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Abstract

The extended Canetti–Krawczyk (eCK) security models, are widely used to provide security arguments
for authenticated key exchange protocols that capture leakage of various kinds of secret information like
the long-term private key and session-specific secret state. In this paper, we study the open problem on
constructing eCK secure AKE protocol without random oracles and NAXOS like trick. A generic construc-
tion GC-KKN satisfying those requirements is first given relying on standard cryptographic primitives
following the guideline of efficiency. On the second a concrete protocol is proposed which is the first eCK
secure protocol in the standard model under both standard assumptions and post-specified peer setting.
Both proposed schemes can be more efficiently implemented with secure device than previous eCK secure
protocols in the standard model, where the secure device might be normally used to store the long-term
private key and to implement codes of protocol which require to be resilience of states leakage.

Keywords: eCK model, authenticated key exchange, key encapsulation mechanism, non-interactive key
exchange

1 Introduction

Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive which forms a crucial com-
ponent in many network protocols. A two party AKE protocol is executed to enable both parties to end
up sharing a session key with assurance that the key is only known to them. The security model for two
party AKE and associated definitions have been evolved over years subjecting to increasing security require-
ments. Recently the Canetti-Krawczyk (CK) [9] and extended Canetti-Krawczyk (eCK) [27] models, are
widely used to provide security arguments for AKE protocols. The CK model introduced a strong query
StateReveal, to model the internal states leakage of any running session. In the eCK model, a new query
EphemeralKeyReveal is used instead of StateReveal query which is claimed to cover almost all ‘session-specific
secret’ information, and is allowed to be issued even on test session. Moreover there are quite a few variants
of (e)CK model used in literatures (e.g., [26, 13, 17]). The CK+ model is recently used by Fujioka et al. [17],
and the authors adopt StateReveal query in place of EphemeralKeyReveal query to model maximum exposure
of states. Similar model has also been introduced before by Cremers [13] which was called eCK’ model,
where the StateReveal is used either. In this paper, we would like to call both CK+ and eCK’ models as eCK
model to avoid ambiguity since these models are based on the similar freshness restriction as the original
eCK model that is distinct to the first CK model. The eCK model is known to be one of the strongest AKE
models that covers the most desirable security attributes for AKE including resistance to key compromise
impersonation (KCI) attacks, leakage of secret states and chosen identity and public key (CIDPK) attacks
and provision of weak perfect forward secrecy (wPFS). Please note that both CK and eCK models leave
out the definition of session state or ephemeral key to specific protocols. Since it is hard to define session
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state in a general approach, which is independent of any protocols and corresponding implementation sce-
narios. However the ambiguities on session state may yield a lot of potential problems in either the protocol
construction or its security analysis. If any implementer realizes a specific AKE protocol in a careless way
allowing it to leak non-trivial session state to attackers, then it would trivially invalidate the security proof
in those strong models. On the other hand, to our best of knowledge, no AKE protocol is secure in the
(e)CK model if ‘all’ session states can be revealed. Namely some session states of AKE protocols should be
leakage resilience.1

Implementation Model vs. Session States. In order to fulfil the gap that often exists between formal
models and practical security, Sarr et al. [36] introduced two implementation scenarios for the situation
that at each party an untrusted host machine is used together with a secure device such as smart card.
Similar modelling technique involving secure device was previously used by Bresson et al. [8]. A secure
device may usually be used to store long-term cryptographic authentication keys and at least be able to
fulfil a library of mathematical functions (such as addition, modulo and exponentiation) which are necessary
to implement cryptographic operations or primitives. Hence based on secure device we are able to adopt a
‘All-and-Nothing’ strategy to define the states that can be revealed without leaving any ambiguity. General
speaking we could assume that all intermediate states and ephemeral keys generated on host machine are
susceptible to StateReveal attacks to model the maximum state leakage (MSL) attacks, but we treat the
secure device as a black-box which is immune to leakage of internal states.2 Of course one could distribute
all protocol computations on the secure device then the security model would equal to a model without
StateReveal query. However the security result of a protocol analysed with such implementation scenario
must be weaker than that in a case allowing leakage of states. In contrast, our goal is to define the maximum
states that can be leaked. As those secure devices might be short in both storage capacity and computational
resource, the algorithm on secure device is often causing performance bottleneck of systems. In addition, the
communication round between host machine and secure device (which is called HS-round for short) might
cause another efficiency problem, since the serial I/O bus of most secure devices is too slow. Due to those
facts, it is necessary to optimize AKE protocols when they are realized involving secure device.

NAXOS Trick Revisit. One of the most prominent open questions in the research field on AKE is how to
securely implement the NAXOS trick [27]. Such trick is a technique that is introduced to hide the exponent
(or de-facto ephemeral key) of an ephemeral public key from an adversary even if the adversary obtains the
ephemeral secret key. Please first note that there might exist some variants of NAXOS trick in which the
prominent example is the twisted-PRF trick recently used in FSXY scheme [17].3 In the sequel, we are going
to call all those variants as NAXOS trick. In a typical Diffie-Hellman key exchange protocol, the ephemeral
secret key x̃ is used as the exponent of the ephemeral public key as X = gx̃. However, in a protocol designed
with NAXOS trick, taking the twisted-PRF trick as example, the exponent of the ephemeral public key is
generated as x := PRF(x̃′, a) ⊕ PRF(a, x̃). Therefore, even though the security model allows an adversary
to obtain ephemeral secret key x̃, but the exponent of the ephemeral public key is still not exposed to the
adversary. However, after applying the twisted-PRF trick, the attacker’s interest may still be the exponent
of Diffie-Helleman key. Then how to protect such exponent remains an open problem. Exploiting secure
device might be one natural solution to protect the output of twisted-PRF trick, since the computation of
such trick relies on long-term key which is always stored on secure device and should never be directly passed
to host machine. Then the twisted-PRF trick can be realized as follows: (i) the host machine generates
the ephemeral key x̃ and passes it to secure device; (ii) and then the secure device computes the de-facto
ephemeral private key x := PRF(x̃, a) ⊕ PRF(a, x̃) and keeps the x securely as long-term key, (iii) then
compute the ephemeral public key X = gx and send it back to host machine. If the secure device sends the
new generated ephemeral private x back to host machine where it will be used then it is also vulnerable to

1Those critical session states might, for instances, the pre-image of session key in HMQV protocol [26] and the decapsulation
key of KEM in Boyd et al.’s generic construction [7].

2Although there might exist some side-channel attacks (such as [25]) against secure device, they are more likely to compromise
the long-term key (which attracts the attackers mostly) rather than ephemeral key. Since such attacks might be very expensive.

3The twisted-PRF trick is first used in Okamoto’s construction [34] to satisfy the eCK security in the standard model.
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attacks aiming to the original x̃ chosen at host machine. This implementation approach can be applied to
other NAXOS tricks.

Eventually, we could conclude that the NAXOS trick might be necessary if and only if the secure device
is unable to generate the randomness. Otherwise the NAXOS trick can be seen identically to choosing the
exponent x from a leakage-free random source, e.g. randomness generator of secure device. Besides, all
other computations related to NAXOS trick might need to be done on secure device too (e.g. encapsulation
algorithm of KEM in the FSXY protocol), since the ephemeral private key generated by NAXOS trick
might be stored only on secure device. Those computations would dramatically increase the burden of
secure device. On the other hand, the protocol with NAXOS trick is HS-round inefficient since it might
need at least two HS-round, in which the first round is used for generate the ephemeral public key and the
second round might be used to generate the final session key. In contrast, for a protocol without NAXOS
trick, only one HS-round might be enough for session key generation.

Motivating problem. So far there are only few AKE protocols which are provably secure without random
oracles in the eCK model. Although the protocols [34, 33, 39] were proven to be eCK secure in the standard
model, they require a rather strong class of pseudo-random function family with pairwise independent
random sources (which is referred to as πPRF) as key derivation function (KDF). Most recently, Fujioka et
al. [17] introduced a generic construction for two-message AKE from key encapsulation mechanism (KEM)
which is generalized from BCNP [7]. Although the FSXY scheme [17] is shown to be eCK (CK+) secure in
the standard model, it is built relying on a special twisted-PRF trick. The session states defined in FSXY
scheme only include the random values used to execute the twisted-PRF trick and IND-CPA KEM. However
it is not hard to see if either the ephemeral private key generated by twisted-PRF trick or the encapsulation
key of test session is allowed to be leaked via StateReveal query (as the BCNP scheme), then the FSXY
protocol is insecure in the eCK model. As discussed above, to securely implement the FSXY protocol, one
might need to distribute all computations related to NAXOS trick on secure device. This would lead to
inefficiencies in the implementation of the FSXY protocol with secure device. Another drawback of FSXY
protocol is that it cannot be executed simultaneously by two session participants. Since, in the protocol
description of FSXY, the responder cannot generate the outgoing ciphertext of IND-CPA KEM until it
received the ephemeral public key sent by initiator. Hence the FSXY may lose an important feature of
one-round AKE protocol.

So far, to our best of knowledge it is still an open question to construct eCK secure protocols without
random oracles and without NAXOS trick under standard assumptions (e.g. without πPRF). As those
secure devices might be short in both storage capacity and computational resource, the algorithm on secure
device is often causing performance bottleneck of systems. Thus it is necessary to seek efficient eCK secure
construction which can be efficiently implemented with secure device.

Contributions. We first present an authenticated key exchange protocol (named GC-KKN) to solve the
above open problem. In the construction of GC-KKN, we exploit the building blocks including strong
randomness extractor (SEXT) family, and pseudo-random function (PRF) family, passively secure one-round
key exchange (KE) protocols, IND-CCA secure key encapsulation mechanism (KEM) schemes, and CKS-light
secure non-interactive key exchange (NIKE) schemes [16] (that is secure against chosen identity and long-
term public key attacks). Each building block is required to cope with specific attacks following the guideline
that the used assumption is as weak as possible. For example, to provide weak perfect forwards secrecy,
the passively secure one-round key exchange is enough, whereas to deal with maximum states leakage we
may need CKS-light secure non-interactive key exchange. The NIKE can be instantiated with the schemes
based on factorization problem or Diffie-Hellman problem as proposed by Freire et al. [16]. Similar to FSXY
protocol, the KEM in our construction could be instantiated using any IND-CCA secure scheme based on
hardness of factorization problem, code-based problem, lattice-based problem and so forth. As opposed
to FSXY scheme, GC-KKN does not rely on any NAXOS alike trick, that yields a more efficient solution
when it is implemented with secure device. We give compact game-based proofs reducing eCK security of
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GC-KKN to break the used cryptographic primitives without random oracles.
On the second we present a practical AKE protocol (P1) that is eCK secure under standard assumptions

(e.g. without πPRF). The proposed protocol is based on bilinear pairings, target collision resistant hash
function family, and pseudo-random function family. To be of independent interesting, P1 is able to run
under post-specified peer setting [10] (i.e. without knowing any information of communication peer at session
activation), unlike FSXY scheme and our GC-KKN scheme which might be executed under only pre-specified
peer setting (i.e. they need the public key of peer to run the KEM). Our construction idea of P1 is inspired
by the GC-KKN. We observe that it is possible to merge those computations in KE, KEM and NIKE schemes
if they work under the same algebraic groups. In order to be secure against active attackers, each party
(including the attacker) is required to construct some kind of ‘tag’ to encode consistency information on its
chosen (either long-term or ephemeral) public keys based on specific weak Programmable Hash Function [19].
Those tags are particularly customized to be independent of any information about receivers, which enables
P1 to be able to run in the post-specified peer setting. Although the consistency check of those tags might
be relatively expensive, fortunately all pairing (including partial session key material generation) can be
done on more powerful host machine rather than on computational resource-limited secure device (which
is only used to generate final session key). In order to securely implement P1, only one exponentiation is
required on secure device that is the more efficient than any previous eCK secure protocols without random
oracles.

