Security in $O(2^n)$ for the Xor of Two Random Permutations - Proof with the standard H technique-

Jacques Patarin Université de Versailles 45 avenue des Etats-Unis 78035 Versailles Cedex - France

Abstract

Xoring two permutations is a very simple way to construct pseudorandom functions from pseudorandom permutations. In [14], it is proved that we have security against CPA-2 attacks when $m \ll O(2^n)$, where m is the number of queries and n is the number of bits of the inputs and outputs of the bijections. In this paper, we will obtain similar (but slightly different) results by using the "standard H technique" instead of the " H_{σ} technique". It will be interesting to compare the two techniques, their similarities and the differences between the proofs and the results.

Key words: Pseudorandom functions, pseudorandom permutations, security beyond the birthday bound, Luby-Rackoff backwards.

1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudorandom functions (PRF) named "Luby-Rackoff backwards" was first considered in [3]. This problem is obvious if we are interested in an asymptotical polynomial versus non polynomial security model (since a PRP is then a PRF), but not if we are interested in achieving more optimal and concrete security bounds. More precisely, the loss of security when regarding a PRP as a PRF comes from the "birthday attack" which can distinguish a random permutation from a random function of n bits to n bits, in $2^{\frac{n}{2}}$ operations and $2^{\frac{n}{2}}$ queries. Therefore different ways to build PRF from PRP with a security above $2^{\frac{n}{2}}$ and by performing very few computations have been suggested (see [2, 3, 4, 6]). One of the simplest way is simply to Xor k independent pseudorandom permutations, for example with k = 2. In [6] (Theorem 2 p.474), it has been proved, with a simple proof, that the Xor of k independent PRP gives a PRF with security at least in $O(2^{\frac{k}{k+1}n})$. (For k = 2 this gives $O(2^{\frac{2}{3}n})$). In [2], a much more complex strategy (based on Azuma inequality and Chernoff bounds) is presented. It is claimed that with this strategy we may prove that the Xor of two PRP gives a PRF with security at least in $O(2^n/n^{\frac{2}{3}})$ and at most in $O(2^n)$, which is much better than the birthday bound in $O(2^{\frac{n}{2}})$.

details for this result. For example, page 9 they wrote "we give only a very brief summary of how this works", and page 10 they introduce O functions that are not easy to express explicitly. In this paper we will use a completely different proof strategy, based on the "standard H technique" (see Section 3 below), simple counting arguments and induction. This paper is self contained. It is nevertheless interesting to compare this paper with [14] where similar (but slightly different results, as we will explain) are obtained by using the H_{σ} technique instead of the standard H technique.

Related Problems. In [9] the best know attacks on the Xor of k random permutations are studied in various scenarios. For k = 2 the bound obtained are near our security bounds. In [7] attacks on the Xor of two **public** permutations are studied (i.e. indifferentiability instead of indistinguishibility).

Part I From the Xor of Two Permutations to the h_i values

2 Notation and Aim of this paper

In all this paper we will denote $I_n = \{0, 1\}^n$. F_n will be the set of all applications from I_n to I_n , and B_n will be the set of all permutations from I_n to I_n . Therefore $|I_n| = 2^n$, $|F_n| = 2^{n \cdot 2^n}$ and $|B_n| = (2^n)!$. $x \in_R A$ means that x is randomly chosen in A with a uniform distribution.

The aim of this paper is to prove the theorem below, with an explicit O function (to be determined).

Theorem 1 For all CPA-2 (Adaptive chosen plaintext attack) ϕ on a function G of F_n with m chosen plaintext, we have: $\operatorname{Adv}_{\phi}^{\operatorname{PRF}} \leq O(\frac{m}{2^n})$ where $\operatorname{Adv}_{\phi}^{\operatorname{PRF}}$ denotes the probability to distinguish $f \oplus g$, with $f, g \in_R B_n$ from $h \in_R F_n$.

