
A heuristic for finding compatible differential paths

with application to HAS-160

Aleksandar Kircanski, Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, H3G 1M8, CANADA.

Abstract. The question of compatibility of differential paths plays a central role in second order
collision attacks on hash functions. In this context, attacks typically proceed by starting from the
middle and constructing the middle-steps quartet in which the two paths are enforced on the respec-
tive faces of the quartet structure. Finding paths that can fit in such a quartet structure has been
a major challenge and the currently known compatible paths extend over a suboptimal number of
steps for hash functions such as SHA-2 and HAS-160. In this paper, we investigate a heuristic that
searches for compatible differential paths. The application of the heuristic in case of HAS-160 yields
a practical second order collision over all of the function steps, which is the first practical result that
covers all of the HAS-160 steps. An example of a colliding quartet is provided.

1 Introduction

Whenever two probabilistic patterns are combined for the purpose of passing through
maximal number of rounds of a cryptographic primitive, a natural question that arises is
the question of compatibility of the two patterns. A notable example is the question of
compatibility of differential paths in the context of boomerang attacks. In 2011, Murphy
[23] has shown that care should be exercised when estimating the boomerang attack success
probability, since there may exist dependency between the events that the two paths behave
as required by the boomerang setting. The extreme case is the impossibility of combining
the two paths, where the corresponding probability is equal to 0.

In the context of constructing second order collisions for compression functions using
the start-from-the-middle technique, due to availability of message modification in the
steps where the primitive follows the two paths, the above mentioned probability plays less
of a role as long as it is strictly greater than 0. In that case, the two paths are said to be
compatible. Several paths that were previously believed to be compatible have been shown
to be incompatible in the previously described sense, e.g., by Leurent [13] and Sasaki [27]
for BLAKE and RIPEMD-160 hash functions, respectively.

The compatibility requirement in this context can be stated with more precision as
follows. Let φ and ω be two differential paths over some number of steps of an iterative
function f = fj+n ◦ . . . ◦ fj. If there exists a quartet of f inputs x0, x1, x2 and x3 such
that computations (x0, x1) and (x2, x3) follow φ whereas (x0, x2) and (x1, x3) follow ω, we
say that φ and ω are compatible. Usually the path φ is left unspecified over the last k
steps (backward path) and ω is unspecified over the remaining steps (forward path). Such
paths have also been previously called independent [4]. Another closely related notion is
the concept of non-interleaving paths in the context of biclique attacks [9].
Our Contributions. In this paper, we present a heuristic that allows us to search for com-
patible differential paths. The heuristic builds on the previous de Cannière and Rechberger

automatic differential path search method. Instead of working with pairs, our proposed
heuristic operates on quartets of hash executions and includes cross-path propagations.
We present detailed examples of particular propagations applied during the search. As
an application of our proposed heuristic, a second order collision for the full HAS-160
compression function is found. The best previous practical distinguisher for this function
covered steps 5 to 80 [28]. This is the first practical distinguisher for the full HAS-160.
This particular hash function is relevant as it is standardized by the Korean government
(TTAS.KO-12.0011/R1) [1].

Related Work. The differential paths used in groundbreaking attacks on MD4, MD5
and SHA-1 [33, 32] were found manually. Subsequently, several techniques for automatic
differential path search have been studied [29, 7, 30, 5]. The de Cannière and Rechberger
heuristic [5] was subsequently applied to many MDx/SHA-x based hash functions, such
as RIPEMD-128, HAS-160, SHA-2 and SM3 [19, 17, 18, 20]. To keep track of the current
information in the system, the heuristic relies on 1-bit constraints that express the relations
between pairs of bits in the differential setting. This was generalized to multi-bit constraints
by Leurent [13], where finite state machine approach allowed uniform representation of
different constraint types. Multi-bit constraints have been used in the context of differential
path search in [14].

The boomerang attack [31], originally applied to block ciphers, has been adapted to the
hash function setting independently by Biryukov et al. [4] and by Lamberger and Mendel
[12]. In particular, in [4], a distinguisher for the 7-round BLAKE-32 was provided, whereas
in [12] a distinguisher for the 46-step reduced SHA-2 compression function was provided.
The latter SHA-2 result was extended to 47 steps [3]. Subsequently, boomerang distin-
guishers have been applied to many hash functions, such as HAVAL, RIPEMD-160, SIMD,
HAS-160, SM3 and Skein [25, 27, 28, 16, 11, 34, 15]. Outside of the boomerang context, zero-
sum property as a distinguishing property was first used by Aumasson [2].

As for the previous HAS-160 analysis, in 2005, Yun et al. [35] found a practical collision
for the 45-step (out of 80) reduced hash function. Their attack was extended in 2006 to 53
steps by Cho et al. [6], however, with computational complexity of 255 53-step compression
function computations. In 2007, Mendel and Rijmen [21] improved the latter attack com-
plexity to 235, providing a practical two-block message collision for the 53-step compression
function. Preimage attacks on 52-step HAS-160 with complexity of 2152 was provided in
2008 by Sasaki and Aoki [26]. Subsequently, in 2009, this result was extended by Hong
al. to 68 steps [8] where the attack required a complexity of 2156.3. In 2011, Mendel et
al. provided a practical semi-free-start collision for 65-step reduced compression function
[17]. Finally, in 2012, Sasaki et al. [28] provided a theoretical boomerang distinguisher for
the full HAS-160 compression function, requiring 276.6 steps function computations. In the
same work, a practical second order collision was given for steps 5 to 80 of the function.

Paper Outline. In the next section, we provide the review of boomerang distingiushers
and the recapitulation of the de Cannière and Rechberger search heuristic, along with
the HAS-160 specification. In Section 3, the general form of the our search heuristic is
provided and its application to HAS-160 is discussed. The three propagation types used in
the heuristic are explained in Section 4. Concluding remarks are in given Section 5.

2 Review of related work and the specification of HAS-160

In the following subsections, we provide a description of a commonly used strategy to
construct second order collisions, an overview of the de Cannière and Rechberger path
search heuristic and finally the specification of HAS-160 hash function.