Related Works. In 1986, Matsumoto et al. [29] first studied the Diffie-Hellman based key exchange
protocols with implicit key authentication that result in a line of research on one-round AKE. Meanwhile,
the most famous and efficient one is the MQV protocol by Menezes, Qu, and Vanstone [31, 28]. On Crypto
2005 conference, Krawczyk [26] presented a hashed variant of MQV called HMQV, which is formally proven
secure in a modified CK [9] model referred as CHHMQV, relying on random oracles and strong assumptions
(i.e. gap Diffie-Hellman assumption [35] and knowledge of exponent assumption [2]). Krawczyk also showed
that HMQV protocol offers more security features than MQV, in particular for resistance to KCI attacks,
UKS attacks and the leakage of secret states. However Menezes [30] pointed out that the chosen identity
and long-term public key attacks on HMQV are not formally studied in [26]. Besides, the application of
secure module was also suggested by HMQV protocol [26] to prevent the leakage of intermediate secrets.
But the detailed implementation approach was not elaborated.

In 2007 LaMacchia et al. [27] proposed an extended Canetti-Krawczyk (eCK) model, in which the
adversary is equipped with a EphemeralKeyReveal query to access all ephemeral private input required
to carry on session key computations which is similar to the StateReveal query in the CK model. e.g.
[36, 38, 34, 33, 39], are proposed to capture eCK security. However, most of those schemes are only provably
secure in the random oracle model. Since then many AKE protocols many protocols, e.g. [34, 33, 39],
are proposed to provide eCK security without random oracles. But they require the πPRF family as key
derivation function that is hard to realize in practical.

As for generic two party AKE constructions, e.g. the BCNP [7] and FSXY [17] schemes based on IND-
CCA secure KEM, the session states that can be revealed are never clearly defined which makes theirs
security analysis incomplete. In particular, we notice that the twisted-PRF technique used in the FSXY
protocol (also used in [34]) may need to be implemented with secure device to achieve leakage resilience on
new generated ephemeral private key by such trick. As the above discussion regarding NAXOS trick, that
might increase unnecessary workload on secure device. Basically the FSXY protocol is built in an inefficient
manner. Please note that there are a lot of works such as [33, 38, 24] which are motivated to construct key
exchange protocols without the NAXOS tricks. As well this is also one of the motivations of our work.

With respect to the protection of session states involving secure device, two implementation scenarios
and corresponding security models have been studied in literatures [36, 40]. Basically, the implementation
of the AKE protocol is divided into two parts which are respectively run at host machine (which is subject
to attacks on session states) and at secure device. In corresponding security model, the adversary is able
to reveal all possible states stored at host machine, but the secure device is treated as a black-box which is
resilience of the leakage of intermediate values.
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2 Preliminaries

Notations. We let κ ∈ N denote the security parameter and 1κ the string that consists of κ ones. Let a
“hat” on top of a capital letter denote an identity; without the hat the letter denotes the public key of that

party. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set, then a
$← S denotes the

action of sampling a uniformly random element from S. Let IDS be an identity space. Let KAKE be the
key space of session key, and {PK,SK} be key spaces for long-term public/private key respectively. Those
spaces are associated with security parameter κ.

2.1 Min-entropy and Strong Randomness Extractors

Definition 1. We say that a random variable m∗ distributed over domain M has min-entropy κ, if for all
m ∈M it holds that Pr[m∗ = m] ≤ 2−κ.

The min-entropy is a formal indicator for ‘good’ key distribution of a key (say the key of following KE
scheme, KEM scheme and NIKE scheme).

Let SEXT : SSEXT ×MSEXT → RSEXT be a function family associated with seed space SSEXT, domain
MSEXT, and range RSEXT.

Definition 2. We say that function SEXT is a (κ, εSEXT)-strong randomness extractor, if for any variable m
distributed overMSEXT that has min-entropy κ and for any seed kSEXT which is chosen uniformly at random
from SSEXT and for any value R which is chosen uniformly at random from RSEXT, the two distributions
〈kSEXT, SEXT(kSEXT,m)〉 and 〈kSEXT, R〉 have statistical distance at most εSEXT. i.e.

1

2

∑
y∈RSEXT

|Pr[SEXT(s,m) = y]− Pr[R = y]| = εSEXT.

In the context where the seed kSEXT is clear we will write SEXT(X) for SEXT(kSEXT, X). As suggested
by Dodis et al. [15], one could use a pseudo-random function as a strong randomness extractor. Some good
results on key derivation and randomness extraction can be also found in [11].

2.2 Target Collision-Resistant Hash Functions

Let TCRHF : KTCRHF ×MTCRHF → YTCRHF be a family of keyed-hash functions associated with key space
KTCRHF, message spaceMTCRHF and hash value space YTCRHF. The public key hkTCRHF ∈ KTCRHF of a hash
function TCRHF(hkTCRHF, ·) is generated by a PPT algorithm TCRHF.KG(1κ) on input security parameter
κ.

Definition 3. TCRHF is called (tTCRHF, εTCRHF)-target-collision-resistant if for all tTCRHF-time adversaries
A it holds that

Pr

[
hkTCRHF

$← TCRHF.KG(1κ), m
$←MTCRHF, m

′ ← A(1κ, hkTCRHF,m),
m 6= m′, m′ ∈MTCRHF, TCRHF(hkTCRHF,m) = TCRHF(hkTCRHF,m

′)

]
≤ εTCRHF,

where the probability is over the random bits of A.

Note that the notion of target collision resistance is weaker than the notion of collision resistance. As
suggested in [12], normally target collision resistant functions can be realized with a specific cryptographic
hash function such as MD5 and SHA. If the hash key hkTCRHF is obvious from the context, we write
TCRHF(m) for TCRHF(hkTCRHF,m).
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2.3 Passively Secure One-round Key Exchange Protocols

A key-exchange protocol (KE) is a protocol executed between two parties, that enables those two parties to
compute a shared secret key. In the following, we formally provide a technical definition of passively secure
(PS) key exchange protocols within two pass.

A one-round key exchange protocol KE = (KE.Setup,KE.EKGen,KE.SKGen) consists of three algorithms:

• pmske ← KE.Setup(1κ): this algorithm takes as input a security parameter κ and outputs a set of
system parameters pmske, e.g. a large prime and a group generator. The parameters pmske might be
implicitly used by other algorithms for simplicity.

• (esk, epk)
$← KE.EKGen(pmske): The ephemeral key generator takes as input, the parameter pmske,

and outputs an ephemeral key pair (esk, epk) that consist of the ephemeral secret key esk and the
ephemeral public key epk.

• k ← KE.SKGen(eskID1 , epkID2): The session key generator KE.SKGen is a deterministic polynomial-
time algorithm that given as input eskID1 and epkID2 outputs the session key k.

The ephemeral public keys are exchanged by the parties, e.g. party ID1 sends epkID1 to party ID2 who
sends epkID2 to ID1. We only consider the key exchange protocols with perfect correctness that is

Pr

[
KE.SKGen(eskID1 , epkID2) = KE.SKGen(eskID2 , epkID1);

(eskID1 , epkID1)← KE.EKGen(pmske), (eskID2 , epkID2)← KE.EKGen(pmske)

]
= 1.

The KE protocol in our construction should satisfy the following two conditions: (i) the protocol is
executed without any long-term key(s); (ii) all ephemeral public/secret key vector (epk, esk) are chosen
freshly and randomly from corresponding key spaces for each protocol instance. Similar restrictions are
made on the KE protocols which are used in the recent AKE compiler by Jager, Kohlar, Schaege, and
Schwenk (JKSS) [21].

We haven chosen to restrict our attention to this class of key exchange protocols because they either
allow for efficient protocols with very high security guarantees (like forward secrecy) or can efficiently be
recognized. We stress that important key exchange mechanisms like ephemeral Diffie-Hellman key exchange
falling into this class. In order to model passive attacks we define an Execute(ID1, ID2) query. The adversary
can use the this query to perform passive attacks in which the attacker initiates and eavesdrops on honest
executions between party ID1 and party ID2. Note that each identity should be uniquely chosen from space
IDS. By using this query the adversary can obtain the transcripts that were exchanged during the honest
execution of the protocol, and corresponding established session key.

Security Experiment EXPpsKE,A(κ): On input security parameter κ, the security experiment is proceeded
as a game between a challenger C and an adversary A based on a key exchange protocol KE, where the
following steps are performed:

1. A challenger pmske ← KE.Setup(1κ) and generates a set of identities {ID1, . . . , ID`} for potential
protocol participants where i ∈ [`] and ` ∈ N. The adversary is given pmske and all identities as input
and is allowed to interact with challenger via making Execute(IDi, IDj) query at most d times for each
party where d ∈ N. As response, the challenger returns (T,K0) to adversary.

2. At some point, the adversary outputs a special symbol > for challenge. Given >, the challenger runs
a new protocol instance, obtaining the transcript T and key K0, samples K1 uniformly at random
from the key space of the protocol, and tosses a fair coin b ∈ {0, 1}. Then it returns (T,Kb) to the
adversary. After that the adversary may continue making Execute(IDi, IDj) queries. Finally, adversary
A may terminate with outputting a bit b′.

3. At the end of the experiment, 1 is returned if all following conditions hold:

• A has issued a Test query to an oracle πsi without failure,
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• πsi is fresh throughout the security game, and

• A returned a bit b′ which equals to b of Test-query;

Otherwise 0 is returned.

Definition 4. We say that a key-exchange protocol KE satisfying the above two conditions is (t, εKE)-
passively-secure if for all probabilistic polynomial-time t adversary holds that |Pr[EXPkeΣ,A(κ) = 1]− 1/2| ≤
εKE for some function εKE = εKE(κ) in the security parameter κ.

2.4 Key Encapsulation Mechanism Schemes

A KEM scheme consists of four polynomial time algorithms KEM = (KEM.Setup,KEM.Gen,KEM.EnCap,
KEM.DeCap) with the following semantics:

• pmskem ← KEM.Setup(1κ): this algorithm takes as input a security parameter κ and outputs a set of
system parameters pmskem. The parameters pmskem might be implicitly used by other algorithms for
simplicity.

• (pk, sk)
$← KEM.Gen(pmskem): a key generation algorithm which on input parameter pmskem, outputs

a pair of long-term encryption/decryption keys (pk, sk) ∈ (PK,SK).

• (K,C)
$← KEM.EnCap(pk): an encryption algorithm which takes as input parameter pmskem, an

encapsulation key pk, outputs a session key K ∈ KKEM and ciphertext C ∈ CKEM, where KKEM is a
session key space, and CKEM is a ciphertext space.