This theorem says that there is no way (with an adaptive chosen plaintext attack) to distinguish with a good probability $f \oplus g$ when $f, g \in_R B_n$ from $h \in_R F_n$ when $m \ll 2^n$ (and this even if we have access to infinite computing power, as long as we have access to only m queries). Therefore, it implies that the number λ of computations to distinguish $f \oplus g$ with $f, g \in_R B_n$ from $h \in_R F_n$ satisfies: $\lambda \geq O(2^n)$. We say also that there is no generic CPA-2 attack with less than $O(2^n)$ computations for this problem, or that the security obtained is greater than or equal to $O(2^n)$. Since we know (for example from [2] or [9]) that there is an attack in $O(2^n)$, Theorem 1 also says that $O(2^n)$ is the exact security bound for this problem.

3 The general Proof Strategy (" standard *H* technique")

Let $a = (a_i, 1 \le i \le m)$ be m pairwise distinct values of I_n .

Let $b = (b_i, 1 \le i \le m)$ be *m* values of I_n (not necessarily distinct).

• We will denote by H(a, b), or by H(b) since we will see that H(a, b) does not depend on a, the number of $(f, g) \in B_n^2$ such that: $\forall i, 1 \leq i \leq m, (f \oplus g)(a_i) = b_i$. Often we will denote H(b) by

 H_m for simplicity (but H(b) depends on b). Introducing h instead of H

• We will denote by h(b), or simply by h_m for simplicity (but h depends on b) the number of sequences x_i , $1 \le i \le m$, $x_i \in I_n$, such that:

- 1. The x_i are pairwise distinct, $1 \le i \le m$.
- 2. The $x_i \oplus b_i$ are pairwise distinct, $1 \le i \le m$.

Theorem 2 We have

$$H(a,b) = h(b) \cdot \frac{|B_n|^2}{(2^n(2^n-1)\dots(2^n-m+1))^2}$$

(and therefore H(a,b) does not depend on a, i.e. does not depend on the pairwise distinct values $a_i, 1 \le i \le m$).

Proof. When the x_i are fixed, f and g are fixed on exactly m pairwise distinct points by $\forall i, 1 \leq i \leq m, f(a_i) = x_i$ and $g(a_i) = b_i \oplus x_i$.

Theorem 3 h_m is the number of $(P_1, P_2, \ldots, P_m, Q_1, \ldots, Q_m) \in I_n^{2m}$ such that

- 1. The P_i are pairwise distinct (i.e. $i \neq j \Rightarrow P_i \neq P_j$).
- 2. The Q_i are pairwise distinct (i.e. $i \neq j \Rightarrow Q_i \neq Q_j$).
- 3. $\forall i, 1 \leq i \leq m, P_i \oplus Q_i = b_i$.

Proof. Since Q_i is fixed when P_i is fixed, Theorem 3 is obvious from the definition of h_m , i.e. just take $P_i = x_i$ and $Q_i = x_i \oplus b_i$.

Computation of $E(h) = \tilde{h}_m$ We will denote by \tilde{h}_m the average of h_m when $b \in I_n^m$.

Theorem 4

$$\tilde{h_m} = \frac{(2^n(2^n - 1)\dots(2^n - m + 1))^2}{2^{nm}}$$

Proof. Let $b = (b_1, \ldots, b_n)$, and $x = (x_1, \ldots, x_n)$. For $x \in I_n^m$, let

$$\delta_x = 1 \Leftrightarrow \begin{cases} \text{The } x_i \text{ are pairwise distinct,} & 1 \le i \le m \\ \text{The } x_i \oplus b_i \text{ are pairwise distinct,} & 1 \le i \le m \end{cases}$$

and $\delta_x = 0 \Leftrightarrow \delta_x \neq 1$. Let J_n^m be the set of all sequences x_i such that all the x_i are pairwise distinct, $1 \leq i \leq m$. Then $|J_n^m| = 2^n(2^n - 1) \dots (2^n - m + 1)$ and $N = \sum_{x \in J_n^m} \delta_x$. So we have $E(h) = \sum_{x \in J_n^m} E(\delta_x)$. For $x \in J_n^m$,

$$E(\delta_x) = Pr_{b \in_R I_n^m}(\text{All the } x_i \oplus b_i \text{ are pairwise distinct}) = \frac{2^n (2^n - 1) \dots (2^n - m + 1)}{2^{nm}}$$

