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Abstract: Cloud storage allows clients to store a large amount of data with the 

help of storage service providers (SSPs). Proof-of-retrievability(POR) protocols allow one 

server to prove to a verifier the availability of data stored by some client. Shacham et al. 

presented POR protocols based on homomorphic authenticators and proved security of their 

schemes under a stronger security model, which requires the existence of an extractor to 

retrieve the original file by receiving the program of a successful prover. When using their 

POR protocol with public verifiability to verify the availability of multiple files separately, 

the number of pairing operations computed by a verifier is linear with the number of files. To 

improve the heavy burden on the verifier, we introduce a notion called 

multi-proof-of-retrievability(MPOR), allowing one verifier to verify the availability of 

multiple files stored by a server in one pass. We also design a MPOR protocol with public 

verifiability by extending the work of Shacham et al. The advantage of our MPOR scheme is 

that computational overhead of a verifier in our scheme is constant, independent of the 

number of files. Nevertheless, the soundness of our MPOR protocol is proved under a 

relatively weak security notion. In particular, analysis of our MPOR protocol shows that each 

file can be extracted in expected polynomial time under certain restriction on the size of 

processed files.  

Keywords: Cloud storage; Storage service provider; Proof-of-retrievability; 
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1. Introduction 

Cloud computing [13] has a deep impact on IT industry by allowing clients to access 

high-quality cloud based service in pay-as-you-go manner.  Cloud storage systems which 

involve delivery of data storage as a service over Internet are becoming more attractive.  

Amazon S3 [1], a well-known storage service, allows clients to store large amounts of data 
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and access their stored data from any place at low costs. One of the major challenges on cloud 

storage systems is how to efficiently verify whether some remote storage service 

provider(SSP) is faithfully storing clients’ data since the SSP may not be trusted. Clients’ data 

may be at the danger of loss either by data loss incidents or by malicious deletion from a SSP 

who wants to save storage by deleting rarely accessed portion of the stored data.  

There has been a lot of research focused on proof-of-storage mechanisms without the 

need to download the whole data for verification. This kind of solutions is also called storage 

auditing [9,15,17], allowing clients to verify through cryptographic means that their data on 

an untrusted SSP are kept intact and ready for retrieval if needed. Some crucial system criteria 

for designing proof-of-storage systems can be summarized as follows [16]: 

(1) Computation and communication overhead of proof-of-storage protocols and storage 

overhead on a server should be as efficient as possible.  

(2) Verifiers should be stateless without the need to maintain states for storage auditing. 

(3) The most important security criterion for proof-of-storage systems requires that a 

verifier should be convinced that the file is actually stored by a server when the server can 

pass the check of storage auditing. Early research works on proof-of-storage systems lacks 

provable security guarantee without providing formal security models and proofs. 

To formalize the security criterion for proof-of-storage systems, formal models and 

constructions were first studied by Naor et al. [14] and Juels et al. [12] by using homomorphic 

authenticators based on message authentication code. A file is first encoded redundantly and 

divided into message blocks. Each block is authenticated by a MAC tag computed by the 

client. The client then erases the file and sends the encoded file and the MAC tags to the 

server. The idea behind their protocols is that a verifier only need check a random subset of 

the message blocks stored by the server to check whether the original file is correctly stored 

by the server in order to guarantee an efficient storage audit protocol. The length of the 

server’s response is improved with the help of homomorphic authenticators by aggregating 

the authentication tags of different message blocks.  

Security for proof-of-storage systems is captured by requiring the existence of an 

extractor to retrieve the specified file by interacting with a server that can pass the verification 

of storage auditing. This security notion is also called “proof-of-retrievability” (POR). This 
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concept is similar to zero knowledge proofs of knowledge [5]. A weaker notion called 

“Proof-of-data-possession”(PDP) [3] can only guarantee that a certain percentage (e.g., 99%) 

of message blocks can be recovered with high probability (e.g., 0.99). There are also some 

papers [4,7,18] considering proof-of-storage systems supporting dynamic operations on the 

stored data. In addition, POR protocols that support public verifiability means everyone can 

check whether a client’s data are correctly stored by a server. Digital signatures can be used to 

replace Mac tags to achieve public verifiability.  

The NR model in [14] restricts a checker to access specific memory locations from the 

prover. Shacham et al. [16] strengthened the NR model by allowing an extractor black-box 

access to a prover program. Another distinct feature formalized by Shacham et al. in their 

security model [16] is that the specified file can be extracted so long as the prover program 

can correctly answer any small (but non-negligible) fraction of verification queries. In 

addition, Shacham et al. [16] designed a homomorphic authenticator based on BLS short 

signature [6] to present a POR protocol with public verifiability secure in the random oracle 

model. Homomorphic authenticators can be used to improve the response length from the 

server by compressing authentication values { }iσ  of blocks { }im  into one authenticator 

σ  for their linear combination { }i iv m∑ .  

We notice that the POR protocol with public verifiability [16] requires the verifier to 

compute two pairing operations to verify the response from a server during one instance of 

their POR protocol. This means if one wants to verify the availability of n  files stored by 

the server separately, 2n  pairing operations should be computed by the verifier, which is a 

heavy overhead when a client has a large number of files stored by that server.  

Motivated by the above discussion, we aim to design a multi-proof-of-retrievability 

(MPOR) protocol with public verifiability. In other words, our MPOR protocol allows one 

verifier to verify the availability of n  files stored by the server in one pass, while the 

computational overhead is independent of the parameter n . The idea behind our construction 

is to further compress the homomorphic authenticators from different files to reduce the 

computation and communication overhead.  

