
A Fast Implementation of the Optimal Ate

Pairing over BN curve on Intel Haswell Processor

Shigeo MITSUNARI ∗

June 11, 2013

Abstract

We present an efficient implementation of the Optimal Ate Pairing on

Barreto-Naehrig curve over a 254-bit prime field on Intel Haswell pro-

cessor. Our library is able to compute the optimal ate pairing over a

254-bit prime field, in just 1.17 million of clock cycles on a single core of

an Intel Core i7-4700MQ(2.4GHz) processor with TurboBoost technology

disabled.

Keywords: optimal ate pairing, efficient implementation, Haswell

1 Introduction

Bilinear maps on elliptic curves are important tools for generating many inter-

esting encryption protocols. This paper provides an efficient software imple-

mentation of asymmetric bilinear pairings at high security levels. We present

a library that performs the optimal ate pairing over a 254-bit Barreto-Naehrig

(BN) curve in just 1.17 million of clock cycles on a single core of an Intel i7-

4700MQ 2.4GHz (Haswell) processor with TurboBoost technology disabled.

Haswell processor supports a new instruction named mulx, which performs

an unsigned multiplication of 64-bit integer without writing the arithmetic flags

unlike mul instruction. We apply mulx instruction to the straightforward multi-

plication of two 256-bit integers (producing a 512-bit integer), then the timings

of the pairing are reduced from 1.33M cycles to 1.17M cycles.

The full source code of our implementation is available from

https://github.com/herumi/ate-pairing/.

∗Cybozu Labs, Inc.

1



2 Parameters of BN Curves

We use BN curves[1] defined by the equation E : y2 = x3 + 2 over Fp, where p

is defined as follows[3]:

z = −(262 + 255 + 1), p = 36z4 + 36z3 + 24z2 + 6z + 1.

p is a 254-bit prime, which implies that the security level achieved for such a

BN curve would be of approximately 127 bits. Next, we represent Fp12 using

the following extensions[3]:

Fp2 = Fp[u]/(u
2 + 1),

Fp6 = Fp2 [v]/(v3 − ξ), ξ = −u− 1,

Fp12 = Fp6 [w]/(w2 − v).

3 Operation Costs

Let mul256 denote the multiplication of two 256-bit integers, producing a 512-

bit integer, and red512 the Montgomery modular reduction of 512-bit integers

to Fp. Let mu and r denote the cost of mul256 and red512 respectively, then

the cost of field multiplication in Fp, denoted as m is mu + r. The cost of

multiplication and squaring in Fp2 is 3mu+2r and 2mu+2r respectively. Here,

we omit the costs of addition operations.

We compare the operation costs for different implementations of the optimal

ate pairing of the same parameters. Table 1 shows the operation costs of the

pairing of [3], our previous work[4], and this work. Table 2 in the Section 6

of [3] does not contain the cost of m and r of Fp, then we add the costs of

(282m+ 6mu + 4r), (30m+ 75mu + 50r) to the costs of [3] for the Miller loop

and the final exponentiation respectively.

Table 1: Operation Cost of the pairing

Phase Aranha et al.[3] our previous[4]/this work

Miller loop 6792mu + 3022r 6785mu + 3022r

Final exp. 3753mu + 2006r 3526mu + 1932r

Optimal Ate pairing 10545mu + 5028r 10311mu + 4954r

2



4 Implementation

This section shows an efficient implementation of mul256 and red512 for

Haswell processor. Let mul256x64 denote the multiplication of 256-bit integer

and 64-bit integer, producing a 320-bit integer. An efficient implementation of

mul256x64 is important because each mul256 and red512 call mul256x64

four times.

Let xi, y, zi, and ti denote 64-bit general purpose registers, and mul, add, and

adc a multiplication instruction, an addition instruction, an addition instruction

with carry flag (CF) of two 64-bit registers respectively. The registers named

rax and rdx are special registers for destination of mul instruction.

4.1 Our previous implementation

This section shows a detail of the implementation ofmul256x64 in our previous

work[4]. It is necessary for adc instruction to keep CF generated by other add

and adc instruction. However, mul instruction changes the arithmetic flags such

as CF, then it is difficult to deal with mul and adc simultaneously. Moreover

the destination registers of mul instruction are fixed to rax and rdx register.

