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Abstract

Xoring two permutations is a very simple way to construct pseudorandom functions from
pseudorandom permutations. In [14], it is proved that we have security against CPA-2 attacks
when m � O(2n), where m is the number of queries and n is the number of bits of the inputs
and outputs of the bijections. In this paper, we will obtain similar (but slightly different) results
by using the “standard H technique” instead of the “Hσ technique”. It will be interesting to
compare the two techniques, their similarities and the differences between the proofs and the
results.

Key words: Pseudorandom functions, pseudorandom permutations, security beyond the birth-
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1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudorandom functions (PRF)
named “Luby-Rackoff backwards” was first considered in [3]. This problem is obvious if we are in-
terested in an asymptotical polynomial versus non polynomial security model (since a PRP is then
a PRF), but not if we are interested in achieving more optimal and concrete security bounds. More
precisely, the loss of security when regarding a PRP as a PRF comes from the “birthday attack”
which can distinguish a random permutation from a random function of n bits to n bits, in 2

n
2

operations and 2
n
2 queries. Therefore different ways to build PRF from PRP with a security above

2
n
2 and by performing very few computations have been suggested (see [2, 3, 4, 6]). One of the

simplest way is simply to Xor k independent pseudorandom permutations, for example with k = 2.
In [6] (Theorem 2 p.474), it has been proved, with a simple proof, that the Xor of k independent

PRP gives a PRF with security at least in O(2
k
k+1

n). (For k = 2 this gives O(2
2
3
n)). In [2], a

much more complex strategy (based on Azuma inequality and Chernoff bounds) is presented. It is
claimed that with this strategy we may prove that the Xor of two PRP gives a PRF with security at
least in O(2n/n

2
3 ) and at most in O(2n), which is much better than the birthday bound in O(2

n
2 ).

However the authors of [2] present a very general framework of proof and they do not give every
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details for this result. For example, page 9 they wrote “we give only a very brief summary of how
this works”, and page 10 they introduce O functions that are not easy to express explicitly. In
this paper we will use a completely different proof strategy, based on the “standard H technique”
(see Section 3 below), simple counting arguments and induction. This paper is self contained. It is
nevertheless interesting to compare this paper with [14] where similar (but slightly different results,
as we will explain) are obtained by using the Hσ technique instead of the standard H technique.

Related Problems. In [9] the best know attacks on the Xor of k random permutations
are studied in various scenarios. For k = 2 the bound obtained are near our security bounds.
In [7] attacks on the Xor of two public permutations are studied (i.e. indifferentiability instead of
indistinguishibility).

Part I

From the Xor of Two Permutations to the hi

values

2 Notation and Aim of this paper

In all this paper we will denote In = {0, 1}n. Fn will be the set of all applications from In to In,
and Bn will be the set of all permutations from In to In. Therefore |In| = 2n, |Fn| = 2n·2

n
and

|Bn| = (2n)!. x ∈R A means that x is randomly chosen in A with a uniform distribution.
The aim of this paper is to prove the theorem below, with an explicit O function (to be deter-

mined).

Theorem 1 For all CPA-2 (Adaptive chosen plaintext attack) φ on a function G of Fn with m
chosen plaintext, we have: AdvPRF

φ ≤ O(m2n ) where AdvPRF
φ denotes the probability to distinguish

f ⊕ g, with f, g ∈R Bn from h ∈R Fn.

This theorem says that there is no way (with an adaptive chosen plaintext attack) to distinguish
with a good probability f ⊕ g when f, g ∈R Bn from h ∈R Fn when m � 2n (and this even if we
have access to infinite computing power, as long as we have access to only m queries). Therefore,
it implies that the number λ of computations to distinguish f ⊕ g with f, g ∈R Bn from h ∈R Fn
satisfies: λ ≥ O(2n). We say also that there is no generic CPA-2 attack with less than O(2n)
computations for this problem, or that the security obtained is greater than or equal to O(2n).
Since we know (for example from [2] or [9]) that there is an attack in O(2n), Theorem 1 also says
that O(2n) is the exact security bound for this problem.