2.1 Review of boomerang distinguishers for hash functions

First, we provide a generic definition of the property used for distinguishing the compression
function from a random function. Let h be a function with n-bit output. A second order
collision for h is a set {x,∆,∇} consisting of an input for h and two differences, such that

h(x+∆+∇)− h(x+∆)− h(x+∇) + h(x) = 0 (1)

As explained in [3], the query complexity for finding a second order collision is 3 · 2n/3
where n denotes the bit-size of the output of the function f . By the query complexity, the
number of queries required to be made to h function is considered. On the other hand, for
the computational complexity, which would include evaluating h around 3 · 2n/3 times and
finding a quartet that sums to 0, the best currently known algorithm runs in complexity
no better than 2n/2. If for a particular function a second order collision is obtained with
a complexity lower than 2n/2, then this hash function deviates from the random function
oracle.

xA
n0

e(xA)
n5

xB

e(xB)

xC

e(xC)

xD

e(xD)

β

β

α α

n1

n2

n3

n4

n2

n3

n2

n3

n1

n4

(b)

(a)

(c)

Fig. 1. Start-from-the-middle approach for constructing second-order collisions

Next, we explain the strategy to construct quartets satisfying (1) for Davies-Meyer
based functions, as commonly applied in the previous literature. An overview of the strategy
is provided in Fig. 1. We write h(x) = e(x) + x, where e is an iterative function consisting
of n steps. The goal is to find four inputs xA, xB, xC and xD that constitute the inputs in
(1) according to Fig. 1 (c). In particular, the goal is to have

xA − xD = xB − xC
e(xA)− e(xB) = e(xD)− e(xC)

(2)

where the two values specified by (2) are denoted respectively by α and β in Fig. 1 (c). In
this case, we have h(xA) − h(xB) + h(xC) − h(xD) = e(xA) + xA − e(xB) − xB + e(xC) +
xC − e(xD)− xD = 0. Now, one can put xA = x, ∆ = xD − xA and ∇ = xB − xA and (1)
is satisfied.

A preliminary step is to decide on two paths, called the forward path and the backward
path. As shown on Fig. 1, these paths are chosen so that for some n0 < n1 < n2 < n3 <
n4 < n5, the forward path has no active bits between steps n3 and n4 and the backward
path has no active bits between steps n1 and n2. The forward path is enforced on faces
(xA, xB) and (xD, xC) (front and back) whereas the backward differential is enforced on
faces (xA, xD) and (xB, xC) (left and right). In the case of MDx-based designs, the particular
n values depend mostly on the message schedule specification.

The procedure can be summarized as follows:

(a) The first step is to construct the middle part of the quartet structure, as shown in Fig.
1 (a). The forward and backward paths end at steps n3 and n2, respectively. On steps
n2 to n3, the two paths need to be compatible for this stage to succeed.

(b) Following Fig. 1 (b), the paths are extended to steps n1 backward and to n4 forward
with probability 1, due to the absence of disturbances in the corresponding steps.

(c) Some of the middle-step words are randomized and the quartet is recomputed backward
and forward, verifying if (2) is satisfied. If yes (see Fig. 1 (c)), return the quartet,
otherwise, repeat this step.

This strategy, with variations, has been applied in several previous works, such as [3, 28,
27, 25]. In Table 1, we provide the forward/backward path parameters for the previous
boomerang distinguishers on some of the MDx/SHA-x based compression functions fol-
lowing the single-pipe design strategy.

Compression function n0 n1 n2 n3 n4 n5 Reference Message block size

SHA-2 0 6 22 31 47 47 [3] 16× 32

HAVAL 0 2 61 97 157 160 [25] 32× 32

HAS-160 5 13 38 53 78 80 [28] 16× 32

Table 1. Overview of some of the previously used boomerang paths

In [3, 28], the number of steps in the middle was 9 and 16 steps, respectively. It can
be observed that these number of middle steps are suboptimal, since the simple message
modification allows trivially satisfying 16 steps in case of SHA-2 and HAS-160. Since the
forward and the backward paths are sparse towards steps n3 and n2, one can easily imagine
satisfying more than 16 steps, while there remains enough freedom to randomize the inner
state although some penalty in probability has to be paid. In case of HAVAL [25], the
simple message modification allows passing through 32 steps and the middle part consists
of as many as 36 steps. However, it should be noted that this is due to the particular
property of HAVAL which allows narrow paths [10].

2.2 Review of de Cannière and Rechberger search heuristic

This search heuristic is used to find differential paths that describe pairs of compression
function executions. The symbols used for expressing differential paths are provided in
Table 2. For example, when we write -x-u, we mean a set of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′3, T2 6= T ′2, T1 = T ′1, T0 = 0, T ′0 = 1}

where Ti denotes i-th bit in word T .

δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

? anything
√ √ √ √

- x = x′
√

- -
√

x x 6= x′ -
√ √

-
0 x = x′ = 0

√
- - -

u (x, x′) = (0, 1) -
√

- -
n (x, x′) = (1, 0) - -

√
-

1 x = x′ = 1 - - -
√

- - - -

δ(x, x′) meaning (0,0) (0,1) (1,0) (1,1)

3 x = 0
√ √

- -
5 x′ = 0

√
-

√
-

7
√ √ √

-
A x′ = 1 -

√
-

√

B
√ √

-
√

C x = 1 - -
√ √

D
√

-
√ √

E -
√ √ √

Table 2. Symbols used to express 1-bit conditions [5]

Next, an example of condition propagation is provided. Suppose that a small differential
path over one modular addition is given by

---- + ---x = ---x (3)

Here (3) describes a pair of additions: x+ y = z and x′ + y′ = z′, and from this “path” we
have that x = x′ and also that y and y′ are different only on the least significant bit (same
for z and z′). However, this can happen only if x0 = x′0 = 0, i.e. if the lsb of x and x′ is
equal to 0. We thus propagate a condition by substituting (3) with

---0 + ---x = ---x

The de Cannière and Rechberger heuristic [5] searches for differential paths over some num-
ber of compression function steps. It starts from a partially specified path which typically
means that the path is fully specified at some steps (i.e., consisting of symbols {-,u,n})
and unspecified at other steps (i.e., symbol ‘?’). The heuristic attempts to complete the
path, so that the final result is non-contradictory by proceeding as follows:

- Guess: select randomly a bit position containing ‘?’ or ‘x’. Substitute the symbol in the
chosen bit position by ‘-’ and {u,n}, respectively.

- Propagate: deduce new information introduced by the Guess step.

When a contradiction is detected, the search backtracks by jumping back to one of the
guesses and attempts different choices.

2.3 HAS-160 specification

The HAS-160 hash function follows the MDx/SHA-x hash function design strategy. Its
compression function can be seen as a block cipher in Davies-Meyer mode, mapping 160-
bit chaining values and 512-bit messages into 160-bit digests. To process arbitrary-length
messages, the compression function is plugged in the Merkle-Damg̊ard mode.