Algorithm 1 shows our previous implementation[4] with mul instruction to

implement mul256x64, which needs five temporary registers t0, . . . , t4 gener-

ated by mul instructions. Therefore, it requires many mov instructions to keeps

them.

Algorithm 1 : mul256x64 without mulx

input: [x3:x2:x1:x0] : 256-bit integer, y : 64-bit integer

output: [z4:z3:z2:z1:z0] : 320-bit integer

1. [rdx:rax] ← mul(x0, y) , [t0:z0] ← [rdx:rax]

2. [rdx:rax] ← mul(x1, y) . [t2:t1] ← [rdx:rax]

3. [rdx:rax] ← mul(x2, y) , [t4:t3] ← [rdx:rax]

4. [rdx:rax] ← mul(x3, y)

5. (z1,CF) ← add(t0, t1)

6. (z2,CF) ← adc(t2, t3,CF)

7. (z3,CF) ← adc(t4, rax,CF)

8. z4 ← adc(rdx, 0,CF)

9. return [z4:z3:z2:z1:z0]

3



4.2 Our implementation

On the other hand, mulx instruction[5] supported by Haswell processor does

not affect to CF, then we can use mulx and adc instruction simultaneously.

Moreover we can select any registers for destination of mulx.

Algorithm 2 shows an implementation ofmul256x64 with mulx instructions,

which needs two temporary registers t0, t1. As a result, we can remove some

mov instructions to implement mul256x64, therefore Algorithm 2 reduces 36

mov instructions to implement mul256 and red512 compared with Algorithm

1.

Algorithm 2 : mul256x64 with mulx

input: [x3:x2:x1:x0] : 256-bit integer, y : 64-bit integer

output: [z4:z3:z2:z1:z0] : 320-bit integer

1. [t0:z0] ← mulx(x0, y)

2. [rax:t1] ← mulx(x1, y)

3. (z1,CF) ← add(t0, t1)

4. [t1:t0] ← mulx(x2, y)

5. (z2,CF) ← adc(rax, t0,CF)

6. [rax:t0] ← mulx(x3, y)

7. (z3,CF) ← adc(t1, t0,CF)

8. z4 ← adc(rax, 0,CF)

9. return [z4:z3:z2:z1:z0]

5 Benchmark

Table 2 shows a comparison of operation counts for different implementations

of the optimal Ate pairing. According to the score at Core i5 in the Table 2, our

previous implementation[4] is slightly faster than that of Aranha et al.[3] and

this work is 13% faster than our previous implementation on a same Haswell

processor.

6 Conclusion

We applied the new instruction mulx supported with Haswell to an implemen-

tation of the optimal Ate pairing, and our implementaion, which runs in 1.17M

cycles on Haswell processor, improves that result in 13%.

4



Table 2: Cycle counts of the operations for different implementation of the

optimal Ate pairing

implementation Aranha et al.[3] our previous work[4] this work

CPU Core i5a Core i5b Core i7c Haswelld Haswelld with mulx

TurboBoost on on on off off

mu – 69 50 42 38

r – 110 85 69 65

Miller lp. 0.978 0.97 0.83 0.82 0.71

Final exp. 0.710 0.62 0.54 0.51 0.46

Opt Ate 1.688 1.59 1.37 1.33 1.17

a Core i5 M540 on Linux
b Core i5 M520 on Windows 7
c Core i7 2600K 3.4GHz on Windows 7
d Core i7 4700MQ 2.4GHz on Linux

References

[1] P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime

order. In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography

SAC 2005, volume 3897 of LNCS, pp.319–331. Springer, 2006.

[2] J.L. Beuchat, J.E. González-Dı́az, S. Mitsunari, E. Okamoto, F. Rodŕıguez-

Henŕıquez, and T. Teruya. High-speed software implementation of the opti-

mal ate pairing over Barreto-Naehrig curves. Pairing 2010, pp. 21–39, 2010.

[3] D.F. Aranha, K. Karabina, P. Longa, C.H. Gebotys, and J. López. Faster

explicit formulas for computing pairings over ordinary curves. EURO-

CRYPT’11, pp. 48–68, 2011. http://eprint.iacr.org/2010/526

[4] S. Mitsunari, T. Teruya, and E. Okamoto. Software Implementation of the

Optimal Ate Pairing over Barreto-Naehrig Curves. SCIS2012(In Japanese)

[5] Intel Architecture Instruction Set Extensions Programming Reference

319433-014 Aug. 2012

5


