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Abstract

TLS is the most important cryptographic protocol in the Internet. At CRYPTO 2012, Jager et al. pre-
sented the first proof of the unmodified TLS with ephemeral Diffie-Hellman key exchange (TLS-DHE)
for mutual authentication. Since TLS cannot be proven secure under the classical definition of authen-
ticated key exchange (AKE), they introduce a new security model called authenticated and confidential
channel establishment (ACCE) that captures the security properties expected from TLS in practice. We
extend this result in two ways. First we show that the cryptographic cores of the remaining ciphersuites,
RSA encrypted key transport (TLS-RSA) and static Diffie-Hellman (TLS-DH), can be proven secure
for mutual authentication in an extended ACCE model that also allows the adversary to register new
public keys. In our security analysis we show that if TLS-RSA is instantiated with a CCA secure public
key cryptosystem and TLS-DH is used in scenarios where a) the knowledge of secret key assumption
holds or b) the adversary may not register new public keys at all, both ciphersuites can be proven secure
in the standard model under standard security assumptions. Next, we present new and strong defini-
tions of ACCE (and AKE) for server-only authentication which fit well into the general framework of
Bellare-Rogaway-style models. We show that all three ciphersuites families do remain secure in this
server-only setting. Our work identifies which primitives need to be exchanged in the TLS handshake to
obtain strong security results under standard security assumptions (in the standard model) and may so
help to guide future revisions of the TLS standard and make improvements to TLS’s extensibility pay off.

Keywords: authenticated key exchange, SSL, TLS, provable security, static Diffie-Hellman, RSA, en-
crypted key transport

1The following paper is a full version. An extended abstract of this paper has been rejected at CRYPTO’13.
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1 Introduction

TRANSPORT LAYER SECURITY (TLS) is the most important security protocol in the Internet. Despite
several efforts, none of the existing security analyses of TLS is truly satisfactory. They have either only
examined modified variants of TLS, given proofs in weak security models, or established security results
under very strong security assumptions. Only recently Jager, Kohlar, Schäge, and Schwenk (JKSS) proposed
the first analysis of the unmodified core of TLS with ephemeral Diffie-Hellman key exchange (TLS-DHE) in
a strong security model that also covers replay and re-ordering attacks [30]. To gain provable security results
for the unmodified TLS handshake, they did not view TLS as an authenticated key exchange (AKE) protocol,
a security notion which TLS provably fails to meet, but as a so-called authenticated and confidential channel
establishment (ACCE) protocol. This reflects the application of TLS well, as TLS is not used to provide
keys for arbitrary applications (unlike what is expected from traditional key exchange protocols) but only
for a dedicated encryption system that encrypts all data exchanged between client and server, starting with
the Finished messages of the TLS handshake. Somewhat surprisingly, the JKSS security proof does not
necessarily rely on random oracles: if the basic primitives of TLS are substituted by schemes that are secure
in the standard model, the entire security proof does not require random oracles. However, due to the design
of TLS-DHE, the proof seemingly cannot be based on the standard DDH assumption. This is why Jager et al.
introduce a new complexity assumption, the PRF-ODH (PRF Oracle Diffie-Hellman) assumption (which is
a variant of the Oracle Diffie-Hellman assumption proposed in [1]), that they need to rely on in the security
proof. The JKSS proof is for mutual authentication (only) which assumes that all clients also have (and use)
certificates when communicating with servers.

To us, the JKSS approach of considering the unmodified handshake in a model without idealized setup
assumptions (i.e. random oracles) seems to be the most realistic and meaningful for the analysis of (practical
implementations of) TLS. However, the JKSS result leaves open several important questions. Probably the
most important is, which security guarantees are provided by TLS-RSA with server-only authentication, the
most popular ciphersuite in the Internet.

Contribution. In this work we extend the JKSS result in two directions. First, we analyze the remaining
ciphersuite families that are based on either RSA key transport (TLS-RSA) or static Diffie-Hellman (TLS-
DH). We use a slightly enhanced (and more realistic) security model in which each oracle is not given all
public keys of the other parties at setup, but where public keys are obtained from the certificates that are
exchanged in the TLS protocol run. At the same time we give the adversary extended attack capabilities
by allowing him to adaptively request certificates on arbitrary public keys when providing a corresponding
proof of knowledge of the secret key. Second, we introduce security notions of AKE and ACCE for server-
only authentication and show that all TLS handshake families provide ACCE security in this setting. Our
results cover the practically most important ciphersuites of TLS, TLS RSA * with server-only authentica-
tion, including the only mandatory ciphersuite in TLS 1.2, TLS RSA WITH AES 128 CBC SHA.

Limitations. Our results do have some important limitations which we want to point out here. First, for
TLS-RSA we need to require that the underlying public key encryption system is CCA secure. This stands in
line with previous works like [26, 14]. However the TLS-RSA ciphersuites all rely on RSA-PKCS#1 v1.5
which is not CCA secure [13]. Strictly speaking our result does thus not apply to the current state of TLS-
RSA. However, we believe that our results are still meaningful and useful for the understanding of TLS and
the future development of the TLS standard. They show that changing the encryption system to a provably
secure one pays off in the sense that it allows to obtain a strong security result for the entire TLS protocol.
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We stress that although standardized in PKCS#1 v2.1, TLS does not allow to use RSA-OAEP [8] (which
in turn is CCA secure under the RSA assumption in the random oracle model only [25, 34] - in the standard
model it is only known to be CPA secure under the Φ-Hiding assumption [33] and the assumption that the
employed hash functions are t-wise independent) because of ‘maximal compatibility with earlier versions
of TLS’ [22]. We therefore do not follow [26] and rather assume a generic CCA secure encryption scheme.
In our security model, it seems necessary that the encryption scheme is CCA secure and thus probabilistic
since we need to simulate the correct behaviour of the server that may have to decrypt ciphertexts generated
by the adversary. This stands in contrast to the results of Morrissey, Smart, and Warinschi (MSW) [40] who
can rely on a much weaker notion of security of the encryption system, OW-CPA security, that for example
is fulfilled by (deterministic) text-book RSA. To us, their result seems to be closely tied to the choice of their
security model and to the fact that they rely on random oracles in the security proof in a crucial way. By
this we mean that their proof would have to rely on random oracles even if all primitives used were secure
in the standard model. (In this context we note that the informal argumentation of MSW for the necessity
of the random oracle model in their TLS-RSA security proof – that a security proof in the standard model
would imply a CCA secure encryption scheme under the RSA assumption, what was believed to be a hard,
long-standing open problem at the time of publication of [40] – has been invalidated recently by Hofheinz
and Kiltz which presented a CCA secure encryption scheme that is secure under the factoring assumption
which is weaker than the RSA assumption [28].)

In contrast, our results show that if we replace the encryption system and the signature scheme with
primitives provably secure in the standard model1, we can obtain provably secure results for TLS that avoid
random oracles at all. This again can guide future revisions of the TLS standards and distinguishes our result
not only from [41] but also from the recent analysis of Brzuska et al. [14]: both works use the random oracle
to efficiently turn computational security guarantees into decisional ones as sketched below. By modeling
the key derivation functions of TLS as random oracles in the security proof, Brzuska et al. can easily avoid
the simulation problems which made JKSS introduce the non-standard PRF-ODH assumption and which –
without neither the PRF-ODH assumption nor random oracles – seem to be hard to solve.

It is obvious that, for compatibility reasons, the primitives in TLS should not be simply exchanged with
new ones. In general, we support a careful transition to a more modular structure of TLS in line with one
of the most important goals of the TLS protocol given in the specification of TLS 1.2 [22] – extensibility.
The standard is specifically explicit with respect to the support of new public key encryption mechanisms.
‘Extensibility: TLS seeks to provide a framework into which new public key and bulk encryption methods
can be incorporated as necessary’. We emphasize that in the past there have already been modifications of
TLS that tend into this direction. For example, while the PRF used in TLS 1.1 is fixed for all ciphersuites,
TLS 1.2 allows to use ‘cipher-suite-specified PRFs’. Similarly, we might regard the introduction of elliptic
curve cryptography (ECC) into the SSL/TLS protocol stack as a positive example of an extension of the
TLS standard [11]: more and more servers support and use the efficient ECC-based ciphersuites as default,
the most prominent example probably being Google that switched to ECDHE in 2011, to support and push
the use of TLS handshakes with forward secrecy [2]. To us, our results not only propose (and analyse) an
alternative instantiation of TLS with different primitives. They rather help to lead the process of selecting
new, adequate building blocks into a wortwhile direction (towards provable security in the standard model
under standard assumptions).

Strategy: From AKE to ACCE. Strategically, our results follow the same outline as JKSS. We (implic-
itly) first show that the truncated handshake variants of the considered ciphersuite is (server-only) AKE

1Natural candidates secure under the RSA assumption are [28] for public-key encryption and [29] for signature generation.
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secure. In the next step this result is used to show ACCE security of the full TLS handshake. Let us briefly
recall the difference between the AKE and ACCE definitions. In the AKE definition the adversary is given
a challenge key and the adversary has to decide whether it is a random key or the real key established in the
protocol execution. This where the proof of the full TLS protocol breaks down: in the full protocol there
always exist some check values, encryptions of known plaintext bytes that the adversary can try to decrypt
using its challenge key, which can give the adversary information on whether the key is random or not. In
the ACCE model however, these problems do not occur since no challenge key is ever given to the adversary.
Instead the key is directly used to key a (stateful) symmetric encryption system. Now the adversary wins the
security game if it can distinguish between encryptions of two distinct messages or produce new ciphertexts
without using the encryption oracle. We stress that the authentication requirements of the AKE and ACCE
definitions are equivalent in both the mutual authentication and the server-only authentication setting.

Comparison to the Proof of TLS-DHE. On a technical level there are some crucial differences in the
proofs of TLS-RSA and TLS-DH as compared to TLS-DHE. In particular, we cannot rely on the security of
a signature scheme to protect the random nonces exchanged in the first protocol phase from adversarial mod-
ifications (see Section 3 for a full description of the protocol). Instead, we have to exploit that the Finished
messages, which are generated by a pseudo-random function, are computed over all messages exchanged
between client and server. Second, in TLS-DHE we can embed the DDH (PRF-ODH) challenge in the
Diffie-Hellman shares that are generated freshly each session. In contrast, in TLS-DH the challenge has to
be embedded in the long-term key(s) of a party. As a consequence we have to rely on a slightly strengthened
PRF-ODH assumption in the security proof of TLS-DH (with server-only authentication) , where a) the
number of oracle queries granted to the adversary is only polynomially bounded instead of being constant
to 1 and b) the set of input values that can be sent to the PRF-ODH oracle is less restricted. Similarly, in
TLS-RSA the challenge of the public key encryption system (PKE) is embedded in the long-term key of
the server. Third, we cannot have perfect forward secrecy as in TLS-RSA and TLS-DH the corruption of
the long-term key of a server would enable the adversary to decrypt all previous communications with that
server. In TLS-DH with mutual authentication (but not in TLS-RSA) this problem also occurs when only
client certificates are corrupted. To us this seems to be a serious drawback of the non-DHE ciphersuites.

Security Proofs under Standard Assumptions. Some of our results are surprisingly positive. Similar to
the JKSS result, the proof of TLS-DH (with server-only authentication) relies on the (slightly strengthened)
PRF-ODH assumption. However, for mutual authentication we can get a proof under the standard DDH
(Decisional Diffie-Hellman) assumption in scenarios where the knowledge of secret key assumption (KOSK)
holds (which basically means that the adversary always hands over the corresponding secret key when
querying a certificate on a public key) or where the adversary cannot register new public keys at all. In
practice one could realize the KOSK assumption by forcing the CA to require extractable zero-knowledge
proofs of knowledge of the secret key before certifying public keys, for example by using GOS proofs2 [27]
or alternatively [23] in the random oracle model3. Anyway, such techniques are not standardized and much
more expensive than the current techniques defined in PKCS#10 [42] and RFC 4210/11 [3, 47]. Also,
implementing the KOSK in practice does seem to require considerable modifications of current browsers [6].
Applications where the adversary cannot register public keys (which are more realistic in practice) include
closed systems where the CA only certifies keys that have been generated in a controlled and trustworthy
environment, for example when triggering a key generation algorithm on a smart card that is later given to

2A similar approach has been proposed in [38].
3Applying NIZKs would additionally require a CRS to be available to all parties.
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users of the system (as in Pay TV), or in systems with a fixed user base. Note that in TLS-DHE the security
proof is essentially independent of the registration process of long-term keys and consequently these issues
do not need to explicitly be taken care of in the original security model of JKSS. 4

A second positive result of our analyses is that the security proof for TLS-RSA does not require to rely
on new, non-standard complexity assumptions (unlike the Diffie-Hellman based ciphersuites that rely on
the non-standard PRF-ODH assumption). So, when using a CCA secure encryption system and assuming
that the underlying signature scheme is existentially unforgeable under adaptive chosen message attacks, the
cryptographic core of TLS-RSA is provably ACCE secure.

Server-Only Authentication. Our formalization of server-only authentication fits well into the original
Bellare-Rogaway framework of security models [7] and its variants. In particular, we stick to the theoreti-
cally simple and clean concept of matching conversations to define authentication between communication
partners without requiring the existence of session IDs prior to the protocol execution. We provide a com-
paratively strong definition of server-only authentication. It guarantees that – despite the absence of an
authentication mechanism for the client – the client only accepts if none of the exchanged messages includ-
ing those sent from the client to the server has been modified, meaning that client and server have matching
conversations in the traditional sense. In particular, we do not confine ourselves with protocols where the
client is only guaranteed that the messages sent from the server to the client have not been modified in transit.
For clarity, let us point out the difference when analysing protocols with server-only authentication as com-
pared to protocols with mutual authentication more explicitly as both define authentication using matching
conversations. In the latter (one can technically exploit that) not only the server but also the client can use an
authentication mechanism that is keyed with a long-term key. This is not possible when proving server-only
authentication. It is, for example easy to see that a protocol where client and server additionally sign each
of their messages before sending them provides mutual authentication: any attacker that makes client or
server accept without a matching conversation can be used to break the security of the signature scheme.
However, the same protocol does in general not meet our strong notion of server-only authentication when
the client looses its authentication mechanism: an adversary may simply alter one of the messages sent
from the client to the server. Since theses messages are not checked for authenticity the sender or receiver
might accept without having a matching conversation while there is no way to reduce such an attacker to any
underlying security assumption. Intuitively, in protocols that meet our server-only definition there must be
a mechanism for the client to check whether the server received all the messages sent by the client without
any modification.

Looking somewhat ahead, TLS does fulfill our strong definition of server-only security. Practically, this
fits well to most of the applications of TLS, as the client is usually interested in also knowing that the session
keys computed by the server are secure and all the (confidential) data sent from the server to the client is
protected as well. From another perspective, the server can entirely make it the client’s responsibility to
check if no message has been modified in transit. The technical mechanism which signals the client that
all its messages have been received by the server without modification is the (encrypted) server finished
message that contains a MAC (which is implemented via a PRF) over the entire transcript so far.

Although the authentication guarantees of a server-only AKE protocol may be different, we need the
same strong key indistinguishability guarantees as in AKE protocols with mutual authentication. The main

4In TLS-DHE all long-term keys are only used to compute signatures over transcripts. When embedding the signature challenge
one can easily simulate the behaviour of an uncorrupted party by using the signing oracle of the EUF-CMA security game to sign
adversarially chosen messages.) In contrast, in our extended ACCE (and AKE) model (which should allow to properly model
TLS-RSA and TLS-DH too), we allow the adversary to certify new public keys and account for attackers that break the signature
scheme used in the certification process (by the certification authority.
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difference is that now the Test query can only be issued to clients.

