

1

Multi-file proofs of retrievability for cloud storage auditing

 Bin Wanga* and Xiaojing Hongb

a
No.196 West HuaYang Road, Information Engineering College of Yangzhou

University, Yangzhou City, Jiangsu Province, 225127 P.R.China

b
No.5 South YangZiJiang Road, Yangzhou City, Jiangsu Province, 225101 P.R. China

E-mail: jxbin76@yeah.net
 a*

Abstract: Cloud storage allows clients to store a large amount of data with the

help of storage service providers (SSPs). Proof-of-retrievability(POR) protocols allow one

server to prove to a verifier the availability of data stored by some client. Shacham et al.

presented POR protocols based on homomorphic authenticators and proved security of their

schemes under a stronger security model, which requires the existence of an extractor to

retrieve the original file by receiving the program of a successful prover. When using their

POR protocol with public verifiability to verify the availability of multiple files separately,

the number of pairing operations computed by a verifier is linear with the number of files. To

improve the heavy burden on the verifier, we introduce a notion called

multi-proof-of-retrievability(MPOR), allowing one verifier to verify the availability of

multiple files stored by a server in one pass. We also design a MPOR protocol with public

verifiability by extending the work of Shacham et al. The advantage of our MPOR scheme is

that computational overhead of a verifier in our scheme is constant, independent of the

number of files. Nevertheless, the soundness of our MPOR protocol is proved under a

relatively weak security notion. In particular, analysis of our MPOR protocol shows that each

file can be extracted in expected polynomial time under certain restriction on the size of

processed files.

Keywords: Cloud storage; Storage service provider; Proof-of-retrievability;

Homomorphic authenticator; Public verifiability

1. Introduction

Cloud computing [13] has a deep impact on IT industry by allowing clients to access

high-quality cloud based service in pay-as-you-go manner. Cloud storage systems which

involve delivery of data storage as a service over Internet are becoming more attractive.

Amazon S3 [1], a well-known storage service, allows clients to store large amounts of data

2

and access their stored data from any place at low costs. One of the major challenges on cloud

storage systems is how to efficiently verify whether some remote storage service

provider(SSP) is faithfully storing clients’ data since the SSP may not be trusted. Clients’ data

may be at the danger of loss either by data loss incidents or by malicious deletion from a SSP

who wants to save storage by deleting rarely accessed portion of the stored data.

There has been a lot of research focused on proof-of-storage mechanisms without the

need to download the whole data for verification. This kind of solutions is also called storage

auditing [9,15,17], allowing clients to verify through cryptographic means that their data on

an untrusted SSP are kept intact and ready for retrieval if needed. Some crucial system criteria

for designing proof-of-storage systems can be summarized as follows [16]:

(1) Computation and communication overhead of proof-of-storage protocols and storage

overhead on a server should be as efficient as possible.

(2) Verifiers should be stateless without the need to maintain states for storage auditing.

(3) The most important security criterion for proof-of-storage systems requires that a

verifier should be convinced that the file is actually stored by a server when the server can

pass the check of storage auditing. Early research works on proof-of-storage systems lacks

provable security guarantee without providing formal security models and proofs.

To formalize the security criterion for proof-of-storage systems, formal models and

constructions were first studied by Naor et al. [14] and Juels et al. [12] by using homomorphic

authenticators based on message authentication code. A file is first encoded redundantly and

divided into message blocks. Each block is authenticated by a MAC tag computed by the

client. The client then erases the file and sends the encoded file and the MAC tags to the

server. The idea behind their protocols is that a verifier only need check a random subset of

the message blocks stored by the server to check whether the original file is correctly stored

by the server in order to guarantee an efficient storage audit protocol. The length of the

server’s response is improved with the help of homomorphic authenticators by aggregating

the authentication tags of different message blocks.

Security for proof-of-storage systems is captured by requiring the existence of an

extractor to retrieve the specified file by interacting with a server that can pass the verification

of storage auditing. This security notion is also called “proof-of-retrievability” (POR). This

3

concept is similar to zero knowledge proofs of knowledge [5]. A weaker notion called

“Proof-of-data-possession”(PDP) [3] can only guarantee that a certain percentage (e.g., 99%)

of message blocks can be recovered with high probability (e.g., 0.99). There are also some

papers [4,7,18] considering proof-of-storage systems supporting dynamic operations on the

stored data. In addition, POR protocols that support public verifiability means everyone can

check whether a client’s data are correctly stored by a server. Digital signatures can be used to

replace Mac tags to achieve public verifiability.

The NR model in [14] restricts a checker to access specific memory locations from the

prover. Shacham et al. [16] strengthened the NR model by allowing an extractor black-box

access to a prover program. Another distinct feature formalized by Shacham et al. in their

security model [16] is that the specified file can be extracted so long as the prover program

can correctly answer any small (but non-negligible) fraction of verification queries. In

addition, Shacham et al. [16] designed a homomorphic authenticator based on BLS short

signature [6] to present a POR protocol with public verifiability secure in the random oracle

model. Homomorphic authenticators can be used to improve the response length from the

server by compressing authentication values { }iσ of blocks { }im into one authenticator

σ for their linear combination { }i iv m∑ .

We notice that the POR protocol with public verifiability [16] requires the verifier to

compute two pairing operations to verify the response from a server during one instance of

their POR protocol. This means if one wants to verify the availability of n files stored by

the server separately, 2n pairing operations should be computed by the verifier, which is a

heavy overhead when a client has a large number of files stored by that server.

Motivated by the above discussion, we aim to design a multi-proof-of-retrievability

(MPOR) protocol with public verifiability. In other words, our MPOR protocol allows one

verifier to verify the availability of n files stored by the server in one pass, while the

computational overhead is independent of the parameter n . The idea behind our construction

is to further compress the homomorphic authenticators from different files to reduce the

computation and communication overhead.

