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Abstract

When outsourcing computations to the cloud or other
third-parties, a key issue for clients is the ability to verify
the results. Recent work in proof-based verifiable com-
putation, building on deep results in complexity theory
and cryptography, has made significant progress on this
problem. However, all existing systems require compu-
tational models that do not incorporate state. This lim-
its these systems to simplistic programming idioms and
rules out computations where the client cannot material-
ize all of the input (e.g., very large MapReduce instances
or database queries).

This paper describes Pantry, the first built system that
incorporates state. Pantry composes the machinery of
proof-based verifiable computation with ideas from un-
trusted storage: the client expresses its computation in
terms of digests that attests to state, and verifiably out-
sources that computation. Besides the boon to expres-
siveness, the client can gain from outsourcing even when
the computation is sublinear in the input size. We de-
scribe a verifiable MapReduce application and a que-
riable database, among other simple applications. Al-
though the resulting applications result in server over-
head that is higher than we would like, Pantry is the first
system to provide verifiability for realistic applications
in a realistic programming model.

1 Introduction
This paper addresses a fundamental problem in systems
security: how can a local computer verify the correctness
of a remotely executed computation? A motivating appli-
cation is verifiable MapReduce; more generally, we are
interested in verifiable cloud computing, including com-
putations that involve verifiable database queries. Verifi-
cation in these examples is important, to guard against
corrupted data or incorrect execution; these faults can be
caused by many things (bugs, misconfiguration, operator
error, malice, etc.).

One possible approach is via replication [3, 10, 36],
but this assumes that replica failure is uncorrelated or at
least can be bounded. Attestation [41, 42] provides an-
other way to build protocols for this problem, but it re-
quires a chain of trust rooted in the hardware manufac-
turer, which may be inconsistent with the proposed ap-
plications above. Other possible solutions are tailored to
particular applications [18, 49, 51].

In principle, an attractive approach is to have the
performing computer return the results along with a
proof that the results were computed correctly. In fact,
recently there has been a flurry of work on verifi-
able computation that builds on powerful theoretical
tools—probabilistically checkable proofs [4, 5], interac-
tive proofs [22, 23, 33, 48], and cryptographic proto-
cols [20, 26, 29, 30]—to realize a proof-based approach
in built systems [12, 40, 43–46, 50]. In these setups, the
client performs a probabilistic verification of the proof;
if the computation was done correctly, the client accepts,
otherwise, the client rejects with high probability.

The appeal of these protocols is that they make only
cryptographic assumptions and apply to general-purpose
computations that can be expressed as constraints (which
are generalized circuits; see Section 2). Furthermore, the
best of these systems are not so far from practical, pro-
vided we amortize the overhead of verification by batch-
ing many identical computations (with potentially differ-
ent inputs) together.

On the one hand, the batched model is well-suited to
typical cloud computing applications on enormous data
sets. On the other hand, none of these systems allows
a notion of state or storage: the client must have all of
the input, the computation cannot use memory and the
computation must be free of side effects.1 In particular,
these limitations rule out MapReduce and would require
a computation that involved a remote database to materi-
alize the entire database at the client.

This paper introduces a system called Pantry that pro-
vides verifiable computations with state. Specifically,
Pantry provides a model of verifiable computation that
includes a block store accessed via put/get. Using these
primitives, we build a number of applications on top
of Pantry, including verifiable MapReduce and a simple
searchable database that supports a subset of SQL.

Pantry’s top-level innovation is to marry the emerg-
ing approach to side-effect free verifiable computation
based on complexity theory with the hash-based stores
used in untrusted storage [14, 17, 32]. The key insight
is that there exist suitable hash functions that are well-
suited to being computed verifiably. We should note that
the idea that something like this can be done appears to
have been folklore in the theory community for a long
time; the hard work of Pantry has been to work out the

1Recent work [6] addresses these issues in theory, but we are not aware
of an implementation.
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details and build a system. Specifically, Pantry makes the
following concrete contributions:
1. Pantry enhances the computational model of state

of the art systems for verifiable computation with a
storage primitive (§3). For the programmer, Pantry
exposes the interface of PutBlock/GetBlock, which
operates over content hash blocks: blocks that are
named by a cryptographic digest, or hash, of their
contents. Such blocks are used extensively in work
where clients leverage untrusted storage servers [14,
17, 32]; in Pantry, by contrast, the client does not re-
ceive the blocks themselves, though they are accessi-
ble within the computation.

2. Based on PutBlock and GetBlock, Pantry provides a
framework for verifiable MapReduce (§4). Pantry’s
MapReduce traffics in digests rather than filenames:
the input is digests of the respective mappers’ inputs,
and the output is a set of digests for the results. How-
ever, our framework provides the programmer with
an interface nearly identical to the standard idiom:
the programmer writes C code for the mappers and
reducers.

3. Pantry also provides a simple verifiable database ap-
plication that supports a (small) subset of SQL (Cas-
sandra’s CQL [1]). To do this, we develop general-
purpose storage abstractions on top of PutBlock and
GetBlock: a simple RAM and a searchable tree (§5).
These abstractions are built from Merkle tree [37]
structures. We expose these abstractions to the C pro-
grammer, using our C-to-constraints compiler. The
result is that queries against these data structures
(range queries, etc.) are performed verifiably even
though the client does not have the input locally.

4. We describe an extension to support computations
where the remote database contains information that
the server wishes to keep private (§6).

To evaluate the system (§8), we experiment with the
basic primitives, we run MapReduce on a variety of real-
istic sample computation (e.g., nearest neighbor calcula-
tion and string search), and we run our database queries
on a sample database with roughly 32K rows. Although
the overhead for the prover is too high, we find a number
of input regimes in which the verifier can save work.

Summarizing, Pantry is the first built system for verifi-
able computation that offers a computational model with
state. The presence of state broadens the range of sup-
ported computations to include those that interact with
RAM, those with side-effects, and those where the client
does not have all the input. In particular, Pantry is the first
system where the client can verify computations based
on a digest of the input. This allows verification costs to
be sublinear in the input to the computation, removing a
central restriction on the regimes of applicability of prior

work. One of the particularly attractive aspects of Pantry
is that our main application, verifiable MapReduce, is
perfectly suited to the batching amortization necessary
for the client to save work (§2).

To be sure, Pantry is not quite ready for practical use.
The biggest issue is that the overhead for the server re-
mains too high, which restricts our evaluation to smaller
scales than would occur in real applications. Also, the
database applications are somewhat unrealistic since we
do not handle multi-user access. Nonetheless, in contrast
to prior verifiable computation systems, Pantry supports
realistic sample computations that are representative of
actual applications of cloud computing.

2 Background and tools
In this section we describe the framework in which we
work and the machinery on which we build. This frame-
work is similar to that of prior work [40, 44, 52] and is
closest to Zaatar [44], which is an interactive protocol.
Our description below is influenced by [44, §2] and [52,
§2]; see these sources for further detail.