The key point of our work is to choose a proper security model for MPOR protocol and 

prove the security of our construction under it. Soundness of MPOR protocols is defined in a 
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relatively weak manner compared with that of POR protocols. In the multi-file setting, one 

invocation of the extractor algorithm can only guarantee that at least one file among those n  

files can be recovered. The reason is that the extracted knowledge is now distributed over 

these n  files randomly. Hence we cannot guarantee that all the files can be extracted by the 

extractor all at once in the multi-file setting. On the other hand, our analysis shows that each 

file can be extracted in expected polynomial time under the assumption that each file’s size is 

of the same magnitude (e.g., digital images, office documents). So we define soundness for 

MPOR protocols by requiring the existence of an extractor to retrieve each file in expected 

polynomial time. 

The rest of this paper is organized as follows. At first, we describe the notations used in 

this paper and bilinear mappings in section 2. Syntax of MPOR schemes is introduced in 

section 3. We also define correctness, soundness for MPOR protocols. The soundness for 

MPOR protocols is relatively weak in the sense that it only requires each file to be extracted 

in expected polynomial time under the assumption that each file’s size is of the same 

magnitude. In the following, we design a MPOR protocol with public verifiability by 

extending the work in [16] and prove our MPOR scheme meet the requirement of soundness 

defined in this paper. Finally, we evaluate performance of our MPOR protocol to show that 

the cost of a verifier is greatly reduced compared with that of the original POR protocol [16] 

when verifying multiple files stored by a server. 

 

2. Preliminaries 

2. 1 Notation 

We use the notation Rx S←  to mean “the element x  is chosen with uniform 

probability from the set S ”.  If A  is a algorithm, then ( )

1( , )Oy A x⋅← �  means that A  

has input 1,x �  , access to a oracle O , and the output of A  is assigned to y . Let 

[1.. ] {1, , }n n= � . 

2.2 Bilinear pairing 

Given a security parameter k , an efficient algorithm (1 )kPG  outputs 

( , , , , )Te G G g p , where G  is a cyclic group of a prime order p  generated by 
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g , 12 2k kp− < < . TG  is a cyclic group of the same order, and let : Te G G G× →  be an 

efficiently computable bilinear function with the following properties: 

1. Bilinear: ( , ) ( , ) ,a b abe g g e g g=  for all , pa b Z∈ . 

2. Non-degenerate: ( , ) 1
TG

e g g ≠  

3. Definitions 

3.1 Syntax of a multi-proof-of-retrievability scheme 

    A multi-proof-of-retrievability(MPOR) scheme consists of the following algorithms: 

(1 )kKg : Given a security parameter k , this randomized key-generation algorithm 

outputs a secret/public key pair ( , )sk pk . 

( , )St sk M : Given a secret key sk  and a file M  chosen by a client, this file-storing 

algorithm first encodes M  by  applying a rate- ρ  erasure code [2]  to obtain �M  such 

that any ρ  fraction of the encoded file �M  is sufficient to recover the original file M . 

Finally it outputs a authentication tag τ  and some auxiliary information aug , 

�( , ( , )) ( , )M aug St M skτ ← , where sk  is the secret key of the client. �M  and aug  will 

be stored on the server side. τ  and aug  will be used in the following MPOR protocol. 

The rest part of our MPOR scheme consist of the algorithms P (prover) and 

MV (verifier). The following notation is used to denote one interactive execution of our 

MPOR protocol between the algorithms P and MV : 

� �
1 1 1( ,{ } ) ( ,{ , },{ } ) ( , )n n

i i n i iMV pk P pk M M aug bτ = =〈 〉 → ⊥� �  

where pk  is the public key of the client who stores the encoded files � �
1{ , }nM M�  on 

the server side. Parameter n  determines the number of files that can be verified 

simultaneously. 1{( , )}ni i iaugτ =  are generated by the file-storing algorithm ( )St ⋅  for 

� �
1{ , }nM M�  respectively. The output of the verification algorithm MV  is bit b . b =1 

denotes that the verifier is convinced that the original files 1{ }ni iM =  are stored correctly by 

the prover. 

Correctness of our MPOR scheme requires that an honest server can always convince a 
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verifier of validity of the stored files. That is: 

for any ( , ) (1 )ksk pk Kg← , �
1{( , ( , )) ( , )}ni i i i iM aug St M skτ =← , we have 

� �
1 1 1( ,{ } ) ( ,{ , },{ } ) ( 1, )n n

i i n i iMV pk P pk M M aug bτ = =〈 〉 → = ⊥� �  

3.2 Soundness of multi-proof-of-retrievability protocols 

Soundness of MPOR protocols informally requires that if a prover can convince a 

verifier by passing the verification, then the original files 1{ }ni iM =  can ready for retrieval if 

needed. To formalize this point, an extraction algorithm is required to recover the original 

files 1{ }ni iM =  by interacting with the successful prover via the MPOR protocol. The 

following game 
, ( ,1 )sound n k

MPORExp A  will give the formal definition of soundness of MPOR 

protocols. 

, ( ,1 )sound n k

MPORExp A  

    Phase 1: The challenger C  generates a keypair ( , ) (1 )kpk sk Kg←  and provides 

pk  to A . 

    Phase 2: The adversary A  interacts with the challenger by making queries to a store 

oracle. The store query is handled by the oracle as follows. 

Store ( )iM   // iM  is a file chosen by A . 

Compute �( , ( , )) ( , )i i i iM aug St sk Mτ ← ; 

Return �( , ( , ))i i iM augτ ; 

     For some files 1, nM M�  queried to the store oracle who responds 1{( , )}ni i iaugτ =  

respectively, A  makes a query to a MPOR oracle, which is handled as follows. 

MPOR 1( , )nτ τ�   

The challenger C  runs an instance of the MPOR protocol with A  as follows: 

    1( ,{ , }) ( , )nC pk A bτ τ< >→ ⊥� �  

The challenger plays the role of a verifier during the above execution and outputs a bit 

b  to denote whether it is convinced that the original files are being stored by the adversary 

correctly.         

Return b ; 
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    At the end of phase 2, A  outputs the challenge set * *

1{ , , }nT τ τ= �  consisting of the 

tags returned by the store oracle for some queries 
* *

1 , , nM M�  respectively. Description of a 

prover program 
*P  is also provided by A . 