The key point of our work is to choose a proper security model for MPOR protocol and

prove the security of our construction under it. Soundness of MPOR protocols is defined in a

4

relatively weak manner compared with that of POR protocols. In the multi-file setting, one

invocation of the extractor algorithm can only guarantee that at least one file among those n

files can be recovered. The reason is that the extracted knowledge is now distributed over

these n files randomly. Hence we cannot guarantee that all the files can be extracted by the

extractor all at once in the multi-file setting. On the other hand, our analysis shows that each

file can be extracted in expected polynomial time under the assumption that each file’s size is

of the same magnitude (e.g., digital images, office documents). So we define soundness for

MPOR protocols by requiring the existence of an extractor to retrieve each file in expected

polynomial time.

The rest of this paper is organized as follows. At first, we describe the notations used in

this paper and bilinear mappings in section 2. Syntax of MPOR schemes is introduced in

section 3. We also define correctness, soundness for MPOR protocols. The soundness for

MPOR protocols is relatively weak in the sense that it only requires each file to be extracted

in expected polynomial time under the assumption that each file’s size is of the same

magnitude. In the following, we design a MPOR protocol with public verifiability by

extending the work in [16] and prove our MPOR scheme meet the requirement of soundness

defined in this paper. Finally, we evaluate performance of our MPOR protocol to show that

the cost of a verifier is greatly reduced compared with that of the original POR protocol [16]

when verifying multiple files stored by a server.

2. Preliminaries

2. 1 Notation

We use the notation Rx S← to mean “the element x is chosen with uniform

probability from the set S ”. If A is a algorithm, then ()

1(,)Oy A x⋅← � means that A

has input 1,x � , access to a oracle O , and the output of A is assigned to y . Let

[1..] {1, , }n n= � .

2.2 Bilinear pairing

Given a security parameter k , an efficient algorithm (1)kPG outputs

(, , , ,)Te G G g p , where G is a cyclic group of a prime order p generated by

5

g , 12 2k kp− < < . TG is a cyclic group of the same order, and let : Te G G G× → be an

efficiently computable bilinear function with the following properties:

1. Bilinear: (,) (,) ,a b abe g g e g g= for all , pa b Z∈ .

2. Non-degenerate: (,) 1
TG

e g g ≠

3. Definitions

3.1 Syntax of a multi-proof-of-retrievability scheme

 A multi-proof-of-retrievability(MPOR) scheme consists of the following algorithms:

(1)kKg : Given a security parameter k , this randomized key-generation algorithm

outputs a secret/public key pair (,)sk pk .

(,)St sk M : Given a secret key sk and a file M chosen by a client, this file-storing

algorithm first encodes M by applying a rate- ρ erasure code [2] to obtain �M such

that any ρ fraction of the encoded file �M is sufficient to recover the original file M .

Finally it outputs a authentication tag τ and some auxiliary information aug ,

�(, (,)) (,)M aug St M skτ ← , where sk is the secret key of the client. �M and aug will

be stored on the server side. τ and aug will be used in the following MPOR protocol.

The rest part of our MPOR scheme consist of the algorithms P (prover) and

MV (verifier). The following notation is used to denote one interactive execution of our

MPOR protocol between the algorithms P and MV :

� �
1 1 1(,{ }) (,{ , },{ }) (,)n n

i i n i iMV pk P pk M M aug bτ = =〈 〉 → ⊥� �

where pk is the public key of the client who stores the encoded files � �
1{ , }nM M� on

the server side. Parameter n determines the number of files that can be verified

simultaneously. 1{(,)}ni i iaugτ = are generated by the file-storing algorithm ()St ⋅ for

� �
1{ , }nM M� respectively. The output of the verification algorithm MV is bit b . b =1

denotes that the verifier is convinced that the original files 1{ }ni iM = are stored correctly by

the prover.

Correctness of our MPOR scheme requires that an honest server can always convince a

6

verifier of validity of the stored files. That is:

for any (,) (1)ksk pk Kg← , �
1{(, (,)) (,)}ni i i i iM aug St M skτ =← , we have

� �
1 1 1(,{ }) (,{ , },{ }) (1,)n n

i i n i iMV pk P pk M M aug bτ = =〈 〉 → = ⊥� �

3.2 Soundness of multi-proof-of-retrievability protocols

Soundness of MPOR protocols informally requires that if a prover can convince a

verifier by passing the verification, then the original files 1{ }ni iM = can ready for retrieval if

needed. To formalize this point, an extraction algorithm is required to recover the original

files 1{ }ni iM = by interacting with the successful prover via the MPOR protocol. The

following game
, (,1)sound n k

MPORExp A will give the formal definition of soundness of MPOR

protocols.

, (,1)sound n k

MPORExp A

 Phase 1: The challenger C generates a keypair (,) (1)kpk sk Kg← and provides

pk to A .

 Phase 2: The adversary A interacts with the challenger by making queries to a store

oracle. The store query is handled by the oracle as follows.

Store ()iM // iM is a file chosen by A .

Compute �(, (,)) (,)i i i iM aug St sk Mτ ← ;

Return �(, (,))i i iM augτ ;

 For some files 1, nM M� queried to the store oracle who responds 1{(,)}ni i iaugτ =

respectively, A makes a query to a MPOR oracle, which is handled as follows.

MPOR 1(,)nτ τ�

The challenger C runs an instance of the MPOR protocol with A as follows:

 1(,{ , }) (,)nC pk A bτ τ< >→ ⊥� �

The challenger plays the role of a verifier during the above execution and outputs a bit

b to denote whether it is convinced that the original files are being stored by the adversary

correctly.

Return b ;

7

 At the end of phase 2, A outputs the challenge set * *

1{ , , }nT τ τ= � consisting of the

tags returned by the store oracle for some queries
* *

1 , , nM M� respectively. Description of a

prover program
*P is also provided by A .

The prover program
*P is -admissibleε if it can convincingly answer ε fraction of

MPOR queries, i.e.,
*

1Pr[((,{ , }) (1,)]nMV pk P bτ τ ε< >→ = ⊥ ≥� � . Here the

probability is over the coins of the verifier and the prover.

