A Fast Implementation of the Optimal Ate Pairing over BN curve on Intel Haswell Processor

Shigeo MITSUNARI *

June 11, 2013

Abstract

We present an efficient implementation of the Optimal Ate Pairing on Barreto-Naehrig curve over a 254 -bit prime field on Intel Haswell processor. Our library is able to compute the optimal ate pairing over a 254 -bit prime field, in just 1.17 million of clock cycles on a single core of an Intel Core i $7-4700 \mathrm{MQ}(2.4 \mathrm{GHz})$ processor with TurboBoost technology disabled.

Keywords: optimal ate pairing, efficient implementation, Haswell

1 Introduction

Bilinear maps on elliptic curves are important tools for generating many interesting encryption protocols. This paper provides an efficient software implementation of asymmetric bilinear pairings at high security levels. We present a library that performs the optimal ate pairing over a 254 -bit Barreto-Naehrig (BN) curve in just 1.17 million of clock cycles on a single core of an Intel i74700 MQ 2.4 GHz (Haswell) processor with TurboBoost technology disabled.

Haswell processor supports a new instruction named mulx, which performs an unsigned multiplication of 64 -bit integer without writing the arithmetic flags unlike mul instruction. We apply mulx instruction to the straightforward multiplication of two 256 -bit integers (producing a 512-bit integer), then the timings of the pairing are reduced from 1.33 M cycles to 1.17 M cycles.

The full source code of our implementation is available from https://github.com/herumi/ate-pairing/.

[^0]
2 Parameters of BN Curves

We use BN curves[1] defined by the equation $E: y^{2}=x^{3}+2$ over \mathbb{F}_{p}, where p is defined as follows[3]:

$$
z=-\left(2^{62}+2^{55}+1\right), \quad p=36 z^{4}+36 z^{3}+24 z^{2}+6 z+1 .
$$

p is a 254 -bit prime, which implies that the security level achieved for such a BN curve would be of approximately 127 bits. Next, we represent $\mathbb{F}_{p^{12}}$ using the following extensions[3]:

$$
\begin{aligned}
\mathbb{F}_{p^{2}} & =\mathbb{F}_{p}[u] /\left(u^{2}+1\right), \\
\mathbb{F}_{p^{6}} & =\mathbb{F}_{p^{2}}[v] /\left(v^{3}-\xi\right), \quad \xi=-u-1, \\
\mathbb{F}_{p^{12}} & =\mathbb{F}_{p^{6}}[w] /\left(w^{2}-v\right) .
\end{aligned}
$$

3 Operation Costs

Let mul256 denote the multiplication of two 256 -bit integers, producing a 512 bit integer, and red512 the Montgomery modular reduction of 512-bit integers to \mathbb{F}_{p}. Let m_{u} and r denote the cost of mul256 and red512 respectively, then the cost of field multiplication in \mathbb{F}_{p}, denoted as m is $m_{u}+r$. The cost of multiplication and squaring in $\mathbb{F}_{p^{2}}$ is $3 m_{u}+2 r$ and $2 m_{u}+2 r$ respectively. Here, we omit the costs of addition operations.

We compare the operation costs for different implementations of the optimal ate pairing of the same parameters. Table 1 shows the operation costs of the pairing of [3], our previous work[4], and this work. Table 2 in the Section 6 of [3] does not contain the cost of m and r of \mathbb{F}_{p}, then we add the costs of $\left(282 m+6 m_{u}+4 r\right),\left(30 m+75 m_{u}+50 r\right)$ to the costs of [3] for the Miller loop and the final exponentiation respectively.

Table 1: Operation Cost of the pairing

Phase	Aranha et al. $[3]$	our previous[4]/this work
Miller loop	$6792 m_{u}+3022 r$	$6785 m_{u}+3022 r$
Final exp.	$3753 m_{u}+2006 r$	$3526 m_{u}+1932 r$
Optimal Ate pairing	$10545 m_{u}+5028 r$	$10311 m_{u}+4954 r$

4 Implementation

This section shows an efficient implementation of mul256 and red512 for Haswell processor. Let mul256x64 denote the multiplication of 256-bit integer and 64 -bit integer, producing a 320 -bit integer. An efficient implementation of mul256x64 is important because each mul256 and red512 call mul256x64 four times.

Let x_{i}, y, z_{i}, and t_{i} denote 64 -bit general purpose registers, and mul, add, and adc a multiplication instruction, an addition instruction, an addition instruction with carry flag (CF) of two 64 -bit registers respectively. The registers named rax and rdx are special registers for destination of mul instruction.

4.1 Our previous implementation

This section shows a detail of the implementation of mul256x64 in our previous work[4]. It is necessary for adc instruction to keep CF generated by other add and adc instruction. However, mul instruction changes the arithmetic flags such as CF, then it is difficult to deal with mul and adc simultaneously. Moreover the destination registers of mul instruction are fixed to rax and rdx register.