The prover program 
*P  is -admissibleε  if it can convincingly answer ε  fraction of 

MPOR queries, i.e., 
*

1Pr[ (( ,{ , }) ( 1, )]nMV pk P bτ τ ε< >→ = ⊥ ≥� � . Here the 

probability is over the coins of the verifier and the prover. 

Phase 3: We say a MPOR scheme is -soundε  if there exists an efficient extraction 

algorithm Extr  such that for every adversary A  who plays the above game and outputs  

the challenge tags 
* *

1{ , , }nτ τ�  returned by the store oracle for the queries 
* *

1 , , nM M�  

respectively and a -admissibleε prover program 
*P  at the end of phase 2, then 

,1i i n∀ ≤ ≤ , there exists an extraction algorithm Extr  who recovers the file *

iM  in 

expected polynomial time by interacting with 
*P  via the MPOR protocol. That is: 

* ( ) * * *

1,1 , ( ,{ , , })P

n ii i n Extr pk Mτ τ⋅∀ ≤ ≤ →�  occurs in expected polynomial time 

except with negligible probability. 

 

4. Our multi-proof-of-retrievability scheme 

    Let (SKg, SSig, SVer)∑ =  be a digital signature scheme. 

(1 )kKg : Generate a signing keypair ( , ) SKg(1 )kssk spk ←  by the key generation 

algorithm of ∑ . Choose R pZα ←  and compute v gα= . The secret key is sk = ( , )sskα . 

The public key is pk = ( , )v spk . 

( , )lSt sk M : Given a file lM  chosen by a client, this file-storing algorithm first 

chooses a random file-name lfn  from a large domain. The collision probability over file 

names is negligible when the domain is large enough. In the following, apply a erasure code 

to lM  to obtain �lM  and split �lM  into ln  message blocks 1{ }
lli i nm ≤ ≤ . Parse the secret 

key of the client as ( , )sk sskα←  and pick a random l pu Z← . Let 0lτ = || ||l l lfn n u  and 



 

8 

compute a signature 0lσ = 0SSig( , )lssk τ  by the signature-producing algorithm of ∑  and 

an authentication tag lτ = 0 0||l lτ σ .  For 1 li n≤ ≤ , it computes liaug = ( ( || ) )li
m

l lH fn i u α⋅ . 

The encoded file �lM  and 1{ } ln

li iaug =  will be stored on the server side.  

One interactive execution of our MPOR protocol between the algorithms P (prover) and 

MV (verifier) can be described as follows: 

    (1) First, the verifier MV  makes a MPOR-query Q  to the prover P : 

1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , ( , )l l R p lP Z fnλ= ← , {( , )}l jQ j v=  with distinct 

[1.. ]lj n∈  and each coefficient 
*

j R pv Z← , where pk  is the public key of the client, lfn  

is the file-name for a file lM  and ln  is the number of message blocks of the file lM . The 

size of each set lQ  is a fixed system parameter s .  

(2) Having received the query Q , the prover algorithm 

�
1 1 ,1( ,{ } ,{ } )

l

n

l l li l n i nP Q M aug= ≤ ≤ ≤ ≤  responds as follows:  

First it parses � 1{ }nl lM =  as blocks 1 ,1{ }
lli l n i nm ≤ ≤ ≤ ≤  respectively. In the following, 

compute: 

    lµ =
( , )j l

j lj

j v Q

v m
⊂

∑ , lσ =
( , )

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤   

1( , , , , )l nµ µ µ µ=
��

� � , 
1

l

n

l

l

λσ σ
=

= ∏  

The prover P  sends the response ( , )µ σ
��

 to the verifier. 

(3) Having received the response ( , )µ σ
��

, the verification algorithm  

1( ,{ , }, ( , ))nMV pk τ τ µ σ
��

�  proceeds as follows: 

First it parses pk = ( , )v spk  and the authentication tags lτ = 0 0||l lτ σ , 1 l n≤ ≤ .  

If :1l l n∃ ≤ ≤ , the signature verification algorithm 0 0SVer( , , )=0l lspk τ σ , then it 

outputs 0b = . Otherwise, parse 0lτ  as || ||l l lfn n u , 1 l n≤ ≤  and the vector µ
��
 as 

1( , , , , )l nµ µ µ� � . If the following equation holds, output 1b = . Otherwise output 0b = . 



 

9 

( , )e gσ =
1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

 

    It is easy to verify the correctness of our MPOR scheme as follows: 

    
1

l

n

l

l

λσ σ
=

= ∏ =
1 ( , )

( )j l

j l

n
v

lj

l j v Q

aug
λ

= ⊂

∏ ∏ =
1 ( , )

( ( ( || ) ) )lj j l

j l

n
m v

l l

l j v Q

H fn j u
λ α⋅

= ⊂

⋅∏ ∏  

      =
1 ( , )

( ( || ) )j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
1 ( , )

( )j lj l

j l

n
v m

l

l j v Q

u
λ α⋅ ⋅

= ⊂

∏ ∏  

      =
1 ( , )

( ( || ) )j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
( , )

1

( )
j lj

j v Qj l l

v mn

l

l

u
λ α⊂

⋅

⋅

=

∑
∏  

      =
1 ( , )

( ( || ) )j l

j l

n
v

l

l j v Q

H fn j
λ α⋅

= ⊂

∏ ∏
1

( )l l

n

l

l

u
µ λ α⋅

=

∏  

    The above result means  

    ( , )e gσ =
1 ( , ) 1

( ( ( || ) ) ( ) , )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u g
λ α µ λ α⋅ ⋅

= ⊂ =

∏ ∏ ∏  

          =
1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

Remark: The verifier chooses a MPOR query as: 

1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , ( , )l l R p lP Z fnλ= ← , {( , )}l jQ j v=  with distinct 

indices [1.. ]lj n∈  and each coefficient 
*

j R pv Z← . Let 
1

i

i n

N n
≤ ≤

= ∑ . The size of each set 

lQ  is a fixed system parameter s  such that ns N< .  