Before hashing, the message is padded so that its length becomes multiple of 512 bits.
Since padding is not relevant for this paper, we refer the reader to [1] for further details.
The underlying HAS-160 block cipher consists of two parts: message expansion and state
update transformation.
Message expansion: The input to the compression function is a messagem = (m0, . . .m15)
represented as 16 32-bit words. The output of the message expansion is a sequence of 32-bit
words W0, . . .W79. The expansion is specified in Table 3. For example, W26 = m15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
m8 ⊕m9 m0 m1 m2 m3

m12 ⊕m13 m4 m5 m6 m7
m0 ⊕m1 m8 m9 m10 m11

m4 ⊕m5 m12 m13 m14 m15⊕m10 ⊕m11 ⊕m14 ⊕m15 ⊕m2 ⊕m3 ⊕m6 ⊕m7
m11 ⊕m14 m3 m6 m9 m12

m7 ⊕m10 m15 m2 m5 m8
m3 ⊕m6 m11 m14 m1 m4

m15 ⊕m2 m7 m10 m13 m0⊕m1 ⊕m4 ⊕m13 ⊕m0 ⊕m9 ⊕m12 ⊕m5 ⊕m8
m4 ⊕m13 m12 m5 m14 m7

m8 ⊕m1 m0 m9 m2 m11
m12 ⊕m5 m4 m13 m6 m15

m0 ⊕m9 m8 m1 m10 m3⊕m6 ⊕m15 ⊕m10 ⊕m3 ⊕m14 ⊕m7 ⊕m2 ⊕m11
m15 ⊕m10 m7 m2 m13 m8

m11 ⊕m6 m3 m14 m9 m4
m7 ⊕m2 m15 m10 m5 m0

m3 ⊕m14 m11 m6 m1 m12⊕m5 ⊕m0 ⊕m1 ⊕m12 ⊕m13 ⊕m8 ⊕m9 ⊕m4

Table 3. Message expansion in HAS-160

State update: One compression function step is schematically described by Fig. 2 (a).
The Boolean functions f used in each step are given by

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

f1(x, y, z) = x⊕ y ⊕ z
f2(x, y, z) = (x ∨ ¬z)⊕ y

where f0 is used in steps 0-19, f1 is used in steps 20-39 and 60-79 and f2 is used in steps 40-
59. The constant Ki that is added in each step changes every 20 steps, taking the values 0,
5a827999, 6ed9eba1 and 8f1bbcdc. The rotational constant si1 is specified by the following
table

i mod 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
si1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

The other rotational constant si2 changes only each 20 steps and si2 ∈ {10, 17, 25, 30}.
According to the Davies-Meyer mode, the feedforward is applied and the output of the
compression is

(A80 + A0, B80 +B0, C80 + C0, D80 +D0, E80 + E0)

Alternative description of HAS-160: In Fig. 2 (b), the compression function is shown
as a recurrence relation, where Ai+1 plays the role of A in the usual step representation.
Namely, A can be considered as the only new computed word, since the rotation that
is applied to B can be compensated by properly adjusting the rotation constants in the
recurrence relation specification. One starts from A−4, A−3, A−2, A−1 and A0, putting these

A B C D E

A B C D E

+

+

+

+

si1

si2

f

Ki

Wi

Ai−5

Ai−4

Ai−3

Ai−2

Ai−1

Ai

Ai+1

Ai+2

...

...

ti1

ti2

ti3

ti4

f +

+

Ki

Wi

Fig. 2. Two equivalent representations of the state update

values to the previous chaining value (or the IV for the first message block) and computes
the recurrence until A80 according to

Ai+1 = Ai−4 <<< ti1 +Ki + fi(Ai−1, Ai−2 <<< ti3, Ai−3 <<< ti2) +Wi + Ai <<< ti4 (4)

The rotational values tij, 1 ≤ j ≤ 4 are derived from si1 and si2, where the constants related
to the rotation of B in the usual representation change around the steps 20×k, k = 0, 1, 2, 3.
For instance, to compute A42, we have t411 = 17, t412 = 17, t413 = 25 and t414 = 11.

3 Compatible paths search heuristic and application to
HAS-160

In this section, we provide a new search heuristic that can be used to find compatible paths
in the boomerang setting. The particular colliding quartet found by applying the heuristic
on HAS-160 is provided in Table 4.

Message quartet
MA F6513317 810F1084 FFB71009 78CC955E C3C09F18 5379FC99 435586DA 9C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04
MB F6513317 810F1084 FFB71009 78CC955E C3C09f18 5379FC99 435786DA 9C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04
MC 76513317 010F1084 FFB71009 78CC955E 43C09F18 5379FC99 435786DA 1C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3FE600 02C9E9D3 5FE95AFF E351DE04
MD 76513317 010F1084 FFB71009 78CC955E 43C09f18 5379FC99 435586DA 1C9AD3B4

00440C80 E174316A 006D1670 2B5CF68A AB3DE600 02C9E9D3 5FE95AFF E351DE04
Chaining values quartet

IVA 1143BE75 9A9CA381 85B3F526 DA6ABE66 70EBE920
IVB 3AF7BD99 D08E2E63 245C2AF0 C4456954 CAC046EA
IVC 3AF7B599 D08E2E63 B45C2AF0 C425694C 3BE146F2
IVD 1143B675 9A9CA381 15B3F526 DA4ABE5E E20CE928

Table 4. Second order collision for the full HAS-160 compression function

The heuristic uses quartets of 1-bit conditions from Table 2 to keep track of the bit
differences in each of the four compression function executions. Apart from the single-path
propagations proposed in [5], two additional types of boomerang (cross-path) propagations
are added. These boomerang propagations have been previously listed in [13].