Stateful Length Hiding Encryption. We rely on the recent results of Paterson, Ristenpart and Shrimpton
who showed that the CBC-based Record Layer protocols of TLS 1.1 and 1.2 provably guarantee strong
security properties of the data encryption mechanism of TLS [44]. Concretely they showed that the TLS
Record Layer meets the definition of length hiding authenticated encryption (LHAE). We use the stateful
variant of this definition (stateful LHAE or sLHAE) that also protects against drops, replay attacks, or re-
ordering attacks.

Related Work. The literature contains a plethora of works on the security of TLS. These works range from
the publication of minor flaws and new attacks against SSL 3.0 [49] to detailed analyses of the asymmetric
encryption system used in TLS-RSA and PKCS#1 [13, 19, 32, 34, 33], automated proof techniques [39, 45,
43, 10, 18] (which are not known to be cryptographically sound) and the analyses of the single primitives
used in TLS [35, 44]. In all of these works there is a general tendency towards modeling TLS in more and
more detail.

Arguably the first approach to analyze the security of the entire TLS handshake in a cryptographic model
is that of Johnsson and Kaliski [32]. They provide a positive result on the use of PKCS#1 v1.5 encryption
under a strong new complexity assumption that is related to RSA which requires that a partial decryption
oracle exists. Under this assumption, they showed that the key transport mechanism of TLS-RSA is secure
if the interaction between the client and the server is modeled as a tagged key-encapsulation mechanism
(TKEM). They only consider a simplified version of the handshake that omits the Finished message of the
server.5 The TKEM security model is a considerable simplification of the ‘usual’ execution environment
in models for analyzing cryptographic protocols where not only parties but also distinct executions of a
protocol – oracles – are modeled. The TKEM model does also not (explicitly) provide important attack
capabilities like the corruptions of secret keys. We remark that in a model without corruptions the simulation
problems of JKSS which lead to the introduction of the PRF-ODH assumption simply do not occur.

Gajek et al. [26] presented an analysis of the truncated versions of all three handshakes in a security
model that is formulated in the UC framework of Canetti [16]. They do not use random oracles. However,
they consider a modified TLS handshake that enables them to avoid the TLS-DHE simulation problems of
JKSS. The Gajek et al. result does not consider message replay, drop, or re-ordering attacks. The ideal
functionality of the key exchange part is very weak and rather unrealistic: it only formalizes non-adaptive
corruptions and only unauthenticated key exchange. Their communication channel functionality thus does
only cover confidentiality of data but no entity authentication. We believe that this is not appropriate to
model TLS which is used as a tool for authenticating communication partners in practice.

Morrissey, Smart and Warinschi (MSW) presented an analysis of the truncated handshakes of TLS in the
random oracle model [40, 41]. They define three, progressively stronger security notions and show that the
TLS protocols are secure in their model. As pointed out above their result strongly relies on the properties of
random oracles: they use random oracles to a) efficiently switch from computational to decisional security
guarantees (similar to Kudla and Paterson [37]) and b) to derive the master secret and the application keys
and so avoid the simulation problems when dealing with TLS-DHE. The first strategy, a), allows to avoid
the problems that occur when trying to prove the full handshake AKE secure. MSW do not require that
the master key is indistinguishable from random but only that it is not computable by the adversary. This is
possible even when the adversary is given access to the encrypted Finished messages. Via the random oracle

5They justify this step by claiming that the Finished message of the server ‘in any case is no more helpful to an adversary than
the one computed by the client’.
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they can then easily turn the master secret into encryption keys that are indistinguishable from random. This
allows them to only rely on the Gap-CDH assumption when proving TLS-DHE. Similarly to Gajek et al.,
their result does not consider message replay, drop, or re-ordering attacks. Also, the MSW result does
assume that the order of the messages of the TLS handshake is slightly modified.

As sketched before, JKSS [30] introduced ACCE, a new security notion for establishing authenticated
and confidential communication channels and proved that TLS-DHE with mutual authentication is ACCE
secure with perfect forward secrecy. They show that TLS-DHE with mutual authentication is a secure
ACCE protocol under the non-standard PRF-ODH assumption and standard assumptions on the remaining
primitives. In particular, their security proof does not essentially rely on random oracles: they point out that
when the primitives are instantiated in the standard model (this mainly concerns the signature scheme), the
security of the entire TLS-DHE handshake holds in the standard model as well. To us, this gives valuable
information in what directions the revision of the TLS standard should be guided. Also, it might for example
be possible to introduce a new signature scheme secure without random oracles to be used in TLS via an
appropriate standard extension without modifying the entire TLS stack. This can lead to a provably secure
result in the standard model with minimal modifications. However, as pointed out above the JKSS result
only covers the less widespread ciphersuites TLS DHE * and only mutual authentication.

Recently Brzuska et al. [15] presented new security definitions for key exchange protocols which are
weaker than AKE but still generally composable with symmetric primitives. They claim that the JKSS secu-
rity model can be cast as an instantiation of their abstract framework. As in MSW, their proof does essentially
rely on random oracles to model how TLS derives the master key and the application keys. Technically, this
allows for example to reduce the security of TLS-DHE to the Computational Diffie-Hellman (CDH) as-
sumption, as opposed to JKSS who (at least partly) required the stronger Decisional Diffie-Hellman and
PRF-ODH assumptions.6 In contrast to our work, they do not cover server-only authentication (and it is not
clear if their composability guarantees also hold in the server-only setting).

To sum up the assumptions underlying previous works, both Brzsuka et al. and MSW crucially rely on
the random oracle model which in turn has been criticized fundamentally in several works starting with [17].
JKSS showed that the non-standard PRF-ODH assumption is sufficient to prove TLS-DHE with mutual
authentication. We show that in special cases even the DDH assumption is sufficient for TLS-DH with
mutual authentication and no further non-standard assumption is required when proving TLS-RSA with
mutual or server-only authentication when relying on a CCA secure encryption system.

6When using random oracles to derive keys, the output of the random oracle is indistinguishable from random if only a single
input, for example the premaster secret Diffie-Hellman value gcs, where gc is the client and gs the server share, is hard to compute
for the adversary. When using a PRF the output is only distributed indistinguishable from random if the key gcs is indistinguishable
from random in the first place. This allows to use the CDH assumption in contrast to the DDH assumption in the security proof
when relying on random oracles.
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2 Preliminaries and Definitions

In this section, we present the formal definitions required to formulate our results. We use ∅ to denote the
empty string, and [n] = {1, . . . , n} ⊂ N for the set of integers between 1 and n. If A is a set, then we use
a

$← A to denote that a is drawn uniformly random from A. In case A is a probabilistic algorithm a
$← A

is used to denote that A returns a when executed with fresh random coins. We use κ to denote the security
parameter.

2.1 The Decisional Diffie-Hellman Assumption

LetG be a group of prime order q (having bit-length polynomial in κ) and g a generator ofG. The decisional
Diffie-Hellman (DDH) assumption states that if given (g, ga, gb, gc) for a, b, c ∈ Zq it is hard to decide
whether c = ab mod q. More formally:

Definition 1. We say that the DDH problem is (t, ε)-hard in G, if for all adversaries A that run in time t it
holds that ∣∣∣Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gc) = 1

]∣∣∣ ≤ ε,
where a, b, c $← Zq.

2.2 Digital Signature Schemes

A digital signature scheme is a triple SIG = (SIG.Gen,SIG.Sign,SIG.Vfy), consisting of the key generation
algorithm (sk, pk) $← SIG.Gen(1κ) generating a (public) verification key pk and a secret signing key sk
on input of the security parameter κ, the signing algorithm σ

$← SIG.Sign(sk,m) generating a signature
for message m, and the verification algorithm SIG.Vfy(pk, σ,m) returning 1, if σ is a valid signature for m
under key pk, and 0 otherwise. Security if formalized in the following security game that is played between
a challenger C and an adversary A.

1. The challenger generates an asymmetric key pair (sk, pk) $← SIG.Gen(1κ) and the public key pk is
given to the adversary.

2. The adversary may adaptively query q messages mi with i ∈ [q] of his choice to the challenger. The
challenger responds to each of these queries with a signature σi = SIG.Sign(sk,mi) on mi.

3. The adversary outputs a message/signature pair (m,σ).

Definition 2. We say that SIG is (t, ε, q)-secure against existential forgeries under adaptive chosen-message
attacks (EUF-CMA), if for all adversaries A that run in time t making at most q queries it holds that

Pr
[
(m,σ) $← AC(1κ, pk) such that SIG.Vfy(pk,m, σ) = 1 ∧m 6∈ {m1, . . . ,mq}

]
≤ ε.

2.3 Public Key Encryption Schemes

A public key encryption (PKE) scheme is a triple PKE = (PKE.Gen,PKE.Enc,PKE.Dec), consisting of the
key generation algorithm (sk, pk) $← PKE.Gen(1κ) generating a (public) encryption key pk and a secret de-
cryption key sk on input of the security parameter κ, the probabilistic encryption algorithm PKE.Enc(pk,m)
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generating a ciphertext c for messagem, and the deterministic decryption algorithm PKE.Dec(sk, c) return-
ing m, if c is a valid encryption and the error symbol ⊥ otherwise. Security is formalized in the following
security game that is played between a challenger C and an adversary A.

1. The challenger generates an asymmetric key pair (sk, pk) $← PKE.Gen(1κ) and the public key pk is
given to the adversary.

2. The adversary may adaptively query the challenger for decryptions of arbitrary ciphertexts c. The
challenger responds to each of these queries with the output of PKE.Dec(sk, c).

3. The adversary outputs a message m∗.

4. The challenger tosses coin b $← {0, 1}. It then sets c0 = PKE.Enc(pk,m∗) and c1 = PKE.Enc(pk, r)
for a uniformly random message r that is of the same size as m∗ and sends cb to the adversary.

5. The adversary may again adaptively query ciphertexts c of his choice, now with the restriction that
c 6= cb. The challenger responds to each of these queries with the output of PKE.Dec(sk, c).

6. Finally the adversary outputs a bit b′.

Definition 3. We say that PKE is (t, ε, q)-secure under adaptive chosen ciphertext attacks (CCA), if all ad-
versariesA that run in time t making at most q decryption queries have advantage of at most ε to distinguish
the ciphertext of m∗ from that of a truly random value, i.e.∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
2.4 Pseudo-Random Functions

A pseudo-random function (PRF) is a deterministic algorithm PRF which given a key k ∈ KPRF (with
log(|KPRF|) polynomial in κ) and a bit string x outputs a string z = PRF(k, x) with z ∈ {0, 1}µ (and µ
being polynomial in κ). Security is formulated via the following security game that is played between a
challenger C and an adversary A.

1. The challenger samples k $← KPRF uniformly random and b $← {0, 1}.

2. The adversary may adaptively query q values xi with i ∈ [q] to the challenger. The challenger replies
to each of these queries with either zi = PRF(k, xi) if b = 0 or z1

$← {0, 1}µ if b = 1.

3. Finally, the adversary outputs its guess b′ ∈ {0, 1} of b.

Definition 4. We say that PRF is a (t, ε, q)-secure pseudo-random function, if any adversary running in time
t that makes at most q queries has an advantage of at most ε to distinguish the PRF from a truly random
function, i.e. ∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
Remark 1. In our security analyses we rely on the result by Fouque et al. [24] who showed that the PRF used
in TLS v1.2 is secure with respect to the above definition if the compression function of the hash function
used in the HMAC-based key-derivation function of TLS behaves like a pseudo-random function.
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2.5 Collision-Resistant Hash Function

A collision-resistant hash function is a deterministic algorithm H which given a key k ∈ KH (with log(|KH|)
polynomial in κ) and a bit string m outputs a hash value w = H(k, x) in the hash space {0, 1}χ (with χ
polynomial in κ). If k is clear from the context we write H(·) short for H(k, ·).

Definition 5. We say that H is a (t, ε)-secure collision-resistant hash function, if any t-time adversaryA that
is given k $← KH has an advantage of at most ε to compute two colliding inputs m,m′ with m 6= m′ and
H(m) = H(m′).

2.6 The (Strong) PRF-Oracle-Diffie-Hellman Assumption

LetG be a group with generator g of order q′ (having bit-length polynomial in κ). Let PRF be a deterministic
function z = PRF(X,m) with inputs keyX ∈ G and bit stringm that returns a string z ∈ {0, 1}µ. Consider
the following security game that is played between challenger C and adversary A.

1. The adversary A outputs a value m.

2. The challenger samples u, v $← [q′] and z1
$← {0, 1}µ uniformly random and sets z0 := PRF(guv,m).

Then it tosses a coin b ∈ {0, 1} and returns zb, gu and gv to the adversary.

3. The adversary may adaptively query q pairs (Xi,m
′
i) with Xi 6= gu, i ∈ [q] to the challenger. The

challenger replies with PRF(Xv
i ,m

′
i).

4. Finally the adversary outputs a guess b′ ∈ {0, 1}.

Definition 6. We say that the (original) PRF-ODH problem is (t, ε)-hard forG and PRF, if for all adversaries
A that run in time t making at most q = 1 query in the above security game it holds that∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
Similarly we say that the Strong PRF-ODH problem is (t, ε, q)-hard for G and PRF, if for all adversaries A
that run in time t making at most q queries it holds that∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
where in the third step of the above security game we substitute the condition Xi 6= gu with (Xi,m

′
i) 6=

(gu,m).

The definition of the Strong PRF-ODH problem differs from the original definition of JKSS in two ways.
First, we allow the adversary to ask a polynomial number of queries to the oracle in contrast to only a single
query. This makes our assumption more similar to the Oracle Diffie-Hellman assumption introduced by
Abdalla, Bellare and Rogaway in [1] which uses hash functions instead of PRFs. Second, we also allow
queries of different messages m′i with the same key gu, as long as m′i 6= m. This makes our assumption
much more comparable with the classical security definition of PRFs, as now the oracle can also be queried
for the challenge key more than once.
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Encrypt(m0,m1, len, H): Decrypt(C,H):
u := u+ 1 v := v + 1
(C(0), st

(0)
e ) $← StE.Enc(k, len, H,m0, ste) If b = 0, then return ⊥

(C(1), st
(1)
e ) $← StE.Enc(k, len, H,m1, ste) (m, std) = StE.Dec(k,H,C, std)

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If v > u or C 6= Cv, then phase := 1
(Cu, ste) := (C(b), st

(b)
e ) If phase = 1 then return m

Return Cu Return ⊥

Figure 1: Encrypt and Decrypt oracles in the stateful LHAE security experiment. The values u, v and phase
are all initialized to 0 at the beginning of the security game.

2.7 Stateful Length-Hiding Authenticated Encryption

We now recall the stateful variant of the definition for length-hiding authenticated encryption (LHAE) from
JKSS which is attributed to Paterson et al. [44].