A vector notation for the s -element set {( , )}l jQ j v=  over indices { } [1.. ]l lI j n= ⊆  

is represented by a -N element vector ( )Nl pq Z∈
��

, such that ,l j jq v=  if 1l lj I N −∈ +  

and , 0l jq =  for all 1,1l lj I N j N−∉ + ≤ ≤ , where 1

1 1

l i

i l

N n−
≤ ≤ −

= ∑ , 

1l lI N −+ = 1{ : }l lj N j I−+ ∈ .  

Given a ns -element set 1
1

( ) [1.. ]l l
l n

I I N N−
≤ ≤

= + ⊆∪ , the query Q  can be regarded as 

chosen over the indices [1.. ]I N⊆ . The joint coefficient vector notation for the query Q  is 
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a -N element vector 
1

l

l n

q q
≤ ≤

= ∑
� ��

. Let 1, , Nc c
�� ���
�  be that canonical basis for ( )NpZ , 

1

( , )

1

l

j l

j j N

j v Q

l n

q v c
−+

∈
≤ ≤

= ⋅∑
� ������

. 

Recall that the honest response ( , )µ σ
��

 for the query Q  satisfies:  

    lµ =
( , )j l

j lj

j v Q

v m
⊂

∑  lσ =
( , )

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤   

1( , , , , )l nµ µ µ µ=
��

� � , 
1

l

n

l

l

λσ σ
=

= ∏  

We can view the message blocks of these n  files as a N n×  matrix H :  

1[ , , ]nH h h=
�� ���
� , 1 1 1

1(0 , ( , , ),0 )
i i

i l l i n

l

n n
T

l l lnh m m≤ ≤ − + ≤ ≤

∑ ∑
=

������� �������
��

� , where each column vector lh
��
 

corresponds to the message blocks of �lM  respectively. We can also equivalently denote µ
��
  

in the response by a vector q H⋅
�

, where q
�
 is the joint coefficient vector notation for the 

query Q . 

 

5. Security proofs 

We prove the security of our MPOR scheme by a series of games. Game 0 is exactly the 

same as 
, ( ,1 )sound n k

MPORExp A  with the following modification. 

The challenger initially sets a flag 0d =  and keeps a table of the store queries made by 

the adversary and its responses for these queries. Based on the table and one MPOR query Q , 

the challenger is able to determine the deterministic verification response ( , )µ σ
��

 returned 

by the honest prover algorithm.  

Having received the response � �( , )µ σ
��

 returned by the adversary behaving as a prover in 

one execution of our MPOR protocol 1( ,{ , }) ( , )nC pk A bτ τ< >→ ⊥� � , the challenger 

sets 1d =  if for all executions, the verification algorithm � �
1( ,{ , }, , )nMV pk τ τ µ σ

��
�  

outputs 1b = . Otherwise the challenger sets 0d = . Let iε  denote Pr[ 1]d =  in Game 

, 0i i ≥ . 

The above modification in Game 0 will not change the view of the adversary. 
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    Game 1 is almost the same as Game 0. The challenger keeps a list of authentication tags 

generated by itself when handling queries to the store oracle. If any tag submitted by the 

adversary can be verified as valid but is not on the list of tags generated by the challenger, the 

challenger aborts. The major modifications are represented by the following boxed 

statements.   

    Phase 1: The challenger C  picks an empty list sList and generates a keypair 

( , ) (1 )kpk sk Kg← , where sk = ( , )sskα , pk = ( , )v spk .  C  provides pk  to A .  

The adversary A  interacts with the challenger by making queries. The store and 

MPOR queries are handled as follows. 

Store ( )lM   // lM  is a file chosen by A . 

Compute � 1( , ,{ } ) ( , )ln

l l li i lM aug St sk Mτ = ← ; 

Parse lτ  as 0 0||l lτ σ  and 0sList sList { }lτ← ∪  

Return � 1( , ,{ } )ln

l l li iM augτ = ; 

 

MPOR 1( , )nτ τ�   

If 1{ , }l nτ τ τ∃ ∈ �  such that lτ = 0 0||l lτ σ  can be verified as a valid signature and 

0 sListlτ ∉ , the challenger aborts. Otherwise C  runs an instance of MPOR protocol with 

A : 1( ,{ , }) ( , )nC pk A bτ τ< >→ ⊥� � .      

Return b ; 

 

Finally, A  outputs the challenge set * *

1{ , , }nT τ τ= �  consisting of tags returned by 

the store oracle for some queries 
* *

1 , , nM M�  respectively. The description of a prover 

program 
*P  is also provided by A .  

If 
* * *

1{ , , }l nτ τ τ∃ ∈ �  such that 
*

lτ =
* *

0 0||l lτ σ  can be verified as a valid signature and 

*

0 sListlτ ∉ , the challenger aborts. The other part of Game 1 is kept unchanged. 

Claim 1:  0 1| |ε ε−  is negligible under the assumption that the signature scheme ∑  is 

existential unforgeable [11] under the chosen message attack. 

Proof: It is obvious that Game 0 and Game 1 proceed identically unless the event 1E  “any 

tag submitted by the adversary can be verified as a valid signature but is not on the list of 
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authentication tags generated by the challenger” occurs. Hence 0 1 1| | Pr[ ]Eε ε− ≤ . But if this 

event happens with non-negligible probability, we can construct an adversary B  against the 

unforgeability of the signature scheme ∑ . 

B  takes a signing public key SKg(1 )kspk ←  as input and is given access to a 

signing oracle ( )sskSSig ⋅ . B  picks a random α  and sets the secret key sk = ( , )α ⊥ , the 

public key pk = ( , )v g spkα= . It is clear that B  is able to simulates the view of A  in 

Game 1 perfectly with the help the signing oracle.   

If the event 1E  happens, B  simply outputs the tag submitted by A  as its forgery 

against the signature scheme ∑ . 

