In Table 5 we present the performance data of Trivium, Grain and Mickey with various data

paths. In the Tables the names of the stream ciphers are su�xed with the data path.

The bit-wise implementation of Trivium and Grain128 on Spartan 3 were done using SRL16

primitives and this allowed us to obtain very compact designs: 49 Slices for Trivium-1b and 67

Slices for Grain128-1b. Grain128-1b is larger than Trivium-1b due to the complexity of its output

and feedback functions. Mickey128 was implemented only with a one bit data path because there

is no direct way to parallelize it.

Primitive

SPARTAN 3 LATTICE ICE40
Slices Freq. Setup Thrghpt. Logic Freq. Setup Thrghpt.

(MHz) cycles (Mbps) Cells (MHz) cycles (Mbps)

Trivium-1b 49 201.02 1232 201.02 313 190.26 1232 190.26
Trivium-4b 120 197.38 308 789.52 329 188.54 308 754.15
Trivium-8b 148 193.49 154 1547.93 347 186.13 154 1489.04
Trivium-16b 203 189.32 77 3029.16 398 176.10 77 217.60
Trivium-40b 278 187.83 31 6010.60 530 166.73 31 6669.20

Grain128-1b 67 193.00 384 193.00 297 192.59 384 192.58
Grain128-4b 175 182.54 96 730.17 360 162.41 96 649.64
Grain128-8b 232 178.80 48 1430.42 434 145.73 48 1165.84
Grain128-16b 320 179.73 24 2875.64 592 137.72 24 2203.53

Grain128-32b 490 173.58 6 5554.56 997 136.84 12 4378.88

Mickey128-1b 182 202.80 286 202.80 420 169.74 288 169.74
Table 5. Performance of the stream ciphers in Spartan3 and Lattice ICE40.

The data in Tables 5 shows that the increase in data path does not have much e�ect on the

total area of Grain128 and Trivium. For example, Trivium-8b requires 148 slices and Trivium-16b

requires 203 slices. Though one would expect that doubling the data path would require double the

hardware resources, that is not the case. The growth in area is small because in Trivium the state

is stored in a 288-bit shift register independent of the size of data-path. For wider data paths we

only require to replicate the output and the feedback functions a suitable number of times.

Wider data path implementations of Grain128 also have the same behavior as implementations

of Trivium. As Grain128 has a 96 bit IV hence for our requirement that the data path must divide

the IV length we do not implement grain with a 40 bit data path which we do for Trivium.

7.2 Experimental results on STES

Using the primitives described in Section 7.1 we construct STES. The performance results are

shown in Tables 6 and 7. The Tables shows data for STES implemented with various stream cipher

instantiations and data paths. The Tables also show the power consumption characteristics for the

implementations. Note that we did not include PD implementations for data paths less than 4 bits.

As our speci�c design of PD would not allow 1 bit data paths and for 2 bit data paths there is no

advantage of PD over MLUH.

From Table 6 we can observe the following:

� Among the one bit data path implementations, STES with Trivium achieves the smallest area

and STES with Mickey is the fastest closely followed by STES with Grain128. STES[Grain,MLUH]-

1b has the best throughput per area metric.

� The implementations which use Grain128 are in general faster than the ones using Trivium,

because the implementations with Grain needs less clock cycles in comparison with implemen-

tations with Trivium.

� The constructions with PD have lesser area than the constructions with MLUH for higher data

paths. For 4 bit data path implementations the MLUH based construction is smaller, this is

possibly due to the fact that the di�erence of area between a 2 bit multiplier and a 4 bit

multiplier is not much.

� The constructions with PD operates at a slightly lower frequency than the MLUH based con-

structions, this is due to the fact that PD has a more complex circuitry. But both PD and MLUH

based constructions takes the same number of clock cycles, thus the PD based constructions have

a lower throughput.

� In Figures 11 and 12 we present the data in Tables 6 and 7 for STES instantiated with Trivium

and Grain128 using MLUH in a pictorial form. Figure 11 shows the growth of area, throughput

and total power for STES using Trivium and Figure 12 shows the same for STES using Grain.

Note that the plots are in logarithmic scale. We can observe that with increase in data path the

growth of throughput is much faster than the growth of area, this re�ects the characteristic of

Trivium as shown in Table 5. The growth of power consumption is the slowest.