A (symmetric) stateful length-hiding authenticated encryption (sLHAE) scheme consists of two algo-
rithms StE = (StE.Enc, StE.Dec). The (possibly probabilistic) encryption algorithm, given as (C, st′e)

$←
StE.Enc(k, len, H,m, ste), takes the following values as input: the secret key k ∈ {0, 1}κ, the length
len ∈ N of the output ciphertext, header data H ∈ {0, 1}∗, the plaintext m ∈ {0, 1}∗, and the current state
ste ∈ {0, 1}∗ of the encryption scheme. It outputs either a ciphertext C ∈ {0, 1}len and the updated state st′e
or the special error symbol ⊥. The deterministic decryption algorithm (m′, st′d) = StE.Dec(k,H,C, std)
processes secret key k, header data H , ciphertext C, and the current state std ∈ {0, 1}∗. It returns the
updated state st′d and a valuem′ which is either the message encrypted in C, or a distinguished error symbol
⊥ indicating that C is not a valid ciphertext. The encryption state ste and decryption state std are initialized
to the empty string ∅.

Consider the following security game that is played between challenger C and adversary A.

1. The challenger draws b $← {0, 1} and k $← {0, 1}κ and sets ste := ∅ and std := ∅,.

2. The adversary may adaptively query the encryption oracle Encrypt qe times and the decryption oracle
Decrypt qd times. Figure 1 shows how these oracles respond to A’s queries.

3. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

Definition 7. We say that an sLHAE scheme StE = (StE.Init, StE.Enc, StE.Dec) is (t, ε)-secure, if for all
adversaries A that run in time t it holds that∣∣Pr

[
b = b′

]
− 1/2

∣∣ ≤ ε.
in the above security game. We assume that the number of encryption queries qe and decryption queries qd
is bound by the running time of the adversary.
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3 Transport Layer Security (TLS) 1.2

In this section, we present the core of the current version of the TLS protocol – TLS 1.2 [22]. The major
changes from TLS 1.0 [20] and TLS 1.1 [21] to TLS 1.2 include a different error handling procedure to
prevent certain attacks (e.g. TLS 1.1 introduced an explicit Initialization Vector and handled padding er-
rors differently in order to prevent CBC attacks) and, perhaps most importantly, switching from a (fixed)
MD5/SHA-1 hash function combination in the PRF to ciphersuite-specific hash functions, with SHA-256
being the new standard. The basic protocol flow in TLS is fixed (and the same) for all ciphersuites, differ-
ing only in (i) the content of the messages sent and (ii) the set of messages sent depending on the type of
authentication (server-only or mutual).

C S
m1 : Client Hello

m2 : Server Hello

m3 : Server Certificate

m4 : Server Key Exchange

m5 : Certificate Request

m6 : Server Hello Done

m7 : Client Certificate

m8 : Client Key Exchange

m9 : Certificate V erify

m10 : Change Cipher Spec

m11 : Client F inished

m12 : Server F inished

pre-accept phase
———————————————————–

post-accept phase
Stateful symmetric encryption

C S
m1 : Client Hello

m2 : Server Hello

m3 : Server Certificate

m4 : Server Key Exchange

m6 : Server Hello Done

m8 : Client Key Exchange

m10 : Change Cipher Spec

m11 : Client F inished

m12 : Server F inished

pre-accept phase
———————————————————–

post-accept phase
Stateful symmetric encryption

Figure 2: TLS handshake for ciphersuites TLS-DH, TLS-DHE and TLS-RSA with mutual (left) and server-
only (right) authentication. Dotted lines mark control messages that contain no cryptographic information.

Figure 2 depicts the message flow of TLS if the server additionally requests client authentication (left
side) and the message flow if only server-authentication is required (right side). Depending on whether
client authentication is requested, the TLS Handshake Protocol consists of 11, respective 8 messages. The
messages can contain cryptographic information as Diffie-Hellman group parameters and public keys as
well as constant byte values. In the following, we list all messages sent during a TLS protocol run with
mutual authentication and explain their explicit content and function.

m1
m2 Client Hello and Server Hello. The Hello messages contain a random 32 byte value (nonce) that is

used in a later stage to derive the master secret. The nonce sent by the client is denoted as rC , the
one sent by the server as rS . Note that for the client only 28 bytes are chosen completely at random
while 4 bytes are derived from the local time of the client. The Client Hello message also includes
a list of ciphersuites supported by the client. The Server Hello message contains the server’s choice
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of the ciphersuite that is then used by both parties. The Hello messages may also contain additional
information such as the compression method applied to the messages before sending.

m3 Server Certificate. This message contains the server certificate certS (or a certificate chain), which
binds a public key to the owner of the certificate (i.e. the server). Besides the server identity, the
certificate may contain a subset of the following information, depending on the ciphersuite used:

• public parameters for a Diffie-Hellman based key exchange (a prime number p, a generator g for
a prime-order q subgroup of Z∗p and a public Diffie-Hellman key (or “share”) gs (where s $← Zq
is the corresponding secret key) in TLS-DH,

• a public key pkS used for encrypted key transport in TLS-RSA or

• a public key pkS of a signature scheme in TLS-DHE.

Note that the client learns the identity of its communication partner not before receiving this message.

m4 Server Key Exchange. This message is only sent for TLS-DHE and contains public parameters for
a Diffie-Hellman based key exchange (as defined in the previous message) along with a signature
covering both nonces rC , rS and the public parameters.

m5 Certificate Request. By sending this message the server requests the clients to provide a certificate.
The message contains a list of valid certificate types that the client may use. This message is only sent
when client authentication is required.

m6 Server Hello Done. Sending this message, the server tells the client to proceed with the next phase of
the protocol and check the validity of the server certificate received in m3.

m7 Client Certificate. This message contains the client certificate certC (or a certificate chain). The
certificate contains the client identity and a public key pkC for a signature scheme. For TLS-DH
ciphersuites, the certificate also contains a fixed Diffie-Hellman public key gc used for computation of
the premaster secret pms (where the g is the genenerator specified in the server certificate and c $← Zq
is the corresponding secret key). Note that the server learns the identity of its communication partner
not before receiving this message. This message is only sent when client authentication is required.

m8 Client Key Exchange. The client always sends a Client Key Exchange message, the content depends
on the negotiated ciphersuite:

• a public DH key gc (which as before must match the parameters received by the server) in TLS-
DHE,

• a 48-byte premaster secret encrypted under the public key of the server in TLS-RSA, or

• an empty string in TLS-DH.

m9 Certificate Verify. Here, the client sends a signature σC computed on the concatenation of all messages
exchanged so far (that is m1 to m8). This message is only sent when client authentication is required
and the client certificate does not contain static Diffie-Hellman keys.

m10 Change Cipher Spec. This message consists of a single byte of value ‘1’ and indicates, that subse-
quent messages will be encrypted under the newly established keys.
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m11
m12 Client/Server Finished. The Finished messages contain a stateful encryption of the following infor-

mation:

finC := PRF(ms, label,H(m1, . . . ,m10)), and finS := PRF(ms, label,H(m1, . . . ,m10, finC
7))

where label =‘client finished’ for the Client Finished message finC and label =‘server finished’ for
the Server Finished message finS , and H denotes a collision-resistant hash function. That is m11 =
StE.Enc(kClient

enc , len, H, finC , ste) and m12 = StE.Enc(kServer
enc , len, H, finS , ste), where kClient

enc , kServer
enc

and ms are defined as below.

mutual server-only mutual server-only server-only
TLS-RSA TLS-RSA TLS-DH TLS-DH TLS-DHE

Client Hello rC rC rC rC rC
Server Hello rS rS rS rS rS
Server Certificate certS certS certS , g

s certS , g
s certS

Server Key Exchange -8 - - - gs

Client Certificate certC - certC , g
c - -

Client Key Exchange PKE.Enc(pms) PKE.Enc(pms) - gc gc

Figure 3: Ciphersuite-dependent TLS messages

In the following we will explain, how intermediate keys and application keys are derived from the
messages exchanged between the two parties.

COMPUTING THE PREMASTER SECRET. The premaster secret pms is either chosen by the client (in TLS-
RSA) or computed as gcs for DH-based ciphersuites, where g is a generator for some prime-order subgroup,
gs is the public DH key of the server and gc the public DH key of the client.

COMPUTING THE MASTER SECRET. The master secretms is computed by applying the PRF of TLS, keyed
with the premaster secret pms, to a fixed label label1 and the nonces exchanged between the parties rC , rS .

ms := PRF(pms, label1||rC ||rS)

The master secret will then be used to derive application keys and to compute the Finished messages.

COMPUTING THE APPLICATION KEYS. The four application keys (encryption and MAC keys for each
direction) are also computed using the PRF of TLS, where the inputs are now the master secret ms, another
fixed label label2 and (again) the random nonces rC , rS .

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

We also define
kClient

enc = kServer
dec := KC→S

enc ||KC→S
mac

and
kServer

enc = kClient
dec := KS→C

enc ||KS→C
mac .

7Note, that m11 contains an encryption of finC , and that finS is computed over plaintext handshake messages only.
8‘-’ means that the message is not sent (or empty) in this setting
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We refer to these application keys as encryption keys. In the following we use kS short for the encryption
key(s) kServer

enc = kClient
dec and kC short for the encryption key(s) kClient

enc = kServer
dec . We think of these encryption

keys to key a stateful length-hiding authenticated encryption scheme as defined in Definition 7.

ATTACK FOCUS. We do not consider abbreviated TLS Handshakes9, nor side-channel attacks (such as the
Bleichenbacher attack against PKCS #1.5 [13] or the BEAST (Browser Exploit Against SSL/TLS) attack10

discussed in [4, 5]). Moreover, we do not consider attacks based on side-channels such as error messages,
or implementation issues (e.g. the cross-protocol attack by Schneier and Wagner [49]). For simplicity we
also assume that TLS compression is not used, excluding attacks like CRIME [46].

9We note that the server can always enforce a full TLS Handshake
10We also note, that this vulnerability was fixed in TLS 1.1
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4 AKE Protocols

In this section we present an extended AKE definition of [7, 30] that also allows the adversary to register
key pairs for new parties via a new query called Register. We also give the first definition for server-only
authentication and server-only authenticated key exchange protocols. In the subsequent section we will then
transfer these results to the ACCE setting.

As it is usual, we set up a common execution environment which models that the adversary controls
the communication network. Technically, we model attack capabilities through queries that the adversary
may ask to the execution environment. These queries differ only slightly for AKE and ACCE security. The
corresponding definitions for server-only authentication use the same execution environment as for mutual
authentication. Only the definition of security deviates from that of mutual authentication.

As mentioned above our model is essentially that of Jager et al., which is derived from the model of
Bellare and Rogaway [7] transferred to the public key setting [12] with an additional modeling of adaptive
corruptions. In contrast to MSW, Brzuska et al. and JKSS we also model public-key certification (in
a simplified form) and allow to optionally model perfect forward secrecy (via adaptive corruptions). To
us this seems necessary, as depending on the type of registration model, security proofs might need to
rely on different assumptions (as it is for example the case when using TLS-DH ciphersuites with mutual
authentication).

4.1 Execution Environment

Let `, d, w ∈ N. We consider a set of ` parties {P1, . . . , P`}. Each party Pi ∈ {P1, . . . , P`} is a (potential)
protocol participant having a unique long-term key pair (pki, ski).11 Additionally each party Pi has a cer-
tificate certi.12 The certificate is computed by the execution environment (acting as a certification authority)
as a signature over the party’s public key pki, a unique identifier (for example a random string or a serial
number) idi, and some additional information auxi (that can for example be used to identify the party Pi,
like a domain name or an email address). The certificates are computed with the secret key sk of the certifi-
cation key pair pk, sk. We assume that each party Pi is associated with d oracles π1

i , . . . , π
d
i , where each πsi

represents a process that executes one single instance of the protocol. The oracles π1
i , . . . , π

d
i of party Pi all

have access to the same long-term key pair (pki, ski) and the public key pk of the execution environment.
Moreover, each oracle πsi maintains as internal state the following variables:

• Λ ∈ {accept, reject}.

• k ∈ K, where K is the keyspace of the protocol.

• Π ∈ [` + w]13 holding the intended communication partner, i.e., an index j that points to a globally
unique certificate identity.

• Variable ρ ∈ {Client,Server}.
11We stress that this also models scenarios where the set of parties may initially be empty and step-wisely be filled by the

environment since the public keys are generated independently of the adversary. It makes no difference if the public keys and
certificates are generated at setup or on demand. We only require that the total number of parties is at most `. In practice this for
example models situation where the certification authority may have been setup and just begins to issue new certificates to parties.

12This is just for simplicity. We could easily extend our model to cover situations where each party may have more than one
certificate.

13w is the maximal number of additional certificates the adversary may request.

17



• Some additional temporary state variable st (which may, for instance, be used to store ephemeral
Diffie-Hellman exponents or the transcript of all messages sent/received during the TLS Handshake).

The internal state of each oracle is initialized to (Λ, k,Π, ρ, st) = (∅, ∅, ∅, ∅, ∅), where V = ∅ denotes
that variable V is undefined. Furthermore, we will always assume (for simplicity) that k = ∅ if an oracle
has not reached accept-state (yet), and contains the computed key if an oracle is in accept-state, so that
we have

k 6= ∅ ⇐⇒ Λ = ‘accept′. (1)

An adversary may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send message m to oracle πsi . The oracle will
respond according to the protocol specification, depending on its internal state.

If the attacker asks the first Send-query to oracle πsi , then the oracle checks whether m = > con-
sists of a special ‘initialization’ symbol >. If true, then it sets its internal variable ρ := Client and
responds with the first protocol message. Otherwise it sets ρ := Server and responds as specified in
the protocol.14

The variables Λ, k,Π, st are also set after a Send-query. When and how depends on the considered
protocol.

• Reveal(πsi ): Oracle πsi responds to a Reveal-query with the contents of variable k. Note that we have
k 6= ∅ if and only if Λ = ‘accept’, see (1).

• Corrupt(Pi): Oracle π1
i responds with the long-term secret key ski of party Pi.15 If Corrupt(Pi) is

the τ -th query issued by A, then we say that Pi is τ -corrupted. For parties that are not corrupted we
define τ :=∞.

• Test(πsi ): This query may be asked only once throughout the game. If πsi has state Λ 6= accept, then
it returns some failure symbol⊥. Otherwise it flips a fair coin b, samples an independent key k0

$← K,
sets k1 = k to the ‘real’ key computed by πsi , and returns kb.

• Register(pk′, aux, proof): This query first checks whether the adversary ’knows’ the secret key sk′

corresponding to the public key pk′ by evaluating the non-interactive proof proof of knowledge of
sk′16. On failure it outputs an error symbol ⊥, on success it outputs a certificate, binding the public
key pk′ and aux17 to a new globally unique identity id′ generated by the execution environment. In
general this proof only needs to be sound. However when relying on the knowledge of secret key
(KOSK) assumption we require that the proof consists of sk′. One can think of id′ = idz as being

14Note that we do not include the identity of the (intended) communication partner in the Send-query. Instead, we assume that the
exchange of identities of communication partners (which is necessary to determine the public-key used to perform authentication)
is part of the protocol.

15Note, that the adversary does not ‘take control’ of oracles corresponding to a corrupted party. But he learns the long-term secret
key, and can henceforth simulate these oracles.

16We only require that the proof is non-interactive to simplify the model (if a common reference string is required we may
assume that it is held by the execution environment and made publicly available). In practice, the concrete implementation of these
proofs of knowledge is up to the CA [3] and may also be interactive. We only require that it is secure under concurrent executions.
Examples can be found in RFC 4210 [3] and PKCS#10.