 

 

Game 2 is almost the same as Game 1. The challenger in Game 2 verifies the response 

from the adversary during each execution of our MPOR protocol in a way different from the 

standard verification algorithm ( )MV ⋅ .  

Recall that the challenger is able to determine the deterministic verification response 

( , )µ σ
��

 returned by the honest prover algorithm ( )P ⋅  by the modification in Game 1, given 

the corresponding MPOR query. Let � �( , )µ σ
��

 be the response returned by the adversary in 

one execution of our MPOR protocol : 1( ,{ , }) ( , )nMV pk A bτ τ< >→ ⊥� � . The 

challenger sets 1d =  and aborts if there is at least one execution � �
1( ,{ , }, , )nMV pk τ τ µ σ

��
�  

outputs 1b =  and �σ σ≠ .  

Claim 2:  2 1| |ε ε−  is negligible under the CDH assumption. 

Proof: Game 2 is distinct from Game 1 only when the response from the adversary in one 

execution of our MPOR protocol can pass the verification but is not equal to the correct 

response from the honest prover algorithm.  

Let 2E  denote the event “The adversary in one execution of our MPOR protocol can 

pass the verification but �σ σ≠ ”. Game 2 is distinct from Game 1 only when 2E  happens. 

Hence 2 1 2| | Pr[ ]Eε ε− ≤ . If 2Pr[ ]E  is non-negligible, we can construct a simulator that 

solves the CDH problem in the random oracle model. 

The simulator S  takes an instance ( , , )g g h gα β=  of the CDH problem as input and 
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simulates the environment of Game 2 for the adversary A  as follows. 

    S  generates a signing key pair by running ( , ) SKg(1 )kssk spk ←  and sets v gα←  , 

which implicitly defines the secret key sk = ( , )sskα  and the public key pk = ( , )v spk . S  

provides pk  to A . 

To respond each query issued to the random oracle ( )H ⋅ ,  S  first parses it as ||lfn i  

and programs the response of ( )H ⋅  as we will describe later. 

To respond each query lM  issued to the store oracle,  S  first chooses a random 

file-name lfn , encodes lM  to obtain �lM  and splits it into ln  blocks 1{ }
lli i nm ≤ ≤ . S  

sets , ,l l

l l l R pu g h Z
β γ γ β← ← . S  picks ,1li R p lr Z i n← ≤ ≤  and programs the response 

of ( || )lH fn i   as ( || ) ( )li l li l lir m m

lH fn i g g h
β γ⋅ ⋅= . At this point, S  computes 

,1 ,li laug i n≤ ≤  as follows: 

liaug = ( ( || ) )li
m

l lH fn i u α⋅ = (( ( )) ( ) )li l li l li l l lir m m m
g g h g h

β γ β γ α⋅ ⋅ ⋅  

     = ( )li
r

g α
= ( ) lirgα

 

S  computes lτ  according to the specification of the file-storing algorithm ( )St ⋅  via 

the signing key and returns � 1( , ,{ } )ln

l l li iM augτ =  to A . S interacts with A  until the event 

2E  happens.  

Assume that 1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , ( , )l l lP fnλ= , {( , )}
il i lQ l v=  is the 

MPOR query issued by the verifier in one execution of our MPOR protocol for the encoded 

files � �
1, nM M� . Let the response returned by the adversary as a prover to this query be 

� �,µ σ
��

. Let ( , )µ σ
��

 be the deterministic response returned by the honest prover algorithm for 

the query Q , which satisfies the following: 

1( , , , , )l nµ µ µ µ=
��

� � , 
1

l

n

l

l

λσ σ
=

= ∏  
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   lµ =
( , )j l

j lj

j v Q

v m
⊂

∑  lσ =
( , )

j

j l

v

lj

j v Q

aug
⊂

∏ , 1 l n≤ ≤   

( , )e gσ =
1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

When 2E  happens, � �,µ σ
��

 can also pass the verification and the following hold: 

� � � �
1( , , , , )l nµ µ µ µ=

��
� �   

�( , )e gσ =
�

1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

Let �σ σ σ∆ = − , � ,1l l l l nµ µ µ∆ = − ≤ ≤ . If �1 , l ll n µ µ∀ ≤ ≤ = , it follows that 

�σ σ=  according to the verification equation. Consequently, 0lµ∆ ≠  holds for at least one 

position l  by the assumption �σ σ≠ . We derive the following by division: 

 �( , )e gσ σ =
1

(( ( ), )l l

n

l

l

e u v
µ λ⋅

=

∏ 	
=

1

(( (( ) ), )l l l l

n

l

e g h v
β γ µ λ⋅

=

∏ 	
 

Rearranging terms yields � 1(( ) , )
l l l

l ne v g
β λ µ

σ σ ≤ ≤

− ⋅ ⋅∑
⋅ =

	

1( , )
l l l

l ne h v
γ λ µ

≤ ≤
∑ 	

. 

As ,v g h gα β= = , we see that the solution gαβ
 to the CDH problem can be written 

as � 1 1

1

(( ) )
l l l l l l

l n l nv
β λ µ γ λ µ

σ σ ≤ ≤ ≤ ≤

− ⋅ ⋅∑ ∑
⋅

	 	

 unless 
1

l l l

l n

γ λ µ
≤ ≤

∑ 	  is equal to zero. 

For any fixed sequence 1{ }nl lµ =	  that is not all zero, the probability that 

1

0l l l

l n

γ λ µ
≤ ≤

=∑ 	  is 1 p  since each lγ  chosen by the simulator is uniformly distributed 

over pZ  and hidden from the adversary’s view since l l

lu g h
β γ=  reveals no information of 

lγ .  Hence the success probability of S  solving the CDH problem is at least 

2Pr[ ] 1 .E p−      

               

    The challenger in Game 3 verifies the response from the adversary during each execution 

of our MPOR protocol in a way different from Game 2. Given a MPOR query Q , let 

( , )µ σ
��

 be the deterministic response returned by the honest prover algorithm for the query 
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Q  and � �( , )µ σ
��

 be the response returned by the adversary in one execution of our MPOR 

protocol. The challenger parses �µ
��
 as � � �

1( , , , , )l nµ µ µ� �  and aborts if  �, l ll µ µ∃ ≠ , 

where 
( , )

,1
j l

l j lj

j v Q

v m l nµ
⊂

= ≤ ≤∑ .  