2.1 Overview of the base machinery

Our base framework provides the following. A client,
or verifier V , sends a description of a computation Ψ
(for instance, a program in a high-level language) to
a server, or prover P . V also sends a batch of differ-
ent inputs x(1), . . . , x(β) to P , who is expected to run
Ψ on each of those inputs; that is, P returns a batch
of outputs y(1), . . . , y(β), and if P computed correctly,
y(j) = Ψ(x(j)) for j ∈ {1, . . . ,β}. We call each invo-
cation of Ψ in the batch an instance. (Note that P is an
abstraction and could represent multiple machines, as in
our MapReduce application in Section 4.)
V then engages P in an interactive protocol that al-

lows V to check whether the server computed correctly.
This protocol assumes a standard computational bound
on P (for instance, that P cannot break a cryptographic
primitive). However, the protocol does not make other
assumptions about P; its guarantees hold regardless of
P’s behavior. These guarantees are probabilistic, and the
probability is over V’s random choices:

• Completeness. If y(j) = Ψ(x(j)) for j ∈ {1, . . . ,β},
then if P follows the protocol, Pr{V accepts} = 1.

• Soundness. If for any j ∈ {1, . . . ,β}, y(j) 6= Ψ(x(j)),
then Pr{V rejects} > 1 − ε, where ε can be made
small.

The details of costs are in Section 2.3. A summary
is that the protocol brings substantial overhead for P .
Also, V must incur a setup cost per batch; given a large
enough batch size (thousands or tens of thousands for
certain computations; see [44, §5]), V gains from using
the framework (versus executing the β instances itself).
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Figure 1—Base machinery for allowing a verifier V to verify the purported outputs of a computation Ψ performed by a prover
P on different inputs x(1), . . . , x(β) (throughout, superscripts denote different instances of the same computation). Note that the
prover could be distributed (each instance j could execute on a different machine). Although computation need not happen in batch,
verification cannot begin until V has all y(j). Verification is a three-step process. Step À: V and P compile Ψ to constraints C.
Step Á: P produces satisfying assignments z(1), . . . , z(β) to C(X=x(1), Y=y(1)), . . . , C(X=x(β), Y=y(β)), respectively. Step Â: P
uses complexity-theoretic and cryptographic machinery to convince V that P holds satisfying assignments. V’s querying work is
reused across all instances in the batch.

2.2 Details of the base machinery

Verifiably outsourcing a computation is a three-step pro-
cess, outlined in Figure 1. This section details these three
steps, assuming one instance (so no batching). The next
section revisits batching, and considers expressiveness
and limitations.

(1) Ψ is represented as constraints. The programmer
begins by writing the computation, Ψ, in a high-level lan-
guage. In our current framework, this language is a sub-
set of C (see Section 2.3 for details). A compiler trans-
forms a program in this language to a set of constraints,
as we now detail.

In our context, a set of constraints is a system of equa-
tions in variables (X, Y , Z), over a large finite field, F;
we choose F = Fp (the integers mod a prime p), where
p is 128 or 192 bits. Each constraint has total degree 2,
so each summand in a constraint is either a variable or a
product of two variables. Variable X represents the set of
input variables, and variable Y represents the set of out-
put variables; for now, we assume that each of these sets
has one element.

As notation, let C(X=x, Y=y) mean C with variable X
bound to x and Y bound to y; notice that C(X=x, Y=y)
is a set of constraints over the variables Z. If for some z,
setting Z=z makes all constraints in C(X=x, Y=y) hold
simultaneously, then C(X=x, Y=y) is said to be satisfi-
able, and z is a satisfying assignment.

The compiler represents Ψ as a set of constraints C
such that: for all x, y, we have that C(X=x, Y=y) is sat-
isfiable if and only if y = Ψ(x). For example, add-1 is
equivalent to the following constraints [9]:

{Z − X = 0, Z + 1− Y = 0}.

Given Ψ represented as constraints C, given input x,
and given purported output y, verification means per-
suading V that P holds an assignment z that satisfies
C(X=x, Y=y); the existence of such a z implies y =
Ψ(x). This brings us to the next two steps.

(2) P computes and identifies a satisfying assignment.
To identify a satisfying assignment, P goes constraint
by constraint, “evaluating” each one to get a binding
for each variable. Since most constraints introduce only
one new variable, this process is straightforward (see the
add-1 example above). But for some constraints, P must
do additional work. An example is as follows; this will
give some intuition for the techniques that we use in Sec-
tion 3. Consider a code snippet, with a != test [9]:

if (Z1 != Z2) {

Z3 = 1;

} else {

Z3 = 0;

}

This compiles to:

C!= =

{
M · (Z1 − Z2)− Z3 = 0

(1− Z3) · (Z1 − Z2) = 0

}
Notice the auxiliary variable M; if Z1 6= Z2, then P must
set M equal to the multiplicative inverse of (Z1 − Z2),
which P computes outside the constraint formalism. We
call this “computing exogenously”, and there is an anal-
ogy between computing inverses and supplying values
from storage in Section 3.

The step of identifying a satisfying assignment is im-
plemented by C++ code that is generated by our com-
piler; the code computes Ψ(x) and performs the proce-
dure sketched above.
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(3) P argues that it has a satisfying assignment. P
wants to prove that it has a satisfying assignment to
C(X=x, Y=y); as noted above, this would convince V
of the correctness of the purported output y (in fact, it
would convince V of something stronger, which is that
the computation, as represented by constraints, was ex-
ecuted correctly). Of course, P could send the satisfy-
ing assignment, and V could plug it into C(X=x, Y=y)
to check it, but that would be as much work as executing
the computation.

Instead, P and V use an efficient argument proto-
col [26, 29, 30, 38]. Such a protocol is called an “ar-
gument”, rather than a proof, because its soundness rests
on a cryptographic assumption about the limits of P’s
computational power; in other words, a computationally
unlimited P could convince V that false statements are
true.

The arguments that our framework uses [26, 44, 46]
compose PCPs [4, 5] with cryptographic commitments.
PCPs yield a way to encode a satisfying assignment in a
proof in such a way that V inspects only a small number
of randomly-chosen locations in a purported proof π, ap-
plies simple tests to the values found at those locations,
and then accepts or rejects, consistent with the complete-
ness and soundness guarantees above. However, we do
not want V to receive π (it is far larger than the number
of steps in the computation). Instead, P cryptographi-
cally commits to the contents of the encoded proof, after
which V asks P for particular proof entries; the crypto-
graphic guarantee is that P’s replies are consistent with
its original commitment, or else the protocol rejects. In
other words, P acts like a fixed proof π, so V can apply
the PCP tests to the replies of P , and decide whether to
accept or reject.

As with step 2, this step is implemented by C++ code
that is generated by our compiler.

2.3 Costs, expressiveness, and limitations

The machinery described above is powerful; it offers
the completeness and soundness guarantees from Sec-
tion 2.1, with ε < 1/106 (see [44, Apdx. A.2]). How-
ever, this machinery requires a particular usage model
(batching), and limits expressiveness. We detail these re-
strictions below.

Batched model. The machinery is worthwhile to V—in
the sense that V saves work versus computing Ψ itself—
if V works in a batched model, as follows. Compilation
(step (1)) happens once, and is done by V and P . Com-
puting Ψ and identifying a satisfying assignment (step
(2)) is a cost incurred by P , and it happens once for each
instance. The query creation cost (in step (3)) is incurred
by V , once, and then V submits the same queries to all
proofs in the batch.