17We opt to not make the environment ‘generate’ all information (including those used in the certificates requested by the
adversary). Our model is slightly stronger as the adversary can freely specify aux as part of the certificate.
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associated with an index z ∈ N. At the beginning, z is initialized to ` + 1. For each call of Register,
z is incremented by one. This query can be called at most w times.

The Send-query enables the adversary to initiate and run an arbitrary number of protocol instances,
sequential or in parallel, and provides full control over the communication between all parties. The Reveal-
query may be used to learn the session keys used in previous/concurrent protocol executions. The Corrupt-
query allows the attacker to learn ski of party Pi, it may for instance be used by A to impersonate Pi. The
Test-query will be used to define AKE security. The Register-query enables the adversary to register new
public keys that can be used to authenticate adversarial messages.

4.2 Security Definition

To define security we use the classical definition of matching conversations by Bellare and Rogaway [7].
Here we use a slightly more general definition introduced in JKSS. We denote with Ti,s the sequence that
consists of all messages sent and received by πsi in chronological order (not including the initialization-
symbol >). We also say that Ti,s is the transcript of πsi . For two transcripts Ti,s and Tj,t, we say that Ti,s
is a prefix of Tj,t, if Ti,s contains at least one message, and the messages in Ti,s are identical to and in the
same order as the first |Ti,s| messages of Tj,t.

Definition 8 (Matching conversations). We say that πsi has a matching conversation to πtj , if

• Tj,t is a prefix of Ti,s and πsi has sent the last message(s), or

• Ti,s = Tj,t and πtj has sent the last message(s).

Security of AKE protocols is now defined by requiring that (i) the protocol is a secure authentication
protocol, and (ii) the protocol is a secure key-exchange protocol, thus an adversary cannot distinguish the
session key k from a random key.

AKE Game. We formally capture this notion as a game, played between an adversary A and a challenger
C. The challenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the game,
the challenger generates ` long-term key pairs (pki, ski) and certificates certi for all i ∈ [`]. The adversary
receives the certificates cert1, . . . , cert` as input.

Now the adversary may start issuing Send, Reveal, Corrupt and Register queries, as well as one Test-
query. Finally, the adversary outputs a bit b′ and terminates.

Definition 9. We say that an adversary (t, ε)-breaks an AKE protocol with mutual authentication, if A runs
in time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi such that

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j such that idj ∈
{id1, . . . , id`}18, and

• Pj is τj-corrupted with τ0 < τj ,19 and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

18This means that the certificate with id = idj has not been generated by a Register query. Otherwise the adversary may know
the corresponding secret key and trivially make πs

i accept.
19That is, Pj is not corrupted when πs

i ‘accepts’. Recall that uncorrupted parties are τ -corrupted with τ =∞.
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If an oracle πsi accepts in the above sense, then we say that πsi accepts maliciously.

2. When A issues a Test-query to any oracle πsi and

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j such that idj ∈
{id1, . . . , id`}, and Pj is τj-corrupted with τ0 < τj ,

• A does not issue a Reveal-query to πsi , nor to πtj such that πsi has a matching conversation to πtj
(if such an oracle exists), and

then the probability that A outputs b′ which equals the bit b sampled by the Test-query satisfies∣∣Pr[b = b′]− 1/2
∣∣ ≥ ε.

If an adversary A outputs b′ such that b′ = b and the above conditions are met, then we say that A
answers the Test-challenge correctly.

We say that an AKE protocol with mutual authentication is (t, ε)-secure with perfect forward secrecy, if
there exists no adversary that (t, ε)-breaks it. We say that an AKE protocol with mutual authentication is
(t, ε)-secure (without perfect forward secrecy), if there exists no adversary that (t, ε)-breaks it while (in the
above) not being allowed to ask the Corrupt query to Pi and Pj after the Test query (i.e. Pi and Pj are both
τ -corrupted with τ =∞).

Remark 2. Note that the above definition also models key-compromise impersonation (KCI) attacks [12, 36],
since we do not require that Pi is uncorrupted. Even if Pi is corrupted, it must be impossible for an adversary
to impersonate party Pj to Pi. This is also required in all subsequent security definitions.

4.3 Server-Only Authentication

Our definition of server-only authentication is very similar to that of mutual authentication. The main differ-
ence is that we now only concentrate on the client. However, as in the definition of mutual authentication we
need to be careful to not include trivial attacks where the adversary simply drops the last (unauthenticated)
protocol message20, as such attacks cannot be reduced to any hard problem. In the following we concentrate
on authenticated servers. We stress that this is not a restriction. Our definitions can easily be transferred to
model client-only authentication or, more generally, initiator-only and responder-only authentication.

Definition 10. We say that an adversary (t, ε)-breaks an AKE protocol with server-only authentication, ifA
runs in time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi that accepts maliciously
in the sense of Property 1 of Definition 9, and πsi has internal state ρ = Client.

2. A answers the Test-challenge correctly in the sense of Property 2 of Definition 9 and either

• oracle πsi (to which A has issued the Test query) has internal state ρ = Client, or

• oracle πsi has internal state ρ = Server, and there exists an oracle πtj such that πsi has a matching
conversation to πtj .

20For more details we refer to [30].
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We say that an AKE protocol with server-only authentication is (t, ε)-secure with perfect forward secrecy, if
there exists no adversary that (t, ε)-breaks it. We say that an AKE protocol with server-only authentication
is (t, ε)-secure (without perfect forward secrecy), if there exists no adversary that (t, ε)-breaks it while (in
the above) not being allowed to ask the Corrupt query to Pi and Pj after the Test query (i.e. Pi and Pj are
both τ -corrupted with τ =∞).

Remark 3. Client-only security can be defined analogously, only the internal states ρ of πsi and πtj are
switched. It is then easy to see that if πsi has a matching conversation with πtj when only allowing server
authentication and πtj has a matching conversation with πsi when only allowing client authentication then πsi
and πtj have matching conversations and the protocol is ACCE secure. However, the converse is not true in
general.

Remark 4. Note that our security definitions for protocols without perfect forward secrecy are slightly
stronger than the original notions in [31], in that we now also restrict the adversary in corrupting Pi in
Property 2 of Definitions 9 and 10 (and later also of Definitions 11 and 12). This is to exclude trivial attacks
when later analyzing TLS ciphersuites with static Diffie-Hellman key exchange.
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5 ACCE Protocols

The notion of (mutually) authenticated and confidential channel establishment (ACCE) protocols has just
recently been introduced by JKSS [30, 31]. In this section we recall the notion of ACCE, present our
modified execution environment and give a definition for server-only ACCE security.

According to JKSS, an ACCE protocol is a protocol executed between two parties which consists of two
phases, called the ‘pre-accept’ phase and the ’post-accept’ phase.

PRE-ACCEPT PHASE. In this phase a ‘handshake protocol’ is executed. For TLS, the pre-accept phase
covers all messages ranging from Client Hello to ServerF inished and the phase ends, when both com-
munication partners have established a session key k and reached an accept-state (i.e. Λ = ‘accept’).
Recall that for TLS k = kClient

enc ||kClient
dec = kServer

dec ||kServer
enc as described in Section 3.

POST-ACCEPT PHASE. This phase is entered immediately after the pre-accept phase. In this phase all data
is transmitted encrypted under key k with an encryption scheme as given in Section 2.7.

To define security of ACCE protocols, JKSS combined the security model for authenticated key ex-
change with stateful length-hiding encryption in the sense of [44]. Technically, they provided a slightly
modified execution environment that extends the types of queries an adversary may issue. For TLS, the
pre-accept phase consists of the TLS Handshake protocol and in the post-accept phase encrypted and au-
thenticated data is transmitted over the TLS Record Layer. As for AKE we will further extend the execution
environment to allow for key registration and also give a security definition for server-only authentication.

5.1 Execution Environment

The execution environment is very similar to the model from Section 4, except for a few simple modifica-
tions. We again support the case, when the signature scheme used to create certificates is different from the
signature scheme implemented in TLS. At first the model is extended such that in the post-accept phase an
adversary is also able to ‘inject’ chosen-plaintexts by making an Encrypt-query21, and chosen-ciphertexts by
making a Decrypt-query. Moreover, each oracle πsi keeps as additional internal state a bit bsi

$← {0, 1}, cho-
sen at random at the beginning of the game and two state variables ste and std for encryption and decryption
with a stateful symmetric cipher.

For the post-accept phase each oracle πsi keeps additional variables (usi , v
s
i , C

s
i , θ

s
i ). Variables usi , v

s
i are

counters, which are initialized to (usi , v
s
i ) := (0, 0). To simplify our notation in the sequel we additionally

define u0
0 := 0. Variable Csi is a list of ciphertexts, which initially is empty. We write Csi [u] to denote

the u-th entry of Csi . Variable θsi stores a pair of indices θsi ∈ [`] ∪ {0} × [d] ∪ {0}. If oracle πsi accepts
having a matching conversation to some other oracle πtj , then θsi is set to θsi := (j, t).22 Otherwise it is set
to θsi := (0, 0).

The key k consists of two different keys k = (kρenc, k
ρ
dec) for encryption and decryption. Their order

depends on the role ρ ∈ {Client,Server} of oracle πsi . This is the case for TLS.
An adversary may interact with the provided oracles by issuing the following queries.

• Sendpre(πsi ,m): This query is identical to the Send-query in the AKE model from Section 4, except
that it replies with an error symbol ⊥ if oracle πsi has state Λ = ‘accept’. (Send-queries in an
accept-state are handled by the Decrypt-query below).

21This models that an adversary may trick one party into sending some adversarially chosen data. A practical example for this
attack scenario are cross-site request forgeries [50] on web servers, or Bard’s chosen-plaintext attacks on SSL 3.0 [4, 5].

22If there is more than one such oracle, the first in lexicographical order is chosen.
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• Reveal(πsi ), Corrupt(Pi), and Register(pk′, aux, proof): These queries are identical to the corre-
sponding queries in the AKE model from Section 4.

• Encrypt(πsi ,m0,m1, len, H): This query takes as input two messages m0 and m1, length parameter
len, and header data H . If Λ 6= ‘accept’ then πsi returns ⊥. Otherwise, it proceeds as depicted in
Figure 4, depending on the random bit bsi

$← {0, 1} sampled by πsi at the beginning of the game and
the internal state variables of πsi .

• Decrypt(πsi , C,H): This query takes as input a ciphertext C and header data H . If πsi has Λ 6=
‘accept’ then πsi returns ⊥. Otherwise, it proceeds as depicted in Figure 4.

Encrypt(πsi ,m0,m1, len, H): Decrypt(πsi , C,H):

(C(0), st
(0)
e ) $← StE.Enc(kρenc, len, H,m0, ste) (j, t) := θsi

(C(1), st
(1)
e ) $← StE.Enc(kρenc, len, H,m1, ste) vsi := vsi + 1

If C(0) = ⊥ or C(1) = ⊥ then return ⊥ If bsi = 0, then return ⊥
usi := usi + 1 (m, std) = StE.Dec(kρdec, H,C, std)
(Csi [usi ], ste) := (C(bsi ), st

(bsi )
e ) If vsi > utj or C 6= Ctj [v

s
i ], then phase := 1

Return Csi [usi ] If phase = 1 then return m

Here usi , v
s
i , b

s
i , ρ, k

ρ
enc, k

ρ
dec denote the values stored in the corresponding internal variables of πsi .

Figure 4: Encrypt and Decrypt oracles in the ACCE security experiment.

5.2 Security Definition

Security of ACCE protocols is defined by requiring that (i) the protocol is a secure authentication protocol
and (ii) in the post-accept phase all data is transmitted over an authenticated and confidential channel in the
sense of Definition 7.

Again this notion is captured by a game, played between an adversary A and a challenger C. The chal-
lenger implements the collection of oracles {πsi : i ∈ [`], s ∈ [d]}. At the beginning of the game, the
challenger generates ` long-term key pairs (pki, ski) and certificates certi for all i ∈ [`]. The adversary
receives the certificates cert1, . . . , cert` as input. Now the adversary may start issuing Sendpre, Reveal,
Corrupt, Register, Encrypt, and Decrypt queries. Finally, the adversary outputs a triple (i, s, b′) and termi-
nates.

MUTUAL AUTHENTICATION We now give our security definition of ACCE protocols that provide mutual
authentication, adapted to the modified execution environment.

Definition 11. We say that an adversary (t, ε)-breaks an ACCE protocol with mutual authentication, if A
runs in time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi such that

• πsi ‘accepts’ when A issues its τ0-th query with partner Π = j such that idj ∈ {id1, . . . , id`},
and

• Pj is τj-corrupted with τ0 < τj , and
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• A did not issue a Reveal-query to oracle πtj , such that πtj accepted while having a matching
conversation to πsi (if such an oracle exists), and

• there is no unique oracle πtj such that πsi has a matching conversation to πtj .

If an oracle πsi accept in the above sense, then we say that πsi accepts maliciously.

2. When A terminates and outputs a triple (i, s, b′) such that

• πsi ‘accepts’ when A issues its τ0-th query with intended partner Π = j such that idj ∈
{id1, . . . , id`}, and Pj is τj-corrupted with τ0 < τj ,

• A did not issue a Reveal-query to πsi , nor to πtj such that πsi has a matching conversation to πtj
(if such an oracle exists), and

then the probability that b′ equals bsi is given by∣∣Pr[bsi = b′]− 1/2
∣∣ ≥ ε.

If an adversary A outputs (i, s, b′) such that b′ = bsi and the above conditions are met, then we say
that A answers the encryption-challenge correctly.

We say that an ACCE protocol with mutual authentication is (t, ε)-secure with perfect forward secrecy, if
there exists no adversary that (t, ε)-breaks it. We say that an ACCE protocol with mutual authentication is
(t, ε)-secure (without perfect forward secrecy), if there exists no adversary that (t, ε)-breaks it while (in the
above) not being allowed to ask the Corrupt query to Pi and Pj (i.e. Pi and Pj are both τ -corrupted with
τ =∞ when A terminates).

SERVER-ONLY AUTHENTICATION. We now give our security definition for ACCE protocols, that provide
server-only authentication.

Definition 12. We say that an adversary (t, ε)-breaks an ACCE protocol with server-only authentication
(abbreviated as ACCE-SO), if A runs in time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ε there exists an oracle πsi that accepts maliciously
in the sense of Property 1 of Definition 11, and πsi has internal state ρ = Client.

2. A answers the encryption-challenge correctly in the sense of Property 2 of Definition 11 and either

• oracle πsi has internal state ρ = Client, or
• oracle πsi has internal state ρ = Server, and there exists an oracle πtj such that πsi has a matching

conversation to πtj .

We say that an ACCE protocol with server-only authentication is (t, ε)-secure with perfect forward secrecy, if
there exists no adversary that (t, ε)-breaks it. We say that an ACCE protocol with server-only authentication
is (t, ε)-secure (without perfect forward secrecy), if there exists no adversary that (t, ε)-breaks it while (in
the above) not being allowed to ask the Corrupt query to Pi and Pj (i.e. Pi and Pj are both τ -corrupted with
τ =∞ when A terminates).

Remark 5. Again, client-only security can be defined analogously, only the internal states ρ of πsi and πtj
are switched. Similar to the AKE, if πsi has a matching conversation with πtj when only allowing server
authentication and πtj has a matching conversation with πsi when only allowing client authentication then πsi
and πtj have matching conversations and the protocol is ACCE secure. However, the converse is obviously
not true in general (see the introduction for a counterexample).
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6 TLS-RSA with Server-Only Authentication is ACCE-SO Secure

In this section we show that TLS-RSA with server-only authentication is ACCE-SO secure under Defini-
tion 12. Let us first provide the general idea behind all our proofs.