• (K)← KEM.DeCap(sk, C): a decryption algorithm which takes as input parameter pmskem, a decap-
sulation key sk and a ciphertext C ∈ CKEM, and outputs a session key K ∈ KKEM.

All ‘spaces’ for the corresponding values are parametrized with security parameter κ. Here, we recall the
definition of IND-CCA security for KEM as follows.

Definition 5. We say that a key encapsulation mechanism scheme KEM is (q, t, εKEM)-secure (key indistin-
guishable) against adaptive chosen-ciphertext attacks, if it holds that |Pr[EXPind−ccaKEM,A (κ) = 1]− 1/2| ≤ εKEM
for all adversaries A running in probabilistic polynomial time t in the following experiment:

Security Experiment EXPind−ccaKEM,A (κ) DEC(sk, C) :

pmskem ← KEM.Setup(1κ) If C = C∗ or C /∈ CKEM then return ⊥,

(pk, sk)
$← KEM.Gen(pmskem) Otherwise K ← KEM.DeCap(sk, C)

(K∗0 , C
∗)

$← KEM.EnCap(pk), K∗1
$← KKEM Return K

b
$← {0, 1}, b′ ← ADEC(sk,·)(pk,K∗b , C∗)

if b = b′ then return 1, otherwise return 0

where εKEM = εKEM(κ) is a negligible function in the security parameter κ and the number of DEC(sk, ·)
queries is bound by time t.

2.5 Pseudo-Random Functions

The concept of pseudo-random functions is introduced by Goldreich, Goldwasser and Micali in [18]. Let
PRF : KPRF ×DPRF → RPRF denote a family of deterministic functions, where KPRF is the key space, DPRF

is the domain and RPRF is the range of PRF for security parameter κ. Let RL = {(x1, y1), . . . , (xq, yq)} be a
list which is used to record bit strings formed as tuple (xi, yi) ∈ (DPRF,RPRF) where 1 ≤ i ≤ q and q ∈ N.
In RL each x is associated with a y. Let RF : DPRF → RPRF be a stateful uniform random function, which
can be executed at most a polynomial number of q times and keeps a list RL for recording each invocation.
On input a message x ∈ DPRF, the function RF(x) is executed as follows:
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• If x ∈ RL, then return corresponding y ∈ RL,

• Otherwise return y
$← RPRF and record (x, y) into RL.

Definition 6. We say that PRF is a (q, t, εPRF)-secure pseudo-random function family, if it holds that
|Pr[EXPind−cmaPRF,A (κ) = 1]−1/2| ≤ εPRF for all adversaries A that make a polynomial number of oracle queries
q while running in time at most t in the following experiment:

EXPind−cmaPRF,A (κ) F(b, x)

b
$← {0, 1}, k $← KPRF; If x /∈ DPRF then return ⊥;

b′ ← AF(b,·)(κ); If b = 1 then return PRF(k, x);
If b = b′ then return 1; Otherwise return RF(x);
Otherwise return 0;

where εPRF = εPRF(κ) is a negligible function in the security parameter κ, and the number of allowed queries
q is bound by t.

2.6 Secure Non-Interactive Key Exchange Protocols

Notions for Non-Interactive Key Exchange. We consider a Non-Interactive Key Exchange (NIKE)
scheme in the public key setting consists of three algorithms: NIKE.Setup, KGen and NIKE.ShareKey associ-
ated with an identity space IDS and a shared key space KNIKE, in which those algorithms have following
semantics:

• pmsnike ← NIKE.Setup(1κ): this algorithm takes as input a security parameter κ and outputs a set
of system parameters pmsnike. The parameters pmsnike might be implicitly used by other algorithms
for simplicity.

• (skID, pkID)
$← KGen(pmsnike, ID): this algorithm takes as input pmsnike and a identity ID, and outputs

a pair of long-term private/public key (skID, pkID) for the party ID.

• K $← NIKE.ShareKey(ID1, skID1 , ID2, pkID2): this algorithm takes as input parameter pmsnike, an iden-
tity ID1 and a secret key skID1 along with another identity ID2 and corresponding public key pkID2 ,
and outputs either a shared key K ∈ KNIKE for the two parties, or a failure symbol ⊥. This algorithm
is assumed to always output ⊥ if input identities are not distinct.

For correctness, we require that, for a tuple of identities (ID1, ID2), and corresponding key pairs
(skID1 , pkID1) and (skID2 , pk3), algorithm NIKE.ShareKey satisfies the constraint:

– NIKE.ShareKey(ID1, skID1 , ID2, pkID2) = NIKE.ShareKey(ID2, skID2 , ID1, pkID1)

Security Definition for NIKE. In this section we recall the CKS-light formal security model for a two
party PKI-based non-interactive authenticated key-exchange (NIKE) protocol proposed in [16]. But we do
slightly modification on modelling public key registration. Specifically, each party IDi might be required
to provide extra information (denoted by pf IDi) to prove the registered public key is sound. In practice,
the concrete implementation of pf is up to the CA [1] and may be either interactive or non-interactive.
Examples can be found in RFC 4210 [1] and PKCS#10. Let {Honest,Dishonest} be two vector lists.

Security Experiment EXPcks−lightNIKE,A (κ): On input security parameter κ, the security experiment is pro-
ceeded as a game between a challenger C and an adversary A based on a non-interactive key exchange
protocol NIKE, where the following steps are performed:

1. The C first run pmsnike ← NIKE.Setup(1κ) and gives pmsnike to adversary A.

2. The adversary A may interact with challenger C with the following queries:
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• RegisterHonest(ID): on input an identity ID ∈ IDS, if ID /∈ {Honest,Dishonest} then C runs
NIKE.KGen(pmsnike, ID) to generate a long-term secret/public key pair (skID, pkID) ∈ (PK,SK)
and adds the tuple (ID, skID, pkID) into the list Honest, and returns pk to A; as otherwise a failure
symbol ⊥ is returned. This queries is allowed to query at most twice. Parties established by this
query are called honest.

• RegisterCorrupt(IDτ , pkIDτ , pf IDτ ): This query allows the adversary to register an identity IDτ and
a long-term public key pkIDτ on behalf of a party IDτ , if the IDτ /∈ {Honest,Dishonest} and pkIDτ
is ensured to be sound by evaluating the non-interactive proof pf IDτ . We only require that the
proof is non-interactive in order to keep the model simple. Parties established by this query are
called dishonest.

• RevealKeynike(ID1, ID2): On input a tuple of registered identities (ID1, ID2), C returns a failure
symbol ⊥ if both parties ID1 and ID2 are dishonest. Otherwise C run NIKE.ShareKey using the
secret key of one of the honest parties in (ID1, ID2) and the public key of the other party and
returns the result to A
• Testnike(ID1, ID2): Given two identities (ID1, ID2), the challenger C returns a failure symbol ⊥ if

either ID1 = ID2 or ID1 /∈ Honest or ID2 /∈ Honest. Otherwise the challenger C samples a random

bit b
$← {0, 1}, and it answers this query in terms of the bit b. Specifically, if b = 1, C runs

NIKE.ShareKey using the secret key of ID1 and the public key of ID2 to obtain the shared key K1;
else if b = 0, the challenger generates a random key K1. C returns Kb to adversary. This query
can be queried only once.

3. Eventually, the adversary may terminate with outputting a bit b′.

4. At the end of the experiment, 1 is returned if all following conditions hold:

• A has issued a Testnike query without failure on input identities (ID1, ID2),

• Both parties ID1 and ID2 are honest,

• A has not issued RevealKey query on input identities (ID1, ID2) in either order, and

• b = b′;

Otherwise 0 is returned.

Definition 7. A two party non-interactive key exchange protocol Σ is called (t, εNIKE)-secure if it holds that

|Pr[EXPcks−lightΣ,A (κ) = 1] − 1/2| ≤ εNIKE for all adversaries A running within time t in the above security
experiment and for some negligible probability εNIKE = εNIKE(κ) in the security parameter κ.

Note that if the query RegisterCorrupt(IDτ , pkIDτ , pf IDτ ) is made with pf = ∅ then the above model
equals the CKS-light model [16]; Otherwise it is slightly weaker than CKS-light model. The number of
RegisterCorrupt queries is bound by the time t. In this model, we adopt a slightly variant CKS-light model
for simplicity which is strong enough for our AKE construction.

2.7 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups. Our AKE solution mainly
consists of elements from a single group G. We therefore concentrate on symmetric bilinear maps. The
bilinear groups will be parameterized by a symmetric pairing parameter generator, denoted by PG.Gen.
This is a polynomial time algorithm that on input a security parameter 1κ, returns the description of
two multiplicative cyclic groups G and GT of the same prime order p, generator g for G, and a bilinear
computable pairing e : G×G→ GT .

Definition 8 (Symmetric Bilinear groups). We call PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of sym-

metric bilinear groups, if the function e is an (admissible) bilinear map and it holds that:
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1. Bilinear: for all a, b ∈ G and x, y ∈ Zp, we have e(ax, by) = e(a, b)xy.

2. Non-degenerate: e(g, g) 6= 1GT , is a generator of group GT .

3. Efficiency: e is efficiently computable for all (a, b) ∈ G.

2.8 Bilinear Decisional Diffie-Hellman Assumption

Let PG = (G, g,GT , p, e) denote the description of symmetric bilinear groups as Definition 8. We first
consider the following traditional version of Bilinear Decisional Diffie-Hellman (BDDH) problem for sym-
metric pairing. The Bilinear Decisional Diffie-Hellman (BDDH) problem is stated as follows: given tuple
(ga, gb, gc, e(g, g)γ) for (a, b, c, γ) ∈ (Z∗p)4 as input, output 1 if e(g, g)γ = e(g, g)abc and 0 otherwise.

Definition 9. We say that the BDDH problem relative to generator PG.Gen is (t, εBDDH)-hard, if the
probability bound |Pr[EXPbddhPG.Gen,A(κ) = 1]−1/2| ≤ εBDDH holds for all adversariesA running in probabilistic
polynomial time t in the following experiment:

EXPbddhPG.Gen,A(κ)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

(a, b, c, γ)
$← Z∗p;

b
$← {0, 1}, if b = 1 Γ← e(g, g)abc, otherwise Γ← e(g, g)γ ;

b′ ← A(1κ,PG, ga, gb, gc,Γ);
if b = b′ then return 1, otherwise return 0;

where εBDDH = εBDDH(κ) is a negligible function in the security parameter κ.

3 Security Model

In this section we present the formal security model for two party PKI-based authenticated key-exchange
(AKE) protocol. In this model, while emulating the real-world capabilities of an active adversary, we provide
an ‘execution environment’ for adversaries following an important research line research [5, 9, 26, 27, 22, 39]
which is initiated by Bellare and Rogaway [3]. In the sequel, we will use the similar framework as [22].