Claim 3:  3 2| |ε ε−  is negligible under the discrete logarithm assumption. 

Proof: Game 3 is distinct from Game 2 only when the response from the adversary in one of 

the MPOR protocol executions may cause the challenger to abort as specified. Let 3E  

denote the event “The adversary behaving as a prover in one execution of our MPOR protocol 

can pass the verification as specified but �

( , )

, ,1
j l

l j lj

j v Q

l v m l nµ
⊂

∃ ≠ ≤ ≤∑ ”.  

    Game 3 is distinct from Game 2 only when 3E  happens. Hence 3 2 3| | Pr[ ]Eε ε− ≤ . If 

3Pr[ ]E  is non-negligible, we can construct a simulator that solves the discrete logarithm 

problem. 

The simulator S  takes an instance ( , )g h g β=  of the discrete logarithm problem as 

input and simulates the environment of Game 3 for the adversary A  as follows. 

S  generates a signing keypair ( , ) SKg(1 )kssk spk ←  and picks R pZα ← . Let  

v gα← , which defines the secret key sk = ( , )sskα  and the public key pk = ( , )v spk . 

S provides pk  to A . 

To respond each query lM  issued to the store oracle,  S  first chooses a random 

file-name lfn  from a large domain, encodes lM  to obtain �lM  and splits it into ln  

blocks 1{ }
lli i nm ≤ ≤ . S  sets , ,l l

l l l R pu g h Z
β γ γ β← ← . 

S  interacts with the adversary until the event 3E  happens.  

Assume 1 1{ , , }n nQ pk P Q P Q= ∪ ∪ � ∪ , ( , )l l lP fnλ= , {( , )}
il i lQ l v=  is the MPOR 

query issued by the verifier in one execution of our MPOR protocol for the files � �
1, nM M� . 

The response returned by the adversary to this query is � �( , )µ σ
��

. Let ( , )µ σ
��

 be the 

deterministic response returned by the honest prover algorithm for the query Q .  
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According to the proof in Game 2, we know that �σ σ=  except with negligible 

probability ( )negl λ . Under this assumption, we derive the following according to the 

verification equation: 

 ( , )e gσ =
1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

�( , )e gσ =
�

1 ( , ) 1

( ( ( || ) ) ( ), )j l l l

j l

n n
v

l l

l j v Q l

e H fn j u v
λ µ λ⋅

= ⊂ =

⋅∏ ∏ ∏  

We conclude 
�

1 1

( ) ( )l l l l

n n

l l

l l

u u
µ λ µ λ⋅ ⋅

= =

=∏ ∏  by taking �σ σ= , which means 

1 1

1 ( ) (( ) )l l l l l l

n n

l

l l

u g h
µ λ β γ µ λ⋅ ⋅

= =

= =∏ ∏	 	
 

Let � ,1l l l l nµ µ µ∆ = − ≤ ≤ . 0lµ∆ ≠  holds for at least one position l  by the 

assumption �

( , )

, ,1
j l

l j lj

j v Q

l v m l nµ
⊂

∃ ≠ ≤ ≤∑ .  

If 
1

0modl l l

l n

pγ λ µ
≤ ≤

≠∑ 	 , the discrete logarithm 1

1

( )mod
l l l

l n

l l l

l n

p

β λ µ

β
γ λ µ

≤ ≤

≤ ≤

= −
∑

∑

	

	
 

because we have 

1

1

( )

l l l

l n

l l l

l nh g

β λ µ

γ λ µ
≤ ≤

≤ ≤

−

∑

∑
=

	

	

.  

Similarly, for any fixed sequence 1{ }nl lµ =	  that is not all zero we can argue that the 

probability that 
1

l l l

l n

γ λ µ
≤ ≤

∑ 	  is equal to zero is 1 p . Hence the success probability of S  

solving the discrete logarithm problem is at least 3Pr[ ] 1 ( ).E p negl λ− −    

Response of the adversary in Game 3 is forced to be the same as that output by the 

honest prover algorithm of our MPOR protocol. A well-behaved prover program 
*P  causes 

the verification algorithm ( )MV ⋅  to accept in each execution of MPOR protocol by 

responding with ( , )µ σ
��

 computed by the honest prover algorithm. Claims 1-3 show that 

any adversary that wins in the game 
, ( ,1 )sound n k

MPORExp A  is well-behaved except with 

negligible probability. In the following, we show that extraction will succeed by interacting 
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with a well-behaved prover program. 

 

Definition 1: Given a MPOR query Q  as input, a polite prover program �P  outputs either 

the correct response computed by the honest prover algorithm or a special symbol ⊥ . If �P  

outputs the correct response with probability at least ε , then we call �P  a -ε polite prover 

program.  

A -ε well-behaved prover program 
*P  can be transformed into -ε polite prover 

program �
*

( )
P

P ⋅   with black box access to *P .  

Having received a MPOR query Q  from a verifier, �P  plays the role of verifier to 

interact with 
*P  by forwarding the query Q  to *P . Having received the response ( , )µ σ

��
 

from 
*P , �P  outputs ( , )µ σ

��
 if and only if the verification algorithm  

1( ,{ , }, ( , ))nMV pk τ τ µ σ
��

�  outputs 1; otherwise �P  outputs ⊥ . �P  provides *P  with 

fresh randomness and rewinds it for each interaction. As 
*P  is -ε well-behaved prover 

program, �P  is -ε polite. Note that the tags 1{ , }nτ τ�  that are responses to the store 

queries can help �P  to verify the correctness of ( , )µ σ
��

 returned by 
*P . 

