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Abstract

In this paper, we present a new class of public key cryptosystem based on Reed-Solomon codes, a member

of the code based PKC(CBPKC), referred to as K(XII)SE(1)PKC. We show that K(XII)SE(1)PKC can be

secure against the various attacks. Particularly we present a member of K(XII)SE(1)PKC constructed based

on the Reed-Solomon code over the extension field , which is extensively used in the present day storage

systems and the various digital transmission systems. In a sharp contrast with the conventional CBPKC

that uses Goppa code, in K(XII)SE(1)PKC, we do not care for the security of the primitive polynominal that

generates the Reed-Solomon code. The probabilistic scheme presented in this paper would yield a brand-new

technique in the field of CBPKC.
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1 Introduction

Various studies have been made of the Public Key Cryptosystem(PKC). The security of the PKC’s proposed

so far, in most cases, depends on the difficulty of discrete logarithm problem or factoring problem. For

this reason, it is desired to investigate another classes of PKC’s that do not rely on the difficulty of these

two problems. The multivariate PKC is one of the very promising candidates of a member of such classes.

However, most of the multivariate PKC’s are constructed by the simultaneous equations of degree larger

than or equal to 2 [1] ∼ [9]. Recently the author proposed a several classes of linear multivariate PKC’s

that are constructed by many sets of linear equations [10] ∼ [17] based on error-correcting code. It should

be noted that McEliece PKC [18], a class of code based PKC(CB·PKC), can be regarded as a class of the

linear multivariate PKC.

In this paper, we present a new class of public key cryptosystem based on Reed-Solomon codes, a member

of CB·PKC, referred to as K(XII)SE(1)PKC. We show that K(XII)SE(1)PKC can be secure against the various

attacks. Particularly we present CB·PKC constructed based on the Reed-Solomon code over F28 , which is

extensively used in the present day storage systems and the various digital transmission systems. In a sharp
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contrast with the conventional CB·PKC that uses Goppa code, in K(XII)SE(1)PKC, we do not care for

the security of the primitive polynominal that generates the Reed-Solomon code. The probabilistic scheme

presented in this paper would yield a brand-new technique in the field of CB·PKC.
Throughout this paper, when the variable vi takes on a value ṽi, we shall denote the corresponding vector

v = (v1, v2, · · · , vn) as
ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the polynomial as

v(x) = v1 + v2x+ · · ·+ vnx
n−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2 Construction of K(XII)SE(1)PKC

2.1 Preliminaries

Let us define several symbols.

m : I·message, (m1,m2, · · · ,mλ) over F2m , where we assume that λ < k and mi ̸= 0; i = 1, 2, · · · , λ.
a : II·message, (a1, a2, · · · , at) over F2m , where we let ai ̸= 0; i = 1, 2, · · · , t.

G(x) : generator polynomial of degree g, over F2m , where we let g > t.

E : exponent to which G(x) belongs, exponent of G(x) for short.

|A| : size of A (in bit).

Pc[Âi] : probability that the event Ai is correctly estimated by an exhaustive attack.

{ui} : set of public keys over F2m , u1,u2, · · · ,ui, · · · ,uk.

Loc(ui) : location of ui in the pulic key set ui, i.

2.2 Theoretical background of present paper

In 1970’s the author was much involved in the study of the optimization problems for source and channel

joint coding, based on syndrome coding. However unfortunately syndrome coding itself is considered not

worthy of note, although another coding scheme such as vector quantization was the center of attension

among the researchers working on source coding theory. Let us show an example of a communication system

using syndrome coding.
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Fig. 1: An example of communication system using syndrome coding.

As shown in Fig.1, the sparse data is an example of I·message m and the random error vector, that of

II·message a.

2.3 Construction of public key

Let εi(x) over F2mbe

εi(x) = εi1x
1⃝ + εi2x

2⃝ + · · ·+ εiηx
η⃝; i = 1, 2, · · · , k, (3)

where εij takes on a random value over F2m .