3 The general Proof Strategy (“ standard H technique”)

Let a = (ai, 1 ≤ i ≤ m) be m pairwise distinct values of In.
Let b = (bi, 1 ≤ i ≤ m) be m values of In (not necessarily distinct).
• We will denote by H(a, b), or by H(b) since we will see that H(a, b) does not depend on a, the
number of (f, g) ∈ B2

n such that: ∀i, 1 ≤ i ≤ m, (f ⊕ g)(ai) = bi. Often we will denote H(b) by
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Hm for simplicity (but H(b) depends on b).
Introducing h instead of H
• We will denote by h(b), or simply by hm for simplicity (but h depends on b) the number of
sequences xi, 1 ≤ i ≤ m, xi ∈ In, such that:

1. The xi are pairwise distinct, 1 ≤ i ≤ m.

2. The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.

Theorem 2 We have

H(a, b) = h(b) · |Bn|2

(2n(2n − 1) . . . (2n −m+ 1))2

(and therefore H(a, b) does not depend on a, i.e. does not depend on the pairwise distinct values
ai, 1 ≤ i ≤ m).

Proof. When the xi are fixed, f and g are fixed on exactly m pairwise distinct points by ∀i, 1 ≤
i ≤ m, f(ai) = xi and g(ai) = bi ⊕ xi. �

Theorem 3 hm is the number of (P1, P2, . . . , Pm, Q1, . . . , Qm) ∈ I2mn such that

1. The Pi are pairwise distinct (i.e. i 6= j ⇒ Pi 6= Pj).

2. The Qi are pairwise distinct (i.e. i 6= j ⇒ Qi 6= Qj).

3. ∀i, 1 ≤ i ≤ m, Pi ⊕Qi = bi.

Proof. Since Qi is fixed when Pi is fixed, Theorem 3 is obvious from the definition of hm, i.e. just
take Pi = xi and Qi = xi ⊕ bi. �

Computation of E(h) = h̃m
We will denote by h̃m the average of hm when b ∈ Imn .

Theorem 4

h̃m =
(2n(2n − 1) . . . (2n −m+ 1))2

2nm

Proof. Let b = (b1, . . . , bn), and x = (x1, . . . , xn). For x ∈ Imn , let

δx = 1⇔
{

The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

and δx = 0 ⇔ δx 6= 1. Let Jmn be the set of all sequences xi such that all the xi are pairwise
distinct, 1 ≤ i ≤ m. Then |Jmn | = 2n(2n − 1) . . . (2n − m + 1) and N =

∑
x∈Jmn δx. So we have

E(h) =
∑

x∈Jmn E(δx). For x ∈ Jmn ,

E(δx) = Prb∈RImn (All the xi ⊕ bi are pairwise distinct) =
2n(2n − 1) . . . (2n −m+ 1)

2nm
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Therefore

E(h) = |Jmn | ·
2n(2n − 1) . . . (2n −m+ 1)

2nm
=

(2n(2n − 1) . . . (2n −m+ 1))2

2nm

as expected. �
We will denote by Advm the best Advantage that we can get with m queries when we try to
distinguish f ⊕ g, with f, g ∈R Bn from h ∈R Fn. As we will see now, there is a very deep
connection between Advm and the coefficients hm. More precisely:

Theorem 5 An exact formula for Adv.
Let F = {(b1, . . . , bm) ∈ Imn such that: h(b1, . . . , bm) ≥ h̃m}. Then:

Advm = 1
2.[2n(2n−1)...(2n−m+1)]2

∑
b1,...,bm∈In |hm − h̃m|

= 1
2.2nm

∑
b1,...,bm∈In |

hm
h̃m
− 1|

= 1
2nm

∑
b1,...,bm∈F (hm

h̃m
− 1)

= 1
2nm

∑
b1,...,bm∈In\F (1− hm

h̃m
)

Proof. We have seen above that the choice of the pairwise distinct values ai has no influence.
Therefore, here the best CPA-2 is this one denoted by φ (φ is also the best KPA attack): choose
m pairwise distinct values a1, . . . , am,
∀i, 1 ≤ i ≤ m, ask for f(ai) = bi and now

• If H(b1, . . . , bm) ≥ H̃m output 1.

• If H(b1, . . . , bm) < H̃m output 0.

Here H̃m denotes the average of H(b1, . . . , bm) when (b1, . . . , bm) ∈ Imn , i.e. H̃m = |Bn|2
2nm .