Notice thatP is indifferent to batching, since each new

proof requires computing the responses to the queries.
Per-instance, P’s work is O(|Z| + |C| · log |C|) [52, §5],
following a suggestion of [20]; here, |Z| is the number
of variables in Z, and |C| is the number of constraints in
C. Although this is not much more work than executing
the computation in the constraint model, the asymptotic
notation is hiding large constants (see Section 8).
V’s costs are treated differently. V incurs a setup cost

proportional to the execution cost of the computation,
which then amortizes over the β instances; this cost is
O(|Z| + |C| + K), where K is the number of additive
terms in C [44, §4]. As with P , the asymptotic notation
hides high constants, mainly owing to the cryptographic
commitment. Also, per-instance, V’s “checking work”
requires a linear pass over the input and output, plus a
constant amount of work. Thus, in amortized terms, V’s
total per-instance work is O(|x|+|y|+(|Z|+|C|+K)/β).
In other words, V breaks even—in the sense of saving
CPU cycles from outsourcing—when β is large enough
to make the following expression (which captures the
per-instance cost) less than the cost of running the com-
putation locally: setup cost/β + checking work.

Expressiveness and limitations. Currently, our subset
of C supports functions, structs, typedefs, preprocessor
definitions, if-else statements, explicit type conversion,
and all standard integer and bitwise operations. Addition-
ally, the subset has partial support for pointers and loops;
pointers must be compile-time constants and loops may
iterate at most some fixed number of times (these limita-
tions are similar to those of [40]).

Most operations have a concise representation as con-
straints (they do not add many variables or constraints).
There are four exceptions. The first two are inequal-
ities and bitwise operations; these operations separate
numbers into their bits, perform the operation, and glue
the number back together again [40, 46], requiring ≈
log2 |F| constraints per operation. The other two are
looping and if-else statements: loops are unrolled at com-
pile time, and the costs associated with an if-else state-
ment combine the costs of its then-block and its else-
block [9].

Another limitation is that computations are hermetic:
computations can interact with state neither as auxiliary
input, nor during execution (there is no disk or RAM
abstraction in the programming model), nor as auxiliary
output. As a result, verifiability requires V to supply all
inputs and receive all outputs. The sections ahead address
this limitation.

3 Storage model and primitives
Pantry extends the computational model in Section 2
by adding a verifiable PutBlock/GetBlock primitive, de-
scribed in this section. As an example use of this primi-

4



tive, we describe a verifiable MapReduce protocol (§4).
We also layer higher-level storage abstractions (RAM,
searchable trees) on top of this primitive, leading to ver-
ifiability for general-purpose programs (§5).

To explain Pantry’s approach, we note that the “inter-
face” to step (3) in Section 2.2 is a set of constraints and
a purported satisfying assignment. Thus, a “first cut” ap-
proach to incorporating state into verifiable computation
would be to explicitly represent load and store operations
with constraints. However, we do not know how to repre-
sent indirection without incurring horrific expense: to our
knowledge, memory would be an array of variables, and
if addr is not compile-time resolvable, then “load(addr)”
would require the moral equivalent of a giant case state-
ment, resulting in a separate constraint for each possible
value of addr. This approach would also require the input
state to be available to the verifier V .

To overcome these problems, we want to arrange for
storage to live “outside” the constraints. Thus, we want
a computational model that separates computation from
state maintenance in the sense that the computation does
not “execute” storage but can efficiently verify it. Given
such a model, the hope is that we could use constraints to
represent computation (as we do now) as well as the effi-
cient checks of storage. But what model separates com-
putation from state by applying efficient checks to state?
This problem is actually well-studied, in the context of
untrusted storage [17, 32, 37]: the state is represented by
hash trees [37], and computing over that state involves
trafficking in collision-resistant hashes.

If we could efficiently represent the computation of the
hash function as constraints, then we could extend the
computational model in Section 2 with the semantics of
untrusted storage. At that point, a satisfying assignment
to the constraints would imply correct computation and
correct interaction with state; and at that point, we could
use step (3) from Section 2.2 to prove to V that P holds
such an assignment. We now describe this approach.

3.1 Verifiable blocks: overview

The lowest level of storage is a block store; it consists
of variable-length blocks of data, in which the blocks are
named by collision-resistant hash functions (CRHFs) of
those blocks. Letting H denote a CRHF, a correct block
store is a map

S : name→ block ∪ ⊥,

where if block = S(name), then H(block) = name.
In other words, S implements the relation H−1. This
naming scheme allows clients to use untrusted storage
servers [14, 17, 32, 34]. The technique’s power is that
given a name for data—which name a client is presumed
to have obtained through trustworthy means—the client
can check that the returned block is correct, in the sense

function GETBLOCK (name n)
block← read block with name n in block store S
assert n == H(block)
return block

function PUTBLOCK (block)
n← H(block)
store (n, block) in block store S
return n

Figure 2—“Pseudocode” for verifiable storage primitives; we
use quotation marks because these primitives compile directly
to constraints that enforce the required relation between n and
block.

of being consistent with its name. Likewise, a client that
creates new blocks knows what names to give them, and
can use those names as references later in the computa-
tion.

But unlike the scenario in prior work, our V cannot ac-
tually check the contents of the blocks that it “retrieves”
or impose the correct names of the blocks that it “stores”,
as the entire computation is remote. Instead, V represents
its computations with constraints that P can satisfy only
if P uses the right blocks. Another way to understand
this approach is that V uses the verification machinery to
outsource the checks themselves; in fact, because V out-
sources the storage checks to P , P itself could be using
an untrusted block store!2

We will show in later sections how to write general-
purpose computations in this model; for now, we illus-
trate the model with a simple example. Imagine that the
computation takes as input the name of a block and re-
turns the associated contents as output. The constraints
themselves are set up to be satisfiable if and only if the
return value hashes to the requested name. In effect, P is
being asked to identify a preimage of H, which (by the
collision-resistance of H) P can do only if it returns the
actual block previously stored under the requested name.

3.2 Verifiable blocks: details and costs

We will work in a single-user model. Pantry extends
the computational model in Section 2 by providing two
primitives to the programmer:

block = GetBlock(name);
name = PutBlock(block);

These primitives are detailed in Figure 2. Notice that in a
correct execution, H(block)=name. Given this relation,
and given the collision-resistance of H, the programmer
receives from GetBlock and PutBlock a particular stor-

2One might wonder whether P could also use an untrusted CPU, say if
we were to represent the checking logic itself (step (3), §2.2) inside the
verification machinery and then outsource the PCP checks themselves.
This idea has been studied by theorists [4, 5]; for the sake of simplicity,
we do not pursue it for now.
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age model: S functions as write-once memory, where the
“addresses” are in practice unique, and where the ad-
dresses certify the data that lives at those addresses.

Note that this is an abstraction. First, how S is actually
implemented is unspecified here; the choice can be dif-
ferent for different kinds of storage (MapReduce, RAM,
etc.). Second, the size of the blocks is unspecified. S it-
self implements a map that is variable-length. For exam-
ple, in the MapReduce application, an entire file will be
a single block.

To bootstrap this certification, the client supplies one
or more “addresses” (really names) as its input, and it
may receive one or more names in its output, for use in
further computations. These names are related to capa-
bilities [24, 31]: with capabilities, a reference certifies to
the system, by its existence, that the programmer is en-
titled to refer to a particular object; here, the reference
itself certifies to the programmer that the system is pro-
viding the programmer with the correct object.

The preceding paragraphs explain the storage model.
We now describe the constraints that enforce the model.
A line of code “b = GetBlock(n)” compiles to constraints
CH−1 , where: the input variable, X, represents the name;
the output variable, Y , represents the block contents; and
CH−1(X=n, Y=b) is satisfiable if and only if b ∈ H−1(n)
(i.e., H(b) = n). The line “n = PutBlock(b)” compiles
to the same constraints, except that the inputs and out-
puts are switched. Specifically, this line compiles to con-
straints CH , where: X represents the block contents, Y
represents the name, and CH(X=b, Y=n) is satisfiable if
and only if n = H(b).

