
On the Achievability of Simulation-Based
Security for Functional Encryption

Angelo De Caro1, Vincenzo Iovino2, Abhishek Jain3?, Adam O’Neill4 ??,
Omer Paneth4 ? ? ?, and Giuseppe Persiano2

1 NTT Secure Platform Laboratories, Japan, Angelo.Decaro@lab.ntt.co.jp
2 Dipartimento di Informatica, University of Salerno, Italy,

{iovino,giuper}@dia.unisa.it,
3 MIT and Boston University, abhishek@csail.mit.edu,

4 Boston University, {amoneill,omer}@bu.edu

Abstract. This work attempts to clarify to what extent simulation-
based security (SIM-security) is achievable for functional encryption (FE)
and its relation to the weaker indistinguishability-based security (IND-
security). Our main result is a compiler that transforms any FE scheme
for the general circuit functionality (which we denote by Circuit-FE)
meeting indistinguishability-based security (IND-security) to a Circuit-
FE scheme meeting SIM-security, where:
– In the random oracle model, the resulting scheme is secure for an un-

bounded number of encryption and key queries, which is the strongest
security level one can ask for.

– In the standard model, the resulting scheme is secure for a bounded
number of encryption and non-adaptive key queries, but an un-
bounded number of adaptive key queries. This matches known im-
possibility results and improves upon Gorbunov et al. [CRYPTO’12]
(which is secure for a bounded number of adaptive key queries).

Our compiler is inspired by the celebrated Fiat-Lapidot-Shamir paradigm
[FOCS’90] for obtaining zero-knowledge proof systems from witness-
indistinguishable proof systems. As it is currently unknown whether
Circuit-FE meeting IND-security exists, the purpose of this result is to
establish that it remains a good target for future research despite known
deficiencies of IND-security [Boneh et al. – TCC’11, O’Neill – ePrint ’10].
We also give a tailored construction of SIM-secure hidden vector encryp-
tion (HVE) in composite-order bilinear groups. Finally, we revisit the
known negative results for SIM-secure FE, extending them to natural
weakenings of the security definition and thus providing essentially a full
picture of the (in)achievability of SIM-secure FE.

Keywords. Functional Encryption, Hidden Vector Encryption, Simulation-
Based Security.

? Supported by NSF Contract CCF-1018064 and DARPA Contract Number: FA8750-
11-2-0225. The author also thanks BU RISCS (Reliable Information Systems and
Cyber Security) Institute.

?? Supported by NSF grants CNS-1012910 and CNS-0546614. The author also thanks
BU RISCS (Reliable Information Systems and Cyber Security) Institute.

? ? ? Supported by the Simons award for graduate students in theoretical computer sci-
ence and NSF award 1218461.

2 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

1 Introduction

Let F : K ×M → Σ be a functionality, where K is the key space and M
is the message space and Σ is the output space. Then a functional encryp-
tion scheme for F (or F -FE scheme) [7] is a special encryption scheme in
which, for every key k ∈ K, the owner of the master secret key Msk asso-
ciated with the public key Pk can generate a special key or “token” Tokk
that allows the computation of F (k,m) from a ciphertext of m computed
under public key Pk. In other words, whereas in traditional encryption
schemes decryption is an all-or-nothing affair, in FE it is possible to finely
control the amount of information that is revealed by a ciphertext. This
opens up exciting applications to access control, searching on encrypted
data, and secure delegation of computation (cf. [21]), among others.

Unlike in the case of classical cryptosystems, a general study of the
security of FE did not appear initially. Instead, progressively more ex-
pressive forms of FE were constructed in a series of works (see, e.g., [6,
8, 16, 17, 19, 22]) that adopted indistinguishability-based (IND) notions of
security. The study of simulation-based (SIM) notions of security for FE
were initiated only comparatively recently by Boneh, Sahai, and Waters
[7] and O’Neill [20].5 In particular, they show there exist clearly insecure
FE schemes for certain functionalities that are nonetheless deemed secure
by IND-security, whereas these schemes do not meet the stronger notion
of SIM-security. On the other hand, negative results have also emerged
showing SIM-security is not always achievable [7, 3, 1]. This leads to the
main questions that we study in this work:

To what extent is SIM-security for FE achievable? In particular,
can schemes for IND-secure FE be “compiled” to ones meeting the
stronger notion of SIM-security?

In order to make these questions more precise, let us call an F -FE scheme
(q1, `, q2)-SIM-secure (resp. (q1, `, q2)-IND-secure) if it is secure under the
respective security definition for adversaries making at most q1 “non-
adaptive” key queries (i.e., before seeing the challenge ciphertexts), q2
“adaptive” key queries (i.e., after seeing the challenge ciphertexts), and at
most ` encryption queries (i.e., the number of challenge ciphertexts). Note

5 Very roughly, in both definitions the adversary makes key-derivation queries, then
queries for challenge ciphertexts, then again makes key-derivation queries. IND-
security asks that the adversary cannot distinguish between encryptions of messages
that it cannot trivially distinguish using the keys. SIM-security asks that the “view”
of the adversary can be simulated by simulator given neither ciphertexts nor keys
but only the corresponding outputs of the functionality on the underlying plaintexts.