General Proof Idea. For simplicity let us concentrate on server-only authentication. For authentication
we consider an adversary that makes the client oracle accept although there is no matching conversation
with some other uncorrupted oracle. We consider several cases and subcases. In Case 1 the adversary does
not modify the client Diffie-Hellman share (in TLS-DHE) or the encrypted premaster secret (in TLS-RSA),
whereas in Case 2 it does so. In Case 1 we now consider two subcases. In Case 1.1 the adversary does not
modify any of the random nonces rC , rS . In Case 1.2 it does make such a modification. In Case 1.1 we
again consider two subcases. In Case 1.1.1 the adversary does not modify any of the remaining messages
m1 to m11 exchanged between client oracle and server oracle, whereas in Case 1.1.2, it does so. We now
reduce each of these cases to the security of the stateful encryption scheme. We always embed the sLHAE
challenge key into k(C)

S , the symmetric key that is computed by the client oracle to decrypt the encryption
of finS . In Case 1.1.1 and Case 1.1.2 we have that k(C)

S = k
(S)
S , i.e. client oracle and server oracle compute

the same key for kS and the queries granted in the sHLAE security game are used to compute the output
m12 of the server oracle.

We have to show that the adversary even with the help of the server oracle cannot make the client oracle
accept without breaking one of the underlying security assumptions.

In Case 1.1.1, the master secrets, the encryption keys and the finS messages computed by client and
server oracle are equal and all indistinguishable from random from the adversary’s point of view. By the
definition of security, the adversary must thus have computed a new encryption m′12 of finS which is distinct
from the messagem12 that is computed by the server oracle to make the client oracle accept. If we embed the
sLHAE challenge key into k(C)

S = k
(S)
S , and use the encryption queries granted in the sLHAE security game

to compute m12 we can directly break the security of the sLHAE scheme. In Case 1.1.2 the master secret
and encryption keys computed by client and server oracle are equal and indistinguishable from random.
However, when client and server oracle compute the Finished messages they use distinct transcripts. First,
by the security of the hash function the hash values of these transcripts differ as well. Second, by the security
of the PRF and since the input values to the PRF are distinct, the values for finS computed by the client oracle
and server oracle, fin(C)

S and fin(S)
S , must differ as well for the two oracles with overwhelming probability

2−µ. In this case the adversary cannot use the output of the server oracle to make the client oracle accept
because due to the correctness of the sLHAE encryption system there cannot be two distinct plaintext for
one ciphertext. Instead it has to compute a new encryption of fin(C)

S on its own. Such an adversary can
directly be used to break the security of the sLHAE scheme.

In Case 1.2 the adversary modifies (at least) one of the nonces rC , rS exchanged between client and
server oracle. In Case 2 we have that the adversary modifies the message m8 sent by the client, such
that the premaster secrets computed by client and server are distinct with overwhelming probability. The
proofs for Case 1.2 and Case 2 are similar. In Case 1.2 we first have to show for each ciphersuite that the
premaster secret pms exchanged between client and server oracle is indistinguishable from a random value
to the adversary. In Case 2, we need to show that pms(C) is indistinguishable from a random value to the
adversary and that it is distinct from (and actually independent of) pms(S) (with probability 2ν where ν is
the bitsize of pms) because of the adversary’s modifications to m8. Next we have to show that the master
secret computed by the client oracle ms(C) is indistinguishable from random and distinct to ms(S). In Case
2 this is because the key to the PRF, pms(C), is already indistinguishable from random and distinct from
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pms(S). In Case 1.2, this is because client and server use distinct nonces rS , rC as input to the PRF to
compute the master secrets while pms(C) = pms(S) is indistinguishable from random to the adversary. So
by the security of the PRF, with probability 2−µ ms(C) is distinct from ms(S). We can now substitute the
output values k(C)

C , k
(C)
S , fin(C)

C , fin(C)
S of the second application of the PRF with truly random values. By the

security of the PRF the adversary cannot recognize this modification. Now, since a) k(C)
S is drawn uniformly

at random and b) k(C)
S is never used at any point before, we can draw k

(C)
S also after the client oracle has

received the last protocol message m12 (and independently of the adversary and all the computations within
the server oracle). This shows that no information about the random key k(C)

S is leaked. We can thus embed
the sLHAE challenge key in k(C)

S . If the adversary makes the client oracle accept we can directly break
the security of the sLHAE scheme. In Case 1.2 and Case 2, we do not have to exploit any of the Encrypt
queries granted by the sLHAE security game.

This shows authentication. To show that the adversary cannot break the encryption challenge we ob-
serve that in TLS the client only accepts, if all the values used for the computation of the encryption keys
are unmodified. In particular, Case 1.1.2 also rules out that the adversary modifies one of the remaining
messages which are sent from the client oracle to the server oracle. If the client oracle accepts, both client
and server oracle thus have computed the same encryption keys. We can now directly plugin the sLHAE
challenge either in k(C)

C = k
(S)
C or k(C)

S = k
(S)
S . Any adversary that breaks the encryption challenge can be

used to break the sLHAE security.

Theorem 1. Let µ = µ(κ) be the output length of the PRF, ν = ν(κ) be the length of the premaster
secret, and λ = λ(κ) be the length of the nonces rC and rS . Assume that the pseudo-random function is
(t, εprf , qprf)-secure, the hash function is (t, εH)-secure, the public key encryption scheme is (t, εpke, qpke)-
secure, the signature scheme used for generating certificates is (t, εca, qca)-secure, and the sLHAE scheme
is (t, εslhae)-secure. Then for any adversary that (t′, εtls)-breaks the server-only authenticated TLS-RSA
Handshake protocol in the sense of Definition 11 with t ≈ t′ and qpke ≥ d, qprf ≥ 2, and qca ≥ w + `23 it
holds that

εtls ≤ 2εca +
(d`)2

2λ−1
+ 8d`2(2−ν + 2−µ + εH) + (8d`2 + d`)(εpke + 2εprf + 2εslhae).

We prove Theorem 1 via two lemmas. Lemma 1 bounds the probability εauth that an adversary succeeds in
making the client oracle accept maliciously. Lemma 2 bounds the probability εenc that an adversary answers
the encryption challenge correctly while not making client oracle accept maliciously. Then we have

εtls ≤ εauth + εenc.

6.1 Server-Only Authentication

Lemma 1. For any adversary A running in time t′ ≈ t, the probability that there exists a client oracle πsi
that accepts maliciously with respect to Definition 12 is at most

εauth ≤ εca +
(d`)2

2λ
+ 4d`2(εslhae + 2εprf + εH + 2−ν + 2−µ + εpke).

where all quantities are defined as stated in Theorem 1.

23Meaning that the total number of issued certificates is smaller than qca.

26



PROOF. The proof proceeds in a sequence of games, following [9, 48]. The first game is the real security
experiment. We then describe several intermediate games that modify the original game step-by-step, and
argue that our complexity assumptions imply that each game is computationally indistinguishable from the
previous one. In particular, the difference of the success probability of the adversary in two subsequent
game is negligible. We end up in the final game, where no adversary can break the security of the protocol.

Let break
(1)
δ be the event that occurs when a client oracle accepts maliciously in the sense of Defini-

tion 12 in Game δ. If required, we use x(S) to denote the value of x that is computed by a server oracle and
x(C) the value of x that is computed by a client oracle (e.g. pms(S) denotes the premaster secret computed
by the server).

Game 0. This game equals the ACCE security experiment described in Section 4. Thus, for some εauth

we have
Pr[break(1)

0 ] = εauth.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. More precisely, the game is aborted if the adversary
ever makes a first Send query to an oracle πsi , and the oracle replies with random nonce rC or rS such that
there exists some other oracle πs

′
i′ which has previously sampled the same nonce.

In total less than d` nonces rC and rS are sampled, each uniformly random from {0, 1}λ. Thus, the
probability that a collision occurs is bounded by (d`)2 · 2−λ, which implies

Pr[break(1)
0 ] ≤ Pr[break(1)

1 ] +
(d`)2

2λ
.

Note that now each oracle has a unique nonce rC or rS , which will be used to compute the master secret.

Game 2. The challenge proceeds as before, but we now abort if the adversary forges a certificate that binds
an idi ∈ {id1, . . . , id`} to a new public key. It is easy to see that the probability of this to happen is bounded
by the probability to break the signature scheme since we can use such an adversary to break the security
of the signature game εsig. The challenger behaves exactly as before except that it embeds the signature
challenge pk∗ in the key used for certification pk := pk∗. The signature queries granted in the signature
security game are used to issue all the certificates on the identities id1, . . . , id` and to answer all Register
queries. The challenger answers all other queries exactly as before. In this way any adversary that forges a
certificate can directly be used to break the security of the signature scheme. Clearly we have

Pr[break(1)
1 ] ≤ Pr[break(1)

2 ] + εca.

Game 3. We try to guess which client oracle will be the first to accept maliciously. If our guess is wrong,
we abort the game.

Technically, this game is identical to the previous, except for the following. The challenger guesses
two random indices (i∗, s∗) $← [`] × [d]. If πsi is the first client oracle that ‘accepts’ maliciously and
(i, s) 6= (i∗, s∗), then the challenger aborts the game. Since there are at most d` oracles the probability to
guess correctly, i.e. we have (i, s) = (i∗, s∗), is ≥ 1/(d`) , and thus

Pr[break(1)
2 ] ≤ d` · Pr[break(1)

3 ].
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Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the first client

oracle that ‘accepts’ maliciously, as otherwise the game is aborted.

Game 4. In this game we guess the party that holds the communication partner of the client oracle. Tech-
nically we draw j∗

$← [`]. If Π 6= j∗ for client oracle πs
∗
i∗ we abort.

We get
Pr[break(1)

3 ] ≤ ` · Pr[break(1)
4 ].

In the following we will consider two distinct cases. In the first case, Case 1, the adversary does not
modify the ciphertext containing the premaster secret, message m8, which is sent from the client oracle to
the server oracle. In the second case, Case 2, it does so.

Case 1:

Game 5. In this game we exchange the ciphertext c of the premaster secret sent by πs
∗
i∗ , message m8, by

an encryption c′ of a truly random message r (and independently of pms). However, both client and server
continue to use pms as computed by the client. Since the challenger implements all server oracles it can,
whenever the ciphertext c′ is received by any server oracle of Pj∗ , set the premaster secret to pms. We show
that this modification is indistinguishable from the previous game when the PKE is secure. Any adversary
that can distinguish these two games can be used to break the security of the public key scheme as follows.

First, we embed the challenge public key of the PKE challenger in pkj∗ . Next we draw a random pms
for oracle πs

∗
i∗ and send it to the PKE challenger. The challenge in turn responds with an encryption c∗ of

either pms or an independently drawn random value r. Let πtj∗ be the server oracle where we exchange m8

with c∗ but continue to use the original pms. For all other oracles πtj∗ of Pj∗ with t ∈ [d] and t 6= t∗ we
use the decryption queries granted in the PKE security game to decrypt m8 and set the pms of the server
oracle as given in the plaintext of m8 unless the server oracle receives c∗. Whenever c∗ is received by any
server oracle we simply set the premaster secret of that oracle to pms. Observe that if c∗ is an encryption
of pms we are in the previous game. However, if c∗ encrypts an independently drawn random message we
are in the current game. So any attacker that distinguishes these two games can directly be used to break the
security of the PKE scheme.

We have
Pr[break(1)

4 ] ≤ Pr[break(1)
5 ] + εpke.

We note that in this game the adversary does not obtain any information on pms from m8.

We now consider two subcases. Either the adversary does not modify any of the messages rC or rS in transit
(Case 1.1) or it does so (Case 1.2).

Case 1.1:

Game 6. In this game, we substitute the master secret generated by the client oracle and the server oracle
by a single truly random value. Any adversary that can distinguish between this and the previous game can
be used to break the security of the function PRF.

To show this, observe that since pms is drawn uniformly at random and no information about pms is
revealed to the attacker via m8 due the previous game we can directly embed the security challenge of the
PRF challenger: we use a PRF query (granted in the PRF security game) to compute the master secret. If
the answer has been computed with PRF we are in the previous game. If the answer is a truly random value,
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we are in the current game. So any attacker that distinguishes this game from the previous can directly be
used to break the security of the PRF.

We have,
Pr[break(1)

5 ] ≤ Pr[break(1)
6 ] + εprf .

Recall that neither rS nor rC have been modified by the adversary. We are now in a game where the
master secret ms of client and server oracle are equal and the truly random function used for computing ms
can only be accessed by πs

∗
i∗ and πt

∗
j∗ .

At this point we define another two subcases. Either the adversary does not modified any of the (remaining)
messages of m1 to m11, Case 1.1.1, or it does, Case 1.1.2.

Case 1.1.1:

In this case, the adversary must by definition modify m12 to make the client oracle accept maliciously.

Game 7. However, we now guarantee, that the adversary has no knowledge of the encryption keys gener-
ated by the client oracle and the server oracle. We do so by first replacing the PRF used to compute these
keys (and finS) by a truly random function, and then substituting finS and the encryption keys kS and kC
with truly random values. Any adversary that can detect this modification can be used to break the security
of the PRF.

To show this, observe that since ms is drawn uniformly at random we can directly embed the security
challenge of the PRF challenger: we use a PRF query (granted in the PRF security game) to compute the
encryption keys and finS . If these values have been computed with the PRF, we are in the previous game. If
these values are truly random, we are in the current game. So any attacker that distinguishes this game from
the previous can directly be used to break the security of the PRF.

We have
Pr[break(1)

6 ] ≤ Pr[break(1)
7 ] + εprf .

Game 8. In this game we show that any successfull adversary can be used to break the security of the
encryption system. We know that the adversary outputs a message m′12 6= m12 which makes the client
adversary accept. This can only happen if m′12 is a distinct, valid encryption of m12. However, then m′12

can be used to break the security of the sLHAE encryption scheme as follows: since the encryption keys are
random we can directly plug-in the sLHAE challenge (in kS) that is used to encrypt and decrypt messages
sent from the server oracle to the client oracle. When we need to generate m12 that is computed by the
server oracle we use one Encrypt query as granted by the sLHAE challenger. Since the adversary outputs a
new ciphertext m′12 that has not been generated by Encrypt, this directly breaks the security of the sLHAE
game.

Pr[break(1)
7 ] ≤ εslhae.

Collecting probabilities we get

εauth ≤ εca +
(d`)2

2λ
+ d`2(εslhae + 2εprf + εpke).

In the following, we will only explain the differences to the proof of Case 1.1.1.
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Case 1.1.2:

In this case, the adversary has modified any of the remaining messages m1 to m11 on transit. We now
substitute the output values of the pseudo-random function keyed withms by truly random values. Since the
encryption keys do only depend on rC and rS , we can substitute them by the same random keys. However,
the computation of finS does also depend on the messages m1 to m11. By assumption, the values m1 to m11

computed and received by the two oracles do differ at some point. Thus, when hashing the concatenated
messages, the corresponding outputs can only be equal with probability at most εH – otherwise we can use
the adversary to produce a collision and break a security of the hash function. Since the inputs to PRF are
now distinct with overwhelming probability we can substitute fin(S)

S and fin(C)
S

24 by independently drawn
random values. With the same argument as before, our modification can only be detected by the adversary
with probability εprf . We now abort if the output values of the PRF are equal which only happens with
probability 2−µ.