Let 
1

i

i n

N n
≤ ≤

= ∑ . For a subspace Ψ  of ( )NpZ , denote the dimension of Ψ  by 

dimΨ . Let FreeΨ  be the indices of the canonical basis vectors { } ( )Ni pc Z∈
��

 included in 

Ψ . In other words, FreeΨ ={ [1.. ] : }ii N c∈ ∈ Ψ
��

.  

Lemma 1 [ 16, Claim 4.6]: For a subspace Ψ  of ( )NpZ , and let I  be an -ns element 

subset of [1.. ]N . If FreeI ⊄ Ψ , then a random MPOR query Q  over indices in I  with 

its coefficient vector q∈ Ψ
�

 occurs with probability at most 1 ( 1)p − . 

Lemma 2 [16, Claim 4.7]: Let #(Free ) mΨ = . For a random -ns element subset I  of 

[1.. ]N , the probability that FreeI ⊆ Ψ  is at most ( 1)ns nsm N ns− + . 

Theorem 1: Suppose that �P  is a -ε polite prover program and let 
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1 ( )

1 ( 1)

ns

ns

N

p N ns

ρ
ω = +

− − +
.   If ε ω> , for each file �lM , 1 l n≤ ≤ , the expected time to 

recover at least ρ  fraction of it is 2 2 2((1 ) )
nN

O N t n
ρ

ε
ε ω

+ ⋅ +
−

, where t  is the number of 

MPOR queries issued to the prover program by the extractor during one round of interaction. 

Proof: The t  MPOR query-response pairs during one round of interaction with the prover 

program �P  contribute the following to the extractor’s knowledge of the encoded files 

� �* *

1 , , nM M� :  

                       
(1) (1) ( ) ( ), , t tq H q Hµ µ⋅ = ⋅ =
���� ���� ���� ����

�   

H  is the matrix constructed from the encoded files 
� �* *

1 , , nM M�  , which is described 

at the end of Section 4. We rewrite the above as V H W⋅ =  where V  is the t N×  matrix 

whose row vectors are the t  coefficient vectors ( )

1{ }i t

iq =

����
 of the MPOR queries and W  is 

the t n×  matrix whose row vectors are t  corresponding MPOR responses ( )

1{ }i t

iµ =

����
.     

The matrix V  can be reduced to a matrix G =U V⋅  in the row-reduced echelon form, 

where U  is a t t×  matrix with nonzero determinant computed by applying Gaussian 

elimination to V . 

The extractor’s knowledge during the above interaction can be represented by the 

matrixs , , ,G U V W , where the matrix G  in the row-reduced echelon form. The subspace 

generated by the matrix G  is denoted by Ψ . The extractor’s knowledge space is initially 

empty. The extractor repeats the following behavior until |Free | NρΨ ≥ . 

The extractor chooses a random MPOR query Q  over the indices [1.. ]I N⊆  with 

coefficient vector q
�
 by its random coins and runs the -ε polite �P  on Q . �P  answers the 

correct response µ =
��

q H⋅
�

 with probability ε . We consider the following three types: 

1. q∉ Ψ
�

:  

For queries of this type, the extractor extends its knowledge as follows: 

It adds the row vector q
�
 to the current matrix V , obtaining 

/V  and adds the response 

vector µ
��
 to the existing matrix W , obtaining 

/W .  It also computes 
/ / /G U V= ⋅  in the 

row-reduced echelon form. 
/ / / /, , ,G U V W  represent the update of the extractor’s 
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knowledge.  

2. q∈ Ψ
�

 but FreeI ⊄ Ψ : 

3.  FreeI ⊆ Ψ : 

For queries of type 2 or 3, the extractor does not update its knowledge and continue its 

current interaction with the prover program �P . 

A query of type 1 increases dimΨ  by 1. The extractor’s interaction with �P  is 

guaranteed to terminate when the number of queries of type 1 is above Nρ . 

By Lemma 1, queries of type 2 make up at most 1 ( 1)p −  since  

Pr[  is type 2] Pr[ Free ]
Q Q
Q q I= ∈ Ψ ∧ ⊄ Ψ

�
 

Pr[ | Free ] Pr[ Free ] Pr[ | Free ] 1 ( 1)
Q Q Q
q I I q I p= ∈ Ψ ⊄ Ψ ⋅ ⊄ Ψ ≤ ∈ Ψ ⊄ Ψ ≤ −
� �

 

Assume #(Free ) mΨ = . For a random -ns element subset I  of [1.. ]N , the 

probability that FreeI ⊆ Ψ  is at most ( 1)ns nsm N ns− +  by Lemma 2. By the 

convention set for the extractor, m Nρ≤ , this quantity is at most ( ) ( 1)ns nsN N nsρ − + . 

Therefore the fraction of queries of type 2 or 3 is at most 
1 ( )

1 ( 1)

ns

ns

N

p N ns

ρ
ω = +

− − +
. 

As �P  is  a -ε polite prover program, �P  is able to answer at least ε  fraction of the 

queries. Therefore, a random MPOR query chosen by the extractor will be of type 1 with 

probability at least ε ω− . To yield Nρ  queries of type 1, the extractor will carry out 

( )
N

O
ρ

ε ω−
 interactions with �P  in this round. 

As the matrix G  in the row-reduced echelon form, it is possible to determine whether a 

query Q  is of type 1, to which �P  has responded. The extractor adds the coefficient vector 

q
�
 of Q  to the current matrix V  and applies Gaussian elimination to V  to yield G , 

which takes 
2( )O N  time [8]. If the newly added row is not all zeros, then q

�
 is of type 1. 

As Gaussian elimination need only be applied to at most ε  fraction of the queries responded 

correctly by �P , the running time of the extractor in this phase is 2((1 ) )
N

O N
ρ

ε
ε ω

+ ⋅
−

. 