Of course, in a program that invokes PutBlock and
GetBlock, CH and CH−1 appear inside a larger set of con-
straints; thus, the compiler relabels the inputs and out-
puts of CH and CH−1 to correspond to intermediate pro-
gram variables. As an illustrative example, consider the
following computation:

add(int x1, name x2)

{

block b = GetBlock(x2);

/* assume that b is a field element */

return b + x1;

}

The corresponding constraints are:

C = {Y − B− X1 = 0} ∪ CH−1(X=X2, Y=B),

where the notation X=X2 and Y=B means that, in CH−1

above, the appearances of X are relabeled X2 and the ap-
pearances of Y are relabeled B. Notice that variable B
is unbound in C(X1=x1, X2=x2, Y=y). To satisfy those
constraints, P must set B=b, which requires identifying
a concrete b, from storage, such that H(b)=x2.

Costs. The main cost of GetBlock and PutBlock is the
set of constraints required to realize the hash function H
in CH and CH−1 . Ordinarily, we would adopt a widely-
used function such as SHA-1 or SHA-256 for this pur-
pose. But these functions make heavy use of bitwise op-
erations, which do not have concise representations as
constraints (§2.3). Instead, we use an algebraic CRHF,
which we call GGH [21],3 that is based on the hard-
ness of well-known approximation problems in lattices;
it fits our framework since GGH multiplies its input, rep-
resented as a vector, by a matrix, and meanwhile our con-
straints themselves are systems of equations over a finite
field. Indeed, GGH requires 14× fewer constraints than
SHA-1 would. Nevertheless, GGH is not devoid of bit-
wise operations and thus remains a relatively expensive
operation (§8.2).

3.3 Guarantees and non-guarantees

Notice that the constraints do not capture the actual inter-
action with the block store S; the prover P is separately
responsible for maintaining the map S. What ensures that
P does so honestly? The high-level answer is the checks
in the constraints plus the collision-resistance of H.

As an illustration, consider this code snippet:

n = PutBlock(b);

b’ = GetBlock(n);

In a reasonable (sequential) computational model, a read
of a memory location should return the value written at
that location; since our names act as “locations”, a cor-
rection execution of the code above should have vari-
ables b and b′ equal. But the program is compiled to
constraints that include CH (for PutBlock) and CH−1 (for
GetBlock), and these constraints could in principle be
satisfied with b′ 6= b, if H(b′) = H(b). However, P is
prevented from supplying a spurious satisfying assign-
ment because collision-resistance implies that identify-
ing such a b and b′ is computationally infeasible. That is,
practically speaking, P can satisfy the constraints only if
it stores the actual block and then returns it.

However, Pantry does not formally enforce durability:
a malicious P could in principle discard blocks inside
PutBlock yet still exhibit a satisfying assignment. Such a
P might be caught only much later (when V issues a cor-
responding GetBlock, P would be unable to satisfy the
constraints), and at that point, it might be too late to get
the data back. For a formal guarantee of durability, one
can in principle use other machinery [47]. Also, Pantry
(like its predecessors) does not enforce availability: P
could refuse to engage in the protocol or fail to supply a
satisfying assignment, even if it “knows” how to do so.

3In particular, GGH here does not refer to the GGH lattice cryptosystem
that has been “subject to cryptanalytic attacks” [39].
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What Pantry enforces—via the completeness and
soundness properties (§2.1) applied to the constraint rep-
resentation of the computation—is integrity, meaning
that purported memory values (the blocks that are used
in the computation) are consistent with their names, or
else the computation does not verify.

For the same reason, if V outsources a computation
that executes “GetBlock(foo)”, and foo is an erroneous
name in the sense that it does not represent the hash of
any block previously stored, then P has no way of pro-
viding a satisfying assignment. This is as it should be:
the computation itself is erroneous (in this model, cor-
rect programs pass the assert in GetBlock; see Figure 2),
so it is fitting that P has no computationally feasible way
to make V consistently accept a purported output.

A limitation of this model is that P cannot prove to V
that V made such an error; as far the verification machin-
ery is concerned, this case looks like the case in which P
simply refuses to provide a satisfying assignment. While
that might be disconcerting, our goal here is to establish
that remotely executed computations are consistent with
the requested computation; program verification (estab-
lishing that the computation itself is expressed correctly)
is a complementary concern with a vast literature.

4 Verifiable MapReduce
This section describes how Pantry provides verifiability
in MapReduce computations.

To review the MapReduce programming model [15],
the programmer provides two functions. The first is
map(), whose input is a list of key-value pairs and whose
output is another list of key-value pairs. The second is
reduce(), whose input is a list of values associated with a
single key and whose output is another list of values. As
input to the computation, the programmer names a set of
files in a directory; as output, the programmer receives a
set of files.

Interface. The verifier V is the machine that invokes
the MapReduce computation. V can be the tracker (the
module that drives the computation, called the master
by Dean and Ghemawat [15] and the JobTracker by
Hadooop), or else a separate machine, such as a customer
of the cloud. In Pantry’s MapReduce, the programmer
has additional responsibilities. First, partitioning is ex-
posed to the programmer: map() partitions its output, and
reduce() likewise reads from partitioned input. However,
this restriction is neither onerous nor fundamental (de-
tails below). Second, the programmer must arrange for
V to supply a list of names, or digests (we use the terms
interchangeably from now on), one digest for each input
file; likewise, V receives back a list of digests, one for
each file produced by a reducer. Third, V receives inter-
mediate digests: one for each (mapper, reducer) pair.

These intermediate digests are used during verifica-
tion, which happens in two batches (§2.1). The first
batch represents the map phase, with each mapper’s work
treated as a separate instance in the batch, and likewise
for the second batch, where each reducer is a separate
instance. As far as V is concerned, the explicit inputs
and outputs are all digests, rather than the actual data;
however, if V accepts both batches, then with high prob-
ability the cloud has produced the correct output digests.
As noted in Section 3.3, this does not prove that the per-
formers have stored the corresponding data durably, but
it does establish that the digests are correct; they could
be used as the input to a further computation, such as an-
other MapReduce, another transformation of the data, or
simply a computation whose purpose is to download the
actual data that corresponds to the digests.

Below, we describe the mechanics, some awkwardness
and limitations, and the costs of this design.

Mechanics. In this description, we will use the terms
explicit input and explicit output to refer to the verifier-
supplied inputs and verifier-received outputs. These will
be digests, rather than data.

Our MapReduce tracker wraps the programmer-
supplied map() and reduce() in functions mapper() and
reducer(); see Figure 3. The tracker then instantiates
mapper() and reducer() on various performing comput-
ers. Then, the verifier V and the performing computers
transform mapper() and reducer() to constraints, and fi-
nally apply the verification machinery. Verification and
execution can be decoupled, but the complete execution
of the map phase must happen before verification of the
map phase, and likewise for the reduce phase.

We now detail the verification step, beginning with
some notation. Let M and R be the respective number
of mappers and reducers. Also, recall that superscripts
denote instances in a batch, X denotes the explicit input
variables (which may be a vector), and Y denotes the ex-
plicit output variables or vector (§2).