In the Table 7 we present the experimental results for implementations of STES on ICE40. The

comparative behavior re�ected in the Table 7 is almost the same as the behavior of implementation

on Spartan 3 shown in Table 6. One di�erence that we observe is that for the 8bit implementations

STES[PD] is slightly larger in size than STES[ML] for both Grain and Trivium. In general the imple-

mentation on ICE40 are slower than the implementations on Spartan 3, but the power consumption

on ICE20 is much better. In particular we observed that the static power consumption in ICE40

remains constant for all variants. This is probably due to the fact that ICE40 was speci�cally de-

signed to be used in low power applications, hence its architecture has special characteristics which

allows it to run with a very low power consumption.

As the implementations on ICE40 performs the best in terms of power consumption, hence we

measured the performance of all our designs when the operating frequency was �xed to 100MHz.

The ICECube software allows such simulations. In the Table 8 we show the power consumption of

all implementations in ICE40 when operating at a �xed frequency of 100 Mhz. As expected, if we

lower the operating frequency the circuits consume considerably lesser amount of power but at the

cost of lower throughput.

7.3 Comparison with Block Cipher Based Constructions

As mentioned earlier STES is highly motivated by the construction presented in [39], here we present

some results and estimations on the construction in [39].

Mode Area Freq. Cycles Throughput TPA Static Dynamic Total

(Slices) (MHz) (Mbps) power power power

enc dec enc dec enc dec (mW) (mW) (mW)

STES[Trv,ML]-1b 528 160.15 13601 12369 48.18 52.98 22.30 24.52 54 51 105
STES[Trv,ML]-4b 683 159.16 3401 3093 192.03 211.14 68.71 75.55 60 57 117
STES[Trv,PD]-4b 714 158.56 3401 3093 190.76 209.77 65.30 71.80 61 70 131
STES[Trv,ML]-8b 1050 160.26 1705 1551 384.62 422.81 89.52 98.41 61 94 155
STES[Trv,PD]-8b 964 155.14 1705 1551 372.34 409.30 94.39 103.76 61 93 154
STES[Trv,ML]-16b 1346 158.89 859 782 756.90 831.43 137.52 150.95 62 191 253
STES[Trv,PD]-16b 1249 154.70 859 782 736.94 809.51 144.19 158.39 62 196 258
STES[Trv,ML]-40b 2433 154.34 353 323 1789.12 1960.14 179.71 196.88 102 256 319
STES[Trv,PD]-40b 2150 153.65 353 323 1781.12 1951.38 202.19 221.80 84 240 324

STES[Grn,ML]-1b 591 159.61 10337 9953 63.18 65.61 26.13 27.13 58 32 90
STES[Grn,ML]-4b 834 159.26 2585 2489 252.11 261.83 73.87 76.72 60 41 101
STES[Grn,PD]-4b 876 154.11 2585 2489 243.95 253.36 68.06 70.68 60 36 96
STES[Grn,ML]-8b 1200 159.79 1297 1249 504.13 523.50 102.67 106.61 61 108 169
STES[Grn,PD]-8b 1136 153.87 1297 1249 485.45 504.11 104.43 108.44 60 46 106
STES[Grn,ML]-16b 1657 158.78 655 631 991.950 1029.67 146.30 151.86 62 220 282
STES[Grn,PD]-16b 1598 153.90 655 631 961.46 998.03 147.04 152.63 62 212 274
STES[Grn,ML]-32b 2729 155.82 332 320 1920.57 1960.15 171.98 178.43 64 360 414
STES[Grn,PD]-32b 2595 149.50 332 320 1842.63 1911.73 173.53 180.03 63 256 319

STES[Mky,ML]-1b 835 152.92 9953 9665 62.87 64.74 18.40 18.95 70 52 132
Table 6. Performance of STES on Spartan 3. STES[SC,Hash]-db denotes STES of data path d instantiated with
stream cipher SC and hash function Hash. Trv: Trivium, Grn: Grain128, Mky: Mickey128. ML: Multilinear universal
hash, PD: Pseudo Dot Product. TPA : Throughput per area, is computed as 1

area×time , where area is in slices and
time in microseconds for encrypting/decrypting 512 bytes.