At this point the server oracle cannot help the adversary to compute a message m12 which will make
the client oracle accept. Thus, to make the client oracle accept, the adversary must compute m′12 to be an
encryption of fin(C)

S . However, since fin(S)
S is distinct from fin(C)

S the adversary cannot use m12.
We now embed the sLHAE challenge in k(C)

S which is used by the client to decrypt messages sent by
the server. Then the adversary against server-only authentication outputs a new ciphertext m′12 that has not
been generated by Encrypt which breaks the security of the sLHAE game.

Collecting probabilities we get

εauth ≤ εca +
(d`)2

2λ
+ d`2(εslhae + 2εprf + 2−µ + εH + εpke).

Case 1.2:

In this case the adversary has modified either rC or rS in transit. Since these values are input to the PRF
when computing the master secret we can substitute ms(S) and ms(C) by independently drawn random
values. We abort if these values are equal which only happens with probability 2−µ. In the next step we
replace fin(C)

C and fin(C)
S and the encryption keys k(C)

S k
(C)
C with independently drawn truly random values.

Due to the security of the PRF these modifications cannot be detected by the adversary. Since k(C)
S is never

used at any point before we can also draw this value after the client oracle receives the encryption of finS and
independently of all the computations of the adversary and the server oracle. We now embed the sLHAE
challenge into k(C)

S .
To make the client oracle accept the adversary must compute m′12 to be an encryption of fin(C)

S under
k

(C)
S . Thus, if the adversary outputs a new ciphertextm′12, it directly breaks the security of the sLHAE game

as before. Observe that to simulate the server oracle correctly, we do not have to query Encrypt to generate
m12.

Collecting probabilities we get

εauth ≤ εca +
(d`)2

2λ
+ d`2(εslhae + 2εprf + 2−µ + εpke).

24Recall that fin(C)
S refers to the Server Finished message that is re-computed by the client (for verification)
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Case 2:

We now have that the adversary modifies messagem8 which is sent from the client oracle to the server oracle
and contains the premaster secret pms. We first substitute the ciphertext c (i.e. the encrypted premaster
secret) that is sent by the client oracle, by an encryption of a truly random message r independently drawn
from pms. If r is equal to pms which happens with negligible probability 2−ν we abort, otherwise we
continue. The client will continue to use the randomly drawn pms. The server oracle will use whatever it
receives as m8. We show that our modification is indistinguishable from the previous game when the PKE
is secure. Any adversary that can distinguish these two games can be used to break the security of the public
key scheme as follows.

We embed the challenge public key of the PKE challenger in pkj∗ . For all other oracles πtj∗ of Pj∗ with
t ∈ [d] and t 6= t∗ we use the decryption queries granted by the PKE challenger to decryptm8 messages. We
let the client oracle draw the random pms and then sent it to the PKE challenger who returns a ciphertext c∗

which either encrypts pms or a truly random value. Next we send c∗ to the server oracle πt
∗
j∗ . Observe that

if c∗ is an encryption of pms we are in the previous game. However, if c∗ encrypts an independently drawn
random message we are in the current game. So any attacker that distinguishes these two games can directly
be used to break the security of the PKE scheme.

We now have that pms(C) and pms(S) are independent (while pms(C) is uniformly random). Observe
that no information about pms(C) is revealed neither to the adversary nor to the server oracle. In the next
step we replace the master secretms(C) by a truly random value. Then with the same arguments as above we
replace the Finished messages fin(C)

C and fin(C)
S and the encryption keys k(C)

S k
(C)
C by independently drawn

truly random values. These modifications are all indistinguishable by the adversary by the security of the
PRF. Observe that now k

(C)
S can also be drawn after the client oracle receives m12 (and independently of all

previous values) since it is never used before. Now we can embed the sLHAE challenge key into k(C)
S and

any message that makes the client oracle accept can be used to break the sLHAE scheme. We do not have
to use any Encrypt query granted by the sLHAE security game.

Collecting probabilities we get

εauth ≤ εca +
(d`)2

2λ
+ d`2(εslhae + 2εprf + 2−ν + εpke).

�

6.2 Indistinguishability of Keys

Lemma 2. For any adversary A running in time t′ ≈ t, the probability that A answers the encryption-
challenge correctly is at most 1/2 + εenc with

εenc ≤ εauth + d`(εpke + 2εprf + εslhae).

where εauth is an upper bound on the probability that there exists a client oracle that accepts maliciously in
the sense of Definition 12 ( Lemmas 1) and all other quantities are defined as stated in Theorem 1.

PROOF. Assume without loss of generality that the adversary A always outputs a triple such that all con-
ditions in Property 2 of Definition 12 are satisfied. Let break

(2)
δ denote the event that b′ = bsi in Game δ,

where bsi is the random bit sampled by the client oracle πsi , and b′ is either the bit output by A or (if A does
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not output a bit) chosen by the challenger. Let Advδ := Pr[break(2)
δ ] − 1/2 denote the advantage of A in

Game δ.
Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Section 5. For some εenc we have

Pr[break(2)
0 ] =

1
2

+ εenc =
1
2

+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random,
if there exists any oracle that accepts maliciously in the sense of the ACCE definition.

Thus we have
Adv0 ≤ Adv1 + εauth,

where εauth is an upper bound on the probability that there exists a client oracle that accepts maliciously in
the sense of Definition 12 (cf. Lemma 1).

Recall that we now assume thatA outputs a triple (i, s, b′) such that the oracle πsi ‘accepts’ with a unique
partner oracle πtj , such that πsi has a matching conversation to πtj , as the game is aborted otherwise.

Game 2. The challenger in this game proceeds as before, but in addition guesses indices (i∗, s∗) $←
[`] × [d]. It aborts and chooses b′ at random, if the attacker outputs (i, s, b′) with (i, s) 6= (i∗, s∗). With
probability 1/(d`) we have (i, s) = (i∗, s∗), and thus

Adv1 ≤ d` · Adv2.

Note that in Game 2 we know that A will output (i∗, s∗, b′). Note also that πs
∗
i∗ has a unique ‘partner’ due

to the previous game. In the sequel we denote with πt
∗
j∗ the unique oracle such that πs

∗
i∗ has a matching

conversation to πt
∗
j∗ , and say that πt

∗
j∗ is the partner of πs

∗
i∗ .

Subsequently, we only consider the case that the adversary does not modify any of the messages of the
pre-accept phase.

Due to proof of Lemma 1, we can subsequently only deal with adversaries that do not modify messages
exchanged between client πs

∗
i∗ and server oracle. Then we can use all the game-hops of the previous proof

to the position where both the server and the client oracle compute the keys used for the sLHAE scheme as
uniformly random keys. In this way we end up in Game 7 of the previous proof.

Game 3. In this game we can directly plug-in the sLHAE challenge. We randomly decide to embed the
sLHAE challenge key into k(C)

C = k
(S)
C or into k(C)

S = k
(S)
S . With probability ≥ 1/2 our choice is correct

(i.e. the adversary attacks the sLHAE ciphertexts generated under this key). We have

Adv2 ≤ 2` · Adv3.

This means that for the corresponding key every ciphertext generated by the client or server oracle has
been produced using the Encrypt query of the sLHAE game. Similarly the Decrypt query is used to decrypt
all the queries on behalf of the receiving oracle. IfA outputs a triple (i∗, s∗, b′), then the challenger forwards
b′ to the sLHAE challenger. Otherwise it outputs a random bit. Since the challenger essentially relays all
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messages it is easy to see that an attacker A having advantage ε′ yields an attacker against the sLHAE
security of the encryption scheme with success probability at least 1/2 + ε′.

Since by assumption any attacker has advantage at most εslhae in breaking the sLHAE security of the
symmetric encryption scheme, we have

Adv3 ≤ 1/2 + εslhae.

Collecting probabilities we get that εenc ≤ εauth + d`(εpke + 2εprf + 2εslhae).
�
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7 TLS-DH with Mutual Authentication is ACCE Secure

In this section we show that TLS-SDH with mutual authentication is ACCE secure under Definition 11. We
would like to briefly comment on why it is seemingly not possible to rely on (reasonable) variants of the
PRF-ODH assumption in the security proof. Assume the client oracle uses shares gu and gv. We basically
need that PRF(guv,m∗) for some m∗ must be indistinguishable from random. Thus, the proof requires that
u and v are hidden to the simulator, otherwise we could trivially break the assumption. Also, client and
server may communicate in several sessions with m 6= m∗. So, the assumption not only has to help us
to compute the master secret when one of the shares is gu or gv (this could be handled by PRF-ODH-like
assumptions alone) but also for distinct messages. However, we also need to simulate communications with
adversarially generated parties, i.e. where the simulator may not know the corresponding secret key. Recall
the challenger of the PRF-ODH assumption (for gu) computes PRF(hu,m) when given message m and
another group element h. One could try to use h = gv. However then the assumption would not allow
to simulate communications for gv with parties generated by the adversary. One would thus have to use
two PRF-ODH challenger which are strongly related to each other. We do not feel such an assumption is
reasonable and instead rely on the KOSK assumption in the security proof.

Theorem 2. Let µ be the output length of the PRF and let λ be the length of the nonces rC and rS . Assume
that the pseudo-random function is (t, εprf , qprf )-secure, the hash function is (t, εH)-secure, the signature
scheme used for generating certificates is (t, εca, qca)-secure, the DDH-problem is (t, εddh)-hard in the group
G used to compute the TLS premaster secret, and the sLHAE scheme is (t, εslhae)-secure. Assume that no
party will accept in a TLS handshake, if the public key of the communication partner is equal to the public
key of that party.25

Then for any adversary that (t′, εtls)-breaks the static Diffie-Hellman TLS Handshake protocol with
mutual authentication in the sense of Definition 11 with t ≈ t′ and qprf ≥ 2, qprfodh ≥ d, and qca ≥ w + ` it
holds that

εtls ≤ 4εca + 4
(d`)2

2λ
+ 4`2 · εddh + 12d`2 · (2εprf + εH + εslhae + 2−µ) + `2(εddh + d(2εprf + 2εslhae))

≤ 4εca +
(d`)2

2λ−2
+ 5`2 · εddh + 26d`2 · εprf + 14d`2 · εslhae + 12d`2 · εH.

We prove Theorem 2 by proving two lemmas. Lemma 3 bounds the probability εauth that an adversary suc-
ceeds in making any oracle accept maliciously. Lemma 6 bounds the probability εenc that an adversary does
not succeed in making an oracle accept maliciously, but which answers the encryption challenge correctly.
Then we have

εtls ≤ εauth + εenc.

Lemma 3. For any adversary A running in time t′ ≈ t, the probability that there exists an oracle πsi that
accepts maliciously is at most

εauth ≤ 2εca +
(d`)2

2λ−1
+ 2`2 · εddh + 6d`2 · (2εprf + εH + εslhae + 2−µ),

where all quantities are defined as stated in Theorem 2.

25This can easily be realized technically.
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Note that εauth ≤ εclient + εserver, where εclient is an upper bound on the probability that there exists an oracle
with ρ = Client that accepts maliciously in the sense of Definition 11, and εserver is an upper bound on the
probability that there exists an oracle with ρ = Server that accepts maliciously. We claim that

εclient ≤ εca +
(d`)2

2λ
+ `2 · εddh + 3d`2 · (2εprf + εH + εslhae + 2−µ), and

εserver ≤ εca +
(d`)2

2λ
+ `2 · εddh + 3d`2 · (2εprf + εH + εslhae + 2−µ),

and thus

εauth ≤ εclient + εserver ≤ 2 ·
(
εca +

(d`)2

2λ
+ `2 · εddh + 3d`2 · (2εprf + εH + εslhae + 2−µ)

)
.

We split up the proof of Lemma 3 in two separate lemmas, Lemma 4 and Lemma 5, which we give (and
prove) in the following sections.

7.1 Client Authentication

Lemma 4. For any adversary A running in time t′ ≈ t, the probability that there exists any πsi with
ρ = Client that accepts maliciously with respect to Definition 11 is at most Collecting probabilities we get
that

εclient ≤ εca +
(d`)2

2λ
+ `2 · εddh + 3d`2 · (2εprf + εH + εslhae + 2−µ)

where all quantities are defined as stated in Theorem 2.

PROOF. The proof again proceeds in a sequence of games. As before we use different subcases to organize
the proof. When denoting the different subcases we stay consistent with the general proof outline. We end
up in a final game, where no adversary can break the security of the protocol. Let break

(3)
δ be the event that

occurs when a client oracle accepts maliciously in the sense of Definition 11 in Game δ.

Game 0. This game equals the ACCE security experiment described in Section 5. Thus, for some εclient

we have
Pr[break(3)

0 ] = εclient.

Game 1. In this game we add an abort rule. The challenger aborts, if there exists any oracle πsi that
chooses a random nonce rC or rS which is not unique. More precisely, the game is aborted if the adversary
ever makes a first Send query to an oracle πsi , and the oracle replies with random nonce rC or rS such that
there exists some other oracle πs

′
i′ which has previously sampled the same nonce.

In total less than d` nonces rC and rS are sampled, each uniformly random from {0, 1}λ. Thus, the
probability that a collision occurs is bounded by (d`)22−λ, which implies

Pr[break(3)
0 ] ≤ Pr[break(3)

1 ] +
(d`)2

2λ
.

Note that now each oracle has a unique nonce rC or rS , which will be used to compute the master secret.
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Game 2. The challenge proceeds as before, but we now abort if the adversary forges a certificate that
binds an idi ∈ {id1, . . . , id`} to a new public key. It is easy to see that the probability of this to happen
is bounded by the probability to break the signature scheme since we can use such an adversary to break
the security of the signature game εsig. The challenger behaves exactly as before except that it embeds the
signature challenge pk∗ in pk := pk∗. The signature queries granted by the signature game are used to issue
all the certificates on the identities id1, . . . , id` and to answer all Register queries. The challenger answers
all other queries exactly as before. In this way any adversary that forges a certificate can directly be used to
break the security of the signature scheme.

Clearly we have
Pr[break(3)

1 ] ≤ Pr[break(3)
2 ] + εca.

Game 3. We now try to guess two distinct indices (i∗, j∗) with i∗, j∗ ∈ [`], such that the first oracle πsi
that will accept maliciously with ρ = Client belongs to party Pi∗ , i.e. i = i∗ and has communication partner
Π = j with j = j∗. If the first oracle to accept maliciously is πsi with i 6= i∗ or πsi has Π = j with j 6= j∗,
then the challenger aborts the game. Since there are at most ` parties, the probability to guess correctly, i.e.
we have (i, j) = (i∗, j∗), is ≥ 1/`2 , and thus

Pr[break(3)
2 ] ≤ `2 · Pr[break(3)

3 ].

Game 4. In this game we want to substitute the premaster secret pms computed by all oracles πsi∗ and their
partner oracles πtj∗ for s, t ∈ [d] by a randomly chosen value. We can exploit the fact that the premaster
secret will be the same for all sessions of parties Pi∗ and Pj∗ in this setting (static Diffie-Hellman keys and
mutual authentication) and that we know the party Pi∗ holding the oracle that will accept maliciously first
and its communication partner Pj∗ due to the previous game.