As stated above, verification happens in two batches.
The first batch establishes for V that each mapper() was
executed correctly, meaning: the performer worked over
the correct data, map()ed this data correctly, and parti-
tioned the transformed data over the reducers correctly.
As shown in Figure 3, each instance j ∈ {1, . . . , M} in
the batch gets as its explicit input, x(j), the digest of a
block (such as a file); the explicit output of an instance,
y(j), is a vector with R components, one for each reducer
that this mapper is “feeding”. Note that {y(j)}j={1,...,M}
are the M · R intermediate digests mentioned above.
V and the performing computers transform mapper()

to constraints Cmapper, using our C-to-constraint compiler;
of course, GetBlock and PutBlock result in the con-
straints described in Section 3. At this point, mapper j,
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DigestArray mapper(Digest X) {

Block list_in = GetBlock(X);

Block list_out[NUM_REDUCERS];

Digest Y[NUM_REDUCERS];

// invoke programmer-supplied map()

map(list_in, &list_out);

for (i = 0; i < NUM_REDUCERS; i++)

Y[i] = PutBlock(list_out[i]);

return Y;

}

Digest reducer(DigestArray X) {

Block list_in[NUM_MAPPERS];

Block list_out;

for (i = 0; i < NUM_MAPPERS; i++)

list_in[i] = GetBlock(X[i]);

// invoke programmer-supplied reduce()

reduce(list_in, &list_out);

Y = PutBlock(list_out);

return Y;

}

Figure 3—For verifiable MapReduce, Pantry applies the verification machinery to the depicted functions, mapper() and reducer(),
which use the storage primitives from Section 3; their execution is verified in two batches.

playing the role of a prover, establishes that it has a satis-
fying assignment to Cmapper(X=x(j), Y=y(j)); for this pur-
pose, V and mapper j use the machinery in step (3) of
Section 2.2.
V then shuffles the explicit outputs of the first phase to

be the explicit inputs to the second phase. In notation, V
shuffles {y(j)}j={1,...,M} to be {x(j)}j={1,...,R}, where each
x(j) is a vector of M digests.

Verifying the reducers proceeds similarly. Verifica-
tion establishes for V that each reducer() (see Figure 3)
takes in the correct M blocks and reduce()s them cor-
rectly. The explicit inputs to each reducer() are the in-
termediate digests just described; the explicit outputs
are {y(j)}j={1,...,R}, where each y(j) is a single digest;
and, letting Creducer denote the constraint representation
of the function reducer(), the verification machinery
proves the satisfiability of Creducer(X=x(j), Y=y(j)) for
j ∈ {1, . . . , R}.

Limitations. A limitation of our current implementation
is that the programmer who supplies map() is responsi-
ble for partitioning the output into R chunks (see Fig-
ure 3), and similarly with reduce() reading from M in-
puts; meanwhile, exposing this kind of partitioning re-
moves some of the benefit of the map/reduce abstrac-
tion. However, this limitation is not fundamental, as the
tracker could draw the boundary differently, wrapping
traditional map() and reduce() functions into mapper()
and reducer(), with boilerplate code to partition.

A further limitation is the quadratic number (M · R)
of intermediate digests. We could instead have a linear
number (M + R) of intermediate digests, using a design
in which the mappers write to a global RAM, and the
reducers read from it (see Section 5.1), but this requires
some complexity at verification time. Also, quadratic in-
termediate state is not problematic per se; in traditional
MapReduce, the master keeps M · R bytes of state [15].

Also, map() and reduce() are subject to the restrictions
of any other computation in this model (§2.3); for in-

stance, they pay for bitwise operations, and if they them-
selves need to use RAM, they incur the costs described
in the next section.

Finally, each mapper() and reducer() compiles into
constraints statically, which has two implications. First,
V must be able to bound the size of the data that each
mapper and each reducer works over. Second, even if a
mapper() or reducer() is given a small amount of data,
it must use the same constraints as the others, leading to
waste. These limitations are fundamental; the first stems
from the constraint model of computation (which unrolls
loops), and the second from batching.

Costs. Recall that we are working in the batched
model (§2.3). Thus, the fixed (query setup) cost for V
is proportional to running one instance of mapper() and
one instance of reducer(). Also, the variable (per-instance
verification) costs are proportional to M · R because this
is the number of explicit inputs and outputs that the veri-
fication machinery “sees” (in between the two phases).
The total proving work is proportional to M + R. We
quantify these costs in our experiments; for now, we note
that if M · R is small relative to the MapReduce’s input,
then the amortized per-instance cost for V is sublinear in
the total data processed by the MapReduce computation.

5 Verifiable data structures
We now describe how Pantry uses the primitives in the
prior section to build higher-level abstractions: RAM, a
searchable tree, and a simple database application. As
with MapReduce in the prior section, we implement the
higher-level abstractions in C code, using PutBlock and
GetBlock. We then use these abstractions in some larger
program, compile that program down to constraints, and
apply the verification machinery to those constraints.
This provides verifiability since (as discussed in Sec-
tion 3) the prover cannot satisfy the constraints except
by placing the “right” blocks (meaning ones previously
stored) in the constraint variables that represent the out-

8



function LOAD(address a, digest d)
`← dlog Ne
h← d
for i = 0 to `− 2 do

node← GetBlock(h)
x← ith bit of a
if x = 0 then

h← node.left
else

h← node.right
node← GetBlock(h)
return node.value

function STORE(address a, value v, digest d)
path← LoadPath(a, d)
`← dlog Ne
node← path[`− 1]
node.value← v
d′ ← PutBlock(node)
for i = `− 2 to 0 do

node← path[i]
x← ith bit of a
if x = 0 then

node.left← d′

else
node.right← d′

d′ ← PutBlock(node)

return d′

Figure 4—RAM operations implemented with verifiable blocks, using a Merkle tree [37]. N is the number of addresses in memory.

put of GetBlock.
Our design problem, then, is to implement data struc-

tures in C using PutBlock and GetBlock. This problem
is actually well-studied [14, 17, 32, 37]; However, we
will work through the details for the sake of complete-
ness and to highlight the sources of costs. Although this
section does not introduce new individual techniques, we
believe that it is a novel synthesis, as it illustrates how
to provide state to programs that are represented as con-
straints; this has required design decisions, such as the
choice of PutBlock and GetBlock as primitives, and the
decision to build searchable trees directly from verifiable
blocks rather than layered on top of RAM.

At the highest level, the technique is to embed in
blocks the names (or references or hashes—these con-
cepts are equivalent here) of other blocks. This creates a
structure linked together by hashes, in which the “start-
ing hash” (for instance, of the root of a tree) can be used
to authenticate values in the root of the tree. The result is
that it is possible to build data structures out of chains of
“authenticated pointers”. We give more details below.

5.1 Verifiable RAM

Pantry’s verifiable RAM abstraction enables random
access to contiguously-addressable, fixed-size memory
cells. It exposes the following interface:

value = Load(address, digest);
new digest = Store(address, value, digest);

Pseudocode for the implementations of Load and Store
is in Figure 4.

The high-level idea behind this pseudocode is that the
digest commits to the full state of memory [37], in a way
that we explain shortly. Then, a Load guarantees that the
claim “address contains value” is consistent with digest.
For Store, the guarantee is that new digest captures the
same memory state that digest does with the exception
that address now holds value.