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

Data-path

Area (Slices)
Throghput (Mbps)
Total power (mW)

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

Data-path

Area (Slices)
Throghput (Mbps)
Total power (mW)

(a) (b)

Fig. 11. Growth of Area, Throughput and Total power for STES[Trivium,MLUH]: (a) Spartan 3 (b) Lattice ICE40

The construction in [39] does not use stream cipher, it uses a block cipher in counter mode to do

the bulk encryption, and the suggested hash functions are either normal polynomial hashes or BRW

polynomials. The performance of the construction in [39] when implemented using a AES with 128

bit key and a normal polynomial hash is shown in Table 9. The Table reports four implementations,

which are described below:

Mode Area Freq. Cycles Throughput TPA Static Dynamic Total

(Logic (MHz) (Mbps) power power power

Cells) enc dec enc dec enc dec (mW) (mW) (mW)

STES[Trv,ML]-1b 1687 149.31 13601 12369 44.92 49.39 6.50 7.16 0.16 32.93 33.89
STES[Trv,ML]-4b 1934 138.83 3401 3093 164.30 180.66 20.76 22.83 0.16 48.57 48.73
STES[Trv,PD]-4b 1991 140.10 3401 3093 168.56 185.35 20.69 22.75 0.16 50.87 50.24
STES[Trv,ML]-8b 2386 141.62 1705 1551 339.89 373.63 34.81 38.27 0.16 57.77 57.93
STES[Trv,PD]-8b 2434 140.44 1705 1551 325.92 358.28 32.72 35.97 0.16 59.75 59.91
STES[Trv,ML]-16b 3015 142.27 859 782 677.72 744.46 54.93 60.34 0.16 88.51 88.68
STES[Trv,PD]-16b 2935 139.26 859 782 648.57 712.44 54.00 59.32 0.16 85.74 85.90
STES[Trv,ML]-40b 6607 139.74 353 323 1619.87 1774.47 59.91 65.64 0.16 105.54 105.70
STES[Trv,PD]-40b 5121 134.78 353 323 1535.94 1682.77 73.30 80.30 0.16 170.41 170.57

STES[Grn,ML]-1b 2050 145.79 10337 9953 57.71 59.93 6.87 7.15 0.16 54.05 54.21
STES[Grn,ML]-4b 2147 138.84 2585 2489 219.78 228.26 25.07 25.98 0.16 54.38 54.54
STES[Grn,PD]-4b 2390 136.56 2585 2489 216.17 224.50 22.10 22.96 0.16 66.07 66.23
STES[Grn,ML]-8b 2680 135.75 1297 1249 428.29 444.74 39.05 40.55 0.16 59.64 59.80
STES[Grn,PD]-8b 2797 135.80 1297 1249 428.45 444.91 37.43 38.87 0.16 70.89 71.05
STES[Grn,ML]-16b 3788 136.15 655 631 850.57 882.93 54.87 56.96 0.16 104.53 104.96
STES[Grn,PD]-16b 3682 136.87 655 631 855.07 887.59 56.75 58.91 0.16 107.51 107.67
STES[Grn,ML]-32b 5405 135.29 332 320 1667.49 1730.02 75.39 78.22 0.16 171.20 171.36
STES[Grn,PD]-32b 5215 132.50 332 320 1633.10 1694.34 76.52 79.40 0.16 159.20 159.36
STES[Mky,ML]-1b 2794 143.05 9953 9665 58.81 60.56 5.14 5.30 0.16 44.65 44.81

Table 7. Performance of STES in Lattice ICE40. STES[SC,Hash]-db denotes STES of data path d instantiated with
stream cipher SC and hash function Hash. Trv: Trivium, Grn: Grain128, Mky: Mickey128. ML: Multilinear universal
hash, PD: Pseudo Dot Product. TPA : Throughput per area, is computed as 1

area×time , where area is in logic blocks
and time in microseconds for encrypting/decrypting 512 bytes.

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

Data-path

Area (Slices)
Throghput (Mbps)
Total power (mW)

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

Data-path

Area (Slices)
Throghput (Mbps)
Total power (mW)

(a) (b)

Fig. 12. Growth of Area, Throughput and Total power for STES[Grain,MLUH]: (a) Spartan 3 (b) Lattice ICE40

TES-AESs-1s: TES in [39] implemented with a sequential AES128 and a fully parallel 128 bit

Karatsuba Multiplier in Spartan 3.

TES-AESs-4s: Sequential AES with one 4 stage pipelined 128 bit multiplier implemented in

Spartan 3.