The challenger in this game proceeds as before but replaces the Diffie-Hellman public keys in the cer-
tificates for Pi∗ and Pj∗ with the Diffie Hellman values (ga, gb) from a DDH challenge tuple (g, ga, gb, gc).
Observe that ga and gb are distributed exactly as the public keys that have originally been chosen by the
challenger. The challenger then proceeds as follows. Whenever two oracles of Pi∗ and Pj∗ communicate
with each other, the premaster secret will be set to gc, otherwise the pms will be computed honestly and
then set by the challenger. The challenger can do so, since we know the secret keys for all public keys due to
the KOSK assumption. It knows the corresponding secret Diffie-Hellman key of the communication partner
of Pi∗ or Pj∗ and can so compute the premaster secret.

If gc = gab then we are in the previous game, whereas if gc 6= gab we are in the current game. It follows
that we can use an adversary that can distinguish between this game and the previous game to break DDH.

We have
Pr[break(3)

3 ] ≤ Pr[break(3)
4 ] + εddh.

Game 5. We now try to guess index s∗ with s∗ ∈ [d], such that the first oracle of Pi∗ that will accept
maliciously is πs

∗
i∗ . If the first oracle to accept maliciously is πsi∗ with s 6= s∗, then the challenger aborts

the game. Since there are at most d oracles for each party, the probability to guess correctly, i.e. we have
s = s∗, is ≥ 1/d , and thus

Pr[break(3)
4 ] ≤ d · Pr[break(3)

5 ].
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Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the first client

oracle that ‘accepts’ maliciously with Π = j∗, as otherwise the game is aborted.
We now consider two cases. Either the adversary does not modify any of the messages rC or rS in transit

(Case 1.1) or it does so (Case 1.2).

Case 1.1:

Game 6. In this game, we substitute the master secret generated by the client oracle and the server oracle
by a truly random value. Any adversary that can distinguish between this and the previous game can be used
to break the security of the PRF.

To show this, observe that since pms is drawn uniformly at random due to the previous game, we can
directly embed the security challenge of the PRF challenger: we use a PRF query to compute the master
secret. If the answer has been computed with the PRF we are in the previous game. If the answer is a truly
random value, we are in the current game. So any attacker that distinguishes this game from the previous
can directly be used to break the security of the PRF.

We have,
Pr[break(3)

5 ] ≤ Pr[break(3)
6 ] + εprf .

We are now in a game where the master secret of client and server oracle are equal and truly random,
and where neither rS nor rC have been modified by the adversary. At this point we define two subcases.
Either the adversary does not modify any of the (remaining) messages m1 to m11, Case 1.1.1, or it does,
Case 1.1.2.

Case 1.1.1:

Game 7. In this game, the adversary must by definition modify m12 to make the client oracle accept
maliciously. However, we first substitute finS and the encryption keys generated by the client oracle and
the server oracle by truly random values. Any adversary that can distinguish between this and the previous
game can be used to break the security of the PRF. To show this, observe that since ms is drawn uniformly
at random we can directly embed the security challenge of the PRF challenger: we use a PRF query to
compute finS . If the answer has been computed with the PRF we are in the previous game. If the answer
is a truly random value, we are in the current game. So any attacker that distinguishes this game from the
previous can directly be used to break the security of the PRF. We have,

Pr[break(3)
6 ] ≤ Pr[break(3)

7 ] + εprf .

Game 8. In this game we show that any adversary that wins can be used to break the security of the
encryption system. We know that the adversary outputs a message m′12 6= m12 which makes the client
adversary accept. Since finS is a truly random value this can only happen if m′12 is also a valid encryption
of m12. However, this encryption can be used to break the security of the sLHAE encryption scheme as
follows: we embed the sLHAE challenge key into k(C)

S = k
(S)
S and use the Encrypt query to compute m12.

Now the adversary outputs a new ciphertext m′12 that has not been generated by Encrypt which breaks the
security of the sLHAE game.

Pr[break(3)
7 ] ≤ εslhae.
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Collecting probabilities we get that

εclient ≤ εca +
(d`)2

2λ
+ `2 · εddh + d`2 · (2εprf + εslhae).

In the following, we will only explain the differences to the proof of Case 1.1.1.

Case 1.1.2:

In this case, the adversary has modified any of the remaining messages m1 to m11 on transit. We first
substitute the output values of the PRF when keyed with ms by truly random values. Since the encryption
keys do only depend on rC and rS we substitute the values that have been computed by the client oracle and
the server oracle by the same random keys. However, the computation of finS does depend on the messages
m1 tom11. Sincem1 tom11 are distinct, so must be their hash values, as otherwise we can use the adversary
to break the security of the hash function. The distinct hash values are input to the PRF and we can substitute
fin(S)
S , fin(C)

S and k(C)
S = k

(S)
S by independently drawn random values. If fin(C)

S = fin(S)
S , which happens

with probability 2−µ, we abort. Otherwise (fin(C)
S 6= fin(S)

S ), the server oracle will not compute a message
m12 that will make the client oracle accept. To make the client oracle accept the adversary must compute
m′12 to be an encryption of fin(C)

S .
Now we again embed the sLHAE challenge in k(C)

S = k
(S)
S . Then the adversary outputs a new ciphertext

m′12 that has not been generated by Encrypt which breaks the security of the sLHAE game.
Collecting probabilities we get that

εclient ≤ εca +
(d`)2

2λ
+ `2 · εddh + d`2 · (2εprf + εH + εslhae + 2−µ).

Case 1.2:

In this case the adversary has modified either rC or rS in transit. Since these values are input to the PRF when
computing the master secret we can by the security of the PRF substitutems(S) andms(C) by independently
drawn random values. With probability 2−µ these values are equal and we abort. Otherwise we proceed
as follows. Similar to before, we can by the security of the PRF show that k(C)

S can be substituted with
a uniformly random key that is drawn after the client oracle receives the last message m12. Thus k(C)

S is
independent of the server oracle and the adversary. Since k(C)

S is a uniformly random value independent of
any value computed by the server oracle and unknown to the adversary we can as before embed the PRF
challenge in k(C)

S .
Thus, if the adversary outputs a message that makes the client accept, it directly breaks the security of

the sLHAE game.

Collecting probabilities we get that

εclient ≤ εca +
(d`)2

2λ
+ `2 · εddh + d`2 · (2εprf + εslhae + 2−µ).

�
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7.2 Server Authentication

Lemma 5. For any adversaryA running in time t′ ≈ t, the probability that there exists a πsi with ρ = Server
that accepts maliciously with respect to Definition 11 is at most

εserver ≤ εca +
(d`)2

2λ
+ `2 · εddh + 3d`2 · (2εprf + εH + εslhae + 2−µ)

where all quantities are defined as stated in Theorem 2.

PROOF. Due to the symmetry of the handshake the proof is essentially that of Lemma 4. The only difference
is that now the messagem12 can be modified in ‘transit’. However by the definition of matching conversation
this does not result in a successfull adversary. �

7.3 Indistinguishability of Keys

Lemma 6. For any adversary A running in time t′ ≈ t, the probability that A answers the encryption-
challenge correctly is at most 1/2 + εenc with

εenc ≤ εauth + `2 · εddh + 2d`2 · (εprf + εslhae).

where εauth is an upper bound on the probability that there exists a client oracle that accepts maliciously in
the sense of Definition 11 ( Lemmas 4) and all other quantities are defined as stated in Theorem 2.

PROOF. Assume without loss of generality that the A always outputs a triple such that all conditions in
Property 2 of Definition 11 are satisfied. Let break

(5)
δ denote the event that b′ = bsi in Game δ, where bsi is

the random bit sampled by the oracle πsi , and b′ is either the bit output by A or (if A does not output a bit)
chosen by the challenger. Let Advδ := Pr[break(5)

δ ]− 1/2 denote the advantage of A in Game δ.
Consider the following sequence of games.

Game 0. This game equals the ACCE security experiment described in Section 5. For some εenc we have

Pr[break(4)
0 ] =

1
2

+ εenc =
1
2

+ Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts and chooses b′ uniformly random,
if there exists any oracle that accepts maliciously in the sense of the ACCE definition.

Thus we have
Adv0 ≤ Adv1 + εauth,

where εauth an upper bound on the probability that there exists an oracle that accepts maliciously in the sense
of Definition 11 (cf. Lemma 4).

Recall that we now assume thatA outputs a triple (i, s, b′) such that the oracle πsi ‘accepts’ with a unique
partner oracle πtj , such that πsi has a matching conversation to πtj , as the game is aborted otherwise.
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Game 2. We now try to guess indices (i∗, j∗) with i∗, j∗ ∈ [`], such that when the Adversary terminates
and outputs (i, s, b′) it holds that i = i∗ and oracle πsi∗ has communication partner Π = j with j = j∗.

If the Adversary terminates and outputs (i, s, b′), and i 6= i∗ or πsi has communication partner Π = j
with j 6= j∗, the challenger aborts the game. Since there are at most ` parties, the probability to guess
correctly, i.e. we have (i, j) = (i∗, j∗), is ≥ 1/`2 , and thus

Pr[break(3)
1 ] ≤ `2 · Pr[break(3)

2 ].

Game 3. With the same arguments as in Game 4 of the proof of Lemma 4 we exchange the premaster
secret pms computed in all sessions between parties Pi∗ and Pj∗ with a randomly chosen value.

Thus we have
Adv2 ≤ Adv3 + εddh.

Game 4. We now try to guess index s∗ with s∗ ∈ [d], such that when the Adversary terminates and
outputs (i, s, b′) it holds that s = s∗. Since there are at most d oracles for each party, the probability to guess
correctly, i.e. we have s = s∗, is ≥ 1/d , and thus

Adv3 ≤ d · Adv4.

Note that in this game the attacker can only break the security of the protocol, if oracle πs
∗
i∗ is the first client

oracle that ‘accepts’ maliciously with Π = j∗, as otherwise the game is aborted.

Game 5. In this game we exchange the encryption keys computed by πs
∗
i∗ (and the partner oracle having

a matching conversation with πsi ) with uniformly random keys. To show this, we, for reasons of simplicity,
will make several changes at the same time and argue for each, that the adversary cannot detect this change.

MASTER SECRET. With the same arguments as in the previous proof we exchange the master secret with a
uniformly random value.

ENCRYPTION KEYS. With the same arguments as in the previous proof we exchange the encryption keys
with a uniformly random value. Observe that since ms is drawn uniformly at random we can again directly
embed the security challenge of the PRF challenger: we use a PRF query to compute the encryption keys as

KC→S
enc ||KS→C

enc ||KC→S
mac ||KS→C

mac := PRF(ms, label2||rC ||rS)

If the adversary can detect whether the keys have been computed with the PRF or if the answer is a truly
random value, we can directly use this adversary to break the security of the PRF.

Summarizing these changes we get that

Adv4 ≤ Adv5 + 2 · εprf .
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Game 6. In this game we can directly plug-in the sLHAE challenge into either k(C)
C = k

(S)
C or k(C)

S = k
(S)
S .

With probability ≥ 1/2 our random choice is correct (i.e. the adversary attacks the sLHAE ciphertexts
generated under this key). We have

Adv5 ≤ 2` · Adv6.

This means that for the corresponding key every ciphertext generated by the client or server oracle has been
produced using the Encrypt query of the sLHAE game. Similarly the Decrypt query is used to decrypt all
these queries on behalf of the receiving oracle. IfA outputs a triple (i∗, s∗, b′), then the challenger forwards
b′ to the sLHAE challenger. Otherwise it outputs a random bit. Since the challenger essentially relays
all messages it is easy to see that an attacker A having advantage ε′ yields an attacker against the sLHAE
security of the encryption scheme with success probability at least 1/2 + ε′.

Since by assumption any attacker has advantage at most εslhae in breaking the sLHAE security of the
symmetric encryption scheme, we have

Adv6 ≤ 1/2 + εslhae.

Collecting probabilities we get that

εenc ≤ εauth + `2 · εddh + 2d`2 · (εprf + εslhae).

�
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8 Proof Sketches

In this section we give proof sketches for the remaining ciphersuites, mutually authenticated TLS-RSA and
server-only authenticated TLS-DH and TLS-DHE.

8.1 Proof Sketch for Mutually Authenticated TLS-RSA

Theorem 3. Let µ be the output length of the PRF, ν be the length of the premaster secret, and λ be the
length of the nonces rC and rS . Assume that the PRF is (t, εprf , qprf)-secure, the public key encryption
scheme is (t, εpke, qpke)-secure, the hash function is (t, εH)-secure, the signature scheme used for generating
certificates is (t, εca, qca)-secure, the signature scheme used to sign messages in TLS is (t, εsig, qsig)-secure,
and the sLHAE scheme is (t, εslhae)-secure.

Then for any adversary that (t′, εtls)-breaks the TLS-RSA Handshake protocol with mutual authenti-
cation in the sense of Definition 11 with t ≈ t′ and qpke, qsig ≥ d, qprf ≥ 2, and qca ≥ w + ` it holds
that

εtls ≤ 4εca +
(d`)2

2λ−2
+ 2` · εsig + 16d`2(2−ν + 2−µ + εH) + (16d`2 + d`)(εpke + 2εprf + 2εslhae).

When proving mutual authentication we consider the following three types of adversaries.

Type 1. The adversary breaks the authentication property of Definition 11 and the first oracle that mali-
ciously accepts is a client oracle (i.e. an oracle with ρ = Client).

Type 2. The adversary breaks the authentication property of Definition 11 and the first oracle that mali-
ciously accepts is a server oracle (i.e. an oracle with ρ = Server).

Type 3. The adversary answers the encryption challenge correctly for sessions in which client and server
have mutual authentication.

The proof is similar to the proof of Theorem 1 (for TLS-RSA with server-only authentication) given in
Section 6. We can argue that no adversary of Type 1 exists (except for some negligible error probability)
because we have already shown in the proof of Theorem 1 that the client only accepts if the messages sent
by the client and server have not been modified in transit, even without authentication of the client. The
only additional message sent from the client to the server oracle in the mutual authentication setting is the
Certificate Verify message m9 which contains a fresh signature (that is also computed over the random
nonces). However, we can argue that any modification to the signature on transit results in the client to not
accept. This is because the Server Finished message is computed over all previous messages, which would
then be different for the client (which re-computes it for verification over the unmodified signature it sent)
and the server (which computes it over the modified signature it received) oracle.

To prove that no adversary of Type 2 exists (again except for some negligible error probability) we now
exploit that the random nonces, contained in messages m1 and m2, and the encryption of the premaster
secret, message m8, are signed by the client. If the Type 2 adversary modifies any of these messages, we
can directly use the adversary to output a signature forgery. We can now substitute m8 by the encryption of
a truly random value under the assumption that the public key encryption system is CCA secure. As before,
the adversary now cannot gain any information on pms from the ciphertext. Based on this modification and
the security of the PRF we can in the next step substitute the master secretms by a truly random value. With
a truly random master secret we can now, again by the security of the PRF, substitute the Finished messages
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fin(S)
C and fin(S)

S and the encryption keys k(S)
C and k(S)

S with truly random values. We can now embed the
sLHAE key into k(S)

C . Since the nonces and m8 are protected from adversarial modifications, we must have
that k(S)

C = k
(C)
C . Now there are two cases. If the adversary modifies any of the messages m1 to m10, the

Server Finished messages fin(S)
S and fin(C)

S can, exploiting the security of the hash function and the PRF, be
substituted by uniformly random values which are distinct with probability 1−2−µ. The messagem11 output
by the client oracle thus cannot help the adversary to make the server oracle accept. The adversary must
compute an encryption of fin(S)

C on its own. Otherwise, in case m11 (Client Finished) is the only message
modified by the adversary, they will be substituted by the same random value, i.e. fin(S)

C = fin(C)
C . In such a

case, any adversary that makes the server oracle accept maliciously has to compute a new encryptionm′11 of
fin(S)
C = fin(C)

C . In both cases we can use the Encrypt query from the sLHAE security game to generatem11.
Therefore, to make the server accept, the adversary must now break the security of the sLHAE scheme.