Let p∗1 be the probability that φ outputs 1 when f ∈R Fn. p∗1 is also the probability that

H(b1, . . . , bm) ≥ H̃m when (b1, . . . , bm) ∈R Imn . Therefore p∗1 = |Fn|
2nm . Let p1 be the probabil-

ity that φ outputs 1 when f = g ⊕ h with (g, h) ∈R B2
n. Then: Adv = Adv(φ) = |p1 − p∗1|.

p1 =
∑

(b1,...,bm)∈F
H(b1,...,bm)
|Bn|2 . We know that Hm = hm|Bn|2

[2n(2n−1)...(2n−m+1)]2
(cf (3.2)). Therefore,

p1 − p∗1 =
∑

b1,...bm∈F
(

hm(b1, . . . , bm)

[2n(2n − 1) . . . (2n −m+ 1)]2
− 1

2nm
)

p1 − p∗1 =
∑

b1,...bm∈F
(

hm − h̃m
[2n(2n − 1) . . . (2n −m+ 1)]2

)

Therefore from Theorem 4:

Advm = p1 − p∗1 =
1

2nm

∑
b1,...bm∈F

(
hm

h̃m
− 1)

Now from 1
2nm

∑
b1,...bm∈F hm = h̃m

2 , we obtain the other equality of Theorem 5. �

As a direct corollary of this Theorem 5 we get:
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Theorem 6 (“Standard H technique theorem”)
Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of Imn such that |E| ≥ (1−β) ·2nm.
If
1. For all sequences bi, 1 ≤ i ≤ m of E we have hm(b) ≥ h̃m(1− α).
Then
2. Advm ≤ 2(α+ β).

Proof From Theorem 4

Advm =
2

2nm

∑
b1,...,bm∈In\F

(1− hm

h̃m
)

In \ F ⊂ (In \ E) ∪ (E \ F ), so

Advm ≤
2

2nm
(β · 2nm + α · 2nm) ≤ 2(α+ β)

as claimed. �
Theorem 4 and theorem 5 show the proof strategy that we will follow in this paper: we will study

and evaluate the values hm, and try to show that “most of the time” hm
>∼ h̃m where a

>∼ b means
a ≥ b or a ' b.
Remarks.

1. In [14] a slightly different strategy is used, by studying σ(hm), the standard deviation on the
hm values.

2. Theorem 4 and theorem 5 are specific of this problem. However Theorem 6 is a very classical
“coefficient H theorem” and can also be proved independently of Theorem 5 with more general
conditions (see for example [14]).

3. The probability to distinguish is Adv · 12 , as usual.

Theorem 7 (Hworse case theorem)
Let α ≥ 0. If
1. For all sequences bi, 1 ≤ bi ≤ m, of Imn we have hm(b) ≥ h̃m(1− α)
Then
2. Advm ≤ 2α.

Proof. This follows immediately from Theorem 6 with β = 0. �

Part II

Analysis of the hi values

4 Orange equations, security in O(m
3

22n )

Let ε ≥ 0. From Theorem 7, (i.e. coefficients H technique) we know that if for all b1, . . . , bα ∈ In we
have hα(b1, b2, . . . , bα) ≥ h̃α(1− ε), then: AvdPRF ≤ 2ε (where AvdPRF is as before the advantage
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to distinguish f ⊕ g with f, g ∈R Bn from h ∈R Fn with a CPA-2 attack). Therefore we want to
study hα

h̃α
.

h̃α+1 = h̃α
(2n − α)2

2n

h̃α+1 = h̃α(2n − 2α+
α2

2n
) (14.1)

Now we want to evaluate hα+1 from hα and compare the result with (14.1). In hα+1, we have:

1. The previous conditions on hα.

2. Two new variables Pα+1 and Qα+1.

3. One more equation Pα+1 ⊕Qα+1 = bα+1. We call X this equation.

4. 2α new non equalities: Pα+1 6= Pi, ∀i, 1 ≤ i ≤ α, and Qα+1 6= Qi, ∀i, 1 ≤ i ≤ α. We will
denote by β1, β2, . . . , β2α, the 2α equalities that should not be satisfied here (for example
Pα+1 = P1).

Let Bi = {(P1, P2, . . . , Pα+1, Q1, Q2, . . . , Qα+1) ∈ I2α+2
n that satisfy the conditions on hα,

the equation X, and the equalitites βi}.
Remark. We use here the notations βi and βj as in sections 6 and 7 (for other values) in order to
illustrate the deep similarities between our analysis of hα and our previous analysis of λα.
We have

hα+1 = 2nhα − | ∪2αi=1 Bi|

Moreover, since 3 equalities βi are necessarily not compatible with the conditions on hα, we have:

hα+1 = 2nhα −
2α∑
i=1

|Bi|+
∑
i<j

|Bi ∩Bj | (14.2)

• X + 1 equations.
We have |Bi| = hα (since X and βi will fix Pα+1 and Qα+1), and −

∑2α
i=1 |Bi| = −2αhα.