Let ρi(x) over F2mbe

ρi(x) = ρix
i; i = 1, 2, · · · , k, (4)

where i ̸= l for i ̸= l and λi takes on a non-zero random value over F2m .

We now let carrier µi be

µi(x) = εi(x) + ρi(x); i = 1, 2, · · · , k. (5)

We see that the Hamming weight of µi, w(µi), is

w(µi) = η + 1. (6)

Let carrier µi(x) of the Hamming weight η + 1 be transformed into

µi(x)x
g ≡ ri(x) mod G(x) ; i = 1, 2, · · · , k.
= ri1 + ri2x+ · · ·+ rigx

g−1.
(7)

We then have the code word vi(x) as

vi(x) = µi(x)x
g + ri(x) ≡ 0 mod G(x). (8)
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Let the code words of {vi} be

v1 = (µ11, µ12, · · · , µ1K , r11, r12, · · · , r1g),
v2 = (µ21, µ22, · · · , µ2K , r21, r22, · · · , r2g),

...

vk = (µk1, µk2, · · · , µkK , rk1, rk2, · · · , rkg).

(9)

Let Ar be

Ar =


r11, r12, · · · , r1g
r21, r22, · · · , r2g
...

...
...

rk1, rk2, · · · , rkg

 , (10)

where we let

ri = (ri1, ri2, · · · , rig). (11)

The matrix Ar is transformed into

Ar · PI =


u11, u12, · · · , u1g

u21, u22, · · · , u2g

...
...

...

uk1, uk2, · · · , ukg

 , (12)

where PI is a k × g random column permutation matrix.

Let ui be

ui = (ui1, ui2, · · · , uig). (13)

The set {ui} will be publicized.

Remark 1 : For hiding the structure of the Reed-Solomon code generated by G(x), we shall use µi’s of

Hamming weight of 4∼6, for a small m such that m >∼ 8 from the standpoint of security.

2.4 Construction of ciphertext

Let the λ public keys randomly chosen by Bob from the set ui be denoted u(1),u(2), · · · ,u(λ) where the

location of u(i), Loc(u(i)) satisfies

Loc(u(i)) < Loc(u(j)) for 1 ≤ i < j ≤ k. (14)

As we see in Fig.2 λ carriers µ(1),µ(2), · · · ,µ(λ) are selected in accordance with the randoom choice of

public keys u(1),u(2), · · · ,u(λ).
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Fig. 2: Randomly chosen ui’s for I·message(m1,m2, · · · ,mλ)

In Fig.2, µ(p) denotes mpµi. The check symbols r(p) is

mpµi(x) ≡ r(p)(x) mod G(x). (15)

Let the word u(m) be defined as the word u for the message m = (m1,m2, · · · ,mλ) :

u(m) = m1u
(1) +m2u

(2) + · · ·+mλu
(λ). (16)

We shall see, in the followings, that ũ(m) is a syndrome due to η erasure errors and λ random errors.

According to the random choice of u(1),u(2), · · · ,u(λ) for the given message m = (m1,m2, · · · ,mλ), the

λ carriers µ(1),µ(2), · · · ,µ(λ) are selected. The word u(m) is then

u(m) = ε(m) + ρ(m), (17)

where ε(m) and ρ(m) are

ε(m) = ε(1) + ε(2) + · · ·+ ε(λ)

ρ(m) = ρ(1) + ρ(2) + · · ·+ ρ(λ)
(18)

From Eqs.(3) and (4), we see that ε(m) results in η erasure errors and ρ(m), λ random errors.

Throughout this paper we assume that Bob randomly selects a set of location {(i)} all over again for

each given I·message, from the stand point of security.