To explain how a digest can commit to memory, we
briefly rehash (no pun intended) Merkle trees [37]. Every
node is named by a collision-resistant hash (which we
denote H) of its contents. An interior node’s contents are
two names (themselves hashes), representing the node’s
left child and its right child. Each leaf node corresponds
to a memory address, and contains the value currently
held at the memory address. Then, the hash of the root
node’s contents is a digest d that effectively commits to
the state of memory. Indeed, if entity A holds a digest
d, and entity B claims “the value at address a is v”, then
B could argue that claim to A: B could exhibit the name
of a’s sibling, the name of their parent, the name of that
parent’s sibling, the name of their parent, and so on, to
the root. A could then check that the hash relationships
hold and match d. For B to succeed in a spurious claim,
it would have to identify a collision in H.

The pseudocode in Figure 4 is simply applying this
idea: the verifiable blocks in Section 3 provide the re-
quired names-are-hashes referencing scheme, and the
GetBlock invocations compile to constraints that force P
to exhibit a path through the tree. Thus, using CLoad to de-
note the constraints that Load compiles to, the constraints
CLoad(X=(a, d), Y=v) can be satisfied only if the digest
d is consistent with address a holding value v, which is
the guarantee that Load is supposed to be providing.

How does P identify a path through the tree? In prin-
ciple, it could recompute the internal nodes on demand
from the leaves. But for efficiency, our implementation
caches the internal nodes to avoid recomputation.

To invoke Load or Store, the program must begin with
a digest; in Pantry, V supplies this digest as part of the
input to the computation. One way to bootstrap this is
for V to first create a small amount of state locally, then
compute the digest directly, then send the data to P , and
then use the verification machinery to track the changes
in the digest. Of course, this requires that a computation’s
output include the new digest.
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This brings us to the implementation of Store, which
takes as input one digest and returns a digest of the
new state. Store begins by placing in local variables the
contents of the nodes along the required path (Load-
Path in Figure 4 is similar to Load, and involves calls to
GetBlock); this ensures continuity between the old state
and the new digest. Store then updates this path by cre-
ating new verifiable blocks, starting with the block for
address a (which is a new verifiable block that contains
a new value), to that block’s parent, and so on, up to the
root. Let CStore denote the constraints that Store compiles
to. To satisfy CStore(X=(a, v, d), Y=d′), P must (1) ex-
hibit a path through the tree, to a, that is consistent with
d, and (2) compute a new digest that is consistent with
the old path and with the memory update. Thus, the con-
straints enforce the guarantee that Store promises.

Costs. Letting N denote the number of memory ad-
dresses, a Load or Store compiles to O(log N) constraints
and variables, with the constant mostly determined by
the constraint representation of H inside GetBlock and
PutBlock (§3.2). As usual, V works in the batched model
(its setup cost is proportional to one run of the program,
its per-instance costs scale with the size of the input and
output digests, etc.).

5.2 Search tree

We now consider a searchable tree that is amenable to
queries; we wish to support efficient range queries over
any keys for which the < comparison is defined. Specif-
ically, we wish to support the following API:

values = FindEquals(key, digest)
values = FindRange(key start, key end, digest)
digest = Insert(key, value, digest)
digest = Remove(key, digest)

To implement this interface, a first cut approach would
be to use the general-purpose RAM abstraction defined
above to build a binary tree or B-tree out of point-
ers (memory addresses). Unfortunately, this approach is
more expensive than we would like, since every pointer
access in RAM costs O(log N), leading to costs of
O((log N)·(log m)) for a lookup in a tree of m elements.4

To get the per-operation cost down to O(log m), we
use a special-purpose data structure. Before continuing,
we should qualify our use of “special-purpose”: yes, we
are eschewing RAM (and again using collision-resistant
hashes as names or references). But this strategy applies
to a wide class of data structures.

Essentially, we use a Merkle tree with a different struc-
ture from the one above (§5.1). As with an ordinary
search tree, each node here contains a key and one or

4We assume that the tree is balanced; building a self-balancing tree is
future work.

more values corresponding to that key. Where an ordi-
nary search tree would maintain pointers, our nodes con-
tain names (or hashes) of their children. The nodes are
in sorted order, and queries and updates on the tree (as-
suming it is balanced) take time that is logarithmic in the
number of keys stored.

A lookup operation (FindEquals, FindRange) de-
scends the tree, via a series of GetBlock calls. An update
operation (Insert, Remove) first descends the tree (via
GetBlock) to identify the node where the operation will
be performed; then modifies that node (via PutBlock,
thereby giving it a new name), and then updates the
nodes along the path to the root (again via PutBlock), re-
sulting in a new digest. As with RAM, these operations
are expressed in C and compile to constraints; if P satis-
fies the resulting constraints then, unless it has identified
a collision in H, it is returning the correct state (in the
case of lookups) and the correct digests (in the case of
updates).

5.3 Verifiable database

To demonstrate the usefulness of our verifiable data
structures, we use them to implement a simple verifiable
database.
V specifies queries in a subset of the Cassandra Query

Language (CQL) [1], itself a subset of SQL. This sub-
set supports the following non-transactional queries on
single tables: SELECT (on single columns), INSERT, UP-
DATE, DELETE, CREATE, and DROP COLUMNFAMILY. V
and P then convert each query into C using a translator
derived from Cassandra’s query parser; this C calls the
APIs from Sections 3.2 and 5.2, and is then compiled
into constraints.

The database itself has a simple design. First, each row
of every table is stored as a verifiable block (and can be
accessed through the GetBlock/PutBlock API). Second,
these blocks are pointed to by one or more indexes; there
is a separate index for each column that the author of
the computation author wants to be searchable. Indexes
are implemented as verifiable search trees, as described
above (§5.2).

Given the above structure, query execution works as
follows. A SELECT compiles into C code that invokes
FindEquals or FindRange on the tree that corresponds to
the column being queried; the result is to place into pro-
gram variables hashes that refer to the queried blocks.
Then, the C code uses these hashes to fetch the actual
rows, using GetBlock. Similarly, an UPDATE compiles to
code that finds references to the matching row blocks,
updates the rows, stores them with PutBlock, and then
uses the Insert and Remove operations to update the
trees. INSERT and DELETE5 function similarly.

5Pantry does not currently support reclaiming the storage of unused
verifiable blocks, however.
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The above design is of course straightforward. The
interesting part is that because the design uses verifi-
able data structures and because the C code that im-
plements the functionality is compiled into constraints,
we get strong integrity guarantees—with little program-
mer effort beyond implementing the data structures and
queries.

5.4 Limitations

As we explain in Section 2.3, one of the limitations of
our computational model is that all loops must have fixed
bounds and must be fully unrolled at compile time. This
restriction has several implications for verifiable data
structures. First, because the loops that traverse them
have a fixed number of iterations, data structures must
have a fixed maximum size (i.e., a fixed number of cells
in RAMs and hash tables, and a maximum depth for
trees). Similarly, the maximum number of results re-
turned by queries such as the search tree’s FindRange
operation must also have a static limit. Third, as every
operation is compiled into a fixed number of constraints,
P’s running time to perform the operation and to find a
satisfying assignment to the constraints is fixed regard-
less of the number of elements that the data structure
holds.

6 Extensions to handle private state
Pantry’s innovations to incorporate state (§3–5) apply to
any verifiable computation protocol that works in the
constraint model or equivalent. Pantry uses Zaatar [44]
because among the general-purpose schemes for veri-
fiable computation, its per-instance costs for V and P
are lowest. However, for some applications it is advan-
tageous to use verifiable computation protocols with an
additional property, namely zero-knowledge [23]; that is,
we require that the verifiable computation protocol not
reveal information to the verifier beyond what is implied
by the output of the computation.