Phase 3: We say a MPOR scheme is -soundε if there exists an efficient extraction

algorithm Extr such that for every adversary A who plays the above game and outputs

the challenge tags
* *

1{ , , }nτ τ� returned by the store oracle for the queries
* *

1 , , nM M�

respectively and a -admissibleε prover program
*P at the end of phase 2, then

,1i i n∀ ≤ ≤ , there exists an extraction algorithm Extr who recovers the file *

iM in

expected polynomial time by interacting with
*P via the MPOR protocol. That is:

* () * * *

1,1 , (,{ , , })P

n ii i n Extr pk Mτ τ⋅∀ ≤ ≤ →� occurs in expected polynomial time

except with negligible probability.

4. Our multi-proof-of-retrievability scheme

 Let (SKg, SSig, SVer)∑ = be a digital signature scheme.

(1)kKg : Generate a signing keypair (,) SKg(1)kssk spk ← by the key generation

algorithm of ∑ . Choose R pZα ← and compute v gα= . The secret key is sk = (,)sskα .

The public key is pk = (,)v spk .

(,)lSt sk M : Given a file lM chosen by a client, this file-storing algorithm first

chooses a random file-name lfn from a large domain. The collision probability over file

names is negligible when the domain is large enough. In the following, apply a erasure code

to lM to obtain �lM and split �lM into ln message blocks 1{ }
lli i nm ≤ ≤ . Parse the secret

key of the client as (,)sk sskα← and pick a random l pu Z← . Let 0lτ = || ||l l lfn n u and

8

compute a signature 0lσ = 0SSig(,)lssk τ by the signature-producing algorithm of ∑ and

an authentication tag lτ = 0 0||l lτ σ . For 1 li n≤ ≤ , it computes liaug = ((||))li
m

l lH fn i u α⋅ .

The encoded file �lM and 1{ } ln

li iaug = will be stored on the server side.

One interactive execution of our MPOR protocol between the algorithms P (prover) and

MV (verifier) can be described as follows:

 (1) First, the verifier MV makes a MPOR-query Q to the prover P :

1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , (,)l l R p lP Z fnλ= ← , {(,)}l jQ j v= with distinct

[1..]lj n∈ and each coefficient
*

j R pv Z← , where pk is the public key of the client, lfn

is the file-name for a file lM and ln is the number of message blocks of the file lM . The

size of each set lQ is a fixed system parameter s .

(2) Having received the query Q , the prover algorithm

�
1 1 ,1(,{ } ,{ })

l

n

l l li l n i nP Q M aug= ≤ ≤ ≤ ≤ responds as follows:

First it parses � 1{ }nl lM = as blocks 1 ,1{ }
lli l n i nm ≤ ≤ ≤ ≤ respectively. In the following,

compute:

 lµ =
(,)j l

j lj

j v Q

v m
⊂

∑ , lσ =
(,)

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤

1(, , , ,)l nµ µ µ µ=
��

� � ,
1

l

n

l

l

λσ σ
=

= ∏

The prover P sends the response (,)µ σ
��

 to the verifier.

(3) Having received the response (,)µ σ
��

, the verification algorithm

1(,{ , }, (,))nMV pk τ τ µ σ
��

� proceeds as follows:

First it parses pk = (,)v spk and the authentication tags lτ = 0 0||l lτ σ , 1 l n≤ ≤ .

If :1l l n∃ ≤ ≤ , the signature verification algorithm 0 0SVer(, ,)=0l lspk τ σ , then it

outputs 0b = . Otherwise, parse 0lτ as || ||l l lfn n u , 1 l n≤ ≤ and the vector µ
��
 as

1(, , , ,)l nµ µ µ� � . If the following equation holds, output 1b = . Otherwise output 0b = .

9

(,)e gσ =
1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

 It is easy to verify the correctness of our MPOR scheme as follows:

1

l

n

l

l

λσ σ
=

= ∏ =
1 (,)

()j l

j l

n
v

lj

l j v Q

aug
λ

= ⊂

∏ ∏ =
1 (,)

(((||)))lj j l

j l

n
m v

l l

l j v Q

H fn j u
λ α⋅

= ⊂

⋅∏ ∏

 =
1 (,)

((||))j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
1 (,)

()j lj l

j l

n
v m

l

l j v Q

u
λ α⋅ ⋅

= ⊂

∏ ∏

 =
1 (,)

((||))j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
(,)

1

()
j lj

j v Qj l l

v mn

l

l

u
λ α⊂

⋅

⋅

=

∑
∏

 =
1 (,)

((||))j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
1

()l l

n

l

l

u
µ λ α⋅

=

∏

 The above result means

 (,)e gσ =
1 (,) 1

(((||)) () ,)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u g
λ α µ λ α⋅ ⋅

= ⊂ =

∏ ∏ ∏

 =
1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

Remark: The verifier chooses a MPOR query as:

1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , (,)l l R p lP Z fnλ= ← , {(,)}l jQ j v= with distinct

indices [1..]lj n∈ and each coefficient
*

j R pv Z← . Let
1

i

i n

N n
≤ ≤

= ∑ . The size of each set

lQ is a fixed system parameter s such that ns N< .

A vector notation for the s -element set {(,)}l jQ j v= over indices { } [1..]l lI j n= ⊆

is represented by a -N element vector ()Nl pq Z∈
��

, such that ,l j jq v= if 1l lj I N −∈ +

and , 0l jq = for all 1,1l lj I N j N−∉ + ≤ ≤ , where 1

1 1

l i

i l

N n−
≤ ≤ −

= ∑ ,

1l lI N −+ = 1{ : }l lj N j I−+ ∈ .