Execution Environment. In the execution environment, we fix a set of honest parties {ID1, . . . , ID`}
for ` ∈ N, where IDi (i ∈ [`]) is the identity of a party which is chosen uniquely from space IDS. Each
identity is associated with a long-term key pair (skIDi , pkIDi) ∈ (SK,PK) for authentication. Note that those
identities are also lexicographically indexed via variable i ∈ [`]. Each honest party IDi can sequentially and
concurrently execute the protocol multiple times with different indented partners, this is characterized by a
collection of oracles {πsi : i ∈ [`], s ∈ [d]} for d ∈ N.4 Oracle πsi behaves as party IDi carrying out a process
to execute the s-th protocol instance (session), which has access to the long-term key pair (skIDi , pkIDi) and
to all other public keys. Moreover, we assume each oracle πsi maintains a list of independent internal state
variables with semantics listed in Table 1.

All those variables of each oracle are initialized with empty string which is denoted by the symbol ∅
in the following. At some point, each oracle πsi may complete the execution always with a decision state
Φs
i ∈ {accept, reject}. Furthermore, we assume that the session key is assigned to the variable Ks

i ( such
that Ks

i 6= ∅) iff oracle πsi has reached an internal state Φs
i = accept.

4An oracle in this thesis might be alternatively written as πsIDi
which is conceptually equivalent to πsi .
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Variable Decryption

Ψs
i storing the identity of its communication partner

Φs
i denoting the decision Φs

i ∈ {accept, reject}
Ks
i recording the session key Ks

i ∈ KAKE used for symmetric encryption
stsi storing the maximum secret states that allows to be revealed by adversary
sT si recording the transcript of messages sent by oracle πsi
rT tj recording the transcript of messages sent by oracle πsi

Table 1: Internal States of Oracles

Adversarial Model. An adversary A in our model is a PPT Turing Machine taking as input the security
parameter 1κ and the public information (e.g. generic description of above environment), which may interact
with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send any message m of his own choice to oracle πsi .
The oracle will respond the next message m∗ (if any) to be sent according to the protocol specification
and its internal states. Oracle πsi would be initiated as initiator via sending the oracle the first

message m = (>, ĨDj) consisting of a special initialization symbol > and a value ĨDj . The ĨDj is either
the identity IDj of intended partner or empty string ∅. After answering a Send query, the variables
(Ψs

i ,Φ
s
i ,K

s
i , st

s
i , sT

s
i , rT

s
i ) will be updated depending on the specific protocol.5

• RevealKey(πsi ): Oracle πsi responds with the contents of variable Ks
i .

• StateReveal(πsi ): Oracle πsi responds with the secret state stored in variable stsi .

• Corrupt(IDi): Oracle π1
i responds with the long-term secret key skIDi of party IDi if i ∈ [`].

• RegisterCorrupt(IDτ , pkIDτ , pf IDτ ): This query allows the adversary to register an identity IDτ (` < τ <
N) and a static public key pkIDτ on behalf of a party IDτ , if IDτ is unique and pkIDτ is ensured to be
sound by evaluating the non-interactive proof pf IDτ . We only require that the proof is non-interactive
in order to keep the model simple. Parties established by this query are called dishonest.

• Test(πsi ): If the oracle has state Ω = reject or Ks
i = ∅, then the oracle πsi returns some failure symbol

⊥. Otherwise it flips a fair coin b, samples a random element K0 from key space KAKE, and sets
K1 = Ks

i . Finally the key Kb is returned. This query is allowed to be asked at most once during the
following security game.

We stress that the exact meaning of the StateReveal must be defined by each protocol separately, and
each protocol should be proven secure to resist with such kind of state leakage as its claimed, i.e., the
content stored in the variable st during protocol execution. In other word, each protocol should define
the protocol steps processed on secure device. Of course one could distribute all protocol computations on
the secure device then the security model would equal to a model without StateReveal query. However the
security result of a protocol analysed under such implementation scenario must be weaker than that in a
case allowing leakage of states. In contrast, our goal is to define the maximum states that can be leaked.
The EstablishParty query is used to model the chosen identity and public key attacks. In this query, the
detail form of pf should be specified by each protocol. Please note that one could specify pf = ∅ to model
arbitrary public key registration without checking anything.

5For example, the variable Ψs
i might be set as identity IDj at some point when the oracle receives a message containing

the identity of its partner; the messages m and m∗ will be appended to transcript rT si and sT si respectively. A protocol here
might be either run in pre- or post-specified peer setting [10, 32]. As for a protocol running under post-specified peer setting,

we always have that ĨDj = ∅.
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Secure AKE Protocols. To formalize the notion that two oracles are engaged in an on-line communi-
cation, we define the partnership via matching sessions which was first formulated by Krawczyk [26].

Definition 10 (Matching sessions). We say that an oracle πsi has a matching session to oracle πtj , if πsi has
sent all protocol messages and all the following conditions hold:

• Ψs
i = IDj and Ψt

j = IDi,

• sT si = rT tj and rT si = sT tj .

Correctness. We say an AKE protocol Σ is correct, if two oracles πsi and πtj accept with matching
sessions, then both oracles hold the same session key, i.e. Ks

i = Kt
j .

For the security definition, we need the notion of freshness of an oracle.

Definition 11 (Freshness). Let πsi be an accepted oracle with intended partner IDj . Let πtj be an oracle (if
it exists), such that πsi has a matching session to πtj . Then the oracle πsi is said to be fresh if none of the
following conditions holds:

1. A queried RegisterCorrupt(IDj , pkIDj , pf IDj ).

2. A queried either RevealKey(πsi ) or RevealKey(πtj) (if πtj exists).

3. A queried both Corrupt(IDi) and StateReveal(πsi ).

4. If πtj exists, A queried both Corrupt(IDj) and StateReveal(πtj).

5. If πtj does not exist, A queried Corrupt(IDj).

Security Experiment EXPAKE
Σ,A (κ): On input security parameter 1κ, the security experiment is proceeded

as a game between a challenger C and an adversary A based on an AKE protocol Σ, where the following
steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]},
and generates ` long-term key pairs (pkIDi , skIDi) and corresponding proof pf IDi (if any) for all honest
parties IDi for i ∈ [`] where the identity IDi ∈ IDS of each party is chosen uniquely. C gives adversary
A all identities, public keys and corresponding proofs {(ID1, pkID1 , pf ID1

), . . . , (ID`, pk`, pf`)} as input.

2. Amay issue polynomial number of queries as aforementioned, namelyAmakes queries: Send, StateReveal,
Corrupt, EstablishParty and RevealKey.

3. At some point, A may issue a Test(πsi ) query on an oracle πsi during the game with only once.

4. At the end of the game, the A may terminate with returning a bit b′ as its guess for b of Test query.

5. Finally, 1 is returned if all following conditions hold:

• A has issued a Test query on an oracle πsi without failure,

• πsi is fresh throughout the security game, and

• A returned a bit b′ which equals to b of Test-query;

Otherwise 0 is returned.

Definition 12 (Session Key Security). A correct AKE protocol Σ is called (t, ε)-session-key-secure if prob-
ability bound |Pr[EXPAKE

Σ,A (κ) = 1]− 1/2| ≤ ε holds for all adversaries A running within time t in the above
security experiment and for some negligible probability ε = ε(κ) in the security parameter κ.
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4 A Generic One-round AKE Construction from KE, KEM and NIKE

In this section, we present a generic one-round authenticated key exchange protocol from KE, KEM and
NIKE (denoted by GC-KKN), that is more suitable to be implemented for providing eCK security than
previous works. In our generic construction, the following building blocks are required in the sense of
definitions in Section 2:

• Passively secure one-round key exchange scheme KE = (KE.Setup,KE.EKGen,KE.SKGen).

• IND-CCA secure key encapsulation mechanism scheme KEM = (KEM.Setup,KEM.Gen,KEM.EnCap,
KEM.DeCap).

• CKS-light secure non-interactive key exchange scheme NIKE = (NIKE.Setup,NIKE.KGen,
NIKE.ShareKey).

• Strong randomness extractor SEXT(·, ·) : SSEXT×MSEXT → RSEXT. We assume that the spaceMSEXT

matches the key spaces of KE, KEM and NIKE schemes.

• Pseudo-random function family PRF(·, ·) : RSEXT ×MPRF → KAKE.

Design Principle. The first attack we need to cope with is the chosen ephemeral key attacks against an
uncorrupted party which might be only one that is not corrupted in the AKE security experiment, i.e. the
adversary breaks the eCK security of considered protocol under freshness case C6 (shown in Appendix 4.2).
The CEK attack informally addresses the situation that the adversary tries to obtain non-trivial information
about test oracle (whose states are not leaked) by injecting ephemeral keys of her own choice to manipulate
the session keys of other oracles (from which he can reveal key via RevealKey query). In order to handle
CEK attacks, we utilize the IND-CCA secure KEM scheme as both FSXY [17] and BCNP [7] schemes. Since
the IND-CCA secure KEM is known as one of the most efficient and effective solutions which can withstand
this kind of attack. The IND-CCA security is necessary to simulate RevealKey queries to oracles of target
uncorrupted party (say the intended communication partner of test oracle) without knowing corresponding
long-term private key in the proof simulation. Meanwhile, we might ask DEC oracle provided by KEM
experiment for help.

On the second, we have to consider security of test oracle when its session states are leaked. The worst
case (which might be very likely to happen) is that test oracle received an ephemeral key which is chosen
by adversary, or the session states are disclosed from both test oracle and its partner session. In either
case, the adversary may know all ephemeral secrets used to compute the session key of test oracle without
knowing the long-term keys of session participants of test oracle. This is also why the FSXY construction
needs expensive NAXOS like trick to generate certain intermediate secret that is leakage resilience. To
deal with this situation without NAXOS trick, our solution is to use non-interactive key exchange scheme,
namely we make use of the long-term shared key of session participants to compute part of session key.
This makes sense due to the fact that the long-term keys of session participants are not corrupted. We
need the CKS-light security for NIKE scheme since we have to ‘appropriately’ simulate the session keys of
uncorrupted oracles in presence of adversary who can register identities and public keys of her own choice
(i.e. via RegisterCorrupt query).

While considering the wPFS attack in which long-term keys of both participants might be leaked.
Intuitively, we cannot make use of KEM or NIKE schemes to achieve wPFS security property, since the
security of both schemes relies on uncompromised long-term keys. Unlike the FSXY [17] scheme, we do
not adopt to IND-CPA secure KEM (which is called as wKEM in FSXY) in the construction since wKEM
cannot be executed simultaneously by two sessions. Namely the responder cannot generate the outgoing
ciphertext until it received the ephemeral public key sent by initiator. Our solution avoids this circumstance
via exploiting passively secure one-round key exchange protocol KE without long-term keys. This is a
generalization from the BCNP construction [7] wherein only Diffie-Hellman key exchange protocol [14] is
considered. Our construction is able to be instantiated with any other passively secure one-round key
exchange protocols.
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4.1 Protocol Description

Set-up: To initiate the system, the public system parameters pms := (pmske, pmskem, pmsnike, kSEXT) are
firstly generated via performing pmske ← KE.Setup(1κ), pmskem ← KEM.Setup(1κ), pmsnike ← NIKE.Setup(1κ)

and kSEXT
$← SSEXT.