There are a number of verifiable computation proto-
cols that provide zero-knowledge [8, 27, 29, 40]; the
Pinocchio protocol [40], is a notable example, as it is
closely related to Zaatar and also aims toward prac-
tice. Since Pinocchio essentially works in the constraint
model, Pantry can use Pinocchio in place of Zaatar. An
implementation of this extension is work in progress.

The main virtue of this substitution is letting Pantry
support computations where the prover wants to keep
some of the inputs and state private but is willing to let
clients learn the outputs. For instance, consider an appli-
cation where a server maintains a central database con-
sisting of pictures of suspects, and is willing to let clients
(e.g., surveillance cameras) verifiably lookup if some-
one’s picture matches an entry in the database, but the
server wants to keep its central database secret.

7 Implementation details
Our implementation of the design in Sections 3–5 is
based on the released Zaatar compiler [44], updated with
13,300 lines of additional Java to take C as input, instead
of SFDL. We implement verifiable blocks (§3) by adding
2200 lines of Java, 1900 lines of Go, and 200 lines of
Python to the compiler pipeline, and 300 lines of C++
to the prover. The MapReduce framework (§4) requires
1500 lines of C++ code, and the verifiable data struc-
tures (§5) require another 400 lines of C that is compiled
into constraints by our compiler and 200 lines of C++
code in the prover. The DB app requires 1200 lines of
Java, which we use for CQL interpretation (currently our
DB application is compiled with queries statically).

The constraints for verifiable blocks implement H as
(a variable-length version of) the GGH [21] hash func-
tion. Using the notation in [21], GGH hashes m bits
into n · log q bits. Based on the analysis in a survey
by Micciancio and Regev [39], we set these parameters
as m=5376, n=64, and q=4096, to achieve an equiva-
lent of at least 114 bits of security. To support variable-
length input, we use a a prefix-free variant of the Merkle-
Damgård transform [28, Ch. 4.6.4], proposed by Coron
et al. [13], that prepends the input with its length.

The compiler transforms programs, written in a subset
of C (§2.3), into a list of assignment statements and then
outputs a constraint or pseudoconstraint for each state-
ment (the compiler is derived from Fairplay’s [35] and is
described elsewhere [9, 44]).

The pseudoconstraints abstract operations (inequality
comparisons, bitwise operations, etc.) that require multi-
ple constraints; a second compiler pass expands the pseu-
doconstraints and outputs C++ code that P executes, to
identify a satisfying assignment. Building on this com-
piler, we add one pseudoconstraint each for GetBlock
and PutBlock; in the compiler’s second pass, these pseu-
doconstraints compile into CH−1 and CH , respectively
(with appropriate renaming; see Section 3.2). The com-
piler also outputs C++ code that P will execute, to im-
plement the actual interaction with storage (denoted S in
Section 3). The current implementation ofP uses the Ky-
oto Cabinet [2] persistent key-value store to realize S, the
mapping of digests to blocks.

8 Experimental evaluation
We evaluate Pantry by measuring its end-to-end perfor-
mance. We use a set of MapReduce computations and a
set of database queries as our benchmark computations.
Figure 5 summarizes our evaluation results.

8.1 Method and setup

We use the following benchmark computations to mea-
sure Pantry’s end-to-end performance.
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Pantry expands the class of computations that can be efficiently outsourced; under Pantry, a client can verify computations
even if it does not have the full input to those computations.

§8.1

The total cost to the prover under verifiable MapReduce is several orders of magnitude higher than that of native unveri-
fiable execution, but the client saves work as long as it outsources a sufficient number of mappers and reducers.

§8.3

The cost of verifying the correct execution of remote database queries has excellent scaling behavior, since the costs grow
logarithmically in the size of the database.

§8.2, §8.4

Figure 5—Summary of main evaluation results.

block size # constraints produced by GetBlock

0.5 KB 6,600
2.0 KB 24,000
8.0 KB 91,000

Figure 6—The number of constraints produced by the
GetBlock operation; PutBlock is the same. The number scales
linearly in the size of the block being stored or retrieved. The
number of variables in the constraint set is roughly the same as
the number of constraints (not depicted).

#constraints produced by

number of addresses in RAM Load Store

25 18,000 35,000
210 34,000 67,000
220 66,000 130,000

Figure 7—The number of constraints in Pantry for verifiable
RAM operations, with varying number of addresses, when the
size of the block stored in a RAM cell is at most 125 KB. The
number of constraints scales logarithmically with the number
of addresses in RAM. The number of variables in the constraint
set is roughly the same as the number of constraints (not de-
picted).

1. Searching a sequence of k nucleotides in a DNA se-
quence of length m.

2. Computing the dot product between two vectors of
length m.

3. Searching for a nearest-neighbor in a list of m sam-
ples, where each sample is a d-dimensional vector.

4. Computing the covariance matrix for a dataset of m
samples with d dimensions each.

5. Computing the second moment of a frequency vector
of length m [12].

6. Querying a database to select and update rows in a
table.

We express the first five benchmark computations as
MapReduce programs. For the MapReduce computa-
tions, all inputs are 32-bit integers. For the database
benchmark, we use a database that is pre-populated with
information about students; the database has a single ta-
ble; there is one row per student in the table, and columns
store information about each student (name, age, class,
average, etc.).

We use the same finite field for all of the above com-
putations; the prime modulus is 128 bits. Pantry inher-
its its cryptographic tools and implementation from Za-
atar [44]: Pantry uses ElGamal encryption (for crypto-
graphic commitment; see Section 2.2, step (3)) with a key
of size 1024 bits, and where the protocol requires random
bits, Pantry uses a pseudorandom generator, specifically
the ChaCha stream cipher [7].

For experiments, we use a local cluster of machines;
each machine runs Linux on an Intel Xeon processor
E5540 2.53 GHz with 48GB of RAM. To measure CPU
time, we use getrusage().

For all of the above computations, our baseline is the
cost of executing the computation, written in C. Our
baseline works with digests and blocks, and performs the
same checks as do computations under Pantry; the blocks
are stored on a local disk, indexed by hash, in the Kyoto
Cabinet store [2].

Our baseline pays for both local storage (representing
the baseline of fully local computations) and the compu-
tational costs (hashing, etc.) to outsource storage verifi-
ably [17, 32, 34], when in fact a natural baseline would
be one or the other of these two costs. In future work, we
will avoid such an optimistic baseline, by separating the
two costs and comparing Pantry to two baselines.

8.2 Microbenchmarks

To evaluate the overhead of our storage primitives, we
run microbenchmarks. For GetBlock and PutBlock, we
vary the size of the block retrieved or stored, and record
the number of constraints and the number of variables
that Pantry’s compiler generates. For Load and Store,
we vary the number of cells in the RAM, and measure
the number of constraints and the number of variables
in Pantry’s compiler’s output. Figures 6 and 7 summa-
rize our measurements. As expected, the costs of the
GetBlock and PutBlock operations scale linearly in the
size of the block being stored or retrieved, and the costs
of the Load and Store operations scale logarithmically in
the number of addresses in the RAM.