On the Achievability of Simulation-Based Security for FE 3

that these bounds are fixed a priori and do not vary per adversary. In the
case that a parameter is unbounded we denote it by poly, so for example
(poly, poly, poly)-SIM security means SIM-security where the number of
encryption and key queries are all unbounded. Of particular interest is
F = Circuit, meaning the general circuit functionality.

A Compiler for General Functionalities. Our main result is a com-
piler that takes a IND-secure Circuit-FE scheme and produces a SIM-
secure Circuit-FE scheme. More specifically, in the random oracle (RO)
model [4], we show the existence of a (poly, poly, poly)-IND-secure Circuit-
FE scheme implies the existence of a (poly, poly, poly)-SIM-secure Circuit-
FE scheme. In the standard (random oracle devoid) model, we show the
existence of a (poly, poly, poly)-IND-secure6 Circuit-FE scheme implies the
existence of a (q1, `, poly)-SIM-secure Circuit-FE scheme for any polyno-
mials q1, `. The result in the standard model is optimal in that it matches
recent impossibility results [7, 1, 3] discussed later.

We note that it is currently a central open question in FE to con-
struct a (poly, poly, poly)-IND-secure Circuit-FE scheme.7 If such a scheme
is achieved, we will obtain interesting new results via our compiler. To
compare, Boneh et al. [7] achieve (poly, poly, poly)-SIM-secure identity-
based encryption (IBE) in the RO model; in fact, they explicitly raise the
open question of constructing SIM-secure Circuit-FE in the RO model.
Gorbunov et al. [14] construct Circuit-FE (in the standard model) which
achieves only (q1, `, q2)-SIM-security (rather than q2 = poly). See Table 1.

Our Techniques. Our compiler is inspired by the construction of zero-
knowledge proof systems from witness indistinguishable proof systems, as
studied in the celebrated work of Feige, Lapidot and Shamir [12]. Recall
that in the FLS paradigm, the simulator operates the proof system in a
“trapdoor” mode which is indistinguishable from the behavior of the hon-
est party to the adversary. Adopting this paradigm to FE, our compiler
produces “trapdoor circuits” which have additional “slots” in plaintext
and keys that are used only by the simulator, not by the real system. To
illustrate our techniques, consider the simpler case of a single challenge
ciphertext and only adaptive key queries. Then, at a very high-level, in-
stead of F we use a trapdoor circuit Ftrap with an additional slot flag in
the plaintext and an additional slot value in the key, namely:

6 This can be relaxed to (q1, `, poly)-IND-security.
7 We emphasize that, since our transformation matches the known impossibility re-

sults, we do not obtain any impossibility result for (poly, poly, poly)-IND-secure
Circuit-FE. Indeed, we believe (poly, poly, poly)-IND-secure Circuit-FE is possible.

4 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Ftrap((k, value), (m, flag)) =

{
F (k,m) if flag = 0

value if flag = 1

(This is not actually sufficient because a key may reveal value, but
we are just trying to get a rough idea across; see Section 3 for the full
constructions.) An honest encryptor will always set flag = 0, but the
simulator will set flag = 1 and can then set value in the tokens it gives
out to program the output Ftrap appropriately. The proof of SIM-security
is by reduction to IND-security of the underlying scheme, since the output
of Ftrap in the flag = 0 and flag = 1 cases will be the same.

Why is IND-security Enough? The above shows that, surprisingly,
despite the weakness of IND-security for certain functionalities shown
in [7, 20], an IND-secure FE scheme for general circuits is enough to go
“all the way” to a SIM-secure one. To see how this can be possible, let
us look at the counter-example functionality of [20], which is an f (which
we think of here as a circuit) for which there is another function g such
that g is “hard to compute” from f but is “isomorphic” to g, meaning
f and g have the same equality pattern across the domain. In this case,
despite IND-security, a token for f may also allow computing g. However,
the corresponding trapdoor circuit produced by our compiler can be pro-
grammed to agree on f (via the additional slots) on all the challenge
messages but no longer agree on g, because g is computed on a “dummy”
message in the first plaintext slot. This means that if a token for com-
puting f in the compiled scheme allowed computing g an adversary could
indeed violate IND-security.

Simulation-Secure Hidden Vector Encryption. By using a similar
high-level approach as in our general compiler, we also give a tailored
construction of (poly, `, poly)-SIM-secure HVE-FE, where “HVE” denotes
hidden vector encryption, a generalization of anonymous IBE introduced
by [8]. Again, these parameters are optimal in that they match known
impossibility results [7, 3] discussed later. (Note that in this case we are
able to achieve security for an unbounded number of non-adaptive key
queries, which is impossible for the general Circuit functionality consid-
ered above [1].) The scheme is set in composite order bilinear groups and
proven secure under the general subgroup decision assumption of [5]. In
some sense, we compile existing IND-secure constructions of HVE-FE to
a SIM-secure one in a “non-blackbox” way. Namely, our scheme mirrors

On the Achievability of Simulation-Based Security for FE 5

existing IND-secure constructions of HVE-FE [19, 11] except in some ad-
ditional subgroups. The presence of an additional subgroup component
in a simulated ciphertext acts as the “flag” that triggers an interaction
with this additional subgroup component in the simulated keys.

Stronger Impossibility Results. As we mentioned, the positive re-
sults we obtain match the recent impossibility results for SIM-secure FE.
Namely, Boneh et al. [7] show that (0, poly, 2)-SIM-secure IBE is impos-
sible (though in the “non-programmable” RO model; this was recently
extended to the standard model in [3]). Agrawal et al. [1] show impossi-
bility of (poly, 1, 0)-SIM-security for a functionality that computes a weak
pseudorandom function (wPRF-FE) and hence for Circuit-FE.