Therefore

$$E(h) = |J_n^m| \cdot \frac{2^n (2^n - 1) \dots (2^n - m + 1)}{2^{nm}} = \frac{(2^n (2^n - 1) \dots (2^n - m + 1))^2}{2^{nm}}$$

as expected.

We will denote by Adv_m the best Advantage that we can get with m queries when we try to distinguish $f \oplus g$, with $f, g \in_R B_n$ from $h \in_R F_n$. As we will see now, there is a very deep connection between Adv_m and the coefficients h_m . More precisely:

Theorem 5 An exact formula for Adv. Let $F = \{(b_1, \ldots, b_m) \in I_n^m \text{ such that: } h(b_1, \ldots, b_m) \ge h_m^{\sim}\}$. Then:

$$\begin{aligned} Adv_m &= \frac{1}{2 \cdot [2^n (2^n - 1) \dots (2^n - m + 1)]^2} \sum_{b_1, \dots, b_m \in I_n} |h_m - \tilde{h_m}| \\ &= \frac{1}{2 \cdot 2^{nm}} \sum_{b_1, \dots, b_m \in I_n} |\frac{h_m}{\tilde{h_m}} - 1| \\ &= \frac{1}{2^{nm}} \sum_{b_1, \dots, b_m \in F} (\frac{h_m}{\tilde{h_m}} - 1) \\ &= \frac{1}{2^{nm}} \sum_{b_1, \dots, b_m \in I_n \setminus F} (1 - \frac{h_m}{\tilde{h_m}}) \end{aligned}$$

Proof. We have seen above that the choice of the pairwise distinct values a_i has no influence. Therefore, here the best CPA-2 is this one denoted by ϕ (ϕ is also the best KPA attack): choose m pairwise distinct values a_1, \ldots, a_m ,

 $\forall i, 1 \leq i \leq m$, ask for $f(a_i) = b_i$ and now

- If $H(b_1,\ldots,b_m) \ge \tilde{H_m}$ output 1.
- If $H(b_1,\ldots,b_m) < \tilde{H_m}$ output 0.

Here $\tilde{H_m}$ denotes the average of $H(b_1, \ldots, b_m)$ when $(b_1, \ldots, b_m) \in I_n^m$, i.e. $\tilde{H_m} = \frac{|B_n|^2}{2^{nm}}$. Let p_1^* be the probability that ϕ outputs 1 when $f \in_R F_n$. p_1^* is also the probability that $H(b_1, \ldots, b_m) \geq \tilde{H}_m$ when $(b_1, \ldots, b_m) \in_R I_n^m$. Therefore $p_1^* = \frac{|F_n|}{2^{nm}}$. Let p_1 be the probability that ϕ outputs 1 when $f = g \oplus h$ with $(g, h) \in_R B_n^2$. Then: $Adv = Adv(\phi) = |p_1 - p_1^*|$. $p_1 = \sum_{(b_1, \ldots, b_m) \in F} \frac{H(b_1, \ldots, b_m)}{|B_n|^2}$. We know that $H_m = \frac{h_m |B_n|^2}{[2^n (2^n - 1) \dots (2^n - m + 1)]^2}$ (cf (3.2)). Therefore,

$$p_1 - p_1^* = \sum_{b_1, \dots, b_m \in F} \left(\frac{h_m(b_1, \dots, b_m)}{[2^n(2^n - 1)\dots(2^n - m + 1)]^2} - \frac{1}{2^{nm}} \right)$$
$$p_1 - p_1^* = \sum_{b_1, \dots, b_m \in F} \left(\frac{h_m - \tilde{h_m}}{[2^n(2^n - 1)\dots(2^n - m + 1)]^2} \right)$$