Mode Throughput Static Dynamic Total

(Mbps) power power power

enc dec (mW) (mW) (mW)

STES[Trv,ML]-1b 30.08 33.08 0.16 22.05 22.21
STES[Trv,ML]-4b 120.32 132.30 0.16 36.27 36.45
STES[Trv,PD]-4b 120.32 132.30 0.16 34.99 35.15
STES[Trv,ML]-8b 240.00 263.83 0.16 40.79 40.95
STES[Trv,PD]-8b 240.00 263.83 0.16 42.55 42.70
STES[Trv,ML]-16b 476.37 523.27 0.16 62.22 62.38
STES[Trv,PD]-16b 476.37 523.27 0.16 61.57 61.73
STES[Trv,ML]-40b 1159.21 1270.01 0.16 75.69 75.85
STES[Trv,PD]-40b 1159.21 1270.01 0.16 126.43 126.59

STES[Grn,ML]-1b 39.58 41.11 0.16 36.30 36.46
STES[Grn,ML]-4b 158.29 164.40 0.16 38.92 39.08
STES[Grn,PD]-4b 158.29 16.44 0.16 53.89 54.05
STES[Grn,ML]-8b 315.50 327.62 0.16 42.48 42.64
STES[Grn,PD]-8b 315.50 327.62 0.16 57.41 57.57
STES[Grn,ML]-16b 624.73 648.49 0.16 79.41 79.57
STES[Grn,PD]-16b 624.73 648.50 0.16 76.64 76.80
STES[Grn,ML]-32b 1232.53 1278.75 0.16 128.12 128.28
STES[Grn,PD]-32b 1232.53 1278.75 0.16 120.15 120.31

Table 8. STES in Lattice ICE40 at a frequency of 100 Mhz.

TES-AESp-4s: 10 stage pipelined AES with 4 stage pipelined 128 bit multiplier implemented

in Virtex 5.

TES-sAES-1s: This is an estimation based on a very compact AES reported in [34], and a

polynomial hash which uses four 32 bit multipliers as used in case of MLUH-32b. The estimation

is based on the data in [34] that the AES occupies 167 slices and takes 42 cycles to produce a

single block of cipher. The estimated slices is obtained by summing the slices of the components

and the frequency is estimated by considering that the critical path of the circuit would be given

by the component with the highest critical path. Real implementations may change these data.

The results in Table 9 shows that the implementations of the TES described in [39] with a

sequential AES in Spartan 3 takes up much more area than our designs with stream cipher and our

designs with data path of more than 8 bits achieves higher throughput at the cost of smaller area

and lower power consumption.

TES-AESp-4s is a huge design and it does not �t in a Spartan 3 device (note the slices in Virtex

5 have much more resources than the slices in Spartan 3 and the of slices in these two families are

not quite comparable). TES-AESp-4s achieves throughput similar to the designs of HMCH[Poly]

and HEH[Poly] reported in [15], but it cannot be in any sense considered as a light weight design.

But the performance TES-AESp-4s do show that the TES in [39] can achieve quite high throughput.

The design philosophy adopted in TES-sAESs-1s is probably best comparable to our stream

cipher based designs. As in TES-sAESs-1s we intend to use a very compact AES. The estimation

shows that such an implementation would also occupy quite a large area but not achieve a good

throughput.

Mode Slices Cycles Frequ- Throu- B- Static Dynamic Total

ency ghput RAMS power power power

(MHz) (Mbps) (mW) (mW) (mW)

TES-AESs-1s 6170 388 45.58 480.70 11 191 182 372
Spartan 3
TES-AESs-4s 6389 403 74.07 752.10 11 192 245 437
Spartan 3

TES-AESp-4s 4902 111 287.44 10596.44 0 1243 2276 3519
Virtex 5

TES-sAESs-1s 2800 2694 71.51 108.62 3 - - -
Spartan 3 *

Table 9. . TES implemented using AES-128 and a polynomial hash on di�erent platforms. TES-AESs-1s: Sequential
AES with one fully parallel 128 bit multiplier, TES-AESs-4s: Sequential AES with one 4 stage pipelined 128 bit
multiplier, TES-AESp-4s: Ten staged pipelined AES encryption core with 4 stage pipelined 128 bit multiplier. TES-
sAESs-1s (estimation): A small AES (167 slices, 3 block RAMs, with latency of 42 cycles per block) and four 32-bit
multipliers.

Use of light weight Block Ciphers: In the current days there have been numerous proposals for

light weight block ciphers like PRESENT [10], KATAN, KTANTAN [12], KLEIN [21], LED [23] etc.

These block ciphers are designed to optimize the hardware resources required to implement them.