To specify the problem on which the heuristic is applied in the context of HAS-160,
the forward and backward message differentials are provided next. Let the forward mes-
sage differential consist of a one-bit difference in messages m6 and m12 and the backward
differential of a one-bit difference in m0, m1, m4 and m7, as shown in Table 5. The partic-
ular bit-position of differences is left unspecified. The choice of these difference positions is
justified by the following start/end points of the expanded message differences, expressed
in terms of the notation used in Fig. 1: (n0, n1, n2, n3, n4, n5) = (0, 8, 34, 53, 78, 80). It can
be observed that the middle part consists of 20 steps.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m8 ⊕m9 m0 m1 m2 m3
m12 ⊕m13 m4 m5 m6 m7

m0⊕m1 m8 m9 m10 m11
m4⊕m5 m12 m13 m14 m15

⊕m10 ⊕m11 ⊕m14 ⊕m15 ⊕m2 ⊕m3 ⊕m6⊕m7

m11 ⊕m14 m3 m6 m9 m12
m7 ⊕m10 m15 m2 m5 m8

m3 ⊕m6 m11 m14 m1 m4
m15 ⊕m2 m7 m10 m13 m0

⊕ m1⊕ m4 ⊕m13⊕ m0 ⊕m9 ⊕m12 ⊕m5 ⊕m8

m4 ⊕m13 m12 m5 m14 m7
m8 ⊕m1 m0 m9 m2 m11

m12 ⊕m5 m4 m13 m6 m15
m0 ⊕m9 m8 m1 m10 m3⊕ m6 ⊕m15 ⊕m10 ⊕m3 ⊕m14 ⊕m7 ⊕m2 ⊕m11

m15 ⊕m10 m7 m2 m13 m8
m11⊕ m6 m3 m14 m9 m4

m7 ⊕m2 m15 m10 m5 m0
m3 ⊕m14 m11 m6 m1 m12

⊕m5 ⊕m0 ⊕m1⊕ m12 ⊕m13 ⊕m8 ⊕m9 ⊕m4

Table 5. Message differentials. Backward: steps 0-39, forward: steps 40-79

Now, the particular problem schematically described by Fig. 1 (a) is represented more
specifically by Table 7, where the backward and forward message differentials are indicated
in the first and the last column, respectively. At this point, the only information that is
present in the system is that the two paths end at the corresponding steps n2 = 34 and
n3 = 53. The output of the heuristic in case of HAS-160 is given in Table 8. The full
specifications of the two paths intersect on 5 steps, which is the number of inner state
registers in HAS-160. Provided that the paths are compatible, one can now start from
step 42 and apply the usual message modification technique to satisfy both paths, which
resolves the middle of the boomerang as shown in Fig. 1 (a).

3.1 Search strategy

The approach consists of variating the position of the message difference bit, gradually
extending the two paths, propagating the conditions in the quartet and backtracking in
case of a contradiction. In more detail, the heuristic proceeds as follows:

(1) Randomize the positions of active bits in the active message words.
(2) Extend the specification of the forward/backward path backward/forward, respectively.

Ensure that paths are randomized over different step invocations.
(3) Propagate all new conditions. In case of contradiction, backtrack
(4) If path are fully specified on a sufficient number of steps, return the two paths

In step (1), the message disturbance position in the two differentials is randomized to
achieve variation in the paths. Alternatively, one position can be fixed to bit 31 and the
other position randomized at each step invocation. As for step (2), at the point where
the probability of contradiction between the two paths is negligible, one can extend paths
simply by randomly sampling them in required steps and discarding non-narrow ones.

1. ???? 7→ --??

2. ??-- 7→ ----

3. ??xx 7→ --xx

4. xx?? 7→ {uu10,nn01}
5. xx-- 7→ {uu10,nn01}
6. xxxx 7→ {unnu,nuun}

1. ???? 7→ ??--

2. --?? 7→ ----

3. xx?? 7→ xx--

4. ??xx 7→ {01uu,10nn}
5. --xx 7→ {01uu, 10nn}
6. xxxx 7→ {unnu,nuun}

Table 6. Substitution rules: adding information to the forward path (left) and backward path (right)

Once the probability of contradiction becomes significant, substitute/backtrack strategy
according to the Table 6 is applied to the remaining steps. In step (3), apart from propaga-
tions on a single path [5], quartet and quartet addition propagations (explained in Section
4) are applied. The heuristic ends when the full specification of two paths (containing
only {-,u,n}) intersects on the number of words equal to the number of registers in the
compression function inner state, as is the case in Table 8.

When new constraint information is to be added at a particular bit position, one can
either add information to the forward path or to the backward path. Here, a clarification
is necessary regarding the fact that in Table 8, four paths are shown, whereas the heuristic
searches for a pair of paths (forward and backward path). This is due to the fact that the
paths on the opposite faces of the boomerang are equal (up to 0 and 1 symbols) and thus
one can consider a pair of paths. Nonetheless, the inner state of the search algorithm keeps
all the four paths explicitly.

The substitutions provided in Table 6 represent generalizations of the substitutions used
in [5]. The choice whether the information will be added to the forward or the backward
path is made randomly each time. The left-hand and the right-hand tables correspond
to adding constraints to the forward and the backward path, respectively. Consider for
example rule xx-- 7→ {uu10,nn01}. In this notation, the symbols xx-- describe a bit
position for which δ[Aji , B

j
i] = x, δ[Dj

i , C
j
i] = x, δ[Bj

i , C
j
i] = -, δ[Aji , D

j
i] = -. The rule

simply substitutes the ‘x’ symbol on the forward path by ‘u’ or ‘n’, while at the same time
applying the immediate propagation of the ‘-’ symbols to ‘0’ and ‘1’, respectively. This rule
represents a generalization of the x 7→ {u,n} rule used in [5]. Other rules can be explained
in a similar manner.

One possible variation of the general heuristic above is as follows. Once the two paths
are sufficiently specified so that the contradictions are likely to occur, instead of adding new
constraints randomly, a beneficial strategy is to introduce some graduality while extending
the two paths. For example, one can choose a parameter k and extend both paths by only
k steps. If the heuristic succeeds in extending the paths by k steps, reporting that there
is no contradiction in the system, more steps can be attempted. If in the intermediate
steps of the search, the path was in fact contradictory and this was not reported by 1-bit
conditions, further attempts to extend or find the messages satisfying the paths will fail.

3.2 Application to HAS-160

In this section, we describe how the above heuristic can be applied in the case of HAS-160.
First, we fix the position of the active bit in the backward differential to b1 = 31. The
following sequence of steps randomizes steps in the light-gray area in Table 7:

- Randomize the position of the forward message difference active bit b2.
- With the message difference fully specified by b1, b2, sample narrow paths in the inner

state words in steps denoted by light-gray in Table 7.
- Propagate conditions w.r.t. the three propagation types explained in Section 4. This

step is applied repeatedly until none of the three propagation types can be applied on
any of the bit positions.

Here, the path sampling is performed simply by initializing randomly the two instances of
the path at the given step, calculating the recurrence over the required number of steps and
extracting the path. If the Hamming weight of the path is greater than some pre-specified
threshold, it is discarded and a new path is sampled. Using the above sampling of partial
solution to the paths, the following procedure aims to find the full solution:

(1) Randomize steps in the light-gray area according to the procedure above (steps 43-49
and 34-37 in the forward and backward paths, respectively).