Long-term key Generation and Registration: A party Â may run algorithms (pkkem
Â

, skkem
Â

)
$←

KEM.Gen(pmskem) and (pknike
Â

, sknike
Â

, pfÂ)
$← NIKE.KGen(pmsnike, Â) to generate the long-term key pair

for KEM and NIKE schemes respectively. The public key pkkem
Â

can be registered arbitrarily. As well

the public key pknike
Â

can be registered arbitrarily if pf = ∅. Otherwise the pknike
Â

might be registered if

the non-interactive proof pfÂ is evaluated to be sound based on pknike
Â

. As for certain NIKE scheme, the
interactive zero-knowledge proof scheme might be required to ensure the registered public key is consistent
(e.g. the factoring based NIKE in [16]).

Â
skÂ := (skkem

Â
, sknike

Â
)

pkÂ := (pkkem
Â

, pknike
Â

)

B̂
skB̂ := (skkem

B̂
, sknike

B̂
)

pkB̂ := (pkkem
B̂

, pknike
B̂

)

(epkÂ, eskÂ)
$← KE.EKGen(pmske) (epkB̂ , eskB̂)

$← KE.EKGen(pmske)

(KÂ, CÂ)
$← KEM.EnCap(pkkem

B̂
) (KB̂ , CB̂)

$← KEM.EnCap(pkkem
Â

)

−
Â, epkÂ, CÂ

−−−−−−−−−−−−−−−−−→

←−
B̂, epkB̂ , CB̂

−−−−−−−−−−−−−−−−−
sid := Â||B̂||epkÂ||CÂ||epkB̂ ||CB̂ sid := Â||B̂||epkÂ||CÂ||epkB̂ ||CB̂
eK := KE.SKGen(eskÂ, epkB̂) eK := KE.SKGen(eskB̂ , epkÂ)

KB̂ := KEM.DeCap(skkem
Â

, CB̂) KÂ := KEM.DeCap(skkem
B̂

, CÂ)
ShKÂ,B̂ :=

NIKE.ShareKey(Â, sknike
Â

, B̂, pknike
B̂

)

ShKÂ,B̂ :=

NIKE.ShareKey(B̂, sknike
B̂

, Â, pknike
Â

)
eK′ := SEXT(eK) eK′ := SEXT(eK)
K′
Â

:= SEXT(KÂ) K′
B̂

:= SEXT(KB̂)
K′
B̂

:= SEXT(KB̂) K′
Â

:= SEXT(KÂ)
ShK′

Â,B̂
:= SEXT(ShKÂ,B̂) ShK′

Â,B̂
:= SEXT(ShKÂ,B̂)

eK′′ := PRF(eK′, sid) eK′′ := PRF(eK′, sid)
K′′
Â

:= PRF(K′
Â
, sid) K′′

B̂
:= PRF(K′

B̂
, sid)

K′′
B̂

:= PRF(K′
B̂
, sid) K′′

Â
:= PRF(K′

Â
, sid)

ShK′′
Â,B̂

:= PRF(ShK′
Â,B̂

, sid) ShK′′
Â,B̂

:= PRF(ShK′
Â,B̂

, sid)

ke := eK′′ ⊕K′′
Â
⊕K′′

B̂
⊕ ShK′′

Â,B̂
ke := eK′′ ⊕K′′

Â
⊕K′′

B̂
⊕ ShK′′

Â,B̂

Figure 1: Generic One-round AKE Protocol from KE, KEM and NIKE

Protocol Execution: On input parameters pms := (pmske, pmskem, pmsnike, kSEXT), the protocol between
party Â and party B̂ is proceeded as following which is also informally depicted in Figure 1:

1. Upon activation a session at Â, it performs the steps: (a) choose ephemeral public/private keys

(epkÂ, eskÂ)
$← KE.EKGen(pmske); (b) run (KÂ, CÂ)

$← KEM.EnCap(pkkem
B̂

) and compute K ′
Â

:=

SEXT(KÂ); (c) send (Â, epkÂ, CÂ) to B̂.

2. Upon activation a session at B̂, it performs the steps: (a) choose ephemeral public/private keys

(epkB̂, eskB̂)
$← KE.EKGen(pmske); (b) run (KB̂, CB̂)

$← KEM.EnCap(pkkem
Â

) and compute K ′
B̂

:=

SEXT(KB̂); (c) send (B̂, epkB̂, CB̂) to Â.
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3. Upon receiving (Â, epkÂ, CÂ), party B̂ does the following: (a) set session identifier

sid := Â||B̂||epkÂ||CÂ||epkB̂||CB̂ where the messages are ordered by round, and within each round
lexicographically by the identities of the purported senders; (b) compute eK := KE.SKGen(eskB̂, epkÂ)
and eK ′ := SEXT(eK) and eK ′′ := PRF(eK ′, sid); (c) compute K ′′

B̂
:= PRF(K ′

B̂
, sid); (d) compute

KÂ := KEM.DeCap(skkem
B̂

, CÂ), K ′
Â

:= SEXT(K ′
Â

), K ′′
Â

:= PRF(K ′
Â
, sid); (e) compute ShKÂ,B̂ :=

NIKE.ShareKey(Â, sknike
Â

, B̂, pknike
B̂

), ShK ′
Â,B̂

:= SEXT(ShKÂ,B̂) and ShK ′′
Â,B̂

:= PRF(ShK ′
Â,B̂

, sid);

(f) compute the final session key as ke := eK ′′ ⊕K ′′
Â
⊕K ′′

B̂
⊕ ShK ′′

Â,B̂
.

4. Upon receiving (B̂, epkB̂, CB̂), Â does the following: (a) set session identifier as

sid := Â||B̂||epkÂ||CÂ||epkB̂||CB̂; (b) compute eK := KE.SKGen(eskÂ, epkB̂) and eK ′ := SEXT(eK),
eK ′′ := PRF(eK ′, sid); (c) compute K ′′

Â
:= PRF(K ′

Â
, sid); (d) compute KB̂ := KEM.DeCap(skkem

Â
, CB̂),

K ′
B̂

:= SEXT(KB̂), K ′′
B̂

:= PRF(K ′
B̂
, sid); (e) compute ShKÂ,B̂ := NIKE.ShareKey(B̂, sknike

B̂
, Â, pknike

Â
),

ShK ′
Â,B̂

:= SEXT(ShKÂ,B̂) and ShK ′′
Â,B̂

:= PRF(ShK ′
Â,B̂

, sid); (f) compute the final session key as

ke := eK ′′ ⊕K ′′
Â
⊕K ′′

B̂
⊕ ShK ′′

Â,B̂
.

Session States and Implementaton Senario. We now define the session states in terms of implemen-
tation model with secure device. Basically, all states of KE.EKGen, KE.SKGen and KEM.EnCap algorithms
would be stored in the state variable st. For instance the state of an oracle πs

Â
might include values

(eskÂ, eKÂ, eK
′
Â
, eK ′′

Â
,KÂ,K

′
Â
,K ′′

Â
) appeared in the above protocol description and other randomness or

intermediate values generated within algorithms: KE.EKGen , KE.SKGen and KEM.EnCap. Namely those
algorithms can be executed on host machine. However, we assume no secret states related to KEM.DeCap
and NIKE.ShareKey algorithms can be revealed. This can be realized by doing all computations involving
long-term private key of KEM.DeCap and NIKE.ShareKey algorithms, and final session key generation on
secure device, i.e. processing the steps 3.(d,e,f) and 4.(d,e,f) on secure device. In particular KEM.DeCap
and NIKE.ShareKey algorithms might involve expensive consistency check operations, say pairing operations
in pairing-based NIKE [16]. But we stress that the computations of KEM.DeCap and NIKE.ShareKey algo-
rithms without using long-term private key and without using values generated by long-term private key,
can be done on host machine for efficiency consideration.

4.2 Security Analysis

We assume without loss of generality that the maximum probability for the event that two oracles output
the same ciphertext C or ephemeral public key epk, is a negligible fraction 1/2λ where λ ∈ N is a large
enough integer in terms of the security parameter κ. Let MAX(X1, X2, X3) denote the function to obtain
the maximum values from variables X1, X2 and X3.

Theorem 1. Suppose that the SEXT is (κ, εSEXT)-strong randomness extractor, the KEM is (qkem, t, εKEM)-
IND-CCA secure and KE is (t, εKE)-passively secure, and the pseudo-random function PRF is (qprf , t, εPRF)-
secure, and the NIKE is (t, εNIKE)-secure non-interactive scheme with respect to the definitions in Section
2. And we assume that either KE key or KEM key or NIKE key has κ-min-entropy. Then the proposed
protocol is (t′, ε)-session-key-secure in the sense of Definition 12 with t′ ≤ t, qkem ≥ d and qprf ≥ d, and

ε ≤ (d`)2

2λ
+ 3(d`)2 · (MAX(εKE, εKEM, εNIKE) + εSEXT + εPRF).

The proof of this theorem is presented in the Appendix A.

5 An Efficient One-round AKE Protocol under Standard Assumptions

In this section we present an eCK secure AKE protocol P1 in the standard model based on Bilinear Decisional
Diffie-Hellman assumption. The proposed protocol relies on bilinear pairings, target collision resistant hash
function family, and pseudo-random function family. This protocol can be implemented more efficiently
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involving secure device, that only one regular exponentiation is required on secure device and other expensive
operations can be done on host machine.

Design Principle. The construction of P1 can be seen as a concrete instantiation of GC-KKN scheme. We
first observe that it is possible to merge those computations in KE, KEM and NIKE schemes if they work
under the same algebraic groups. However the standard CKS-light secure NIKE scheme is rare so far. Our
AKE construction is based on the pairing-based NIKE scheme [16] with slight modifications rather than
the factoring-based NIKE scheme [16] because the latter requires an interactive key registration protocol
to ensure the consistency of public key. Unlike the pairing-based NIKE scheme [16], we retort to target
collision resistant hash function family instead of collision resistant chameleon hash function family to relax
the assumption. This is possible because we could alternatively bind the identities of session participants
with each session key using pseudo-random functions. In order to battle against CEK attacks, each party
(including the attacker) is required to construct some kind of ‘tag’ based on specific weak Programmable
Hash Function [19] to encode consistency information on its chosen (either long-term or ephemeral) public
keys. Those tags are particularly customized to be independent of any information about receivers, which
enable our protocol to be able to run in the post-specified peer setting. However we have to make use of the
pairing to provide a means of consistency checking that (both long-term and ephemeral) public keys coming
from the adversary are in some sense of well-formed. Fortunately, those expensive consistency checks can
be done on host machine.

5.1 Protocol Description

The proposed protocol takes as input the following building blocks which are initialized respectively in terms
of the security parameter κ:

• Symmetric bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and along with random values

(u1, u2, u3, u4)
$← G,

• a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF ×G→ Zp, where

hkTCRHF
$← TCRHF.KG(1κ), and

• a pseudo-random function family PRF(·, ·) : GT ×DPRF → KAKE.

The variable pms stores the public system parameters pms := (PG, {ui}1≤i≤4, hkTCRHF).

Long-term Key Generation and Registration: On input pms := (PG, {ui}2≤i≤4, hkTCRHF), a party

Â may run an efficient algorithm (skÂ, pkÂ, ∅)
$← KGen(pms, Â) to generate the long-term key pair as:

skÂ = a
$← Z∗p, pkÂ = (A, tA) where A = ga, tA := (u

h2A
4 uhA3 u2)a and hA = TCRHF(A). Please note that we

allow arbitrary key registration, i.e. the adversary is able to query RegisterCorrupt(Â, pkÂ, ∅) with pfÂ = ∅.