Given a ns -element set 1
1

() [1..]l l
l n

I I N N−
≤ ≤

= + ⊆∪ , the query Q can be regarded as

chosen over the indices [1..]I N⊆ . The joint coefficient vector notation for the query Q is

10

a -N element vector
1

l

l n

q q
≤ ≤

= ∑
� ��

. Let 1, , Nc c
�� ���
� be that canonical basis for ()NpZ ,

1

(,)

1

l

j l

j j N

j v Q

l n

q v c
−+

∈
≤ ≤

= ⋅∑
� ������

.

Recall that the honest response (,)µ σ
��

 for the query Q satisfies:

 lµ =
(,)j l

j lj

j v Q

v m
⊂

∑ lσ =
(,)

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤

1(, , , ,)l nµ µ µ µ=
��

� � ,
1

l

n

l

l

λσ σ
=

= ∏

We can view the message blocks of these n files as a N n× matrix H :

1[, ,]nH h h=
�� ���
� , 1 1 1

1(0 , (, ,),0)
i i

i l l i n

l

n n
T

l l lnh m m≤ ≤ − + ≤ ≤

∑ ∑
=

������� �������
��

� , where each column vector lh
��

corresponds to the message blocks of �lM respectively. We can also equivalently denote µ
��

in the response by a vector q H⋅
�

, where q
�
 is the joint coefficient vector notation for the

query Q .

5. Security proofs

We prove the security of our MPOR scheme by a series of games. Game 0 is exactly the

same as
, (,1)sound n k

MPORExp A with the following modification.

The challenger initially sets a flag 0d = and keeps a table of the store queries made by

the adversary and its responses for these queries. Based on the table and one MPOR query Q ,

the challenger is able to determine the deterministic verification response (,)µ σ
��

 returned

by the honest prover algorithm.

Having received the response � �(,)µ σ
��

 returned by the adversary behaving as a prover in

one execution of our MPOR protocol 1(,{ , }) (,)nC pk A bτ τ< >→ ⊥� � , the challenger

sets 1d = if for all executions, the verification algorithm � �
1(,{ , }, ,)nMV pk τ τ µ σ

��
�

outputs 1b = . Otherwise the challenger sets 0d = . Let iε denote Pr[1]d = in Game

, 0i i ≥ .

The above modification in Game 0 will not change the view of the adversary.

11

 Game 1 is almost the same as Game 0. The challenger keeps a list of authentication tags

generated by itself when handling queries to the store oracle. If any tag submitted by the

adversary can be verified as valid but is not on the list of tags generated by the challenger, the

challenger aborts. The major modifications are represented by the following boxed

statements.

 Phase 1: The challenger C picks an empty list sList and generates a keypair

(,) (1)kpk sk Kg← , where sk = (,)sskα , pk = (,)v spk . C provides pk to A .

The adversary A interacts with the challenger by making queries. The store and

MPOR queries are handled as follows.

Store ()lM // lM is a file chosen by A .

Compute � 1(, ,{ }) (,)ln

l l li i lM aug St sk Mτ = ← ;

Parse lτ as 0 0||l lτ σ and 0sList sList { }lτ← ∪

Return � 1(, ,{ })ln

l l li iM augτ = ;

MPOR 1(,)nτ τ�

If 1{ , }l nτ τ τ∃ ∈ � such that lτ = 0 0||l lτ σ can be verified as a valid signature and

0 sListlτ ∉ , the challenger aborts. Otherwise C runs an instance of MPOR protocol with

A : 1(,{ , }) (,)nC pk A bτ τ< >→ ⊥� � .

Return b ;

Finally, A outputs the challenge set * *

1{ , , }nT τ τ= � consisting of tags returned by

the store oracle for some queries
* *

1 , , nM M� respectively. The description of a prover

program
*P is also provided by A .

If
* * *

1{ , , }l nτ τ τ∃ ∈ � such that
*

lτ =
* *

0 0||l lτ σ can be verified as a valid signature and

*

0 sListlτ ∉ , the challenger aborts. The other part of Game 1 is kept unchanged.

Claim 1: 0 1| |ε ε− is negligible under the assumption that the signature scheme ∑ is

existential unforgeable [11] under the chosen message attack.

Proof: It is obvious that Game 0 and Game 1 proceed identically unless the event 1E “any

tag submitted by the adversary can be verified as a valid signature but is not on the list of

12

authentication tags generated by the challenger” occurs. Hence 0 1 1| | Pr[]Eε ε− ≤ . But if this

event happens with non-negligible probability, we can construct an adversary B against the

unforgeability of the signature scheme ∑ .

B takes a signing public key SKg(1)kspk ← as input and is given access to a

signing oracle ()sskSSig ⋅ . B picks a random α and sets the secret key sk = (,)α ⊥ , the

public key pk = (,)v g spkα= . It is clear that B is able to simulates the view of A in

Game 1 perfectly with the help the signing oracle.

If the event 1E happens, B simply outputs the tag submitted by A as its forgery

against the signature scheme ∑ .

Game 2 is almost the same as Game 1. The challenger in Game 2 verifies the response

from the adversary during each execution of our MPOR protocol in a way different from the

standard verification algorithm ()MV ⋅ .

Recall that the challenger is able to determine the deterministic verification response

(,)µ σ
��

 returned by the honest prover algorithm ()P ⋅ by the modification in Game 1, given

the corresponding MPOR query. Let � �(,)µ σ
��

 be the response returned by the adversary in

one execution of our MPOR protocol : 1(,{ , }) (,)nMV pk A bτ τ< >→ ⊥� � . The

challenger sets 1d = and aborts if there is at least one execution � �
1(,{ , }, ,)nMV pk τ τ µ σ

��
�

outputs 1b = and �σ σ≠ .

Claim 2: 2 1| |ε ε− is negligible under the CDH assumption.

Proof: Game 2 is distinct from Game 1 only when the response from the adversary in one

execution of our MPOR protocol can pass the verification but is not equal to the correct

response from the honest prover algorithm.

Let 2E denote the event “The adversary in one execution of our MPOR protocol can

pass the verification but �σ σ≠ ”. Game 2 is distinct from Game 1 only when 2E happens.