(2) Randomly choose (i, j), 0 ≤ i ≤ 31, 38 ≤ j ≤ 42, a position within the steps denoted
by dark-grey in Table 7. If applicable, apply the substitution specified by Table 6. If
not, choose another position. In case there is none, return the state.

(3) Propagate conditions and backtrack in case of contradiction. After a contradiction was
reached a sufficient number of times, go to step (1).

After reducing the number of steps on which the two differentials meet from 5 to 3
(i.e., putting k = 4, where it should be noted that after the propagation the number of
unconstrained bits will be relatively small), we received several paths reported as non-
contradictory. At that point, there are two possible routes to verify the actual correctness
of the intermediate result. One is to switch from 1-bit conditions to multi-bit conditions
(such as 1.5-bit or 2.5-bit conditions [13]) that capture more information. ARXtools [13]
can readily be used for this purpose. Each 2.5-bit verification using ARXtools for checking
the compatibility of two paths took around 3-5 minutes. Another option is to continue
with the search heuristic towards extending the specification of the paths to more steps,
restarting always from the saved intermediate path state. As the knowledge in the system
grows, the propagations turns a high proportion of bits into 0 and 1, which diminishes the
possibility of contradiction. If the solution cannot be found after some time threshold t,
the path can be abandoned. We experimented with both options above and concluded that
both approaches are successful.

3.3 Full complexity of finding the HAS-160 second order collision

Our implementation of the heuristic found a correct pair of compatible paths in less than
5 days of execution on an 8-core Intel i7 CPU running at 2.67GHz. In more detail, as
explained in Section 3.2, we ran the heuristic to search for paths that meet on 3 instead
on 5 steps. It should be noted that due to many propagations, after the search stops, the
resulting paths in fact have a small number of remaining unspecified bits in steps 38-42
(less than 32). The heuristic yielded around 8 solutions per day and among 40 returned
path pairs, one turned out to be compatible and was successfully extended by one step
more, as shown in Table 8.

The conditions for the two paths that are not explicitly given as u,n,0,1 bits in Table
8 are provided in Tables 9 and 10. To find the quartet of message words and inner states
that follow the two differentials in steps 34 to 49, inner state registers in step 42 are chosen
to follow the conditions specified by Tables 9,10 and Table 8 and then the usual message
modification procedure is applied backward and forward.

Once the middle steps of the quartet structure n2 = 34 to n3 = 53 are satisfied, the
second order collision property extends to steps n1 = 8 to n4 = 78 with probability 1
(see Fig. 1 (b)). To cover all of the compression function steps, the middle steps are kept
constant and the remaining ones are randomized until the second order collision property
is satisfied. In particular, if m6 and m15 are randomized while m6 ⊕m15 is kept constant,
according to the message expansion specification, the inner state will be randomized for
54 ≤ i ≤ 80 and 0 ≤ i ≤ 35. Similarly, if m6 and m4 are randomized where m6⊕m4 is kept
constant, the randomization will happen for 52 ≤ i ≤ 79 and 0 ≤ i ≤ 34. Here, a small
penalty in probability is paid due to the fact that the paths may be corrupted towards the
start/end points. The two mentioned randomizations provide around 64 bits of freedom.

The probability that one randomization explained above yields a second order collision
can be bounded from below by p2q2, where p and q are the probabilities of two selected
sparse differentials in steps 0 ≤ i ≤ n1 and n4 ≤ i < 80, respectively. By counting the
number of conditions in sparse paths that happened in the quartet in Table 4, we obtain
p = 2−22 and q = 2−3 and the probability lower bound p2q2 = 2−50. The actual time
of execution on the above mentioned PC was less than two days, due to the additional
differential paths which contribute to the exact probability of achieving the second order
collision property (previously named amplified probability [3, 13]).

4 Details on condition propagation

The heuristic keeps track of the current state of the system by keeping the following
information in memory:

- Four differential path tables keeping the current state of bit-conditions
- 4× r carry graphs [22] (one carry graph for each of four paths consisting of r steps)

In our implementation, we used r = 16, keeping the information about steps 33-48. The
carry graphs model the carry transitions allowed by the knowledge present in the system.
Below, the three types of knowledge propagation are described. The propagations are
applied as long as the system is not fully propagated with respect to all three types below.

4.1 Single-path propagations

An explicit example of a single-path propagation [5] (see also [22, 24]) is provided below.
The constraints and the corresponding carry graphs for at a particular bit position are all
explicitly shown. The new propagated constraints as well as the removed carry graph edges
are indicated.

Throughout the compression function execution specified by (4), for any 1 ≤ i ≤ 80
and 0 ≤ j ≤ 31, bit Aji is computed based on the 5 input bits in Ai−j, 1 ≤ j ≤ 5, the

. . .

δK 01101110110110011110101110100001

δ[WB,41,WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

δK 01101110110110011110101110100001

δ[WB,41,WC,41] --------0-----0-----------------
δ[B37, C37] 11-0-u---00u-10n---10-0n1un-----

δ[B38, C38] 0u1000-100111uu011-0n11u0000-u1-

δ[B39, C39] 01un-n0u010u-0-u00u-1---n0u-un00

δ[B40, C40] 1-nu001uu01-0n--u01-1-0-u0--11-1

δ[B41, C41] 1--n--00--0-u1--u--u1--001-0---1

δ[B42, C42] 1---n-u1uun-n1u--00n0nn--0n0---n

. . .

c0C

c0B

c1C

c1B

c2C

c2B

Fig. 3. Extract of single-path path constraints

message word bit as well as a particular constant bit. Moreover, bit Aji depends on the
carries coming from the computations at bit positions j < k ≤ 0.

In Fig. 3, an extract of the path is provided, borrowed from the ∆[B,C] path in Table
8. The bit positions treated in this case are δ[B1

42, C
1
42] (left) and δ[B0

42, C
0
42] (right). The

shaded bits are the bit positions participating in the computation of the two bits. As for
the carry graph, it consists of 32 subgraphs, each comprising of 5 × 5 nodes. In Fig. 3,
only the subgraphs corresponding to bit positions 1 (left) and 0 (right) are shown. Each
subgraph node represents a particular carry configuration at the particular bit position.
Due to the fact that there is 5 summands in (4), the carry value is limited to {0, . . . 4} and
thus each subgraph contains 5× 5 nodes. The edges in the graphs represent possible carry
configuration transitions from bit position i to i+ 1.