In a generic description of a block cipher based TES any secure block cipher can be used, thus

there is no technical di�culty in plugging in a light weight block cipher in an existing description

of a TES and this would lead to a low cost design compared to the AES alternatives that we just

discussed. But a thing to note is the light weight block ciphers are mainly designed to be used

in speci�c applications like in RFID authentication etc., and are not designed for bulk encryption

in a mode. The light weight block ciphers have small block lengths, for example all the schemes

mentioned above have a block length of 64 bits of lower. Such small block lengths would restrict

their use in TES as the block length of the block cipher used in a block cipher based TES is an

important security parameter. Recall that all existing block cipher based TES enjoys a security

upper bound of cσ2/2n, where σ is the query complexity of the adversary, c is a small constant and

n the block length of the underlying block cipher. Thus, the security guarantees provided by the

known reductions are not su�cient if n has a value less or equal to 64. Thus we feel that given our

current state of knowledge it would not be advisable to use block ciphers of small block lengths for

constructing TES. It may be so that the current reductions are not tight, or there exist possibility

of new constructions with better than quadratic security bounds, existing light weight block ciphers

can be useful in such scenarios.

7.4 Discussions

The main design goal of STES was to obtain a TES which can be implemented in a compact form

and would have low power consumption. Our experiments validate that STES do achieve these goals

to a large extent.

In the Introduction we mentioned the speeds recommended by the SD standard. The commer-

cially available memories does not achieve the values speci�ed in the standard. In Table 10 we

Read Speed Write Speed Recommendation

(Mbps) (Mbps) Spartan 3 ICE40

Class 4 32 32 STES[Trv,ML]-1b STES[Trv,ML]-1b
Class 10 160 128 STES[Trv,ML]-4b STES[Trv,ML]-4b
Class 10 400 264 STES[Trv,PD]-8b STES[Grn,ML]-8b
Premier
Class 10 760 360 STES[Trv,PD]-16b STES[Grn,PD]-16b
Premier Pro

UE700 USB 3.0 1600 800 STES[Trv,PD]-40b STES[Grn,PD]-32b
S102 USB 3.0 800 400 STES[Trv,PD]-16b STES[Grn,PD]-16b
C103 USB 3.0 560 80 STES[Trv,PD]-16b STES[Trv,PD]-16b

Table 10. Recommendations corresponding to speed rates of SD cards and USB memories of di�erent types which
are currently sold by ADATA. Our recommendations corresponds to the smallest design which provides the required
performance

present the maximum speed of the various classes of memories sold by ADATA [1, 2]. The �rst

four rows corresponds to SD cards and the last three rows gives data of USB memories. In the

last two columns we mention our smallest design which can attain the necessary data rates of the

given memory devices. Table 10 clearly demonstrate that STES can serve as a viable scheme for

encryption in a large class of non-volatile memory devices.

References

1. ADATA Flash Memory Cards. http://www.adata-group.com/index.php?action=product&cid=7&lan=

en&cid1=1.
2. ADATA USB Flash Drives. http://www.adata-group.com/index.php?action=product&cid=1&lan=en.
3. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
4. IEEE Std 1619.2-2010: IEEE Standard for Wide-Block Encryption for Shared Storage Media. IEEE Computer

Society, March 2011. Available at: http://standards.ieee.org/findstds/standard/1619.2-2010.html.
5. SD Association. www.sdcard.org.
6. Steve Babbage and Matthew Dodd. The MICKEY Stream Ciphers. In Robshaw and Billet [33], pages 191�209.
7. Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework for Code-Based Game-

Playing Proofs. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science,
pages 409�426. Springer, 2006.

8. Côme Berbain and Henri Gilbert. On the security of IV dependent stream ciphers. In Alex Biryukov, editor,
FSE, volume 4593 of Lecture Notes in Computer Science, pages 254�273. Springer, 2007.

9. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#
pema.

10. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 450�466. Springer, 2007.

11. Philippe Bulens, Kassem Kalach, FranÃ§ois-Xavier Standaert, and Jean-Jacques Quisquater. FPGA Implemen-
tations of eSTREAM Phase-2 Focus Candidates with Hardware Pro�le. 1 2007. http://sasc.cry.

12. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - a family of small
and e�cient hardware-oriented block ciphers. In Christophe Clavier and Kris Gaj, editors, CHES, volume 5747
of Lecture Notes in Computer Science, pages 272�288. Springer, 2009.

13. Christophe De Cannière and Bart Preneel. Trivium. In Robshaw and Billet [33], pages 244�266.
14. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143�154,

1979.

15. Debrup Chakraborty, Cuauhtemoc Mancillas-López, Francisco Rodríguez-Henríquez, and Palash Sarkar. E�cient
hardware implementations of BRW polynomials and tweakable enciphering schemes. IEEE Trans. Computers,
62(2):279�294, 2013.