One mays wonder if there are weaker formulations of SIM-security
under which these results might be circumvented. We identify two:

– Fully Non-Adaptivity Adversaries. The above results crucially rely
on the fact that the experiment proceeds in distinct phases of non-
adaptive key queries, encryption queries, then adaptive key queries.
(In particular, the result of [1] for non-adaptive key queries crucially
uses adaptivity of the encryption queries.) We thus ask whether these
results can be circumvented for fully non-adaptive adversaries that
must choose their encryption and key queries simultaneously.

– Non-Blackbox Simulation. The result of [1] requires that the simulator
use the adversary as a black-box. We ask whether this result can be
circumvented by using non-blackbox simulation.

Unfortunately, by building on the techniques of [3, 1], we go on to resolve
these possibilities in the negative. See Table 2.

As a final contribution of independent interest, we show that in Circuit-
FE the ciphertext length must grow with the output length of the func-
tionality. Namely, we show impossibility of (1, 1, 0)-SIM-secure for a func-
tionality that computes a pseudorandom generator (PRG); that is, the
ciphertext length must be as long as the output length of the PRG. To
the best of our knowledge, this is the first impossibility result for non-
adaptive key queries and bounded collusion. Note that Goldwasser et
al. [13] recently give a construction of FE for boolean functionalities with
“succinct” ciphertexts, but for functionalities with longer output the ci-
phertext length in all existing constructions grows linearly with the output
length of the functionality. Our result shows this is inherent.

Organization. In Section 2 we give the basic definitions for FE. In Sec-
tion 3 we describe the transformations from IND-secure to SIM-secure

6 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Work Func #Non-Adaptive
Key Queries

#Encryption
Queries

#Adaptive
Key Queries Assumptions

[BSW11] IBE UB UB UB RO

Ours HVE UB B UB Standard

[GVW12] Circuit B UB 0 Standard

Ours Circuit UB UB UB RO, IND-security

Ours Circuit B B UB IND-security
Table 1. Positive results for SIM-secure FE. UB and B denote unbounded and bounded,
respectively. Single-boxed entries are inherent (matching impossibility results below).

Work Func #Key
Queries

#Encryption
Queries Key Query Time Non-Black-Box

Simulation?

[BSW11,BO12] IBE 2 UB Post-Challenge YES

[AGVW12] wPRF UB 1 Pre-Challenge NO

Ours wPRF UB 1 Pre-Challenge YES

Ours wPRF UB UB Simultaneous YES

Ours PRG∗ 1 1 Pre-Challenge NO
Table 2. Negative results for SIM-secure FE. Boxed entries are new to our work. UB
denote unbounded. Pre-challenge and post-challenge key queries refer to non-adaptive
and adaptive queries , respectively, while simultaneous queries are queried together with
the challenge. Results using pre-challenge and post-challenge queries are incomparable,
while results using simultaneous queries are stronger. PRG∗ refers to a pseudorandom
generator functionality whose output is longer than the ciphertext size.

FE, both in the random oracle model and in the plain model. Section 4
describes the construction of SIM-secure FE for the hidden vector encryp-
tion functionality. In Section 5 we present our negative results.

2 Definitions

A negligible function negl(k) is a function that is smaller than the inverse
of any polynomial in k. If D is a probability distribution, “x ← D” de-
notes that x is chosen according to D. If D is a finite set, “x← D” denotes
that x is chosen according to uniform probability on D. If q > 0 is an in-
teger then [q] denotes the set {1, . . . , q}. “PPT” stands for “probabilistic
polynomial time” and “PT” stands for “polynomial time.” Algorithms
are PPT unless explicitly noted otherwise. If A and B are algorithms,
we denote by “y ← AB(·)(x)” that y is assigned the output of A when
run on input x with oracle access to B. If A or B are randomized this is
done using fresh random coins. If a and b are strings, then a|b denotes the
string representing their delimited concatenation. We will make use of
standard primitives such as pseudorandom functions and symmetric-key
encryption; definitions are in the full version of this paper [10].

On the Achievability of Simulation-Based Security for FE 7

2.1 Functional Encryption

Functional encryption (FE) schemes [7] are encryption schemes for which
the owner of the master secret can compute restricted keys (also called
“tokens”) that allow to compute a functionality on the plaintext associ-
ated with a ciphertext. A formal definition follows.

Syntax. A functionality F = {Fn}n>0 is a family of PT functions Fn :
Kn ×Mn → Σ where Kn is the key space for parameter n, Mn is the
message space for parameter n and Σ is the output space. Sometimes we
will refer to functionality F as a function from F : K ×M → Σ with
K = ∪nKn and M = ∪nMn.

A functional encryption scheme for F (an F -FE scheme) is a tu-
ple FE = (Setup,KeyGen,Enc,Eval) of four algorithms with the following
syntax: Algorithm Setup(1λ, 1n) outputs public and master secret keys
(Pk,Msk) for security parameter λ and length parameter n that are poly-
nomially related. Algorithm KeyGen(Msk, k), on input a master secret key
Msk outputs secret key (or token) Tok. Algorithm Enc(Pk,m), on input
public key Pk and plaintext m ∈Mn outputs ciphertext Ct. PT algorithm
Eval(Pk,Ct,Tok) outputs y ∈ Σ ∪ {⊥}.