• X + 2 equations.
X is : Pα+1 ⊕Qα+1 = bα+1. To be compatible with the conditions on hα the 2 new equalities

should be of the type: Pα+1 = Pi and Qα+1 = Qj , with i ≤ α and j ≤ α. Therefore Pi ⊕ Qj =
bα+1 We will denote by h′α(b1, . . . , bα)(i, j) or simply by h′α(i, j) for simplicity, the number of
(P1, . . . Pα, Q1, . . . , Qα) ∈ I2αn such that

1. We have the conditions on hα (i.e. the Pi are pairwise distinct, the Qi are pairwise distinct,
and ∀i, 1 ≤ i ≤ α, pi ⊕Qi = bi).

2. Pi ⊕Qj = bα+1 (this is one more affine equality).

Then: ∑
1≤i<j≤2α

|Bi ∩Bj | =
α∑
i=1

α∑
j=1

h′α(i, j)
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and from (14.2), we get:

hα+1 = (2n − 2α)hα +

α∑
i=1

α∑
j=1

h′α(i, j) (14.5)

Let M = {i, 1 ≤ i ≤ α, bi = bα+1}. Let Y (i, j) be the equation added in h′α (i.e. Y (i, j) is
Pi ⊕ Qj = bα+1). If i ∈ M , then h′α(i, i) = hα, and if i /∈ M , then h′α(i, i) = 0. (This is because
Y (i, i) is Pi⊕Qi = bα+1 and we have Pi⊕Qi = bi). Moreover, if i ∈M , then ∀j, 1 ≤ j ≤ α, j 6= i,
we have h′α(i, j) = 0, and h′α(j, i) = 0 (*).
(Proof: This is because Y (i, j) is Pi⊕Qj = bα+1. Moreover bα+1 = bi, since i ∈M , and Pi⊕Qi = bi.
So we would have Qi = Qj . Similarly, Y (j, i) is Pj ⊕ Qi = bα+1 = bi and from Pi ⊕ Qi = bi, we
would have Pj = Pi). Therefore, from these results and (14.5), we have obtained:

Theorem 8 (“Orange equations”)
With M = {i, 1 ≤ i ≤ α, bi = bα+1}, we have:

hα+1 = (2n − 2α+ |M |)hα +
∑
i/∈M

∑
j /∈M,j 6=i

h′α(i, j)

Theorem 9 (“First stabilisation formula”)∑
bα+1∈In

hα+1 = (2n − α)2hα

Proof. This comes immediately from the fact that in hα+1 we have Pα+1 and Qα+1 as new
variables, with Pα+1 /∈ {P1, . . . , Pα} and Qα+1 /∈ {Q1, . . . , Qα}. �

Theorem 10 (“Second stabilisation formula”)
∀i, j, i 6= j,

∑
bα+1 /∈{b1,...,bα} hα(i, j) = hα.

Proof. Theorem 10 follows immediately from (∗) above (just as before Theorem 8). �

First Approximation: Security in O(m
3

22n
)

From (14.2) we have: hα+1 ≥ (2n − 2α)hα. Then from (14.1)

hα+1

h̃α+1

=
hα

h̃α

(2n − 2α)

2n − 2α+ α2

2n

hα+1

h̃α+1

=
hα

h̃α

(
1−

α2

2n

2n − 2α+ α2

2n

)
Now since h1 = 2n and V1 = 2n,

hα ≥ h̃α
(

1− α2

22n − 2α · 2n + α2

)α
hα ≥ h̃α

(
1− α3

22n − 2α · 2n + α2

)
(14.3)

Therefore (from Theorem 7):
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Theorem 11

AdvPRFα ≤ 2α3

22n − 2α · 2n + α2
(14.4)

(and the probability to distinguish is 1
2 ·Advm as usual).

We have proved security in O( α
3

22n
).

Remark. the fact that we have so far proved security when α � 2
2n
3 is not very impressive

compared with we have previously obtained with the Hσ technique (i.e. with the λα values).
However, the fact that AdvPRF decreases in 22n when α is fixed is interesting.