Hence 2 1 2| | Pr[]Eε ε− ≤ . If 2Pr[]E is non-negligible, we can construct a simulator that

solves the CDH problem in the random oracle model.

The simulator S takes an instance (, ,)g g h gα β= of the CDH problem as input and

13

simulates the environment of Game 2 for the adversary A as follows.

 S generates a signing key pair by running (,) SKg(1)kssk spk ← and sets v gα← ,

which implicitly defines the secret key sk = (,)sskα and the public key pk = (,)v spk . S

provides pk to A .

To respond each query issued to the random oracle ()H ⋅ , S first parses it as ||lfn i

and programs the response of ()H ⋅ as we will describe later.

To respond each query lM issued to the store oracle, S first chooses a random

file-name lfn , encodes lM to obtain �lM and splits it into ln blocks 1{ }
lli i nm ≤ ≤ . S

sets , ,l l

l l l R pu g h Z
β γ γ β← ← . S picks ,1li R p lr Z i n← ≤ ≤ and programs the response

of (||)lH fn i as (||) ()li l li l lir m m

lH fn i g g h
β γ⋅ ⋅= . At this point, S computes

,1 ,li laug i n≤ ≤ as follows:

liaug = ((||))li
m

l lH fn i u α⋅ = ((()) ())li l li l li l l lir m m m
g g h g h

β γ β γ α⋅ ⋅ ⋅

 = ()li
r

g α
= () lirgα

S computes lτ according to the specification of the file-storing algorithm ()St ⋅ via

the signing key and returns � 1(, ,{ })ln

l l li iM augτ = to A . S interacts with A until the event

2E happens.

Assume that 1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , (,)l l lP fnλ= , {(,)}
il i lQ l v= is the

MPOR query issued by the verifier in one execution of our MPOR protocol for the encoded

files � �
1, nM M� . Let the response returned by the adversary as a prover to this query be

� �,µ σ
��

. Let (,)µ σ
��

 be the deterministic response returned by the honest prover algorithm for

the query Q , which satisfies the following:

1(, , , ,)l nµ µ µ µ=
��

� � ,
1

l

n

l

l

λσ σ
=

= ∏

14

 lµ =
(,)j l

j lj

j v Q

v m
⊂

∑ lσ =
(,)

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤

(,)e gσ =
1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

When 2E happens, � �,µ σ
��

 can also pass the verification and the following hold:

� � � �
1(, , , ,)l nµ µ µ µ=

��
� �

�(,)e gσ =
�

1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

Let �σ σ σ∆ = − , � ,1l l l l nµ µ µ∆ = − ≤ ≤ . If �1 , l ll n µ µ∀ ≤ ≤ = , it follows that

�σ σ= according to the verification equation. Consequently, 0lµ∆ ≠ holds for at least one

position l by the assumption �σ σ≠ . We derive the following by division:

 �(,)e gσ σ =
1

(((),)l l

n

l

l

e u v
µ λ⋅

=

∏ 	
=

1

(((()),)l l l l

n

l

e g h v
β γ µ λ⋅

=

∏ 	

Rearranging terms yields � 1(() ,)
l l l

l ne v g
β λ µ

σ σ ≤ ≤

− ⋅ ⋅∑
⋅ =

	

1(,)
l l l

l ne h v
γ λ µ

≤ ≤
∑ 	

.

As ,v g h gα β= = , we see that the solution gαβ
 to the CDH problem can be written

as � 1 1

1

(())
l l l l l l

l n l nv
β λ µ γ λ µ

σ σ ≤ ≤ ≤ ≤

− ⋅ ⋅∑ ∑
⋅

	 	

 unless
1

l l l

l n

γ λ µ
≤ ≤

∑ 	 is equal to zero.

For any fixed sequence 1{ }nl lµ =	 that is not all zero, the probability that

1

0l l l

l n

γ λ µ
≤ ≤

=∑ 	 is 1 p since each lγ chosen by the simulator is uniformly distributed

over pZ and hidden from the adversary’s view since l l

lu g h
β γ= reveals no information of

lγ . Hence the success probability of S solving the CDH problem is at least

2Pr[] 1 .E p−

 The challenger in Game 3 verifies the response from the adversary during each execution

of our MPOR protocol in a way different from Game 2. Given a MPOR query Q , let

(,)µ σ
��

 be the deterministic response returned by the honest prover algorithm for the query

15

Q and � �(,)µ σ
��

 be the response returned by the adversary in one execution of our MPOR

protocol. The challenger parses �µ
��
 as � � �

1(, , , ,)l nµ µ µ� � and aborts if �, l ll µ µ∃ ≠ ,

where
(,)

,1
j l

l j lj

j v Q

v m l nµ
⊂

= ≤ ≤∑ .

Claim 3: 3 2| |ε ε− is negligible under the discrete logarithm assumption.

Proof: Game 3 is distinct from Game 2 only when the response from the adversary in one of

the MPOR protocol executions may cause the challenger to abort as specified. Let 3E

denote the event “The adversary behaving as a prover in one execution of our MPOR protocol

can pass the verification as specified but �

(,)

, ,1
j l

l j lj

j v Q

l v m l nµ
⊂

∃ ≠ ≤ ≤∑ ”.

 Game 3 is distinct from Game 2 only when 3E happens. Hence 3 2 3| | Pr[]Eε ε− ≤ . If

3Pr[]E is non-negligible, we can construct a simulator that solves the discrete logarithm

problem.

The simulator S takes an instance (,)g h g β= of the discrete logarithm problem as

input and simulates the environment of Game 3 for the adversary A as follows.

S generates a signing keypair (,) SKg(1)kssk spk ← and picks R pZα ← . Let

v gα← , which defines the secret key sk = (,)sskα and the public key pk = (,)v spk .

S provides pk to A .