For correctness we require for all (Pk,Msk) ← Setup(1λ, 1n), all k ∈
Kn and m ∈ Mn, for Tok ← KeyGen(Msk, k) and Ct ← Enc(Pk,m), we
have that Eval(Pk,Ct,Tok) = F (k,m) whenever F (k,m) 6= ⊥, except
with negligible probability. (See [3] for a discussion about this condition.)

Functionalities of interest. In this paper, we we mainly be concerned
with two specific functionalities.

First, the Circuit functionality has key space Kn equals to the set of
all n-input Boolean circuits and message space Mn the set {0, 1}n of n-
bit strings. For C ∈ Kn and m ∈ Mn, we have Circuit(C,m) = C(m).
In the random oracle (RO) model [4] we allow the circuits in the Circuit
functionality to have RO gates. This is because, in practice, we replace
the random oracle invocations with computation of a cryptographic hash
function having an explicit circuit description.

Second, the HVE functionality [8] has message space Mn equal to the
set of length n Boolean vectors x = 〈x1, . . . , xn〉 and key space Kn equal
to the set length n Boolean vectors y = 〈y1, . . . , yn〉 with ?’s (“don’t-care”
entries). HVE(x,y) is equal to 1 iff, for all 1 ≤ i ≤ n, xi = yi or yi = ?.

Security. We next define indistinguishability-based and simulation-based
security for FE based on [7, 20]. Some remarks about the definitions follow
them.

8 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Definition 1 [Indistinguishability-based security.] We say that an F -FE
scheme is (q1, `, q2)-IND-secure if for every PPT adversary A = (A0,A1)
where A0 makes at most q1 oracle queries and A1 makes at most q2 oracle
queries, the advantage of A defined as

AdvFE,INDA (1λ, 1n) =
∣∣∣Prob[INDFE

A (1λ, 1n) = 1]− 1/2
∣∣∣

is negligible, where:

Experiment INDFE
A (1λ, 1n):

(Pk,Msk)← Setup(1λ, 1n)

(m0,m1, st)← AFE.KeyGen(Msk,·)
0 (Pk) where m0,m1 ∈M `

n

b← {0, 1} ; Ct[i]← FE.Enc(Pk,mb[i]) for i ∈ [`]

b′ ← AFE.KeyGen(Msk,·)
1 (st,Ct)

Output: (b = b′)

Above we require that F (k,m0[i]) = F (k,m1[i]) for every i ∈ [`] and
every oracle query k made by either A0 or A1.

Definition 2 [Simulation-Based security.] We say that an F -FE scheme
is (q1, `, q2)-SIM-secure if for every PPT adversary A = (A0,A1) where A0
makes at most q1 oracle queries and A1 makes at most q2 oracle queries,
there exists a PPT simulator Sim = (Sim0,Sim1) such that the outputs of
the following two experiments are computationally indistinguishable:

Experiment RealExpFE,A(1λ, 1n) :

(Pk,Msk)← FE.Setup(1λ, 1n)

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk)

Ct← Enc(Pk,m)

α← AFE.KeyGen(Msk,·)
1 (Pk,Ct, st)

Output: (Pk,m, {ki}, α)

Experiment IdealExpFE,A
Sim (1λ, 1n) :

(Pk,Msk)← FE.Setup(1λ, 1n)

(m, st)← AFE.KeyGen(Msk,·)
0 (Pk)

(Ct, st′)← Sim0(Pk, |m|, {ki,Tokki , F (ki,m)})
α← AO(·)

1 (Pk,Ct, st)
Output: (Pk,m, {ki}, α)

Above we require |m| ≤ `. In the output of the experiments, {ki} con-
tains the token queries of the adversary (i.e., the queries of A0 and A1

combined). The oracle O(·) is the second stage of the simulator, namely
algorithm Sim1(Msk, st′, ·, ·), which receives as its third argument a key
kj for which the adversary queries a token and as its fourth argument the
output value F (kj ,m). Further, note that the simulator algorithm Sim1

is stateful in that after each invocation, it updates the state st′ which is
carried over to its next invocation.

On the Achievability of Simulation-Based Security for FE 9

We also note that above follows the security definitions of [20, 15] in
that in the ideal experiment, the setup and non-adaptive token queries
are handled honestly (not by the simulator). This is just for simplicity.
Additionally, the challenge messages are selected by A0 in “one-shot”
and not adaptively depending on previous challenge ciphertexts as in [3].
Again, this is just for simplicity.

Random oracle model. To lift our definition to the random oracle (RO
model [4], the output of the real experiment includes the queries made
by any algorithm (i.e., either those of the scheme or the adversary) to the
RO and the responses. In the ideal experiment, the simulator provides
responses to the queries made by any algorithms to the RO and the
output of the experiment again includes all these queries and responses.
This is analogous to the “explicitly” programmable RO model formalized
by Wee [23] for zero-knowledge and seems to us to be the most natural
formalization of security in the RO model in our context.

3 From Indistinguishability to Simulation-Based Security

In this section, we show that from an IND-secure Circuit-FE scheme one
can construct a SIM-secure Circuit-FE scheme. We give two construc-
tions: one in the RO model [4] and one in the standard model, which
(necessarily) achieve security for different parameters.