5 Second Approximation: Security in O(m
4

23n + m2

22n )

Lemma 1 If i /∈M, j /∈M , and i 6= j, we always have:

hα
2n

(1− 4α

2n
) ≤ h′α(i, j) ≤ hα

2n(1− 4α
2n )

Proof. Without loss of generality, just by changing the order of the indices, we can assume that
i = α − 1 and j = α, i.e. that the new equation Y is: Pα−1 ⊕ Qα = bα+1. We will now evaluate
hα and h′α from hα−2. When we go from hα−2 to hα, we have 4 new variables Pα, Qα, Pα−1, Qα−1
such that Pα ⊕Qα = bα, Pα−1 ⊕Qα−1 = bα−1,
∀i, 1 ≤ i ≤ α− 2, Pα−1 6= Pi
∀i, 1 ≤ i ≤ α− 2, Qα−1 6= Qi
∀i, 1 ≤ i ≤ α− 1, Pα 6= Pi
∀i, 1 ≤ i ≤ α− 1, Qα 6= Qi
For Pα−1, we have between 2n − (α− 2) and 2n − 2(α− 2) possibilities. Now, when Pα−1 is fixed,
for Pα, we have between 2n − (α− 1) and 2n − 2(α− 1) possibilities.
Therefore:

(2n − 2(α− 1))(2n − 2(α− 2))hα−2 ≤ hα ≤ (2n − (α− 1))(2n − (α− 2))hα−2

So
(22n − 4α · 2n)hα−2 ≤ hα ≤ 22nhα−2 (15.1)

Similarly, when we go from hα−2 to h′α, we have 4 new variables Pα, Qα, Pα−1, Qα−1 such that:
Pα ⊕ Qα = bα, Pα−1 ⊕ Qα−1 = bα−1, Pα−1 ⊕ Qα = bα+1, and ∀i, 1 ≤ i ≤ α − 2 : Pα−1 6=
Pi, Qα−1 6= Qi, Pα 6= Pi, and Qα 6= Qi. (we necessarily have Pα 6= Pα−1 and Qα 6= Qα−1 since
Pα ⊕ Pα−1 = bα ⊕ bα+1 and Qα ⊕ Qα−1 = bα ⊕ bα+1 and these values are 6= 0 since i /∈ M and
j /∈M).
Therefore, for Pα we have between 2n − (α− 2) and 2n − 4(α− 2) possibilities.

(2n − 4(α− 2))hα−2 ≤ hα ≤ (2n − (α− 2))hα−2 (15.2)

From (15.1) and (15.2), we obtain lemma 1, as claimed.

8



Security in O(m
2

22n
+ m4

23n
)

From (14.6) and Lemma 1, we have:

hα+1 ≥ (2n − 2α+ |M |)hα + [(α− |M |)(α− |M |)− α]
hα
2n

(1− 4α

2n
)

hα+1 ≥ (2n − 2α+ |M |+ α2 − 2|M |α+ |M |2 − α
2n

)hα −
4α3

22n
hα

We have

|M |+ −2|M |α+ |M |2

2n
≥ 0⇔ α ≤ 2n + |M |

2

We will assume that α ≤ 2n

2 (this condition could be improved with further analysis). Then

hα+1 ≥ (2n − 2α+
α2 − α

2n
− 4α3

22n
)hα

hα+1

h̃α+1

≥
2n − 2α+ α2−α

2n −
4α3

22n

2n − 2α+ α2

2n

hα

h̃α

hα+1

h̃α+1

≥ (1− α

(2n − α)2
− 4α3

2n(2n − α)2
)
hα

h̃α
Therefore

hα ≥ (1− α

(2n − α)2
− 4α3

2n(2n − α)2
)αh̃α

hα ≥ (1− α2

(2n − α)2
− 4α4

2n(2n − α)2
)h̃α (15.3)

Now from (15.3) we have for all CPA-2 attacks with m queries:

AdvPRF ≤ m2

(2n −m)2
+

4m4

2n(2n −m)2
(15.4)

(here we do not need to say “when m ≤ 2n

2 ” since for larger α, this value is larger than 1).

Remark. (15.4) gives security in O(m
2

22n
+ m4

23n
) with m queries as wanted in this section. In (15.4),

we have two terms. The first term in m2

22n
is consistent with the fact that when m = 2 for example

we know that we must have a term in 22n (see Appendix B). The second term gives security only

when m � 2
3n
4 and we know from the analysis of the λα values that this term can be improved.

This can be done either by a more precise analysis of the values λ′α, or by trying to combine the
results that we have already obtained on the λα and hα values.