To respond each query lM issued to the store oracle, S first chooses a random

file-name lfn from a large domain, encodes lM to obtain �lM and splits it into ln

blocks 1{ }
lli i nm ≤ ≤ . S sets , ,l l

l l l R pu g h Z
β γ γ β← ← .

S interacts with the adversary until the event 3E happens.

Assume 1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , (,)l l lP fnλ= , {(,)}
il i lQ l v= is the MPOR

query issued by the verifier in one execution of our MPOR protocol for the files � �
1, nM M� .

The response returned by the adversary to this query is � �(,)µ σ
��

. Let (,)µ σ
��

 be the

deterministic response returned by the honest prover algorithm for the query Q .

16

According to the proof in Game 2, we know that �σ σ= except with negligible

probability ()negl λ . Under this assumption, we derive the following according to the

verification equation:

 (,)e gσ =
1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

�(,)e gσ =
�

1 (,) 1

(((||)) (),)j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏

We conclude
�

1 1

() ()l l l l

n n

l l

l l

u u
µ λ µ λ⋅ ⋅

= =

=∏ ∏ by taking �σ σ= , which means

1 1

1 () (())l l l l l l

n n

l

l l

u g h
µ λ β γ µ λ⋅ ⋅

= =

= =∏ ∏	 	

Let � ,1l l l l nµ µ µ∆ = − ≤ ≤ . 0lµ∆ ≠ holds for at least one position l by the

assumption �

(,)

, ,1
j l

l j lj

j v Q

l v m l nµ
⊂

∃ ≠ ≤ ≤∑ .

If
1

0modl l l

l n

pγ λ µ
≤ ≤

≠∑ 	 , the discrete logarithm 1

1

()mod
l l l

l n

l l l

l n

p

β λ µ

β
γ λ µ

≤ ≤

≤ ≤

= −
∑

∑

	

	

because we have

1

1

()

l l l

l n

l l l

l nh g

β λ µ

γ λ µ
≤ ≤

≤ ≤

−

∑

∑
=

	

	

.

Similarly, for any fixed sequence 1{ }nl lµ =	 that is not all zero we can argue that the

probability that
1

l l l

l n

γ λ µ
≤ ≤

∑ 	 is equal to zero is 1 p . Hence the success probability of S

solving the discrete logarithm problem is at least 3Pr[] 1 ().E p negl λ− −

Response of the adversary in Game 3 is forced to be the same as that output by the

honest prover algorithm of our MPOR protocol. A well-behaved prover program
*P causes

the verification algorithm ()MV ⋅ to accept in each execution of MPOR protocol by

responding with (,)µ σ
��

 computed by the honest prover algorithm. Claims 1-3 show that

any adversary that wins in the game
, (,1)sound n k

MPORExp A is well-behaved except with

negligible probability. In the following, we show that extraction will succeed by interacting

17

with a well-behaved prover program.

Definition 1: Given a MPOR query Q as input, a polite prover program �P outputs either

the correct response computed by the honest prover algorithm or a special symbol ⊥ . If �P

outputs the correct response with probability at least ε , then we call �P a -ε polite prover

program.

A -ε well-behaved prover program
*P can be transformed into -ε polite prover

program �
*

()
P

P ⋅ with black box access to *P .

Having received a MPOR query Q from a verifier, �P plays the role of verifier to

interact with
*P by forwarding the query Q to *P . Having received the response (,)µ σ

��

from
*P , �P outputs (,)µ σ

��
 if and only if the verification algorithm

1(,{ , }, (,))nMV pk τ τ µ σ
��

� outputs 1; otherwise �P outputs ⊥ . �P provides *P with

fresh randomness and rewinds it for each interaction. As
*P is -ε well-behaved prover

program, �P is -ε polite. Note that the tags 1{ , }nτ τ� that are responses to the store

queries can help �P to verify the correctness of (,)µ σ
��

 returned by
*P .

Let
1

i

i n

N n
≤ ≤

= ∑ . For a subspace Ψ of ()NpZ , denote the dimension of Ψ by

dimΨ . Let FreeΨ be the indices of the canonical basis vectors { } ()Ni pc Z∈
��

 included in

Ψ . In other words, FreeΨ ={ [1..] : }ii N c∈ ∈ Ψ
��

.

Lemma 1 [16, Claim 4.6]: For a subspace Ψ of ()NpZ , and let I be an -ns element

subset of [1..]N . If FreeI ⊄ Ψ , then a random MPOR query Q over indices in I with

its coefficient vector q∈ Ψ
�

 occurs with probability at most 1 (1)p − .

Lemma 2 [16, Claim 4.7]: Let #(Free) mΨ = . For a random -ns element subset I of

[1..]N , the probability that FreeI ⊆ Ψ is at most (1)ns nsm N ns− + .

Theorem 1: Suppose that �P is a -ε polite prover program and let

18

1 ()

1 (1)

ns

ns

N

p N ns

ρ
ω = +

− − +
. If ε ω> , for each file �lM , 1 l n≤ ≤ , the expected time to

recover at least ρ fraction of it is 2 2 2((1))
nN

O N t n
ρ

ε
ε ω

+ ⋅ +
−

, where t is the number of

MPOR queries issued to the prover program by the extractor during one round of interaction.

Proof: The t MPOR query-response pairs during one round of interaction with the prover

program �P contribute the following to the extractor’s knowledge of the encoded files

� �* *

1 , , nM M� :

(1) (1) () (), , t tq H q Hµ µ⋅ = ⋅ =
���� ���� ���� ����

�

H is the matrix constructed from the encoded files
� �* *

1 , , nM M� , which is described

at the end of Section 4. We rewrite the above as V H W⋅ = where V is the t N× matrix

whose row vectors are the t coefficient vectors ()

1{ }i t

iq =

����
 of the MPOR queries and W is

the t n× matrix whose row vectors are t corresponding MPOR responses ()

1{ }i t

iµ =

����
.

The matrix V can be reduced to a matrix G =U V⋅ in the row-reduced echelon form,

where U is a t t× matrix with nonzero determinant computed by applying Gaussian

elimination to V .