3.1 Trapdoor Circuits

The idea of our transformations is to replace the original circuit with
a “trapdoor” one that a simulator can use to program the output in
some way. This will be done via interaction of additional “slots” in the
plaintext and key that interact when a flag is set in the plaintext. This
approach is inspired by the FLS paradigm introduced by Feige, Lapidot
and Shamir [12] to obtain zero-knowledge proof systems from witness
indistinguishable proof systems.

Random oracle model construction. Here, a plaintext will have four
slots and a key will have two. In the plaintext, the slots will be: (1) actual
message m (2) a bit flag to indicate trapdoor mode, (3) a random string x,
and (4) a seed r for a pseudorandom function (PRF). In the key, the slots
will be (1) the actual circuit C and (2) a random string y. For evaluation,
in non-trapdoor mode we simply evaluate the original circuit C on m. in

10 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Circuit Trap1[C,Hash,F]y(m′)
(m, flag, x, r)← m′

If flag = 1
Then return Hash(x, y)⊕ fr(y)

Else return C(m)

Circuit Trap2[C, SE]k
′
(m′)

(r, cSE)← k′

(m, flag, kSE, (r1, y1), . . . , (rq, yq))← m′

If flag = 1 then
If there exists i such that r = ri

Then return yi
Else y ← SE.Dec(kSE, cSE) ; Return y

Else return C(m)

Fig. 1. Construction of trapdoor circuit in the RO model (left) and standard model
(right) from a given circuit C.

trapdoor mode, the output is instead “programmed” as Hash(x, y)⊕fr(y),
where Hash is a RO and fr is the PRF keyed by r.

Formally, let C be a circuit on n-bits. Let Hash : {0, 1}n × {0, 1}n →
{0, 1}n be a hash function and F = {fs : s ∈ {0, 1}k}k∈N be a PRF.
For y ∈ {0, 1}n define the corresponding RO-based trapdoor circuit
Trap1[C,Hash,F]y on (3n+ 1)-bits as in Figure 1.

Standard model construction. Here, a plaintext will have 3+2q slots
(for a polynomial q) and a key will three two. In the plaintext, the slots
will be: (1) the actual message m, (2) a bit flag to indicate trapdoor mode,
(3) a key skSE for a symmetric-key encryption scheme SE, and finally the
last 2q slots will be pairs (ri, zi), where ri is a random string and zi is a
desired output value. (Looking ahead, the third slot will be used to handle
adaptive key queries and the last 2q slots will be used to handle up to q
non-adaptive key queries.) On the other hand, in the key the slots will
be: (1) the actual circuit C, (2) a random string r, and (3) a ciphertext
cSE under SE. For evaluation, in non-trapdoor mode we simply evaluate
the original circuit C on m. In in trapdoor mode, if r = ri for some i ∈ [q]
then the output is “programmed”’ as zi, and otherwise as SE.Dec(skSE, c)
where SE.Dec is the decryption algorithm of SE.

Formally, let C be a circuit with n-bit inputs and n-bit outputs, and
let SE = (SE.Enc, SE.Dec) be a symmetric-key encryption scheme with
key-space {0, 1}s, message-space {0, 1}n, and ciphertext-space {0, 1}ν . For
k′ ∈ {0, 1}n+ν define the corresponding standard-model trapdoor circuit
Trap2[C,SE]k

′
with ((2q + 1)n + 1 + s)-bit inputs and n-bit outputs as

in Figure 1.

On the Achievability of Simulation-Based Security for FE 11

3.2 Random Oracle Model Transformation

Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be a func-
tional encryption scheme for the functionality Circuit. Let Hash : {0, 1}n×
{0, 1}n → {0, 1}n be a hash function (which will be modeled as a ran-
dom oracle) and F = {fs : s ∈ {0, 1}k}k∈N be a PRF. We define a new
FE scheme SimFE1[Hash,F] = (Setup,KeyGen,Enc,Eval) for Circuit as
follows:

– Setup(1λ, 1n): returns the output of IndFE.Setup(1λ, 13n+1) as its own
output.

– Enc(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm chooses x at
random from {0, 1}n, setsm′ = (m, 0, x, 0n) and returns IndFE.Enc(Pk,
m′) as its own output.

– KeyGen(Msk, C): on input Msk and a n-input Boolean circuit C, the
algorithm chooses random y ∈ {0, 1}n and returns (y,Tok) where
Tok← IndFE.KeyGen(Msk,Trap1[C,Hash,F]y).

– Eval(Pk,Ct,Tok): on input Pk, Ct and Tok, returns the output
IndFE.Eval(Pk,Ct,Tok).

Theorem 3 Suppose IndFE is (poly, poly, poly)-IND-Secure. Then SimFE1

is (poly, poly, poly)-SIM-secure in the random oracle model.

We defer the proof to the full version of this paper [10] and give some
intuition here. it is instructive to consider a simpler system where fr(y)
in the evaluation is simply replaced by r. In this case, the fourth slot
in the plaintext acts as an encryption under Nielsen’s RO-based non-
committing encryption scheme [18], whose decryption can be adaptively
programmed. However, this approach does not work for multiple tokens,
since then the simulator would need to program two hash outputs to
r ⊕ C1(m) and r ⊕ C2(m), which would not look independently random
to the distinguisher. Since the number of tokens is unbounded, we need
to generate more randomness than can be contained in the plaintext slot,
and thus we use a PRF to generate a “fresh” ciphertext for each token.