Algorithm 1 shows our previous implementation[4] with mul instruction to implement mul256x64, which needs five temporary registers t_{0}, \ldots, t_{4} generated by mul instructions. Therefore, it requires many mov instructions to keeps them.

```
Algorithm 1: mul256x64 without mulx
input: \(\left[x_{3}: x_{2}: x_{1}: x_{0}\right]: 256\)-bit integer, \(y: 64\)-bit integer
output: \(\left[z_{4}: z_{3}: z_{2}: z_{1}: z_{0}\right]: 320\)-bit integer
1. \([\mathrm{rdx}: \mathrm{rax}] \leftarrow \operatorname{mul}\left(x_{0}, y\right),\left[t_{0}: z_{0}\right] \leftarrow[\mathrm{rdx}: \mathrm{rax}]\)
2. [rdx:rax \(] \leftarrow \operatorname{mul}\left(x_{1}, y\right) .\left[t_{2}: t_{1}\right] \leftarrow[\) rdx:rax]
3. [rdx:rax \(] \leftarrow \operatorname{mul}\left(x_{2}, y\right),\left[t_{4}: t_{3}\right] \leftarrow[\mathrm{rdx}: \mathrm{rax}]\)
4. \([\mathrm{rdx}: \mathrm{rax}] \leftarrow \operatorname{mul}\left(x_{3}, y\right)\)
5. \(\left(z_{1}, \mathrm{CF}\right) \leftarrow \operatorname{add}\left(t_{0}, t_{1}\right)\)
6. \(\left(z_{2}, \mathrm{CF}\right) \leftarrow \operatorname{adc}\left(t_{2}, t_{3}, \mathrm{CF}\right)\)
7. \(\left(z_{3}, \mathrm{CF}\right) \leftarrow \operatorname{adc}\left(t_{4}, \operatorname{rax}, \mathrm{CF}\right)\)
8. \(z_{4} \leftarrow \operatorname{adc}(\operatorname{rdx}, 0, \mathrm{CF})\)
9. return \(\left[z_{4}: z_{3}: z_{2}: z_{1}: z_{0}\right]\)
```


4.2 Our implementation

On the other hand, mulx instruction[5] supported by Haswell processor does not affect to CF, then we can use mulx and adc instruction simultaneously. Moreover we can select any registers for destination of mulx.

Algorithm 2 shows an implementation of mul256x64 with mulx instructions, which needs two temporary registers t_{0}, t_{1}. As a result, we can remove some mov instructions to implement mul256x64, therefore Algorithm 2 reduces 36 mov instructions to implement mul256 and red512 compared with Algorithm 1.

```
Algorithm 2: mul256x64 with mulx
input: \(\left[x_{3}: x_{2}: x_{1}: x_{0}\right]: 256\)-bit integer, \(y: 64\)-bit integer
output: \(\left[z_{4}: z_{3}: z_{2}: z_{1}: z_{0}\right]: 320\)-bit integer
1. \(\left[t_{0}: z_{0}\right] \leftarrow \operatorname{mulx}\left(x_{0}, y\right)\)
2. \(\left[\operatorname{rax}: t_{1}\right] \leftarrow \operatorname{mulx}\left(x_{1}, y\right)\)
3. \(\left(z_{1}, \mathrm{CF}\right) \leftarrow \operatorname{add}\left(t_{0}, t_{1}\right)\)
4. \(\left[t_{1}: t_{0}\right] \leftarrow \operatorname{mulx}\left(x_{2}, y\right)\)
5. \(\left(z_{2}, \mathrm{CF}\right) \leftarrow \operatorname{adc}\left(\operatorname{rax}, t_{0}, \mathrm{CF}\right)\)
6. \(\left[\operatorname{rax}: t_{0}\right] \leftarrow \operatorname{mulx}\left(x_{3}, y\right)\)
7. \(\left(z_{3}, \mathrm{CF}\right) \leftarrow \operatorname{adc}\left(t_{1}, t_{0}, \mathrm{CF}\right)\)
8. \(z_{4} \leftarrow \operatorname{adc}(\operatorname{rax}, 0, \mathrm{CF})\)
9. return \(\left[z_{4}: z_{3}: z_{2}: z_{1}: z_{0}\right]\)
```


5 Benchmark

Table 2 shows a comparison of operation counts for different implementations of the optimal Ate pairing. According to the score at Core i5 in the Table 2, our previous implementation[4] is slightly faster than that of Aranha et al.[3] and this work is 13% faster than our previous implementation on a same Haswell processor.

6 Conclusion

We applied the new instruction mulx supported with Haswell to an implementation of the optimal Ate pairing, and our implementaion, which runs in 1.17 M cycles on Haswell processor, improves that result in 13%.

Table 2: Cycle counts of the operations for different implementation of the optimal Ate pairing

implementation	Aranha et al. $[3]$	our previous work[4]			this work
CPU	Core i5 a	Core i5 b	Core i7 c	Haswell d	Haswell d with mulx
TurboBoost	on	on	on	off	off
m_{u}	-	69	50	42	38
r	-	110	85	69	65
Miller lp.	0.978	0.97	0.83	0.82	0.71
Final exp.	0.710	0.62	0.54	0.51	0.46
Opt Ate	1.688	1.59	1.37	1.33	1.17

${ }^{\text {a }}$ Core i5 M540 on Linux
${ }^{\mathrm{b}}$ Core i5 M520 on Windows 7
${ }^{\text {c }}$ Core i 72600 K 3.4 GHz on Windows 7
${ }^{\mathrm{d}}$ Core i 74700 MQ 2.4 GHz on Linux

References

[1] P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography SAC 2005, volume 3897 of LNCS, pp.319-331. Springer, 2006.
[2] J.L. Beuchat, J.E. González-Díaz, S. Mitsunari, E. Okamoto, F. RodríguezHenríquez, and T. Teruya. High-speed software implementation of the optimal ate pairing over Barreto-Naehrig curves. Pairing 2010, pp. 21-39, 2010.
[3] D.F. Aranha, K. Karabina, P. Longa, C.H. Gebotys, and J. López. Faster explicit formulas for computing pairings over ordinary curves. EUROCRYPT'11, pp. 48-68, 2011. http://eprint.iacr.org/2010/526
[4] S. Mitsunari, T. Teruya, and E. Okamoto. Software Implementation of the Optimal Ate Pairing over Barreto-Naehrig Curves. SCIS2012(In Japanese)
[5] Intel Architecture Instruction Set Extensions Programming Reference 319433-014 Aug. 2012

[^0]: * Cybozu Labs, Inc.