Next, the edges connecting subgraphs for bit positions i = 0 to i = 1 in Fig. 3 are
explained. The shown edges and the corresponding bit-conditions are aligned in the sense
that there is no possible propagations at the particular positions neither from the bit-
conditions to graphs nor vice-versa. According to the bit-conditions on position 0, we have

c1B|B0
42 = c1B|1 = 1 +W 0

B,41 +B15
37 + f2(1, 1, 1) + 0 = 1 +W 0

B,41 +B15
37

c1C |C0
42 = c1C |0 = 1 +W 0

C,41 + C15
37 + f2(1, 0, 1) + 0 = 1 +W 0

C,41 + C15
37 + 1

From the above two equalities, it follows that W 0
B,41 = B15

37 and W 0
C,41 = C15

37 . Since
δ[W 0

B,41,W
0
C,41] and δ[B15

37 , C
15
37] are set to -, the possible carry configurations are (c1B, c

1
C) ∈

{(0, 1), (1, 2)}, which corresponds to the two edges between the two subgraphs.

Whenever it is possible to deduce new information from what is already present in
the system, propagations need to be carried out until no new information can be derived.
Continuing with the setting in Fig. 3, assume that during the heuristic, the symbol - at
position δ[W 0

B,41,W
0
C,41] is substituted by 0. Then, the propagation at this bit consists of

substituting - at position δ[B15
37 , C

15
37] by 0 and deleting the (0, 0) 7→ (1, 2) graph edge. The

edge deletion continues to the left and to the right. In case of Fig. 3, this amounts to deleting
the edges coming out of node (1, 2) and continuing in the same manner throughout the rest

of the subgraphs. Next, all of the influenced bit positions, either through carry graphs or
through bit-conditions, need to be repropagated similarly to the process described above.

4.2 Quartet propagations

This type of propagations is the simplest of all three types presented in this section, since
it does not involve the carry graphs. An example of this type of propagation is as follows.
Let (i, j) denote a specific bit position in the range of the considered steps. Let the bit-
conditions δ[Aji , B

j
i], δ[D

j
i , C

j
i], δ[B

j
i , C

j
i], δ[A

j
i , D

j
i] in the four paths be equal to u, x, -,

and ?, respectively. It follows that Aji = 0, Bj
i = 1, Cj

i = 1 and Dj
i = 0 and thus the

quartet can be readily substituted by a new one

(ux-?) 7→ (uu10)

Given a quartet of conditions, the substitution quartet is found by going through all the
bit value quartets that satisfy the given condition quartet. The new quartet consists of the
symbols from Table 2 that represent minimal sets contain the valid bit value pairs.

4.3 Quartet addition propagations

In this subsection, the following terminology is adopted: carry subgraphs as shown in Fig.
3 are called 2-graphs. Nodes with at least one input/output edge in the 2-graphs are called
active nodes. During the execution of the heuristic, each active 2-graph node corresponds
to a possible carry configuration that has not yet been ruled out by the heuristic.

Quartet addition propagation is illustrated in Fig. 4. The four graphs in the top part
represent a particular case of the 2-graphs that correspond to a single bit position (i, j)
on paths [A,B], [B,C], [D,C], [A,D], respectively from left to right. The active nodes are
circled and the information about the number of input/output edges is abstracted from
the picture. The quartet addition propagation is based on the fact that the four different
2-graphs may impose incompatible constraint on the carry configurations at the considered
bit position. For instance, according to the 2-graph corresponding to the path [D,C] (third
graph from the left in Fig. 4), since node (cD, cC) = (3, 2) is active, it follows that having a
carry equal to 3 at this bit position in the branch D is not ruled out. However, since there
is no active nodes in the third column of the (cA, cD) graph, the node (cD, cC) = (3, 2)
should be deactivated.

For the purpose of deciding which 2-carry graph nodes should be deactivated, it is
convenient to introduce another type of carry graphs that will be called 4-carry graphs.
For each bit-position covered by the heuristic, the four 2-carry graphs are represented as
one 4-carry graph, as shown in the bottom part of Fig. 4. The 4-carry graphs abstract the
information about active nodes in the 2-carry graphs.

As shown in Fig. 4, the 4-carry graph has four groups of nodes that simply represent the
carry values cA, cB, cC and cD, respectively. The edges in the 4-carry graph are constructed
simply by mapping the active nodes in the corresponding 2-carry graphs to the edges
between the corresponding node groups. This mapping is specified by an example as follows.
The active nodes in the (cA, cD) 2-carry graph are (0, 0) and (2, 1). This is translated to

cD

cA

cC

cD

cC

cB

cB

cA

propagate

cA cB

cCcD

cA cB

cCcD

Fig. 4. Example: 2-carry graphs and the corresponding 4-carry graph before and after propagation

the edges (0, 0) and (2, 1) between the cA and cD branches in the 4-carry graph. The other
three 2-carry graph active nodes are mapped to the edges analogously.

The 4-carry graph representation allows expressing the quartet addition propagation
rules in a natural way. For that purpose, let a cycle denote a closed path connecting four
nodes, where no two nodes are members of the same node group in the 4-graph. The
propagation rules are then as follows:

(R1) Remove all “dead-end” edges, i.e., the ones with an end node of degree 1
(R2) Remove all edges that do not participate in any cycle

In the case of the propagation given in Fig. 4, the quartet addition propagation consisted of
three applications of (R1) and one application of (R2). Since each 4-graph edge corresponds
to a node in the corresponding 2-graph, the edge removal according to rules (R1) and (R2)
amounts to deactivating the corresponding nodes in the 2-graph. The node deactivation
is done by deleting all input and output edges for the corresponding 2-graph node. In the
case of our HAS-160 search, implementing only rule (R1) turned out to be sufficient.

5 Conclusion

We proposed a heuristic for searching for compatible differential paths and applied it to
HAS-160. Instead of working with 0/1 bit values, we used the reasoning on sets of bits
described by 1-bit constraints. The three types of propagations used during the search
(single-path propagations, quartet propagations and quartet addition propagations) are
explained through particular examples. Using the 1-bit constraints along with these prop-
agations yielded an acceptable rate of false positives and the second order collision was
successfully found. One possible future research direction is to evaluate the performance
of the proposed heuristic in case of SHA-2 with a goal of improving the attack [3] and to
assess the impact of high rate of contradictory paths reported in [18] in this context.

Acknowledgments. The authors would like to thank Gaëtan Leurent for his help related
to ARXtools and the discussions on the topic.

References

1. Telecommunications Technology Association. Hash Function Standard Part 2, Hash Function Algorithm Stan-
dard (HAS-160), TTAS.KO-12.0011/R1, 2008.