A note on uninstantiability. We notice that, due to the result of Bel-
lare and O’Neill [3], our construction in the RO model cannot be proven
SIM-secure when implemented with any function ensemble in place of the
RO. However, we stress that unlike other some other “uninstantiable”
schemes (e.g., those of Canetti et al. [9]) which are clearly insecure (in
the standard model) when implemented with any function ensemble, our
construction does not seem to suffer any real-world attack. In this sense,

12 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

we still view it as a good heuristic for our scheme to have a proof of
security in the RO model.

3.3 Standard Model Transformation

Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be a func-
tional encryption scheme for the functionality Circuit. Let SE = (SE.Enc,
SE.Dec) be a symmetric-key encryption scheme with key-space {0, 1}s,
message-space {0, 1}n, and ciphertext-space {0, 1}ν . We define a new FE
scheme SimFE2[SE] = (Setup,KeyGen,Enc,Eval) for Circuit as follows:

– Setup(1λ, 1n): returns the output of IndFE.Setup(1λ, 1n(2q+1)+s+1) as
its own output. In addition the algorithm picks a random key skSE ∈
{0, 1}s and keeps it in the master secret key Msk.

– Enc(Pk,m): on input Pk and m ∈ {0, 1}n, the algorithm sets m′ ←
(m, 0, 0s, (0n, 0n), . . . , (0n, 0n)) and returns the output of IndFE.Enc(Pk,
m′) as its own output.

– KeyGen(Msk, C): on input Msk and a n-input Boolean circuit C, the
algorithm chooses random r ∈ {0, 1}λ and c ∈ {0, 1}ν , and returns
(r, c,Tok) where it computes Tok← IndFE.KeyGen(Msk,Trap2[C,SE]k

′
)

and sets k′ ← r‖c.
– Eval(Pk,Ct,Tok): on input Pk, ciphertext Ct and token (r, c,Tok), re-

turns the output of IndFE.Eval(Pk,Ct,Tok).

Theorem 4 Suppose IndFE is (q1, 1, poly)-IND-secure, F is a PRF, and
SE has pseudorandom ciphertexts. Then SimFE2 is (q1, 1, poly)-SIM-secure.

Again, we defer the proof to the full version [10] and give some intu-
ition here. The intuition is very similar in spirit to that of Theorem 3.
First, consider a simpler system where the 2q pairs (ri, zi) are replaced by
a single pair (r̃, z̃). This approach does not work for multiple non-adaptive
tokens, since then the simulator would need to program z̃ to be C1(m)
and C2(m) at the same time. To solve this problem, we add additional
pairs in the ciphertext, one for each non-adaptive query. This is also the
reason why we need an a priori bound on the number of non-adaptive
key queries. For adaptive key queries, the simulator can instead program
c in the token to be an encryption of the desired output.

We note that it is straightforward to extend our construction to achieve
(q1, `, poly)-SIM-security for any polynomial ` (where now we need to as-
sume the starting scheme is (q1, `, poly)-IND-secure). Note that by [7,
3], the restriction to a bounded ` is necessary in the standard model.
Moreover, by [1], for the Circuit functionality the restriction to a bounded
number of non-adaptive key queries q1 is also necessary.

On the Achievability of Simulation-Based Security for FE 13

An instantiation for polynomial evaluation. In the full version of
this paper [10], we show how to adapt our standard model transformation
to the polynomial evaluation functionality [16], for which which we have
efficient constructions from bilinear maps and lattices.

4 Simulation-Secure Hidden Vector Encryption

In the section we present a SIM-secure HVE-FE scheme whose whose
security can be proved under static assumptions in the bilinear pairing
setting in the standard model. We use composite order bilinear groups
whose order is the product of five distinct primes (see the full version for
the standard definition of such groups [10]).

The Scheme. We now describe our HVE scheme. To make our descrip-
tion and proofs simpler, we add to all vectors x and y two dummy com-
ponents and set both of them equal to 0. We can thus assume that all
vectors have at least two non-star positions.

– Setup(1λ, 1`): The setup algorithm chooses a description of a bilinear
group I = (N = p1p2p3p4p5, G,GT , e) ← G(1λ) with known factor-
ization, and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for
i ∈ [`] and b ∈ {0, 1}, random ti,b ∈ ZN and random Ri,b ∈ Gp3 and

sets Ti,b = g
ti,b
1 · Ri,b . The public key is Pk = [I, g3, (Ti,b)i∈[`],b∈{0,1}],

and the master secret key is Msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}], where
g12 = g1 · g2. The algorithm returns (Pk,Msk).

– KeyGen(Msk,y): Let Sy be the set of indices i such that yi 6= ?. The
key generation algorithm chooses random ai ∈ ZN for i ∈ Sy under
the constraint that

∑
i∈Sy

ai = 0. For i ∈ Sy, the algorithm chooses

random Wi ∈ Gp4 and sets Yi = g
ai/ti,yi
12 ·Wi . The algorithm returns

ciphertext Ct = (Yi)i∈Sy . Here we use the fact that Sy has size at least
2.

– Enc(Pk,x): The encryption algorithm chooses random s ∈ ZN . For
i ∈ [`], the algorithm chooses random Zi ∈ Gp3 and sets Xi = T si,xi ·Zi ,
and returns the token Toky = (Xi)i∈[`].