8.3 Performance of verifiable MapReduce

We run the benchmark computations using the following
input sizes: DNA substring search where m=10,000 and
k=19; dot product where m=10,000; nearest-neighbor

12



prover’s costs under Pantry

computation (Ψ) local solve constraints construct proof vector crypto work answer queries total CPU time

DNA substring search 0.2 s 0.4 min 0.6 min 3.0 min 1.6 min 5.7 min
dot product computation 1.0 s 2.3 min 13.5 s 1.2 min 1.0 min 4.8 min
nearest neighbor search 0.6 s 1.4 min 14.6 s 1.2 min 0.9 min 3.7 min
covariance matrix computation 0.2 s 1.2 min 11.4 s 1.1 min 0.7 min 3.2 min
second frequency moment 0.6 s 1.2 min 7.4 s 0.6 min 0.5 min 2.5 min

Figure 8—Pantry’s prover’s end-to-end costs (decomposed) compared to the cost of executing the computation locally for various
benchmark computations. The prover’s end-to-end costs are high relative to an unverifiable execution, mainly owing to the model
of computation and the costs associated with the cryptographic verification machinery that Pantry uses.
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Figure 9—Total CPU time of the verifier under Pantry and the
baseline for DNA substring search as the number of mappers is
increased, where each mapper searches for a short nucleotide
sequence in a DNA string of length 1000 nucleotides and a re-
ducer is allocated for every 10 mappers. For experiments in-
volving more than 650 mappers, the cost of doing the verifica-
tion using Pantry is less than the cost of rerunning the compu-
tation locally.

search where m=10,000 and d=10; covariance matrix
computation where m=1000 and d=10; and second fre-
quency moment computation where m=10,000. We use
10 mappers and 1 reducer to execute the computation.
Figure 8 summarizes the results. As expected, native exe-
cution is several orders of magnitude faster than Pantry’s
prover.

However, the verifier can save work by outsourcing a
computations, above a certain size. To demonstrate this,
we use the DNA substring search example. We vary the
input size from m=200,000 to m=1,200,000 (keeping
k=19), and give each mapper a sequence of 1000 nu-
cleotides, resulting in M (the number of mappers) vary-
ing from 200 to 1200. Figure 9 depicts the results. For
experiments involving more than 650 mappers, the cost
of using Pantry and verifying is less than the cost of run-
ning the computation locally. (Note that each local in-
stance costs 10 ms because of the costs associated with
computing hashes of the computation’s inputs and out-
puts stored in a Kyoto Cabinet database.)

8.4 Performance of verifiable database queries

We pre-populate three databases with varying number
of rows (1024, 8192, and 32,768 rows), and run three
queries against them. Query 1 is “SELECT * FROM Stu-
dent WHERE Average > 90 LIMIT 5”. Query 2 is “SE-

LECT * FROM Student WHERE Class = 2009 LIMIT
5”. Query 3 is to first perform query 1 and insert the result
into another database. Figure 10 depicts our results. By
design, the cost of running these queries verifiably on the
server grows logarithmically in the size of the database,
and our measurements confirm that scaling behavior.

8.5 Discussion

Our evaluation makes clear that although we can run our
applications on inputs of reasonable size, the overhead
for the prover remains a real problem; also, the verifier
has to batch-verify several thousands to tens of thou-
sands of instances, in our examples, to save work. Al-
though these batch sizes are realistic in scenarios such
as MapReduce and perhaps acceptable in usage models
where the remote data is simply unavailable to the client,
it is desirable to reduce them. Furthermore, although in
principle we handle general state, realistically our com-
putational model is not truly general purpose, insofar
as efficient verifiers must use our special-purpose data
structures rather than generic RAM operations.

Some of the limitations of Pantry will be ameliorated
by optimizations in work we plan to do. For one thing,
we can batch the query sub-computations, since all in-
stances of GetBlock and PutBlock have the same query
structure—this will save work for the verifier. We also
have a design for handling dynamic loop bounds using
the state machinery; this will allow a wider range of com-
putations to be expressed efficiently.

9 Related work
The problem of verifiable outsourced computation is an
old one, and there are many implemented systems in the
literature (e.g., see [45] for partial surveys of this liter-
ature). Pantry descends from two distinct strands of re-
search in this area: the emerging area of proof-based ver-
ifiable computation and the substantial body of work on
untrusted storage.

In the last few years, there has been interesting new
work on built systems for general-purpose verifiable
computation using sophisticated tools from complexity
theory and cryptography. The novel aspect of this work
is its focus on practical performance (in the context of ac-
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Figure 10—Cost of executing queries (stated in §8.4), locally without verification and under Pantry, under various table sizes. The
cost to the verifier has two components: a setup cost, which can be reused across multiple instances of the same query in a batch,
and an online cost, which scales linearly with the number of instances in a batch. Verifying remote database queries has excellent
scaling behavior, since the costs grow logarithmically in the size of the database.

tual implementations); previous work in the theory com-
munity used outsourced computation as a motivational
example but was primarily concerned with asymptotics.
Pantry is built from one approach to such systems [43–
46], which are interactive protocols based on [26]. Other
work in this area includes [11, 40, 50]; we chose the
foundation that we did because [11, 50] imposes certain
restrictions that would make our work here difficult (al-
though the work of [52] partially relaxes these) and [40]
gives up performance to eliminate interactivity (although
it has superior amortization of setup costs).

All of these efforts use essentially the same compu-
tational model; in particular, they all require the client
to materialize the input and the computation to be side-
effect free (§2.3). However, there are antecedents of the
kinds of ideas about using state that we develop here in
some of these papers and in closely related theory litera-
ture. Specifically, [20] alludes to handling state via signa-
tures, as does [25]. Moreover, very recent work [6] spells
out a similar idea in the context of a theoretical protocol
for verifiable computation that works in the RAM model.

There is also a body of this work on this problem
(starting from [19]) which relies on fully-homomorphic
encryption (FHE) and ideas from secure multi-party pro-
tocols. However, due to the costs of FHE, none of these
protocols has resulted in built systems to date.

The implementation of storage used in Pantry is
squarely in the tradition of the large body of work on
untrusted storage. In particular, the data representations
we use to handle state are descended from the represen-
tations pioneered by [17, 37]. However, the literature on
untrusted storage (including the line of work on proofs of
retrievability [47] and the recent work on untrusted cloud
storage [16, 34]) is aimed at solving somewhat different
problems (durability, storage consistency respectively),
and is not directly applicable.

10 Summary and conclusion
This paper presents Pantry, a solution to the problem of
general-purpose verifiable computation (VC) with state;
to our knowledge, it is the first built system for VC that
does not pay preposterous performance for representing
complicated state. Pantry combines a state of the art in-
teractive protocol for VC [44] with hash-tree data struc-
tures. The result is a system that can represent standard
programming idioms relatively efficiently and that al-
lows the verifier to supply digests of inputs in place of the
inputs themselves, broadening the set of computations
amenable to verifiability. Notably, the ability to work
with digests of the input means that Pantry’s verification
costs can be sublinear in the input to the computation—
the first general-purpose system for verified computation
for which this holds. As a demonstration, we implement
a framework for verifiable MapReduce and a simple ver-
ifiable database.

Verifiable MapReduce is a particularly important com-
putation both because of its relevance for the cloud com-
puting scenarios in which verifiability is important as
well as the fact that it is particularly amenable to the
batched model in which the protocol of [44] breaks even.
Our performance on the sample computations is not as
good as we would like, particularly in its prover over-
head, but it is close. In situations where we expect to pay
something for verifiability and there is plenty of compu-
tational power (e.g., in the cloud), the protocol of Pantry
might be reasonable.
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