2. Jean-Philippe Aumasson. Zero-sum distinguishers, Rump session talk at CHES, 2009.
http://131002.net/data/talks/zerosum rump.pdf.

3. Alex Biryukov, Mario Lamberger, Florian Mendel, and Ivica Nikolic. Second-order differential collisions for
reduced SHA-256. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes
in Computer Science, pages 270–287. Springer, 2011.

4. Alex Biryukov, Ivica Nikolić, and Arnab Roy. Boomerang attacks on BLAKE-32. In Antoine Joux, editor,
FSE, volume 6733 of Lecture Notes in Computer Science, pages 218–237. Springer, 2011.

5. Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteristics: General results and ap-
plications. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2006.

6. Hong-Su Cho, Sangwoo Park, Soo Hak Sung, and Aaram Yun. Collision search attack for 53-step HAS-160.
In Min Surp Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of Lecture Notes in Computer Science,
pages 286–295. Springer, 2006.

7. Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Automatic search of differential path in MD4.
IACR Cryptology ePrint Archive, 2007:206, 2007.

8. Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved preimage attack for 68-step HAS-160. In Donghoon
Lee and Seokhie Hong, editors, ICISC, volume 5984 of Lecture Notes in Computer Science, pages 332–348.
Springer, 2009.

9. Dmitry Khovratovich. Bicliques for permutations: Collision and preimage attacks in stronger settings. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer Science,
pages 544–561. Springer, 2012.

10. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the security of HMAC and NMAC based
on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung, editors, SCN, volume 4116
of Lecture Notes in Computer Science, pages 242–256. Springer, 2006.

11. Aleksandar Kircanski, Yanzhao Shen, Gaoli Wang, and Amr M. Youssef. Boomerang and slide-rotational anal-
ysis of the SM3 hash function. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography,
volume 7707 of Lecture Notes in Computer Science, pages 304–320. Springer, 2012.

12. Mario Lamberger and Florian Mendel. Higher-order differential attack on reduced SHA-256. IACR Cryptology
ePrint Archive, 2011:37, 2011.

13. Gaëtan Leurent. Analysis of differential attacks in ARX constructions. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer Science, pages 226–243. Springer, 2012.

14. Gaëtan Leurent. Construction of differential characteristics in ARX designs - application to Skein. IACR
Cryptology ePrint Archive, 2012:668, 2012.

15. Gaëtan Leurent and Arnab Roy. Boomerang attacks on hash function using auxiliary differentials. In Orr
Dunkelman, editor, CT-RSA, volume 7178 of Lecture Notes in Computer Science, pages 215–230. Springer,
2012.

16. Florian Mendel and Tomislav Nad. Boomerang distinguisher for the SIMD-512 compression function. In
Daniel J. Bernstein and Sanjit Chatterjee, editors, INDOCRYPT, volume 7107 of Lecture Notes in Computer
Science, pages 255–269. Springer, 2011.

17. Florian Mendel, Tomislav Nad, and Martin Schläffer. Cryptanalysis of round-reduced HAS-160. In Howon
Kim, editor, ICISC, volume 7259 of Lecture Notes in Computer Science, pages 33–47. Springer, 2011.

18. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 characteristics: Searching through a
minefield of contradictions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of
Lecture Notes in Computer Science, pages 288–307. Springer, 2011.

19. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on the reduced dual-stream hash
function RIPEMD-128. In Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science,
pages 226–243. Springer, 2012.

20. Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding collisions for round-reduced SM3. In Ed Dawson,
editor, CT-RSA, volume 7779 of Lecture Notes in Computer Science, pages 174–188. Springer, 2013.

21. Florian Mendel and Vincent Rijmen. Colliding message pair for 53-step HAS-160. In Kil-Hyun Nam and
Gwangsoo Rhee, editors, ICISC, volume 4817 of Lecture Notes in Computer Science, pages 324–334. Springer,
2007.

22. Nicky Mouha, Christophe De Cannière, Sebastiaan Indesteege, and Bart Preneel. Finding collisions for a 45-
step simplified HAS-V. In Heung Youl Youm and Moti Yung, editors, WISA, volume 5932 of Lecture Notes in
Computer Science, pages 206–225. Springer, 2009.

23. Sean Murphy. The return of the cryptographic boomerang. IEEE Transactions on Information Theory,
57(4):2517–2521, 2011.

24. Thomas Peyrin. Analyse de fonctions de hachage cryptographes. Ph.D. Thesis, University of Versailles, 2008.,
http://www.iacr.org/phds/?p=detail&entry=500.

25. Yu Sasaki. Boomerang distinguishers on MD4-family: First practical results on full 5-pass haval. In Ali Miri and
Serge Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2011.

26. Yu Sasaki and Kazumaro Aoki. A preimage attack for 52-step HAS-160. In Pil Joong Lee and Jung Hee
Cheon, editors, ICISC, volume 5461 of Lecture Notes in Computer Science, pages 302–317. Springer, 2008.

27. Yu Sasaki and Lei Wang. Distinguishers beyond three rounds of the RIPEMD-128/-160 compression func-
tions. In Feng Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS, volume 7341 of Lecture Notes in
Computer Science, pages 275–292. Springer, 2012.

28. Yu Sasaki, Lei Wang, Yasuhiro Takasaki, Kazuo Sakiyama, and Kazuo Ohta. Boomerang distinguishers for
full HAS-160 compression function. In Goichiro Hanaoka and Toshihiro Yamauchi, editors, IWSEC, volume
7631 of Lecture Notes in Computer Science, pages 156–169. Springer, 2012.

29. Martin Schläffer and Elisabeth Oswald. Searching for differential paths in MD4. In Matthew J. B. Robshaw,
editor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 242–261. Springer, 2006.

30. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and colliding x.509
certificates for different identities. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 1–22. Springer, 2007.

31. David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE, volume 1636 of Lecture Notes in
Computer Science, pages 156–170. Springer, 1999.

32. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer, 2005.

33. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald Cramer, editor,
EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer, 2005.

34. Hongbo Yu, Jiazhe Chen, and Xiaoyun Wang. The boomerang attacks on the round-reduced Skein-512. In
Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in
Computer Science, pages 287–303. Springer, 2012.

35. Aaram Yun, Soo Hak Sung, Sangwoo Park, Donghoon Chang, Seokhie Hong, and Hong-Su Cho. Finding
collision on 45-step HAS-160. In Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935 of Lecture
Notes in Computer Science, pages 146–155. Springer, 2005.

step ∆[A,B] ∆[D,C] ∆[B,C] ∆[A,D] step

9 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 9
10 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 10
11 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 11
12 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 12
13 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 13
...