The extractor’s knowledge during the above interaction can be represented by the

matrixs , , ,G U V W , where the matrix G in the row-reduced echelon form. The subspace

generated by the matrix G is denoted by Ψ . The extractor’s knowledge space is initially

empty. The extractor repeats the following behavior until |Free | NρΨ ≥ .

The extractor chooses a random MPOR query Q over the indices [1..]I N⊆ with

coefficient vector q
�
 by its random coins and runs the -ε polite �P on Q . �P answers the

correct response µ =
��

q H⋅
�

 with probability ε . We consider the following three types:

1. q∉ Ψ
�

:

For queries of this type, the extractor extends its knowledge as follows:

It adds the row vector q
�
 to the current matrix V , obtaining

/V and adds the response

vector µ
��
 to the existing matrix W , obtaining

/W . It also computes
/ / /G U V= ⋅ in the

row-reduced echelon form.
/ / / /, , ,G U V W represent the update of the extractor’s

19

knowledge.

2. q∈ Ψ
�

 but FreeI ⊄ Ψ :

3. FreeI ⊆ Ψ :

For queries of type 2 or 3, the extractor does not update its knowledge and continue its

current interaction with the prover program �P .

A query of type 1 increases dimΨ by 1. The extractor’s interaction with �P is

guaranteed to terminate when the number of queries of type 1 is above Nρ .

By Lemma 1, queries of type 2 make up at most 1 (1)p − since

Pr[is type 2] Pr[Free]
Q Q
Q q I= ∈ Ψ ∧ ⊄ Ψ

�

Pr[| Free] Pr[Free] Pr[| Free] 1 (1)
Q Q Q
q I I q I p= ∈ Ψ ⊄ Ψ ⋅ ⊄ Ψ ≤ ∈ Ψ ⊄ Ψ ≤ −
� �

Assume #(Free) mΨ = . For a random -ns element subset I of [1..]N , the

probability that FreeI ⊆ Ψ is at most (1)ns nsm N ns− + by Lemma 2. By the

convention set for the extractor, m Nρ≤ , this quantity is at most () (1)ns nsN N nsρ − + .

Therefore the fraction of queries of type 2 or 3 is at most
1 ()

1 (1)

ns

ns

N

p N ns

ρ
ω = +

− − +
.

As �P is a -ε polite prover program, �P is able to answer at least ε fraction of the

queries. Therefore, a random MPOR query chosen by the extractor will be of type 1 with

probability at least ε ω− . To yield Nρ queries of type 1, the extractor will carry out

()
N

O
ρ

ε ω−
 interactions with �P in this round.

As the matrix G in the row-reduced echelon form, it is possible to determine whether a

query Q is of type 1, to which �P has responded. The extractor adds the coefficient vector

q
�
 of Q to the current matrix V and applies Gaussian elimination to V to yield G ,

which takes
2()O N time [8]. If the newly added row is not all zeros, then q

�
 is of type 1.

As Gaussian elimination need only be applied to at most ε fraction of the queries responded

correctly by �P , the running time of the extractor in this phase is 2((1))
N

O N
ρ

ε
ε ω

+ ⋅
−

.

On the other hand, when this phase has finished, the knowledge of the extractor consists

20

of the matrixes , , ,G U V W such that V H W⋅ = , G U V= ⋅ . G is in the row-reduced

echelon form. The free dimension of the subspace Ψ spanned by G is Nρ by the

conventions set for the extractor. For each Freei∈ Ψ , there must be a row in G , say row t ,

that equals some canonical basis vector ()Ni pc Z∈
��

 since G is in the row-reduced echelon

form. Multiplying both sides of V H W⋅ = by U , we obtain G H U W⋅ = ⋅ .

We define a set
1 1 1

{ : Free , }l i i

i l i l

G i i n i n
≤ ≤ − ≤ ≤

= ∈ Ψ < ≤∑ ∑ for each index l , 1 l n≤ ≤ .

As the number of indices Freei∈ Ψ is Nρ , there exists at least one index l such that

| |lG is at least lnρ by the pigeonhole principle. Recall that 1[, ,]nH h h=
�� ���
� ,

1 1 1

1(0 , (, ,),0)
i i

i l l i n

l

n n
T

l l lnh m m≤ ≤ − + ≤ ≤

∑ ∑
=

������� �������
��

� . The inner products between these canonical vectors

,i lc i G∈
��

 and the corresponding column vector lh
��
 will recover at least ρ fraction of the

encoded file
�*

lM , which can extracted from the product U W⋅ . The computation will takes

2()O t n time [8].

In the following, we analyze the probability lp of an event lF “ | |lG ≥ lnρ for the

given index l ,1 l n≤ ≤ ”.

At first, we will analyze the probability
/

lp of an event “ | |lG = lnρ for the given

index l ,1 l n≤ ≤ ”.

As mentioned above, we assume that each file’s size is of the same magnitude. For ease

of analysis, we further assume 1 lb n n= = =� . For instance, these files of the same

magnitude can be redundantly padded before encoding.

The probability
/

lp
() ()

l l

l l

n N n N b nb b nb

n N n N b nb b nbρ ρ ρ ρ ρ ρ

− −
= =

− −

The probability lp =
b j nb

b nb j nb

j nb j nbρ ρ ρ ρ≤ ≤

−

−
∑ , only depends on the values of

, ,n bρ and is independent of the choice of l .

As 1Pr[, ,] 1nF F∨ ∨ =� , 1

1

1 Pr[,]
n

n l l

l

F F F n p
=

= ∨ ∨ ≤ = ⋅∑� by the union bound. We

21

know that
1

Pr[]lF
n

≥ . Hence the extractor can recover at least ρ fraction of the encoded

file
�*

lM with probability at least 1 n during this phase. This means at least ρ fraction of

the file
�*

lM can be recovered by running the extractor algorithm n rounds on average,

who rewinds the -ε polite prover �P with fresh coins before each interaction.