To prove that no adversary of Type 3 exists (again except for some negligible error probability) we
exploit that no message up to, but not including, m12 has been modified on transit. Then the keys for
the sLHAE scheme can be substituted by uniformly random values and we can directly plugin the sLHAE
challenge in one of the encryption keys into either k(C)

C = k
(S)
C or k(C)

S = k
(S)
S . This means that for the

corresponding key every ciphertext generated by the client or server oracle has been produced using the
Encrypt query of the sLHAE game. Similarly the Decrypt query is used to decrypt all these queries on
behalf of the receiving oracle. An adversary that solves the encryption challenge can so directly be used to
break the security of the sLHAE scheme.

8.2 Proof Sketch for Server-Only Authenticated TLS-DHE

Theorem 4. Let µ be the output length of the PRF and λ be the length of the nonces rC and rS . Assume that
the pseudo-random function PRF is (t, εprf , qprf)-secure, the hash function is (t, εH)-secure, the signature
scheme used for generating certificates is (t, εca, qca)-secure, the signature scheme used to sign messages in
TLS is (t, εsig, qsig)-secure, the sLHAE scheme is (t, εslhae)-secure, and the PRF-ODH-problem is (t, εprfodh)-
hard with respect to G and PRF.

Then for any adversary that (t′, εtls)-breaks the TLS-DHE Handshake protocol with server-only authen-
tication in the sense of Definition 12 (with perfect forward secrecy) with t ≈ t′ and qprf ≥ 1, qsig ≥ d, and
qca ≥ w + ` it holds that

εtls ≤ 2 · εca +
(d`)2

2λ−1
+ 2` · εsig + 8(d`)2 ·

(
2−µ + 2−ν + εH

)
+ 9(d`)2 · (εprfodh + εprf + 2εslhae) .

When proving server-only authentication we consider two types of adversaries.

Type 1. The adversary breaks the server-only authentication property of Definition 12 for a client oracle.

Type 2. The adversary answers the encryption challenge correctly for clients that do not accept maliciously.

To prove that no adversary of Type 1 exists (again except for some negligible error probability) we
proceed as follows. At first we exclude certificate forgeries and ensure uniqueness of the random nonces.
Then we exclude modifications of the random nonces and the server share by reducing security to that of
the signature scheme, since the server signature is computed over all these values. To do so, technically
we first guess the server party j for which the adversary outputs a signature forgery with probability 1

` . We
replace the public key pkj of this party with the challenge public key pk′ of the signature security game.
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For simulation of oracles of party Pj we use the signature oracle granted in the signature security game. We
then guess the server oracle πtj and its partner (client) oracle πsi with probability 1/(d2`). (Note that we
have already guessed the server party holding the server oracle.)

We now consider two cases: either the client Diffie-Hellman share has been modified by the adversary
(Case 2) or not (Case 1). In Case 1 we directly substitute the master secret ms that is computed between
oracles πsi and πtj by a truly random value. Any adversary that can recognize our modification can be used
to break the PRF-ODH assumption.26 To this end consider that we send the concatenation of the fixed label
label1 and the random nonces to the PRF-ODH challenger who responds with zb, gu and gv. (For details see
Definition 6.) Now we first embed the gv share from the PRF-ODH challenge in the messagem4 sent by πtj .
Then we set gu to be the Diffie-Hellman share of πsi included in message m8 and use zb as the master secret
for the client and server oracle. Note that gu and gv are distributed exactly as before, since they are chosen
at random. Also we now use the PRF-ODH oracle to simulate that πtj has access to the secret key v (in
case the adversary modifies m8). Now if zb is the real output of PRF this corresponds to the situation where
ms is computed according to the protocol specification. However if zb is random this exactly corresponds
to the situation where ms is drawn uniformly random. So under the PRF-ODH assumption no adversary
can notice our substitution of the master secret with a truly random value in Case 1. The remaining part
of the proof is similar to that of TLS-RSA with server-only authentication: we now again consider two
subcases of Case 1, Case 1.1.1 and Case 1.1.2. Observe that in this proof we do not require two additional
subcases Case 1.1 and Case 1.2 since the random nonces are protected by adversarial modifications via
the signatures. Either one of the messages m1 to m11 have been modified in transit (Case 1.1.2) or not
(Case 1.1.1). In Case 1.1.1 we thus assume that only the message m12 has been modified. In this case the
adversary has to compute a new encryption of fin(C)

S = fin(S)
S to make the client accept which breaks the

security of the sLHAE scheme. If the adversary modifies m1 to m11, the Finished messages finS (i.e. fin(C)
S

and fin(S)
S ), can, exploiting the security of the hash function and the PRF, be substituted with random values

that are distinct with probability at least 1− 2−µ. So in Case 1.1.2, fin(S)
S is independent from fin(C)

S and the
adversary cannot use the output of the server oracle to compute m12 such that the client accepts and has to
compute this message on its own. However, this breaks the security of the sLHAE scheme. In Case 1.1.1
and Case 1.1.2 we use the Encrypt queries to compute the output of the server oracle m12.

The Cases 2 can be reduced to the security of the sLHAE scheme. We embed the sLHAE challenge
in the key k(C)

S of the client oracle that is used to decrypt server messages. As in previous proofs k(C)
S is

independent of the adversary and all computations made by the server oracle. However, now any message
that makes the client accept breaks the security of the sLHAE scheme.

To prove that no adversary of Type 2 exists (again except for some negligible error probability), we
exploit that in the previous proof we technically also showed, that the client will not accept if any of the
messages sent by the client will be modified. Since any message that is used to derive the encryption keys
will not be modified, the encryption keys of client and server oracle are equal. With the same arguments
as before, we can now substitute the encryption keys by random values and directly plugin the sLHAE
challenge in either k(C)

C = k
(S)
C or k(C)

S = k
(S)
S . This means that for the corresponding key every ciphertext

generated by the client or server oracle has been produced using the Encrypt query of the sLHAE game.
Similarly the Decrypt query is used to decrypt all these queries on behalf of the receiving oracle. Since both
DH shares are drawn randomly in each session we also have perfect forward secrecy.

Remark 6. Note that εclient (i.e. the probability that a client oracle maliciously accepts) in our proof of
26Due to the nature of the PRF-ODH assumption we do not replace the premaster secret pms separately.
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TLS-DHE with server-only authentication differs from εclient in the proof given in JKSS for TLS-DHE with
mutual authentication. This is mainly due to the fact that we extended the ACCE model of JKSS to allow
for arbitrary key registration of new parties. (Recall that the adversary only wins, if a client oracle πsi
maliciously accepts after receiving a certificate that was originally created by the challenger, i.e. πsi has
Π = j and idj ∈ {id1, . . . , id`}.) Thus we now have to additionally ensure that the adversary cannot break
the signature scheme and create valid certificates for parties Pj such that idj ∈ {id1, . . . , id`}.

8.3 Proof Sketch for Server-Only Authenticated TLS-DH

Theorem 5. Let λ be the length of the nonces rC and rS . Assume that the pseudo-random function PRF is
(t, εprf , qprf )-secure, the signature scheme used for generating certificates is (t, εca, qca)-secure, the sLHAE
scheme is (t, εslhae)-secure, and the Strong PRF-ODH-problem is (t, εprfodh, qprfodh)-hard with respect to G
and PRF.

Then for any adversary that (t′, εtls)-breaks the TLS-DH Handshake protocol with server-only authen-
tication in the sense of Definition 12 with t ≈ t′ and qprf ≥ 1, qprfodh ≥ d, and qca ≥ w + ` it holds
that

εtls ≤ 2 · εca +
(d`)2

2λ−1
+ 8(d`)2 · (εH + 2−µ) + 9(d`)2 · (εprfodh + εprf + 2εslhae) .

To prove the security of TLS-DH with server-only authentication we again consider the two types of adver-
saries against server-only authenticated TLS as described in the previous section.

To prove that no adversary of Type 1 exists (again except for some negligible error probability) we first
proceed as in the proof of TLS-DHE with server-only authentication. We first exclude modifications of the
server share which is contained as a long-term key in the server certificate. An adversary able to output a
valid signature (verifiable under the key used by the simulator to generate certificates) for a new DH public
key could directly be used to forge a certificate. We then guess the server oracle πtj and its partner (client)
oracle πsi with probability 1/(d`)2.

Now we again follow the outline of the proof of TLS-DHE with server-only authentication and consider
two cases. We have the same cases and subcases as before. Either the adversary does modify the client share
(Case 2) or not (Case 1). Either the adversary does not modify any of the nonces in transit (Case 1.1), or
it does (Case 1.2) so. Either the adversary does not modify any of the remaining messages m1 to m11 in
transit (Case 1.1.1), or it does (Case 1.1.2) so.

In Case 1.2, Case 1.1.1, and Case 1.1.2 we exploit the Strong PRF-ODH assumption to show that the
master secret is indistinguishable from random. As before, in Case 2 the master secret ms(C) computed by
the client oracle is indistinguishable from random and with overwhelming probability distinct from ms(S).

To show that the master secret is indistinguishable from random in the subcases of Case 1, we need
to exploit the Strong PRF-ODH problem. We need the enhanced (as compared to the original PRF-ODH
assumption) capabilities of the adversary in the Strong PRF-ODH game because any Type 1 adversary can
try to engage in several (qprfodh) sessions with the same server-oracle and the same client share (only using
distinct nonces). Thus, the attack capabilities granted in the original PRF-ODH game do not suffice to
correctly simulate the behaviour of the oracles.

In Case 1 we substitute the master secret that is computed between oracles πsi and πtj by a truly ran-
dom value. Any adversary that can recognize our modification can be used to break the Strong PRF-ODH
assumption. Again consider that we send the concatenation of the first label and the random nonces to
the PRF-ODH challenger, who responds with zb, gu and gv. At Pj we first embed the gv share from the
PRF-ODH challenge in the certificate (without changing the distribution, since gv is random). Also we now
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use the PRF-ODH challenger to simulate that oracles of Pj have access to the secret key v. In the commu-
nication between oracles πsi and πtj , we set gu to be the Diffie-Hellman share of πsi and use zb as the master
secret for the client and server oracle. Again, gu is distributed exactly as before. We can now simulate all
adversarial queries to Pj including those where the adversary re-uses gu as the client-share. This is because
the nonce generated by the server is always fresh and thus the message input to the Strong PRF-ODH oracle
is distinct from the values used in the first step of the Strong PRF-ODH security game. Now, if zb is the
real output of PRF this corresponds to the situation where ms is computed honestly, if it is random, ms
is random too. So under the PRF-ODH assumption no adversary can notice our substitution of the master
secret with a random value in Case 1.1.1, Case 1.1.2, and Case 1.2. The remaining part of the proof is again
similar to that of TLS-DHE with server-only authentication.

The Cases 2, 1.2 and 1.1.2 can all be reduced to the security of the sLHAE scheme. We embed the
sLHAE challenge in the key k(C)

S of the client oracle that is used to decrypt server messages. Since fin(S)
S is

independent from fin(C)
S , the adversary cannot use the output of the server oracle to compute m12 such that

the client accepts. Thus it has to compute this message on its own. However, this breaks the sLHAE as-
sumption. In Case 1.1.1 the adversary has to compute a new ciphertext on the same message fin(S)

S = fin(C)
S

to make the client accept. However this also breaks the security of the sLHAE scheme.

To prove that no adversary of Type 2 exists (again except for some negligible error probability), we
proceed similar to the previous proof of TLS-DHE with server-only authentication. We first exploit that the
client will not accept if any of the messages is modified. Next, we can directly plug-in the sLHAE challenge
into either k(C)

C = k
(S)
C or k(C)

S = k
(S)
S . This means that for the corresponding key every ciphertext generated

by the client or server oracle has been produced using the Encrypt query of the sLHAE game. Similarly
the Decrypt query is used to decrypt all these queries on behalf of the receiving oracle. So any successful
adversary breaks the security of the sLHAE game.

46



References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an
analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of
Lecture Notes in Computer Science, pages 143–158. Springer, April 2001.

[2] Adam Langley, Google Security Team. Protecting data for the long term with for-
ward secrecy. http://googleonlinesecurity.blogspot.co.uk/2011/11/
protecting-data-for-long-term-with.html.

[3] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key Infrastructure Certificate
Management Protocol (CMP). RFC 4210 (Proposed Standard), September 2005.

[4] Gregory V. Bard. The vulnerability of SSL to chosen plaintext attack. Cryptology ePrint Archive,
Report 2004/111, 2004. http://eprint.iacr.org/.

[5] Gregory V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL. In
Manu Malek, Eduardo Fernández-Medina, and Javier Hernando, editors, SECRYPT, pages 99–109.
INSTICC Press, 2006.

[6] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general fork-
ing lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 06: 13th Conference on Computer and Communications Security, pages 390–399. ACM Press,
October / November 2006.

[7] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson,
editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 232–249. Springer, August 1994.

[8] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis, editor,
Advances in Cryptology – EUROCRYPT’94, volume 950 of Lecture Notes in Computer Science, pages
92–111. Springer, May 1994.

[9] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-
based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer, May / June 2006.

[10] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen Zalinescu. Cryptographically ver-
ified implementations for TLS. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS
08: 15th Conference on Computer and Communications Security, pages 459–468. ACM Press, Octo-
ber 2008.

[11] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller. Elliptic Curve Cryptography (ECC)
Cipher Suites for Transport Layer Security (TLS). RFC 4492 (Informational), May 2006. Updated by
RFC 5246.

[12] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and their security
analysis. In Michael Darnell, editor, 6th IMA International Conference on Cryptography and Coding,
volume 1355 of Lecture Notes in Computer Science, pages 30–45. Springer, December 1997.

47

http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://googleonlinesecurity.blogspot.co.uk/2011/11/protecting-data-for-long-term-with.html
http://eprint.iacr.org/


[13] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 1–12. Springer, August 1998.

[14] C. Brzuska, M. Fischlin, N.P. Smart, B. Warinschi, and S. Williams. Less is more: Relaxed yet
composable security notions for key exchange. Cryptology ePrint Archive, Report 2012/242, 2012.
http://eprint.iacr.org/.

[15] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Composability of
Bellare-Rogaway key exchange protocols. In Yan Chen, George Danezis, and Vitaly Shmatikov, edi-
tors, ACM CCS 11: 18th Conference on Computer and Communications Security, pages 51–62. ACM
Press, October 2011.

[16] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society
Press, October 2001.

[17] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited (preliminary
version). In 30th Annual ACM Symposium on Theory of Computing, pages 209–218. ACM Press, May
1998.

[18] S. Chaki and A. Datta. Aspier: An automated framework for verifying security protocol implemen-
tations. In Computer Security Foundations Symposium, 2009. CSF ’09. 22nd IEEE, pages 172 –185,
july 2009.
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