...
...

... [no difference]
...

...
29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 34
35 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 35

36 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 36
37 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 37
38 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 38

39 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 39

40 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 40

41 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 41
42 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 42
43 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 43

44 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 44

45 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 45

46 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 46
47 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 47
48 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 48
49 ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? ???????????????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54
...

... [no difference]
...

...
...

...
76 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 76

77 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 77

Table 7. Input for the search heuristic

step ∆[A,B] ∆[D,C] ∆[B,C] ∆[A,D] step

29 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 29
30 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 30
31 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 31
32 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 32

33 ???????????????????????????????? ???????????????????????????????? -------------------------------- -------------------------------- 33

34 0??????????????????????????????? 1??????????????????????????????? u------------------------------- u------------------------------- 34
35 0??????????u???????x0???x-0????? 1??????????u???????x0???x-1????? u----------1--------0-----u----- u----------0--------0-----u----- 35

36 1x????????xu?-01B?--0Bx--u0D???? 0x????????xu?-11B?--1Bx--u0D???? n----------1--u1----u----10----- n----------0--u1----u----00----- 36
37 11-0D0B??0n0?101-x-10-01u01C???x 11-0D1B??0n1?100-x-10-00u10C???x 11-0-u---00u-10n---10-0n1un----- 11-0-u---01u-10n---10-0n0un1---- 37
38 00u0nn-1n01uu000uu-011u00nnn-01- 01u0nn-1n01uu110uu-001u10nnn-11- 0u1000-100111uu011-0n11u0000-u1- 0u0011-110100uu000-0n10u0111-u1- 38

39 n101-1000100-0-0000-1---100-010n n110-0010101-0-1001-1---001-100n 01un-n0u010u-0-u00u-1---n0u-un00 11un-n0u010u-0-u00u-1---n0u-un01 39

40 1-100010001-01--0n1-u-0-00--11-1 1-010011101-00--1n1-u-0-10--11-1 1-nu001uu01-0n--u01-1-0-u0--11-1 1-nu001uu01-0n--u11-0-0-u0--11-1 40

41 u--1--00--0-01--0--0u--001-0---1 u--0--00--0-11--1--1u--001-0---1 1--n--00--0-u1--u--u1--001-0---1 0--n--00--0-u1--u--u0--001-0---1 41
42 u---1-01001-110--n01011--n10---1 u---0-11110-011--n00000--n00---0 1---n-u1uun-n1u--00n0nn--0n0---n 0---n-u1uun-n1u--10n0nn--1n0---n 42
43 n------01----0------u------00-un n------00----0------u------01-un 0????--0nD???0x?????1x??x--0u-10 1????--0nD???0x?????0x??x--0u-01 43

44 0-----10----------------1u------ 0------0----------------1u------ 0?????C0????????????????11?????x 0?????C0????????????????10?????x 44

45 ------00------------u------1---- ------00------------u------1---- ??????00????????????1??????1???? ??????00????????????0??????1???? 45

46 u------------------------------- u------------------------------- 1??????????????????????????????? 0??????????????????????????????? 46
47 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 47
48 -------u------------------------ -------u------------------------ ???????1???????????????????????? ???????0???????????????????????? 48
49 -------n------------------------ -------n------------------------ ???????0???????????????????????? ???????1???????????????????????? 49

50 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 50

51 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 51
52 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 52

53 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 53
54 -------------------------------- -------------------------------- ???????????????????????????????? ???????????????????????????????? 54

Table 8. Output of the heuristic: compatible paths for HAS-160

Step Conditions

33 A33,14 6= A32,14

34 A34,20 = A33,20

35 A35,0 6= A34,0, A35,16 6= A33,31, A35,26 6= A34,26

36 A36,3 = A35,3, A36,9 6= A35,9, A36,21 = A35,21, A36,22 = A34,5, A36,23 = A35,23

37 A37,0 = A36,0, A37,1 = A36,1, A37,2 6= A35,17, A37,13 = A36,13, A37,23 6= A36,23

38 A38,25 = A36,8

39 A39,19 ∨ A37,2 = 1

40 A40,17 ∨ A38,0 = 1, A40,30 ∨ A38,13 = 1

41 A41,16 ∨ A39,23 = 1

Table 9. Backward differential conditions not shown in Table 8

Step Conditions

37 A37,2 = A36,2, A37,3 6= A36,3, A37,10 6= A36,10, A37,13 = A36,28, A37,15 = 0, A37,25 = A36,8, A37,29 = A36,12

38 A38,0 = 1

39 A39,4 = 1, A39,8 = 0, A39,9 = 1, A39,12 = 0, A39,17 = 0, A39,19 = 1

40 A40,4 = 0, A40,5 = 0, A40,8 = 0, A40,12 = 1

41 A41,13 = 0, A41,14 = 0

42 A42,7 = 0,

43 A43,6 = 0, A43,7 ∨ A41,14 = 1

44 A44,0 = 0, A44,1 = 0, A44,4 ∨ A42,11 = 1, A44,26 ∨ A42,1 = 1

45 A45,26 = 0

46 A46,4 ∨ A44,11 = 1

47 A47,4 = 1, A47,24 ∨ A45,31 = 1, A47,31 = 1

48 A48,31 = 0

49 A49,17 = 0

50 A50,17 = 0, A50,24 = 1

51 A51,17 = 0

Table 10. Forward differential conditions not shown in Table 8

step ∆[WA,WB] ∆[WD,WC] ∆[WB ,WC] ∆[WA,WD]

33 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

34 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

35 -------------------------------- -------------------------------- -------------------------------- --------------------------------

36 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

37 -------------------------------- -------------------------------- -------------------------------- --------------------------------

38 -------------------------------- -------------------------------- -------------------------------- --------------------------------

39 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

40 0-------------u----------------- 1-------------u----------------- u-------------1----------------- u-------------0-----------------

41 --------0-----u----------------- --------0-----u----------------- --------0-----1----------------- --------0-----0-----------------

42 -------------------------------1 -------------------------------1 -------------------------------1 -------------------------------1

43 -------------------------------- -------------------------------- -------------------------------- --------------------------------

44 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

45 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

46 1------------------------------- 0------------------------------- n------------------------------- n-------------------------------

47 -------------------------------- -------------------------------- -------------------------------- --------------------------------

48 -------------------------------- -------------------------------- -------------------------------- --------------------------------

Table 11. Message differences after propagation