6 An induction formula on h′α (“First purple equations”)

7 A simple variant of the schemes with only one permutation

Instead of G = f1 ⊕ f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0) ⊕ f(x‖1), with f ∈R Bn and
x ∈ In−1. This variant was already introduced in [2] and it is for this that in [2] p.9 the security

in m
2n + O(n)(m2n )3/2 is presented. In fact, from a theoretical point of view, this variant G′ is very

similar to G, and it is possible to prove that our analysis can be modified to obtain a similar proof
of security for G′.
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8 A simple property about the Xor of two permutations and a
new conjecture

I have conjectured this property:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then ∃(g, h) ∈ B2
n, such that f = g ⊕ h.

Just one day after this paper was put on eprint, J.F. Dillon pointed to us that in fact this was
proved in 1952 in [5]. We thank him a lot for this information. (This property was proved again
independently in 1979 in [15]).

A new conjecture. However I conjecture a stronger property. Conjecture:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then the number H of (g, h) ∈ B2
n,

such that f = g ⊕ h satisfies H ≥ |Bn|
2

2n2n
.

Variant: I also conjecture that this property is true in any group, not only with Xor.
Remark: in this paper, I have proved weaker results involving m equations with m � O(2n)

instead of all the 2n equations. These weaker results were sufficient for the cryptographic security
wanted.

9 Conclusion

The results in this paper improve our understanding of the PRF-security of the Xor of two random
permutations. More precisely in this paper we have proved that the Adaptive Chosen Plaintext
security for this problem is in O(2n), and we have obtained an explicit O function. These results
belong to the field of finding security proofs for cryptographic designs above the “birthday bound”.
(In [1, 8, 12], some results “above the birthday bound” on completely different cryptographic
designs are also given). Since building PRF from PRP has many practical applications,we believe
that these results are of real interest both from a theoretical point of view and a practical point
of view. Our proofs need a few pages, so are a bit hard to read, but the results obtained are
very easy to use and the mathematics used are elementary (essentially combinatorial and induction
arguments). Moreover, we have proved (in Section 5) that this cryptographic problem of security is
directly related to a very simple to describe and purely combinatorial problem. We have obtained
this transformation by using the “Hσ technique”, i.e. combining the “coefficient H technique” of
[11, 12] and a specific computation of the standard deviation of H. (In a way, from a cryptographic
point of view, this is maybe the most important result, and all the analysis after Section 5 can be
seen as combinatorial mathematics and not cryptography anymore). It is also interesting to notice
that in our proof with have proceeded with “necessary and sufficient” conditions, i.e. that the
Hσ property that we proved is exactly equivalent to the cryptographic property that we wanted.
Moreover, as we have seen, less strong results of security are quickly obtained.
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Appendices

A Examples of hm with m = 1, 2 or 3

As examples, we present here the exact values for hm and h′m when m = 1, 2 or 3. The values that
we will obtain are summarized in Table 1.

(∗) h′3 denotes the condition h3 plus X : P1 ⊕Q3 = b4 with b1 6= b4 and b3 6= b4.
S denotes these 4 equalities: b2 = b3, b2 = b1 ⊕ b3 ⊕ b4, b2 = b4 and b1 = b4.
From hm we get the exact value for Advm by using Theorem 5 (and Theorem 4 to get the value of
h̃m).
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A.1 m = 1

By definition, h1 is the number of P1, Q1 ∈ In such that P1 ⊕ Q1 = b1. Therefore, h1 = 2n. Now
from Adv1 = 1

22n
∑

b1∈In |h1 − h̃1| and h̃1 = 2n, we get: Adv1 = 0.

A.2 m = 2

By definition, h2 is the number of P1, P2, Q1, Q2 ∈ In such that: P1 6= P2, Q1 6= Q2, P1 ⊕Q1 = b1
and P2 ⊕Q2 = b2. We have Q1 6= Q2 ⇔ P1 ⊕ P2 6= b1 ⊕ b2.
Case 1. b1 6= b2. Then h2 = 2n(2n − 2) (because for P1 we have 2n possibilities, and then for P2,
we have 2n − 2 possibilities).
Case 2. b1 = b2. Then h2 = 2n(2n − 1) (because for P1 we have 2n possibilities, and then for P2,
we have 2n − 1 possibilities).

Now from Adv2 = 1
2.[2n(2n−1)]2

∑
b1,b2∈In |h2 − h̃2| and h̃2 = [2n(2n−1)]2

22n
= (2n − 1)2, we get: Adv2 =

1
2n(2n−1) '

1
22n

.
Standard deviation for m = 2

Les σ be the standard deviation of h2 when b1, b2 ∈R In. σ =
√
V (h2) =

√
E(h2 − h̃2)2. Let σ′ be

the average deviation of h2 when b1, b2 ∈R In. σ′ = E(|h2 − h̃2|).