Protocol Execution : On input pms := (PG, {ui}1≤i≤4, hkTCRHF), the protocol between parties Â and B̂
proceeds as following which is also depicted in the Figure 2.

1. Upon activation a new session, the party Â performs the steps: (a) choose an ephemeral private

key x
$← Z∗p; (b) compute ephemeral public key X := gx; (c) compute hX := TCRHF(X), and

tX := (u
h2X
4 uhX3 u2)x; (d) send (Â, A, tA, X, tX) to B̂.

2. Upon activation a new session, the party B̂ performs the steps: (a) choose an ephemeral private

key y
$← Z∗p; (b) compute the ephemeral public key Y := gy; (c) compute hY := TCRHF(Y ), and

tY := (u
h2Y
4 uhY3 u2)y; (d) send (B̂, B, tB, Y, tY ) to Â.
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Â
(skÂ = a

$← Z∗p,
pkÂ = (A, tA) := (ga, (u

h2
A

4 uhA
3 u2)a))

B̂
(skB̂ = b

$← Z∗p,
pkB̂ = (B, tB) := (gb, (u

h2
B

4 uhB
3 u2)b))

x
$← Z∗p, X := gx y

$← Z∗p, Y := gy

hX := TCRHF(X)

tX := (u
h2
X

4 uhX
3 u2)x

hY := TCRHF(Y )

tY := (u
h2
Y

4 uhY
3 u2)y

−
Â, A, tAX, tX

−−−−−−−−−−−−−−−−→

←−
B̂, B, tB , Y, tY

−−−−−−−−−−−−−−−−
hY := TCRHF(Y )
hB := TCRHF(B)

hX := TCRHF(X)
hA := TCRHF(A)

reject if either

e(tY , g) 6= e(u
h2
Y

4 uhY
3 u2, Y ) or

reject if either

e(tX , g) 6= e(u
h2
X

4 uhX
3 u2, X) or

e(tB , g) 6= e(u
h2
B

4 uhB
3 u2, B) e(tA, g) 6= e(u

h2
A

4 uhA
3 u2, A)

sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY
reject if some values recorded in sid are

identical
reject if some values recorded in sid are

identical
βÂ := e(u1, BY ), k := βa+x

Â
βB̂ := e(u1, AX), k := βb+y

B̂

accept ke := PRF(k, sid) accept ke := PRF(k, sid)

Figure 2: Pairing-based AKE Protocol under Standard Assumptions

3. Upon receiving (B̂, B, tB, Y, tY ), the party Â does the following: (a) compute
hY := TCRHF(Y ) and hB := TCRHF(B), and reject if either

e(tY , g) 6= e(u
h2Y
4 uhY3 u2, Y ) or e(tB, g) 6= e(u

h2B
4 uhB3 u2, B); (b) set session identifier

sid := Â||A||tA||X||tX ||Y ||tY ||B̂||tB||B||Y ||tY , and reject the session if some values recorded in sid are
identical. (c) compute βÂ := e(u1, BY ); (d) compute k := βa+x

Â
and session key as ke := PRF(k, sid).

4. Upon receiving (Â, A, tA, X, tX), the party B̂ does the following: (a) compute
hX := TCRHF(X) and hA := TCRHF(A), and reject if either

e(tX , g) 6= e(u
h2X
4 uhX3 u2, X) or e(tA, g) 6= e(u

h2A
4 uhA3 u2, A); (b) set session identifier

sid := Â||A||tA||X||tX ||Y ||tY ||B̂||tB||B||Y ||tY , and reject the session if some values recorded in sid are

identical. (c) compute βB̂ := e(u1, AX); (d) compute k := βb+y
B̂

, session key as ke := PRF(k, sid).

Implementation and Session States: We assume that only the ephemeral private key x (resp.
y) would be stored in the state variable st, and these states are the maximum states which can be
compromised by adversary. This can be guaranteed by performing the computations of key material
k and session key ke (i.e. (steps 3.(d) and step 4.(d)) on secure device.

Remark 1. Please note that the computation cost at secure device of the above scheme is dominated by
only one exponentiation and one PRF. For instance, the implementer could only compute the key material
k := βa+x

Â
and finally session key on secure device, where βÂ := e(u1, BY ) is computed on host machine. We

stress that all other expensive operations (such as pairing) can be done on host machine which is normally
more powerful than secure device. Of course one could execute the whole protocol on secure device, but
then it will be much less efficient. Instead we only assume that the most necessary computations are done
on secure device without pairing operations. We treat those secure device as a black-box which might
take as input the ephemeral key and prepared key materials (e.g. the x and e(u1, BY )), and it outputs
the generated session key using key derivation function PRF. Moreover, each session participant say Â
might send its certificate certÂ instead of the tuple (Â, A, tA) in the message flow. Those parameters used
to compute those tags are particularly customized to be independent of any information about session
participants. This enables the protocol to be able to perfectly run in the post-specified peer setting.
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5.2 Efficiency Consideration

In this section, we consider the issue on improving the efficiency of proposed protocol P1. It is not hard to
see that the consistency checks on both long-term and ephemeral keys consume much computational cost
which requires four pairing operations. Thus how to reduce the cost on those consistency checks is our
major concern.

We first introduce an alternative consistency checking algorithm which is derived from the similar tech-
nique in [23] used to improve the efficiency of identity-based KEM scheme. The idea is to merge consistency
checks on incoming Diffie-Hellman keys. In the new consistency check algorithm, a party Â on receiving
(B̂, B, tB, Y, tY ) may perform the following steps:

1. Choose two random values θ1, θ2
$← Z∗p.

2. Reject the session if e(tθ1B t
θ2
Y , g) 6= e((u

h2B
4 uhB3 u2)θ1 , B)e((u

h2Y
4 uhY3 u2)θ2 , Y ).

We claim that the combined consistency check equation implies that all received tags are consistent. To

prove our argument we define functions ∆1(tY ) :=
e(u2u

hY
3 u

h2Y
4 ,Y )

e(tY ,g)
and ∆2(tB) :=

e(u2u
hB
3 u

h2B
4 ,B)

e(tB ,g)
. Obviously,

if tY , tB, tZ , tC are consistent we would have the fact ∆1(tY ) = ∆2(tB) = 1. Hence for random values

θ1, θ2
$← Z∗p, function ∆1(tY ))θ1(∆2(tB))θ2 evaluates to 1 if tY , tB are consistent and to a random group

value in GT otherwise. This alternative consistency check algorithm roughly substitutes one multiple-
exponentiation for one pairing operation. But the random values θ1 and θ2 would be included into the
returns of StateReveal query since the consistency check algorithm is executed on host machine.

In addition, please notice that a party Â has to check the consistency of long-term key in every sessions
that might be costly and unnecessary. An alternative solution could let the Certificate Authority to do the
consistency check on long-term public key during key registration protocol. In this way, it could reduce two
pairing operations during key exchange execution and also the number of public key. To register a public
key pkÂ = A, each party Â should at least prove the consistency of long-term public key via tag tA. Then

the long-term public key A is registered if e(tA, g) = e(A, u
h2A
4 uhA5 u2). This check would be done only once

at CA. In particular, the tag tA is required while querying the RegisterCorrupt(Â, pkÂ, pfÂ) in the security
game, i.e. pfÂ = tA.

5.3 Security Analysis

We show the security of proposed protocol in our strong security model.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-size λ ∈ N. Suppose that
the BDDH problem is (t, εBDDH)-hard in the symmetric bilinear groups PG, the TCRHF is (t, εTCRHF)-secure
target collision resistant hash function family, and the PRF is (qprf , t, εPRF)-secure pseudo-random function
family. Then the proposed protocol is (t′, ε)-session-key-secure in the sense of Definition 12 with t′ ≈ t and

qprf ≥ d and ε ≤ (d`)2

2λ
+ εTCRHF + 3(d`)2 · (εBDDH + εPRF).

The proof of this theorem is presented in the Appendix B.

6 Comparisons

We summarize the comparisons of some existing well-known eCK secure protocols without random oracles in
the Table 2 from the following perspectives: (i) the knowledge of peer’s public key (peer setting), which would
affect e.g. the round efficiency as aforementioned; (ii) the special design trick used to guarantee corresponding
security; (iii) the security assumptions; (iv) number of long-term (LL) and ephemeral (Eph) keys which may
affect the storage requirement, computation cost and communication cost; (v) overall computation cost of
considered protocol; (vi) the computation cost on secure device (SD) and (vii) the communication round
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between host machine and secure device (HS). In the table, ‘Exp’ denotes the exponentiation and ‘ME’
denotes multi-exponentiations, ‘Pair’ denotes pairing evaluation, ‘(T)CR’ denotes (target) collision-resistant
hash, ‘DDH’ denotes the decisional Diffie-Hellman assumption, ‘FAC’ denote factoring assumption, ‘EXT’
denotes the strong randomness extractor, and ‘TPRF’ denotes the twisted-PRF trick. Recall that P1 denote
the protocol in the Section 5.

Peer Design Security LL Eph Overall SD HS
setting trick assumptions (pk,sk) (pk,sk) cost cost round

Oka [34] post TPRF DDH, CR (2,4) (3,2) 3.Exp, 1.ME 2.Exp, 1.ME 2
πPRF 2.CR, 1.πPRF 1.πPRF, 4.PRF

4.PRF
MO [33] post - DDH, CR (4,5) (3,2) 3.Exp, 1.ME 1.ME, 1.πPRF 1

πPRF 2.CR, 1.πPRF
FSXY [17] pre TPRF DDH, FAC (3,1) (3,2) 6.Exp, 2.ME 3.Exp, 2.ME 2

EXT,TCR 2.TCR, 3.EXT 2.EXT, 4.PRF
PRF 5 PRF

GC-KKN § 4 pre - DDH,FAC (6,2) (3,2) 7.Exp, 2.ME 2.Exp, 1.ME 1
EXT,TCR 2.TCR, 3.PRF 2.EXT, 2.PRF

PRF
P1 § 5 post - BDDH,TCR (2,1) (2,1) 2.Exp, 4.ME 1.Exp, 1.PRF 1

PRF 4.Pair, 2.TCR
1.PRF

Table 2: Comparisons among one-round 2AKE protocols in the standard model.

We instantiated the FSXY protocol with the factoring-based KEM [20] (also suggested by the authors
of FSXY) and with the DDH-based ElGamal KEM. For comparison, we also initiate our GC-KKN for
instance with the same factoring-based KEM as FSXY, with the factoring-based NIKE scheme [16] and
with the traditional Diffie-Hellman key exchange (DHKE) [14] under DDH assumption. While considering
the instantiation of FSXY protocol in post-specified peer setting, the KEM [34] by Okamoto might be a
candidate but in which case the πPRF is required. Then the Okamoto protocol [34] can seen as an ‘optimized’
instantiation of FSXY scheme.