In conclusion, for each file
�*

lM , 1 l n≤ ≤ , the expected time to recover at least ρ

fraction of it is
2 2 2((1))

nN
O N t n

ρ
ε

ε ω
+ ⋅ +

−
. As

�*

lM is redundantly encoded by erasure

codes [2] such that any ρ fraction of the �*

lM is sufficient to recover the original file
*

lM .

The original file
*

lM is guaranteed to be recovered in this case.

6. Performance analysis

We evaluate the performance of the proposed MPOR protocol and that of the POR

protocol [16] in terms of the required communication and computational cost to verify

n files stored on the server side. The result is stated in Table 1, 2. Pair denotes one

pairing operation. ()nMExp G denotes one general multi-exponentiation 1

1
nee

ng g�

over a group G . The size of each set lQ is assumed to be a fixed s in both schemes. For

ease of comparison, we assume that there is only one sector per each encoded message block

in the POR protocol [16].

The advantage of our MPOR protocols lies in the fact that the number of pairing

operations computed by the verifier is independent of the parameter n . In addition,

length of the response from a prover is further reduced by aggregating the responses

from the prover.

Nevertheless, the soundness of our MPOR protocol only satisfies a relatively weak

security notion under the assumption that each file’s size is of the same magnitude. One

invocation of the extractor algorithm can only guarantee that at least one file among those n

files can be recovered. Our analysis shows that each file can be extracted in expected

polynomial time under our assumption on the size of processed files.

22

7. Conclusion

Proof-of-retrievability protocols can help a client to be assured of the availability of files

stored by a server. H. Shacham et al. [16] strengthened the security model for POR

protocols by allowing an extractor black-box access to a prover program. In addition, they

presented a POR protocol with public verifiability based on a homomorphic authenticator

derived from BLS short signature. When using their POR protocol with public verifiability to

verify the availability of multiple files separately, the number of pairing operations computed

by a verifier is linear with the number of files. To handle this issue, we extend the work in [16]

by introducing a new notion called multi-proof-of-retrievability. Our MPOR protocol with

public verifiability allows one verifier to verify the availability of n files stored by a server

in one pass, while the computational overhead of a verifier in our MPOR scheme is constant,

independent of the parameter n . Analysis of our MPOR protocol shows that each file can be

extracted in expected polynomial time under certain restriction on the size of processed files.

Acknowledgement

 This work is supported by Natural Science Foundation of Higher Education Institutions,

in Jiangsu Province office of education, P.R. China (Grant No. 10KJD520005)

References

[1] Amazon simple storage service (Amazon S3), http://aws.amazon.com/s3/

[2] A.Alon and M.Luby, A linear time erasure-resilient code with near optimal recovery,

IEEE.Tran.Inf.Theory,42(6) (1996) 1732-1736.

[3] G. Ateniese, R.Burns, R.Curtmola, J.Herring, O.Khan, L.Kissner, Z.Peterson and D. Song,

Remote data checking using provable data possession, ACM Trans.Inf.Syst.Security, 14(1),

(2011) Article No.12,

[4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, Scalable and efficient provable

data possession, Cryptology ePrint Archive, Report 2008/114, 2008.

http://eprint.iacr.org/2008/114

[5] M. Bellare and O. Goldreich, On defining proofs of knowledge, CRYPTO'92, LNCS 740

(1993) 390-420.

23

[6] D. Boneh, B.Lynn and H. Shacham, Short signatures from weil pairing, Journal of

Cryptology, 17(4) (2004) 297-319.

[7] D. Cash, A. Kupcu, and D. Winchs, Dynamic Proofs of Retrievability via Oblivious

RAM, Cryptology ePrint Archive, http://eprint.iacr.org/2012/550

[8] H. Cohen, A course in computational algebraic number theory, Berlin, Springer, 1993

[9] Y. Deswarte, J.-J.Quisquarter and A. Saidaneand H. Shacham, Remote integrity checking,

IICIS 2003, IFIP Vol.140 (2004) 1-11.

[10] C. C. Erway, A. Kuppcu, C. Papamanthou, and R. Tamassia. Dynamic provable data

possession. ACM CCS 09, (2009) 213-222.

[11] S. Goldwasser, S.Micali and R. Rivest, A digital signature scheme secure against

adaptive chosen-message attacks, SIAM Journal of Computing, 17(2) (1988) 281-308.

[12] A. Juels and B.Kaliski, PORs: proofs of retrievability for large files, CCS 2007, ACM,

(2007) 584-597.

[13] P. Mell and T. Grance, NIST SD 800-145, The NIST definition of cloud computing,

NIST special publication, 2011

[14] M. Naor and G.Rothblum, The complexity of online memory checking, J.ACM, 56(1),

(2009) Article No.2

[15] T. Schwarz and E. Miller, Store, forget and check: Using algebraic signatures to check

remotely administered storage, ICDCS 2006, IEEE, (2004) 1-11.

[16] H. Shacham and B.Waters, Compact proofs of retrievability, Journal of Cryptology,

published online

[17] M.Shah, M.Baker, J.Mogul and R.Swaminathan, Auditing to keep online storage service

honest, Proceedings of HotOS 2007, ACM, (2007) Article No.11.

[18] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, Enabling public verifiability and data

dynamics for storage security in cloud computing, ESORICS 2009, Springer, LNCS 5789,

(2009) 355-370.

24

Table 1. Computational overhead of a verifier

Cost for verifying n files

Scheme
Pairing Exponentiation

POR protocol

 [16]

2n 12 ()sn MExp G−⋅

Our MPOR

protocol

2 1()sn MExp G−⋅ +
1()nMExp G−

Table 2. Length of the response from a prover

Scheme

Total bit length of the n responses from the prover

POR protocol

 [16]
(| | | |)pn Z G⋅ +

Our MPOR

protocol
(| |) | |pn Z G⋅ +