V (h2) =
1

22n
[2n(2n − 1)2 + 2n(2n − 1)] = 2n − 1

Therefore σ =
√

2n − 1 ' h̃2
21.5n

.

σ′ =
1

22n
[2n(2n − 1) + 2n(2n − 1).1]

Therefore σ′ = 2(2n−1)
2n ' 2h̃2

22n
. We see that here σ′ ' 2σ√

2n
.

So σ is much larger than σ′ when n is large. This is one of the reasons that explains that when m is
fixed and small the approximation of Adv obtained by Bienaymé-Tchebichev from σ (used in [14])
gives when m is fixed and small only Adv ≤ O( 1

2n ) while the real Advantage is in O( 1
22n

).

A.3 m = 3

In section 4 we have sen that (orange equation):

hα+1 = (2n − 2α+ |M |)hα +
∑
i/∈M

∑
j /∈M,j 6=i

h′α(i, j)

with M = {i, 1 ≤ i ≤ α, bi = bα+1}.
With α = 2, this formula will give us h3 from h2 and h′2.
M = {i, 1 ≤ i ≤ 2, bi = b3}.
Case 1. b1, b2, b3 are pairwise distinct. Then |M | = 0 and h3 = (2n − 4)h2 + 2h′2. h3 = (2n −
4).2n.(2n − 2) + 2.2n.

h3 = 2n(22n − 6.2n + 10) and since h̃3 = [2n(2n−1)(2n−2)]2
23n

= 23n − 6.22n + 13.2n − 12 + 4
2n , we have

h3 − h̃3 = −3.2n + 12 − 4
2n . Therefore, when n ≥ 2, we have h3 < h̃3 in this case 1 (and without

loss of generality, we can assume n ≥ 2 since for n = 1 we have only two values in In but here the
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number m of queries is m = 3).
Case 2. We have b1 = b3 6= b2. Then |M | = 1, h3 = (2n − 3)h2, h3 = (2n − 3).2n(2n − 2),
h3 = 2n(22n − 5.2n + 6). Here h3 − h̃3 = 22n − 7.2n + 12− 4

2n = (2n − 2)(2n − 5 + 2
2n ). Therefore,

when n ≥ 3, we have h3 > h̃3, and when n = 3, we have h3 < h̃3.
Case 2 bis. We can check that when b1 = b2 6= b3 we obtain the same value (this is obvious by
symmetry of the hypothesis but not obvious from the orange equation).
Here |M | = 0 and h3 = (2n − 4)h2 + 2h′2.
h3 = (2n − 4).2,(2n − 1) + 2.2n

h3 = 2n(22n − 5.2n + 6) as in Case 2.
Case 3. b1 = b2 = b3. Here |M | = 2 and h3 = (2n − 2)h2 = (2n − 2)2n(2n − 1) So h3 =
2n(22n − 3.2n + 2) and h3 − h̃3 = 3.22n − 11.2n + 12 − 4

2n and it is easy to see that this is always
≥ 0 if n ≥ 0. (We can also say that we have

h3 ≥ h̃3 ⇔ 2n(2n − 1)(2n − 2) ≥ [2n(2n−1)(2n−2)]2
23n

⇔ 22n ≥ (2n − 1)(2n − 2)

since n ≥ 2 since we have m = 3 queries). Therefore h3 is always ≥ h̃3 in Case 3.
Finally, from

Adv3 =
1

2.[2n(2n − 1)(2n − 2)]2

∑
b1,b2,b3∈In

|h3 − h̃3|

or from

Adv3 =
1

[2n(2n − 1)(2n − 2)]2

∑
b1,b2,b3/h3<h̃3

(h̃3 − h3)

we obtain, if n ≥ 3

Adv3 =
1

[2n(2n − 1)(2n − 2)]2
2n(2n − 1)(2n − 2)(3.2n − 12 +

4

2n
)

Adv3 =
1

22n(2n − 1)(2n − 2)
(3.22n − 12.2n + 4) ' 3

22n

(We did not need the value h′3 to compute h3. However these values are directly given from section 6
(i.e. the “first purple equations”).

B Example of unusual values for hm

hm; or more precisely, hm(b),is the number of (P1, P2, . . . , Pm, Q1, . . . , Qm) ∈ I2mn such that

1. The Pi are pairwise distinct.

2. The Qi are pairwise distinct.

3. ∀i, 1 ≤ i ≤ m, Pi ⊕Qi = bi.