– Eval(Pk,Ct,Toky): The test algorithm computes T =
∏
i∈Sy

e(Xi, Yi).
It returns TRUE if T = 1, FALSE otherwise.

It easy to see that the scheme is correct. Regarding security, we show:

Theorem 5 Under the General Subgroup Decision Assumption [5] the
HVE scheme described is (poly, 1, poly)-SIM-secure.

14 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

The proof is in the full version of this paper [10]. Informally, we sim-
ulate the flag used in the trapdoor circuits by means of the presence of
the Gp5 subgroup. Specifically, if the Gp5 part is absent the ciphertext is
in normal mode, otherwise it acts in trapdoor mode. The simulator then
modifies the distributions of the adaptive queries, adding a Gp5 part, to
interact with the trapdoor mechanism of the ciphertext when needed.

We note that one can easily extend our construction to meet (poly, `,
poly)-SIM security for polynomial `. The idea is simply to use a different
subgroup for each message in the “trapdoor” mode. By [7, 3], the restric-
tion to a bounded number of challenge ciphertexts ` is necessary. On the
other hand, the impossibility result of [1] does not apply to HVE, so there
is no contradiction with the fact that our result here has q1 = poly (in-
stead of bounded q1 as for our standard-model construction of Circuit-FE
in Section 3, which is necessary).

5 Impossibility Results

In the section we present new negative results for simulation-based secure
FE. We refer the reader to Section 1 for a background on the previously
known impossibility results. All of our negative results build on ideas
from the impossibility result of [1] for (poly, 1, 0)-SIM-secure wPRF-FE
w.r.t. black-box simulation. Below, we first describe the weak PRF func-
tionality (that will be used in our negative results as well) and recall the
impossibility result of [1]. We then proceed to discuss our new results.

Impossibility of Agrawal et al. [1]. Let {F} be a weak pseudo-random
function family on domain K and key space M . The wPRF functionality
on key k ∈ K and input m ∈ M outputs Fm(k). Let l − 1 be an upper
bound on the ciphertext size of the wPRF-FE scheme. The adversary
asks tokens for l random inputs x1, . . . , xl in the domain of F , and for
an encryption of a random k from the key space of F . The simulator
needs to produce tokens {Toki}i∈[l], and then it is given the functionality’s
outputs {Fk(xi)}i∈[l]. Now the simulator has to produce a ciphertext Ct
such that for every i ∈ [l], Fk(xi) = Eval(Pk,Ct,Toki). Now, on the one
hand, the simulator needs to “encode” all of the functionality’s outputs
into Ct. On the other hand, the functionality’s outputs are l pseudo-
random bits, while |Ct| < l − 1. Since a pseudo-random string cannot
be efficiently compressed we get a contradiction. (Note that a black-box
simulator cannot encode the functionality’s outputs into the tokens {Toki}
since these are fixed before the simulator learns the outputs.)

On the Achievability of Simulation-Based Security for FE 15

5.1 Fully Non-Adaptive Adversaries

In this section we give an impossibility result for a natural relaxation of
the simulation-security considering only adversaries that are fully non-
adaptive. In particular, we consider adversaries who make simultaneous
token and ciphertext queries in the SIM-security game for FE.

Below, we formally define security against fully non-adaptive adver-
saries. Our definition allows for non-black-box simulation.

Definition 6 [Fully Non-Adaptive Security] We say that an F -FE scheme
is (q, `)-fully non-adaptively SIM-secure if every PPT adversary A =
(A0,A1) there exists a PPT simulator Sim such that the outputs of the
following two experiments are computationally indistinguishable:

Experiment RealExpFE,A(1λ):

(Pk,Msk)← Setup(1λ);

({mi}qi=1, {kj}
`
j=1, st)← A0(Pk);

Tokkj ← KeyGen(Msk, kj);
Cti ← Enc(Pk,mi);
α← A1(Pk, {Tokkj}, {Cti}, st);
Output: (Pk, α)

Experiment IdealExpFE,A
Sim (1λ):

(Pk,Msk)← Setup(1λ);

{mi}qi=1, {kj}
`
j=1, st)← A0(Pk);

α← Sim(Pk,Msk, st, {kj , F (kj ,m)});
Output: (Pk, α)

Theorem 7 Assuming the existence of a collision-resistant hash function
family, there does not exist a (poly, poly)-fully-non-adaptively SIM-secure
wPRF-FE.

We prove the above theorem by extending the impossibility of [1].
Roughly speaking, the central idea is to use many ciphertext queries in-
stead of one. The intuition is that in the non-adaptive case, the simulator
can encode information about the function outputs in the tokens that
might be long; however, by making many ciphertext queries, the same
tokens can be used to decrypt many ciphertexts, making the length of
the tokens insignificant. Indeed, the same idea can be used in the impos-
sibility for given in the next subsections (at the cost of an increase in a
number of ciphertext queries). We defer details to the full version [10].

5.2 Non-Black-Box Simulation

The impossibility of [1] rules out SIM-security against adversaries who
make an unbounded number of non-adaptive token queries assuming the
simulator is using the code of the adversary as black-box. In this section
we extend their result to non-black-box simulators using the techniques
from [3].