In Fig.3, let us show an example of how to obtain word u(m), when m = (m1,m2) is given. In Fig.3,

Bob randomly chooses u(2) and u(5) from the set of public key {u1,u2, · · · ,un}. We see that in accordance

with this random choice of u2 and u5, µ
(2) and µ(5) are selected.
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Fig. 3: Toy example of {µ(i), ε(i),ρ(i)}.

For II·message a = (a1, a2, · · · , at), Bob constructs the message polynomial :

at(x) = a1x
[1] + a2x

[2] + · · ·+ atx
[t];

0 ≤ [i] ≤ g − 1,
(19)

where the locations [1], [2], · · · , [t] satisfies

1 ≤ [1] < [2] < · · · < [t− 1] < [t] ≤ g − 1. (20)

Throughout this paper, we also assume that Bob randomly selects a set of locations{[i]}, all over again,
for each given II·message.

The ciphertext is then

C = u(m) + at. (21)

The minimum distance, D, of the Reed-Solomon code generated by G(x) of degree g is

D = g + 1. (22)

The following relation :

2(λ+ t) + η + 1 = D, (23)

is required to hold so that the messages m and a may be correctly decoded.

2.5 Encryption and decryption processes.

[Encryption process]

Step 1 : Given I·message m̃ = (m̃1, m̃1, · · · , m̃λ), Bob chooses λ vectors ũ(1), ũ(2), · · · , ũ(λ) from

the set {ui} in a totally random manner under the condition that the following relation holds:(
k

λ

)
>∼ 280.

Step 2 : Bob calculates the word : ũ = ũ(1) + ũ(2) + · · ·+ ũ(λ).

Step 3 : Given II·message ã = (ã1, ã2, · · · , ãt), Bob randomly chooses the locations [1], [2], · · · , [t].
Step 4 : Bob transforms the message vector ã(x) into ãt(x) = ã1x

[1] + ã2x
[2] + · · ·+ ãtx

[t].

Step 5 : Bob calculates the ciphertext C̃(x) by C̃(x) = ũ(x) + ãt(x).

Step 6 : Bob sends the ciphertext C̃ to Alice.
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[Decryption process]

Step 1 : Recieving the ciphertext C̃(= ũ+ ãt) from Bob, Alice calculates :

(ũ+ ãt)P
−1
I = r̃ + α̃t, where α̃t = ãtP

−1
I .

Let r̃ + α̃t be denoted r̃ + α̃t = C̃∗ = (c̃ ∗
1 , c̃

∗
2 , · · · , c̃ ∗

g ).

Step 2 : Given C̃∗, Alice decodes m̃ = (m̃1, m̃2, · · · , m̃t) and α̃t for example,

with Euclidean decoding algorithm [19].

Step 3 : Alice decodes ã = (ã1, ã2, · · · , ãt) by performing PI on α̃t.

2.6 Parameters

For simplicity, let us consider the Reed-Solomon code with the following parameters :

k = g. (24)

The coding rate ρ is

ρ =

(λ+ t)m+ log2

(
k

λ

)(
k

t

)
gm

,
(25)

where we assume the following :

log2(2
m − 1) ∼= m, for m ≥ 8. (26)

Remark 2: When calculating the coding rate of Eq.(25), we take the amount of information due to the way

of random choices of λ locations and t locations into account.

3 Security considerations and countermeasure

Remark 3: The using of the Reed-Solomon codes is very attractive because they are extensively used for

the various storage systems such as CD or DVD. However, so far, the using of Reed-Solomon code has been

supposed to be a little dangerous as the generater polynomial can be estimated without much difficulty

compared with the Goppa code. However the author is certain that even if the generator polynomial is

disclosed, our proposed K(XII)SE(1)PKC can be made sufficiently secure as we shall see below.

One of the most strong attacks to our proposed scheme is the following attack.

Attack 1: Exhaustive attack for disclosing the structure of code word

When discussing the security of K(XII)SE(1)PKC, from a conservative point of view, we assume that the

generator polynominal G(x) is not reqiured to be kept secret, although it is not at all required to be made

public.