16. Debrup Chakraborty and Mridul Nandi. An Improved Security Bound for HCTR. In Kaisa Nyberg, editor, FSE,
volume 5086 of Lecture Notes in Computer Science, pages 289�302. Springer, 2008.

17. Debrup Chakraborty and Palash Sarkar. HCH: A New Tweakable Enciphering Scheme Using the Hash-Counter-
Hash Approach. IEEE Transactions on Information Theory, 54(4):1683�1699, 2008.

18. Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness. In Ali Miri and Serge Vaudenay,
editors, Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 293�319.
Springer, 2011.

19. Martin Feldhofer. Comparison of low-power implementations of trivium and grain. In The State of the Art of

Stream Ciphers, Workshop Record, pages 236 � 246, 2007.
20. Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect deception. Bell System

Technical Journal, 53:405�424, 1974.
21. Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of lightweight block ciphers. In Ari Juels

and Christof Paar, editors, RFIDSec, volume 7055 of Lecture Notes in Computer Science, pages 1�18. Springer,
2011.

22. T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher Candidates. In The State of the Art of

Stream Ciphers, Workshop Record, pages 191�204, 2007.
23. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block cipher. In Bart

Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer Science, pages 326�341.
Springer, 2011.

24. Shai Halevi. EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data. In Anne
Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer Science,
pages 315�327. Springer, 2004.

25. Shai Halevi. Invertible Universal Hashing and the TET Encryption Mode. In Alfred Menezes, editor, CRYPTO,
volume 4622 of Lecture Notes in Computer Science, pages 412�429. Springer, 2007.

26. Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. In Dan Boneh, editor, CRYPTO, volume
2729 of Lecture Notes in Computer Science, pages 482�499. Springer, 2003.

27. Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tatsuaki Okamoto, editor, CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages 292�304. Springer, 2004.

28. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain Family of Stream Ciphers. In
Robshaw and Billet [33], pages 179�190.

29. David Hwang, Mark Chaney, Shashi Karanam, Nick Ton, and Kris Gaj. Comparison of FPGA-targeted hardware
implementations of eSTREAM stream cipher candidates. In State of the Art of Stream Ciphers Workshop, SASC

2008, Lausanne, Switzerland, pages 151�162, Feb 2008.
30. Lattice, Inc. iCE40 Family Handbook Ultra Low-Power mobile FPGA LP, HX, March 2012.
31. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Recon�gurable hard-

ware implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547�1561, 2010.
32. David A. McGrew and Scott R. Fluhrer. The Extended Codebook (XCB) Mode of Operation. Cryptology ePrint

Archive, Report 2004/278, 2004. http://eprint.iacr.org/.
33. Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher Designs - The eSTREAM Finalists,

volume 4986 of Lecture Notes in Computer Science. Springer, 2008.
34. Gaël Rouvroy, François-Xavier Standaert, Jean-Jacques Quisquater, and Jean-Didier Legat. Compact and ef-

�cient encryption/decryption module for fpga implementation of the aes rijndael very well suited for small
embedded applications. In ITCC (2), pages 583�587. IEEE Computer Society, 2004.

35. Palash Sarkar. A new multi-linear hash family. Designs, Codes, and Cryptography. to appear.
36. Palash Sarkar. Improving Upon the TET Mode of Operation. In Kil-Hyun Nam and Gwangsoo Rhee, editors,

ICISC, volume 4817 of Lecture Notes in Computer Science, pages 180�192. Springer, 2007.
37. Palash Sarkar. E�cient Tweakable Enciphering Schemes from (Block-Wise) Universal Hash Functions. IEEE

Transactions on Information Theory., 55(10):4749�4760, 2009.
38. Palash Sarkar. Tweakable Enciphering Schemes From Stream Ciphers With IV. Cryptology ePrint Archive,

Report 2009/321, 2009. http://eprint.iacr.org/.

39. Palash Sarkar. Tweakable Enciphering Schemes Using Only the Encryption Function of a Block Cipher. Inf.

Process. Lett., 111(19):945�955, 2011.
40. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology ePrint

Archive, 2004:332, 2004.
41. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A Variable-Input-Length Enciphering Mode. In Dengguo

Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175�188. Springer, 2005.

42. Shmuel Winograd. A new algorithm for inner product. IEEE Transactions on Computers, 17:693�694, 1968.
43. Xilinx, Inc. Spartan-3 FPGA Family Data Sheet, December 2009.