16 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

Below, we give a non-black-box definition of SIM-security, which is
similar to that of [7] except that we only consider an unbounded number
of non-adaptive token queries and one ciphertext query (corresponding to
(poly, 1, 0)-SIM-security). Further, following [3] we let the adversary and
the simulator use an auxiliary input sampled from some distribution. In
our negative result, we use this auxiliary input to store a random key of
a collision-resistant hash function.8

Definition 8 [Non-Black-Box Simulation] We say that an F -FE scheme
SIM-secure with non-black-box simulator if for every distribution on aux-
iliary input Z, and every PPT adversary A = (A0,A1), there exists a
PPT simulator Sim = (Sim0,Sim1) such that the outputs of the following
two experiments are computationally indistinguishable:

Experiment RealExpFE,A(1λ):

(Pk,Msk)← Setup(1λ); z ← Z;

(M, st)← AKeyGen(Msk,·)
0 (Pk, z);

m←M,Ct← Enc(Pk,m);
α← A1(Ct, st);
Let {ki} be the queries of A0 to KeyGen;
Output: (z,M,m,α, {ki})

Experiment IdealExpFE
Sim(1λ):

z ← Z;
(M, st)← Sim0(z);
m←M ;

α← Sim
F (·,m)
1 (st);

Let {ki} be the queries of Sim1 to F ;
Output: (z,M,m,α, {ki})

where the output of A0 and Sim0 consists of an arbitrary state st and
a description of a distribution over messages M .

We now state our result:

Theorem 9 Assuming collision-resistant hash functions, there does not
exist a SIM-secure wPRF-FE with non-black-box simulator.

In the non-black-box simulation definition the real and the simulated
outputs may contain the generated tokens and ciphertext. However, the
simulator is only required to produce the simulated tokens and ciphertext
after receiving the functionality’s outputs. Since the tokens may encode
a lot of information (at least as much as the functionality’s outputs), the
impossibility of [1] is not applicable here. To commit the simulator to
the tokens before learning the functionality’s outputs we use technique of
[2]. This technique was recently used by [3] to extend the impossibility of

8 A stronger variant of FE with non-black-box simulation is defined in [3] and our
negative result holds also for their definition.

On the Achievability of Simulation-Based Security for FE 17

[7] to hold without a non-programmable random oracle. The main idea
is to consider an adversary that computes a collision-resistant hash of
the tokens, and selects the message distribution based on the hash value.
Intuitively, this commits the simulator to the tokens before it learns the
functionality’s outputs. We defer details to the full version [10].

5.3 FE for Multi-bit Outputs with Succinct Ciphertexts

Finally, we show that it is impossible to construct FE schemes where the
ciphertext length is independent of the output length of the functionality.
Recently, Goldwasser et al. [13] construct a SIM-secure FE scheme with
“succinct” ciphertexts, improving on Gorbunov et al. [15] (in which the
ciphertext size depends on the size of the circuit computing the function-
ality). However, [13] is only for functionalities with boolean output; for
functionalities with longer output, the ciphertexts in both of these con-
structions grows linearly with the output length of the functionality. Our
result shows this dependency is inherent.

To prove this result we consider the functionality that computes a
pseudorandom generator, and we set the output length of the generator
to be longer then the size of the FE ciphertext. The proof uses an in-
compressibility argument similar to the one used in [1]. However, unlike
in [1] we consider only one token query and one ciphertext query and
do not rely on an unbounded collusion. Due to space constraints, formal
definitions and details are deferred to the full version [10].

Acknowledgements

We thank the anonymous reviewers of Crypto 2013 for very helpful com-
ments regarding the presentation.

References

1. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption:
New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468,
2012. http://eprint.iacr.org/.

2. M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply
security against selective-opening. In EUROCRYPT 2012, pages 645–662.

3. M. Bellare and A. O’Neill. Semantically-secure functional encryption: Possibility
results, impossibility results and the quest for a general definition. Cryptology
ePrint Archive, Report 2012/515, 2012. http://eprint.iacr.org/.

4. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In ACM CCS 93, pages 62–73.

18 A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth and G. Persiano

5. M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure against
selective opening attack. In TCC 2011, pages 235–252.

6. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In EUROCRYPT 2004, pages 506–522.

7. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In TCC 2011, pages 253–273.

8. D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC 2007, pages 535–554.

9. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. Full version avaiable
at Cryptology ePrint Archive, Report 1998/011.

10. A. D. Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On
the achievability of simulation-based security for functional encryption. IACR
Cryptology ePrint Archive, 2013.

11. A. De Caro, V. Iovino, and G. Persiano. Fully secure hidden vector encryption. In
PAIRING 2012, pages 102–121.

12. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, Missouri, USA, October
22-24, 1990, Volume I, pages 308–317.

13. S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich.
Reusable garbled circuits and succinct functional encryption. In 45th ACM STOC,
pages 555–564.

14. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO 2012, pages 162–
179.

15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO.

16. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT 2008, pages 146–162.

17. A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In EUROCRYPT 2010, pages 62–91.

18. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In CRYPTO 2002, pages 111–126.

19. T. Okamoto and K. Takashima. Adaptively attribute-hiding (hierarchical) inner
product encryption. In EUROCRYPT 2012, pages 591–608.

20. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

21. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In TCC 2012,
pages 422–439.

22. B. Waters. Functional encryption for regular languages. In CRYPTO.
23. H. Wee. Zero knowledge in the random oracle model, revisited. In ASI-

ACRYPT 2009, pages 417–434.