In addition we assume without loss of generality the FSXY, Okamoto [34] and MO [33] schemes are
realized with secure device to protect critical session states. For simplicity and security, we just assume the
twisted-PRF trick used by both Okamoto and FSXY schemes is implemented on secure device to avoid any
leakage on its output. Similarly all computations related to twisted-PRF trick are assumed to be executed on
secure device too, such as the whole IND-CCA secure KEM (both encapsulation/decapsulation algorithms)
used by FSXY. Otherwise the FSXY protocol is not secure in the eCK model.

We further remark that both FXSY and Okamoto protocols need at least two rounds to exchange infor-
mation between host machine and secure device. In the first round the host machine may send randomness
to the secure device and get back the ephemeral key (or ciphertext of KEM.EnCap algorithm); and in the
second round, the host machine may send intermediate values to secure device and obtain the final session
key from secure device. Therefore, our GC-KKN scheme is more HS-round efficient than those schemes,
since only one such round is required. Although optimized P1 requires four pairing operations, it enjoys the
most succinct structure and the most efficient algorithm on secure device.

7 Conclusions

We showed a generic construction GC-KKN for eCK-secure one-round two party AKE protocols in the
standard model without NAXOS trick, which can be instantiated with passively secure KE scheme, IND-
CCA secure KEM schemes and CKS-light secure NIKE schemes. In contrast to previous works in the
standard model, the major merit of GC-KKN is its outstanding efficiency on implementing with secure
device. In other word, only a small part of algorithms of GC-KKN need to be run on secure device to
achieve state leakage resistant. We also gave a concrete protocol P1 based on the construction idea of
GC-KKN. Similarly P1 is motivated to further improve the efficiency on secure device wherein only one
regular exponential operation is required. The P1 was proved eCK secure in the standard model under only
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standard assumptions including BDDH assumption and secure target collision resistant hash function family
and pseudo-random function family. To our best of knowledge, P1 is the first such protocol without NAXOS
trick that can run under post-specified peer setting without knowing any information of communication peer
at session activation.
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A Proof of Theorem 1

It is straightforward to verify that two accepted oracles (of considered protocol) having matching sessions
would generate the same session key. In the sequel, we wish to show that the adversary is unable to
distinguish random value from the session key of any fresh oracle. Without loss of generality, we consider
that the adversary chooses the test oracle πs

∗

Â
executed between owner Â with its indented partner B̂.

Next we introduce the notations which might be used in the proof. General speaking, we use the
superscript ‘*’ to highlight corresponding values processed in test oracle πs

∗

Â
. Let party D̂ denote the

indented communication partner of oracle πt
B̂

where D̂ could be any parties but B̂, and let corresponding

ciphertext received by oracle πt
B̂

be CD̂.
If the adversary breaks the indistinguishability security property of proposed protocol, then at least one

of the following fresh related cases (related to StateReveal and Corrupt queries) must occur in terms of the
Definition 11:
Event 1 : There is a oracle πt

∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching sessions, and we have the

following ‘freshness’ related disjoint cases:

• Case 1 (C1): The adversary did not issue Corrupt(Â) and Corrupt(B̂).

• Case 2 (C2): The adversary did not issue StateReveal(πs
∗

Â
) and StateReveal(πt

∗

B̂
).

• Case 3 (C3): The adversary did not issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

• Case 4 (C4): The adversary did not issue Corrupt(Â) and StateReveal(πt
∗

B̂
).

Event 2 : There is no oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have matching sessions, and we have the

following disjoint cases:

• Case 5 (C5): The adversary did not issue Corrupt(Â) and Corrupt(B̂).

• Case 6 (C6): The adversary did not issue StateReveal(πs
∗

Â
) and Corrupt(B̂).

In order to complete the proof of Theorem 1, we must provide the security proofs for above six cases.
We first show three propositions to facilitate our proof. Note that the proof of these two propositions can
be found in [33].

Proposition 1. If adversary A breaks the session key security of the proposed protocol in case C4, then
there exists adversary A′ who can launch a successful attack in case C3.

Proposition 2. If adversary A breaks the session key security of the proposed protocol in case C1 (C3),
then there exists adversary A′ who can launch a successful attack in the case C5 (C6).

Therefore, we prove the advantage of the adversary is negligible under the proof simulation for cases C2
and C5 and C6. The proof proceeds in a sequence of games, following [37, 4]. The first game is the real
security experiment, as assumed that there exists an adversary A that breaks the session key security of the
proposed protocol. We then describe several intermediate games that step-wisely modify the original game.
Finally we prove that (under the stated security assumptions), no adversary can break the security of the
protocol.

Let Sδ be the event that the adversary wins the security experiment under the Game δ and freshness
cases in the set {C2, C5, C6}. Let ADVδ := Pr[Sδ] − 1/2 denote the advantage of A in Game δ. Consider
the following sequence of games.
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Game 0. This is the original eCK game with adversary A under freshness cases C2, C5 and C6. Thus we
have that

Pr[S0] = 1/2 + ε = 1/2 + ADV0.

Game 1. In this game, the challenger proceeds exactly like previous game, except that we add a abortion
rule. The challenger raises event aborttrans and aborts, if during the simulation either the ephemeral key
epksi (outputted by KE.EKGen) or Csi (generated by KEM) replied by an oracle πsi but it has been sample by
another oracle πwu or sent by adversary before. Since there are d` such values would be sampled randomly by

KEM or KE. Due to theirs security, the event aborttrans occurs with probability Pr[aborttrans] ≤ (d`)2

2λ
where

λ is a large integer as assumed before. We therefore have that

ADV0 ≤ ADV1 +
(d`)2

2λ
.

Note that the transcript of protocol messages shared by two oracles having matching sessions is unique in
this game, so that the adversary can’t replay any ciphertext or ephemeral key to result in two fresh oracles
generating the same session key but without matching sessions.

Game 2. This game proceeds as previous game, but C aborts if one of the following guesses fails: (i) the
freshness case occurred to test oracle in the set {C2, C5, C6}, (ii) the test oracle πs

∗

Â
, and (iii) its partner

oracle πt
∗

B̂
in case C2 or the intended communication party B̂ in cases C5 and C6. Since there are 3 fresh

related cases, ` parties at all and at most d oracles for each party, then the probability that all guesses of C
are correct is at least 1/3(d`)2. Thus we have that

ADV1 ≤ 3(d`)2 · ADV2.

In the following, we always assume that the challenger guesses correctly.

Game 3. This game is proceeded as previous game, but the challenger C does the following modifications:

1. In the case C2, replace the key eK∗
Â

of test oracle πs
∗

Â
and its partner oracle πt

∗

B̂
with random value

ẽK∗
Â

.

2. In the case C5, replace the NIKE key ShKÂ,B̂ with random value ˜ShKÂ,B̂ for all oracles having

session participants Â and B̂. So that ˜ShKÂ,B̂ is used in place of either NIKE.ShareKey(Â, B̂) or

NIKE.ShareKey(B̂, Â).

3. In the case C6, replace the KEM key K∗
Â

encapsulated in the ciphertext C∗
Â

generated by test oracle

with random value K̃∗
Â

. Whenever C∗
Â

is received by an oracle πt
B̂

, the key K̃∗
Â

is used instead of

KEM.DeCap(skB̂, C
∗
Â

).

If there exists an adversary A can distinguish the Game 3 from Game 2 then we can use it to construct an
adversary D to break security of KE in the case C2 or NIKE in the case C5 or KEM in the case C6 respectively.
Specifically, D simulates the challenger for A as previous game but with the following modifications based
on its correct guesses (otherwise it aborts).

1. Case C2. Given a challenge instance (epk∗1, epk
∗
2,K

∗
c ) from KE security experiment (where K∗c is

either a random value or the truth KE key in terms of challenge public keys epk∗1 and epk∗2), D does
the following modifications:

(a) Set epk∗
Â

:= epk∗1 and epk∗
B̂

:= epk∗2.
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(b) Compute the key material for test oracle and its partner oracle as eK∗ := K∗c .

2. Case C5. D selects (Â, B̂) as identities of NIKE-tested parties which have long-term public keys
pk∗1 and pk∗2 (obtained via RegisterHonest query) and gets K∗c from Testnike(Â, B̂) query in the NIKE
security experiment, and it simulate the game for A with the following modifications:

(a) Set pkÂ = pk∗1 and pkB̂ = pk∗2.

(b) Replace the shared key ShKÂ,B̂ with K∗c for oracles having both session participants Â and B̂.

(c) Generate the share key ShKĈ,D̂ using RevealKeynike(Ĉ, D̂) from NIKE security experiment, when

there is one and at most one party such that Ĉ ∈ {Â, B̂} or D̂ ∈ {Â, B̂}.

3. Case C6. Given a challenge instance (C∗, pk∗,K∗c ) from KEM security experiment, D does the fol-
lowing modifications:

(a) Set pkB̂ = pk∗ and the outgoing ciphertext of test oracle as C∗
Â

:= C∗.

(b) Replace the KEM key K∗
Â

with K∗c for test oracle and the oracles of B̂ receiving the ciphertext
C∗
Â

.

(c) Generate the key KD̂ of other oracles πt
B̂

of party B̂ using the decryption oracle DEC(skkem
B̂

, ·),
where D̂ could be any parties ( but B̂ ). Specifically, while receiving a ciphertext CD̂, oracle πt

B̂

computes the KD̂ := DEC(skkem
B̂

, CD̂).

As for the rest of the computations are done as the same as previous game.

To answer the RevealKey query and Test query for those modified oracles, D will use the changed key
material to compute the final session key. With respect to the other queries, D simulates them honestly as
the challenger in previous game using corresponding values chosen by herself. Without flipping the bit b,
the Test-query is replied with the session key which is computed using modified key material. If K∗c is true
key, then the simulation is equivalent to Game 2; otherwise the simulation is equivalent to Game 3. Finally,
D returns what A returns to KEM or KE or NIKE challenger in corresponding security experiment. If A can
distinguish the real key from the random value, that implies D either break the KEM or KE or NIKE scheme
under corresponding freshness case. Select the maximum advantage of adversary in each case, we therefore
obtain that

ADV2 ≤ ADV3 + MAX(εKE, εKEM, εNIKE).

Game 4. We change this game from previous one by modifying the generation of output of SEXT in terms
of freshness cases. Specifically, (i) in case C2 the value eK∗′ of test oracle and its partner oracle(if it exists)

is replaced with a uniform random value instead of the use of SEXT(ẽK∗), (ii) in the case C5 the ShKÂ,B̂
′ is

replaced with a uniform random value instead of the use of SEXT( ˜ShKÂ,B̂) for oracles having both session

participants Â and B̂, (iii) and in the case C6, we replace K∗
Â
′ of test oracle with a random value and we

do the same replacement for the oracles of B̂ receiving the ciphertext C∗
Â

generated by test oracle. Those

changes are possible since we have the fact either key ẽK∗ or key ShKÂ,B̂ or key K∗
Â

has been modified to
be random value in previous game. By the security of the strong randomness extraction function, we have
that

ADV3 ≤ ADV4 + εSEXT.
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Game 5. In this game, we change function PRF(ShKÂ,B̂
′, ·) in the case C5 or the function PRF(K∗

Â
′, ·) in

the case C6 or function PRF(eK∗′, ·) in the case C2 to a truly random function for test oracle and its partner
oracle (if it exists). We make use of the fact, that the at least one of those three secret seeds of the PRFs of
test oracle is a truly random value due to the modification in previous game. If there exists a polynomial
time adversary A can distinguish the Game 5 from Game 4. Then we can construct an algorithm B using
A to break the security of PRF. Exploiting the security of PRF, we have that

ADV4 ≤ ADV5 + εPRF.