Let the probability that all εi’s and ρi of µi are estimated correctly be denoted Pc[εi,ρi]. Then

Pc[εi,ρi] =

(
k

η + 1

)−1

(2m)−(η+1); i = 1, 2, · · · , k; j = 1, 2, · · · , η. (27)

In order to be secure against Attack I for m = 8 the following parameters are recommended

K = 135

η ≥ 6

k = g = 120,

(28)
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yielding

P [{ˆ̃εi, ˆ̃ρi}] ≤
(

135

7

)−1

(28)−7 = 1.00× 10−28, (29)

a sufficiently small value.

Attack 2: Attack on I·message m̃

Attack 2 can be performed by the following steps :

Step 1 : An exhaustive attack for discussing λ keys ũ(1), ũ(2), · · · , ũ(λ) randomly chosen by Bob is performed. The probability that λ words

are successfully found by the exhaustive attack, Pc[Step1] is

Pc[Step1] =

(
k

λ

)−1

.

Step 2 : After finding the keys ũ(1), ũ(2), · · · , ũ(λ) an exhaustive attack is performed for finding error free

components of ũ(m).The probability of obtaining these λ error free components, Pc[Step2] is

Pc[Step2] =

(
g − t

λ

)/(
g

λ

)
which cannot be sufficiently small in K(XII)SE(1)PKC over F28 . For example, when g = 120,

t = 24, λ = 30, the probability Pc[Step2] is 4.05× 10−4, which is not a sufficiently small value.

We conclude that in order to be secure against Attack 2, the probability

Pc[Step1] ∗ Pc[Step2] =

(
k

λ

)−1 (
g − t

λ

)/(
g

λ

)
is made less than 2−80 = 8.27× 10−25.

Remark 4 : All ṽi’s ; i = 1, 2, · · · , k, can be estimated correctly if k error free symbols (∈ {c̃−T
i }) are

successfully estimated. However in K(XII)SE(1)PKC, we assume that k > g−t and k ≫ λ hold. We conclude

that K(XII)SE(1)PKC would be secure against the attack based on estimating error free k symbols.

Set of keys are :

Public key : {ui}
Secret key : {εi}, {ρi}, PI

An example of K(XII)SE(1)PKC is given below.

Example 1:m = 8, g = 120, k = 120, λ = 30, t = 24, η + 1 = 7

The code length E, number of information symbols K, minimum distance D are

E = 2m − 1 = 255,

K = E − g = 135,

D = g + 1 = 121.

(30)

We then have the followings :

Pc[ε̂i, ρ̂i] =

(
K

η + 1

)−1

· (2m)−(η+1)

=

(
135

7

)−1

· 2−56 = 1.00× 10−28.

(31)

Pc[{Step1}] =
(

k

λ

)−1

=

(
120

30

)−1

= 5.89× 10−29.

(32)
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The coding rate ρ and the size of public key, SPK are

ρ =

(λ+ t)m+ log2

(
k

λ

)(
g

t

)
gm

= 0.579.
(33)

SPK = kgm = 120× 120× 8(bit)

= 14.4KB,
(34)

which is smaller than that of McEliece PKC [18] by a factor of about 2.

4 Conclusion

We have presented a new class of public key cryptosystem based on Reed-Solomon code, K(XII)SE(1)PKC.

We have shown that K(XII)SE(1)PKC would be secure against the various attacks.

It should be noted that we presented K(XII)SE(1)PKC based on the Reed-Solomon codes over F28 , which

is extensively used in the present day storage system such as CD, DVD, HD etc. and the various transmission

systems.

The presented K(XII)SE(1)PKC over F28has the following remarkable properties.

· The size of public key is smaller than that of the McEliece PKC [18] by a factor of about 2.

· The coding rate takes on 0.58, while that of the McEliece PKC is 0.5.
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