The average value of hm, when (b1, . . . , bm) ∈ Imn is:

h̃m =
(2n(2n − 1) . . . (2n −m+ 1))2

2nm
(cf Theorem 4)
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Theorem 12 When bi is a constant, i.e. ∀i, 1 ≤ i ≤ m, bi = b1, we have:

hm = 2n(2n − 1) . . . (2n −m+ 1)

Proof. We have to choose the Pi pairwise distinct, and then the values Qi are fixed and pairwise
distinct by: ∀i, 1 ≤ i ≤ m,Qi = b1 ⊕ Pi. �

This value 2n(2n−1) . . . (2n−m+1) is the maximum possible value for hm, since when P1, . . . , Pm
are fixed, there is at most one possibility for Q1, . . . , Qm.
Remark. Il is conjectured that the minimum value for hm is obtained when the values b1, . . . , bm
are pairwise distinct. When m is small (for example m ≤

√
2n), this is proven, but when m = 2n

for example, no proof of this conjecture is known.
From the results above, when bi is a constant, we have:

hm/h̃m =
2nm

2n(2n − 1) . . . (2n −m+ 1)
=

1

(1− 1
2n )(1− 2

2n ) . . . (1− m−1
2n )

It is easy to see that this expression can tend to infinity when m is large and
√

2n � m ≤ 2n (by
taking the log of hm/h̃m for example). Therefore, we see that hm/h̃m is not bounded in general.
Unlike this result, hm is generally ≥ h̃m(1− ε) where ε is small (see the results of this paper, when

m� 2
2n
3 for example).

6

-0

h̃m − ε
h̃m

Figure 1: The different values hm

Figure 1 illustrate these results. (This figure is a classical figure in “Mirror Theory”, i.e. it
appears often when we deal with sets of linear equalities and linear non equalities).
It is also interesting to notice that very large values hm exist, but do not occur often, and that very
large values hm will affect more the standard deviation σ(hm) of hm than the average deviation
σ′(hm) of hm. (σ(hm) =

√
E(h− hm)2 and σ′(hm) = E(|h− hm|)).

C About my Conjecture on H2n

In [5] in 1952 (and independently in [14] in 1979) it was proved that:

∀f ∈ Fn, if ⊕x∈In f(x) = 0, then∃(g, h) ∈ B2
n such that f = g ⊕ h
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([5] was pointed to me by J.F. Dillon).
A new conjecture
Since 2008, I conjectured a stronger property.
Conjecture: ∀f ∈ Fn, if ⊕x∈Inf(x) = 0, then the number H of (g, h) ∈ B2

n such that f = g ⊕ h
satisfies H ≥ |Bn|

2

2n.2n
.

Variant: I also conjectures that this property is true in any group (commutative or not), not only
with Xor.
In this paper I have proved results involving m equations with m � O(2n) instead of all the 2n

equations. These results were sufficient for the cryptographic security wanted (cf Figure 2).

√
2n 2n

3
2n−1 2n

Zone 1 Zone 2 Zone 3 Zone 4

Figure 2: The different cases for the values m

Zone 1: (i.e. “below the birthday bound”): when 1 ≤ m�
√

2n.
Zone 2: (i.e. the cryptographic zone “above the birthday bound”): when

√
2n ≤ m ≤ 2n

3 : the
properties of this zone are the main subject of this paper.
Zone 3: 2n

3 ≤ m ≤ 2n − 1: this zone was not studied carefully in this paper. Our proof technique
may also give some results in this zone, but this was not studied.
Zone 4: m = 2n − 1 and m = 2n: the zone of the new conjecture, and of [5] and [14].

Equivalent Conjectures

Let H̃α = |Bn|2
2nα be the average value of Hα.

Theorem 13 The new conjecture given above is equivalent to each of these (not proved properties):

1. ∀f ∈ Fn, if ⊕x∈Inf(x) = 0, then H2n(f) ≥ |Bn|
2

2n.2n
(= H̃2n)

2. ∀f ∈ Fn, H2n−1(f) ≥
˜H2n−1

2n (= |Bn|2
2n.2n

)

3. ∀f ∈ Fn, ∀α, 1 ≤ α ≤ 2n − 1, Hα(f) ≥ H̃α
2n

4. ∀α, 1 ≤ α ≤ 2n − 1, ∀b1, . . . , bα, hα(b1, . . . , bα) ≥ h̃α
2n

Proof of Theorem 13.

16