Note that in this game the session key returned by Test-query is totally a truly random value which is
independent to the bit b and any messages. Thus the advantage that the adversary wins this game is
ADV5 = 0.

Put together all probabilities from Game 0 to Game 5, we proved this theorem.

B Proof of Theorem 2

First of all, it is straightforward to verify that two accepted oracles of considered protocol with matching
sessions would generate the same session key. In the sequel, we wish to show that the adversary is unable
to distinguish random value from the session key of any fresh oracle. Without loss of generality, we consider
that the adversary chooses the test oracle πs

∗

Â
executed between owner Â with its indented partner B̂.

Next we introduce the notations which might be used in the proof. Let party Ĉ denote the indented
partner of oracle πs

Â
where Ĉ could be any parties but Â in the security game and has long-term public key

C = gc, and let W = gw denote the ephemeral public key received by oracle πs
Â

. In a similar way, oracle

πt
B̂

has indented party denoted by D̂ with long-term public key D = gd, and the received ephemeral key

by πt
B̂

is N = gn. Meantime the ephemeral keys generated by oracles πs
Â

and πt
B̂

are X = gx and Y = gy

respectively. we use the superscript ‘*’ to highlight corresponding values processed in the test oracle and its
partner oracle (if it exists), say the ephemeral key X∗ generated by oracle πs

∗

Â
.

Applying the propositions 1 and 2 from [33], the security proof can be given only under freshness cases
C2, C5 and C6. The proof proceeds in a sequence of games, following [37, 4]. The first game is the real
security experiment, as assumed that there exists an adversary A that breaks the session key security of
the proposed protocol. We then describe several intermediate games that step-wisely modify the original
game. Finally we prove that (under the stated security assumptions), no adversary can break the security
of the protocol. Let Sδ be the event that the adversary wins the security experiment under the Game δ and
freshness cases in the set {C2, C5, C6}. Let ADVδ := Pr[Sδ]− 1/2 denote the advantage of A in Game δ.

Game 0. This is the original eCK game with adversary A under freshness cases C2, C5 and C6. The
system parameters are chosen honestly by challenger as protocol specification. Meanwhile, the challenger
chooses six uniform random values (r1, r2, r3, r4)
$← Z∗p, and sets u1 := gr1 , u2 := gr2 , u3 := gr3 and u4 := gr4 as public parameters. All queries are simulated

honestly in terms of protocol specification. Thus we have that

Pr[S0] = 1/2 + ε.

Game 1. In this game, the challenger proceeds exactly like previous game, except that we add an abort
rule. The challenger raises event aborteph and aborts, if during the simulation an ephemeral key replied by
an oracle πsi but it has been sampled by another oracle or sent by adversary before. Since there are d` such
ephemeral keys would be sampled uniform randomly from {0, 1}λ. Thus, the event aborteph occurs with
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probability at least Pr[aborteph] ≤ d2`2

2λ
. We have that

ADV0 ≤ ADV1 +
d2`2

2λ
.

Note that the ephemeral key chosen by each oracle is unique in this game, so that the adversary can’t replay
any ephemeral key to result in two oracles generating the same session key but without matching sessions.

Game 2. In this game we want to make sure that the received ephemeral keys are correctly formed.
Technically, we add an abort condition, namely the challenger proceeds exactly as before, but raises event
aborthash and aborts if there exist two distinct (either ephemeral or long-term) public keys W and N such
that TCRHF(W ) = TCRHF(N). Obviously the Pr[aborthash] ≤ εTCRHF, according to the security property of
underlying hash function. Thus we have

Pr[S1] ≤ Pr[S2] + εTCRHF.

Game 3. This game proceeds as previous game, but C aborts if one of the following guesses fails: (i) the
freshness case occurred to test oracle in the set {C2, C5, C6}, (ii) the test oracle πs

∗

Â
, and (iii) its partner

oracle πt
∗

B̂
in case C2 or the intended communication partner B̂ in cases C5 and C6. Since there are 3 fresh

related cases, ` parties at all and at most d oracles for each party, then the probability that all guesses of C
are correct is at least 1/3(d`)2. Thus we have that

ADV2 ≤ 3(d`)2 · ADV3.

Game 4. In this game, we want to reduce the security of proposed protocol to the hardness of BDDH
problem. Please first note that there are at least two uncompromised (either long-term and ephemeral)
Diffie-Hellman (DH) keys which are used by test oracle to generate its key material k∗, in terms of certain
freshness case. As otherwise the test oracle is no longer eCK-fresh. We call such guessed two uncompromised
DH keys as target DH keys.

This game is proceeded as previous game, but the challenger C replaces the key material ksi with random

value k̃si for oracles {πsi : i ∈ [`], s ∈ [d]} which satisfy the following conditions:

• The ksi is computed involving the two target DH keys which are guessed by C for test oracle, and

• These two target DH keys used by πsi are from two distinct parties.

The second condition is necessary, because the adversary can easily result in one oracle receiving DH keys
from certain party which are all uncompromised DH keys via e.g. Send query RegisterCorrupt queries. On
the other side, the first condition cannot exclude the event that the DH keys from certain party are all
chosen (or revealed) by adversary. In this case, the adversary can compute the session key of such oracle
and we cannot change the key material of that oracle any more. The above two conditions ensure that the
changed key materials of oracles can not be trivially generated by adversary.

If there exists an adversary A can distinguish between Game 4 and Game 3 then we can use it to
construct a distinguisher D to solve the BDDH problem as follows. Given a BDDH challenge instance
(g, gν , gω, gξ,Γ) ∈ G3 × GT , D’s goal is to determine whether Γ equals to e(g, g)νωξ or a random element,
where g is a group generator of G. More specifically, D simulates the challenger for A as previous game
but with the following modifications based on its correct guesses (otherwise it aborts). Meanwhile, let
p(h) = p0 + p1h + p2h

2 be a polynomial of degree 2 over Z∗p. The detail form of this polynomial will
be discussed in the simulation based on specific freshness case. Let q(h) = q0 + q1h + q2h

2 be a random
polynomial of degree 2 over Z∗p.
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1. Case C2. In this case D does the following modifications:

(a) Set X∗ := gν , Y ∗ := gω and u1 := gξ.

(b) Compute the key material of test oracle and its partner oracle as:

• k∗
Â

= k∗
B̂

:= Γ·e(u1, BY
∗)a · e(u1, X

∗)b.

(c) Compute those tags of test oracle and its partner oracle as:

• t∗X := (X∗)r2(h∗X)2+r3h∗X+r4 , where h∗X = TCRHF(X∗).

• t∗Y := (Y ∗)r2(h∗Y )2+r3h∗Y +r4 , where h∗Y = TCRHF(Y ∗).

2. Case C5. In this case, D does the following modifications:

(a) Set u1 := gν , A := gω, and B := gξ.

(b) Set polynomial p(h) to satisfy that p(h) = (h − hA)(h − hB), where hA = TCRHF(A), hB =
TCRHF(B).

(c) Set ui+2 = u1
pigqi for 0 ≤ i ≤ 2.

(d) Compute tA := Aq(hA) and tB = Bq(hB).

(e) Replace the value e(u1, A)b with Γ when computing the key material k of oracles πs
Â

and πt
B̂

which

involve both long-term public keys A and B (including the test oracle πs
∗

Â
), more specifically:

• ks
Â

:= Γ · e(u1, BW )x · e(( tW
W q(hW ) )1/p(hW ), A), where hW = TCRHF(W ).

• kt
B̂

:= Γ · e(u1, AN)y · e(( tN
Nq(hN ) )1/p(hN ), B), where hN = TCRHF(N).

(f) Compute the secret key material for other oracles πs
Â

and πt
B̂

of party Â and B̂:

• ks
Â

:= e(u1, CW )x ·e(( tW
W q(hW ) )1/p(hW ), A) ·e(( tC

Cq(hC ) )1/p(hC), A), where hW = TCRHF(W ) and
hC = TCRHF(C).

• kt
B̂

:= e(u1, ND)y · e(( tN
Nq(hN ) )1/p(hN ), B) · e(( tD

Dq(hD) )1/p(hD), B), where hW = TCRHF(N) and
hD = TCRHF(D).

3. Case C6. In this case, D does the following modifications:

(a) Set X∗ := gν , B := gω and u1 := gξ.

(b) Set polynomial p(h) to satisfy that p(h) = (h − h∗X)(h − hB), where h∗X = TCRHF(X∗), hB =
TCRHF(B).

(c) Set ui+2 = u1
pigqi for 0 ≤ i ≤ 2.

(d) Compute the tB := Bq(hB) and t∗X := Bq(h∗X).

(e) Compute the key material k∗
Â

of test oracle πs
∗

Â
and kt

B̂
of oracles πt

B̂
having session states t∗X

and X∗, and corresponding tag t∗X as:

• k∗
Â

:= Γ·e(( t∗W
W ∗q(h

∗
W

) )1/p(h∗W ), X∗) · e(u1, BW
∗)a, where

h∗W = TCRHF(W ∗).

• kt
B̂

:= Γ·e(u1, DX
∗)y · e(( tD

Dq(hD) )1/p(hD), B), where hD = TCRHF(D).

(f) Change the computation of secret key material kt
B̂

of other oracles of B̂ as

• kt
B̂

:= e(u1, DN)y · e(( tD
Dq(hD) )1/p(hD)( tN

Nq(hN ) )1/p(hN ), B).

Those modified tags are consistent with the original form. we make use of the fact there is no collision
on those hash values due to the result of previous game. To answer the RevealKey query for those modified
oracles, the D will use the changed key material (e.g. kt

B̂
) to compute the final session key as protocol

specification. With respect to the other queries, the D simulates them honestly as the challenger using
corresponding values chosen by herself. Without flipping the bit b, the Test-query is replied with the session
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key which is computed using modified key material. Based on the condition that all guesses by D are
correct, if Γ = e(g, g)νωξ, then the simulation is equivalent to Game 3; otherwise the simulation is equivalent
to Game 4. At the end of the simulation, D returns what A returns to BDDH challenger. If A can distinguish
the real key from the random value, that implies D solves the BDDH problem. We therefore obtain that

ADV3 ≤ ADV4 + εBDDH.

Game 5. In this game, we change function PRF(k̃∗
Â
, ·) to a truly random function for test oracle and its

partner oracle (if it exists). We make use of the fact, that the secret seed k̃∗
Â

of test oracle is a truly random
value. If there exists a polynomial time adversary A can distinguish the Game 5 from Game 4. Then we
can construct an algorithm B using A to break the security of PRF. Exploiting the security of PRF, we have
that

ADV4 ≤ ADV5 + εPRF.

Note that in this game the session key returned by Test-query is totally a truly random value which is
independent to the bit b and any messages. Thus the advantage that A wins this game is ADV5 = 0.

Sum up the probabilities from Game 0 to Game 5, we proved this theorem.
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