On the other hand, when this phase has finished, the knowledge of the extractor consists 
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of the matrixes , , ,G U V W  such that V H W⋅ = , G U V= ⋅ . G  is in the row-reduced 

echelon form. The free dimension of the subspace Ψ  spanned by G  is Nρ  by the 

conventions set for the extractor. For each Freei∈ Ψ , there must be a row in G , say row t , 

that equals some canonical basis vector ( )Ni pc Z∈
��

 since G  is in the row-reduced echelon 

form. Multiplying both sides of   V H W⋅ =  by U , we obtain  G H U W⋅ = ⋅ .  

We define a set 
1 1 1

{ : Free , }l i i

i l i l

G i i n i n
≤ ≤ − ≤ ≤

= ∈ Ψ < ≤∑ ∑  for each index l , 1 l n≤ ≤ . 

As the number of indices Freei∈ Ψ  is Nρ , there exists at least one index l  such that  

| |lG  is at least lnρ  by the pigeonhole principle. Recall that 1[ , , ]nH h h=
�� ���
� , 

1 1 1

1(0 , ( , , ),0 )
i i

i l l i n

l

n n
T

l l lnh m m≤ ≤ − + ≤ ≤

∑ ∑
=

������� �������
��

� . The inner products between these canonical vectors  

,i lc i G∈
��

 and the corresponding column vector lh
��
 will recover at least ρ  fraction of the 

encoded file 
�*

lM , which can extracted from the product U W⋅ . The computation will takes 

2( )O t n  time [8]. 

In the following, we analyze the probability lp  of an event lF  “ | |lG ≥ lnρ  for the 

given index l ,1 l n≤ ≤ ”. 

At first, we will analyze the probability 
/

lp  of an event “ | |lG = lnρ  for the given 

index l ,1 l n≤ ≤ ”.  

As mentioned above, we assume that each file’s size is of the same magnitude. For ease 

of analysis, we further assume 1 lb n n= = =� . For instance, these files of the same 

magnitude can be redundantly padded before encoding.  

The probability 
/

lp
( ) ( )

l l

l l

n N n N b nb b nb

n N n N b nb b nbρ ρ ρ ρ ρ ρ

− −         
= =         

− −        
 

The probability lp =
b j nb

b nb j nb

j nb j nbρ ρ ρ ρ≤ ≤

−    
    

−    
∑ , only depends on the values of 

, ,n bρ  and is independent of the choice of l .  

As 1Pr[ , , ] 1nF F∨ ∨ =� , 1

1

1 Pr[ , ]
n

n l l

l

F F F n p
=

= ∨ ∨ ≤ = ⋅∑�  by the union bound. We 
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know that 
1

Pr[ ]lF
n

≥ . Hence the extractor can recover at least ρ  fraction of the encoded 

file 
�*

lM  with probability at least 1 n  during this phase. This means at least ρ  fraction of 

the file 
�*

lM  can be recovered by running the extractor algorithm n  rounds on average, 

who rewinds the -ε polite prover �P  with fresh coins before each interaction.   

In conclusion, for each file 
�*

lM , 1 l n≤ ≤ , the expected time to recover at least ρ  

fraction of it is 
2 2 2((1 ) )

nN
O N t n

ρ
ε

ε ω
+ ⋅ +

−
. As 

�*

lM  is redundantly encoded by erasure 

codes [2] such that any ρ  fraction of the �*

lM  is sufficient to recover the original file 
*

lM . 

The original file 
*

lM  is guaranteed to be recovered in this case. 

 

6. Performance analysis 

We evaluate the performance of the proposed MPOR protocol and that of the POR 

protocol [16] in terms of the required communication and computational cost to verify 

n  files stored on the server side. The result is stated in Table 1, 2. Pair denotes one 

pairing operation. ( )nMExp G  denotes one general multi-exponentiation 1

1
nee

ng g�  

over a group G . The size of each set lQ  is assumed to be a fixed s  in both schemes. For 

ease of comparison, we assume that there is only one sector per each encoded message block 

in the POR protocol [16]. 

The advantage of our MPOR protocols lies in the fact that the number of pairing 

operations computed by the verifier is independent of the parameter n . In addition, 

length of the response from a prover is further reduced by aggregating the responses 

from the prover.  

Nevertheless, the soundness of our MPOR protocol only satisfies a relatively weak 

security notion under the assumption that each file’s size is of the same magnitude. One 

invocation of the extractor algorithm can only guarantee that at least one file among those n  

files can be recovered. Our analysis shows that each file can be extracted in expected 

polynomial time under our assumption on the size of processed files. 
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7. Conclusion 

Proof-of-retrievability protocols can help a client to be assured of the availability of files 

stored by a server.  H. Shacham et al. [16] strengthened the security model for POR 

protocols by allowing an extractor black-box access to a prover program. In addition, they 

presented a POR protocol with public verifiability based on a homomorphic authenticator 

derived from BLS short signature. When using their POR protocol with public verifiability to 

verify the availability of multiple files separately, the number of pairing operations computed 

by a verifier is linear with the number of files. To handle this issue, we extend the work in [16] 

by introducing a new notion called multi-proof-of-retrievability. Our MPOR protocol with 

public verifiability allows one verifier to verify the availability of n  files stored by a server 

in one pass, while the computational overhead of a verifier in our MPOR scheme is constant, 

independent of the parameter n . Analysis of our MPOR protocol shows that each file can be 

extracted in expected polynomial time under certain restriction on the size of processed files.  
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Table 1. Computational overhead of a verifier  

Cost for verifying n  files   

Scheme 
Pairing Exponentiation 

POR protocol 

 [16] 

2n  12 ( )sn MExp G−⋅  

Our MPOR 

protocol 

2  1( )sn MExp G−⋅ +
1( )nMExp G−

 

 

Table 2. Length of the response from a prover 

 

Scheme 

 

Total bit length of the n  responses from the prover 

POR protocol 

 [16] 
(| | | |)pn Z G⋅ +  

Our MPOR 

protocol 
(| |) | |pn Z G⋅ +  

 