Therefore from Theorem 4:

$$Adv_m = p_1 - p_1^* = \frac{1}{2^{nm}} \sum_{b_1,\dots,b_m \in F} (\frac{h_m}{\tilde{h_m}} - 1)$$

Now from $\frac{1}{2^{nm}} \sum_{b_1, \dots, b_m \in F} h_m = \frac{\tilde{h_m}}{2}$, we obtain the other equality of Theorem 5.

As a direct corollary of this Theorem 5 we get:

Theorem 6 ("Standard H technique theorem")

Let α and β be real numbers, $\alpha > 0$ and $\beta > 0$. Let \mathcal{E} be a subset of I_n^m such that $|\mathcal{E}| \ge (1-\beta) \cdot 2^{nm}$. If

1. For all sequences b_i , $1 \le i \le m$ of \mathcal{E} we have $h_m(b) \ge h_m(1-\alpha)$. Then

2. $Adv_m \leq 2(\alpha + \beta)$.

Proof From Theorem 4

$$Adv_m = \frac{2}{2^{nm}} \sum_{b_1, \dots, b_m \in I_n \setminus F} (1 - \frac{h_m}{\tilde{h_m}})$$

 $I_n \setminus F \subset (I_n \setminus E) \cup (E \setminus F)$, so

$$Adv_m \le \frac{2}{2^{nm}} (\beta \cdot 2^{nm} + \alpha \cdot 2^{nm}) \le 2(\alpha + \beta)$$

as claimed.

Theorem 4 and theorem 5 show the proof strategy that we will follow in this paper: we will study and evaluate the values h_m , and try to show that "most of the time" $h_m \gtrsim h_m$ where $a \gtrsim b$ means $a \ge b$ or $a \simeq b$.

Remarks.

- 1. In [14] a slightly different strategy is used, by studying $\sigma(h_m)$, the standard deviation on the h_m values.
- 2. Theorem 4 and theorem 5 are specific of this problem. However Theorem 6 is a very classical "coefficient H theorem" and can also be proved independently of Theorem 5 with more general conditions (see for example [14]).
- 3. The probability to distinguish is $Adv \cdot \frac{1}{2}$, as usual.

Theorem 7 ($H_{worse \ case}$ theorem) Let $\alpha \ge 0$. If 1. For all sequences b_i , $1 \le b_i \le m$, of I_n^m we have $h_m(b) \ge \tilde{h_m}(1-\alpha)$ Then 2. $Adv_m \le 2\alpha$.

Proof. This follows immediately from Theorem 6 with $\beta = 0$.

Part II Analysis of the h_i values

4 Orange equations, security in $O(\frac{m^3}{2^{2n}})$

Let $\epsilon \geq 0$. From Theorem 7, (i.e. coefficients H technique) we know that if for all $b_1, \ldots, b_\alpha \in I_n$ we have $h_\alpha(b_1, b_2, \ldots, b_\alpha) \geq \tilde{h}_\alpha(1-\epsilon)$, then: $Avd^{PRF} \leq 2\epsilon$ (where Avd^{PRF} is as before the advantage

to distinguish $f \oplus g$ with $f, g \in_R B_n$ from $h \in_R F_n$ with a CPA-2 attack). Therefore we want to study $\frac{h_{\alpha}}{h_{\alpha}}$.

$$\tilde{h}_{\alpha+1} = \tilde{h}_{\alpha} \frac{(2^n - \alpha)^2}{2^n}$$
 $\tilde{h}_{\alpha+1} = \tilde{h}_{\alpha} (2^n - 2\alpha + \frac{\alpha^2}{2^n}) \quad (14.1)$

Now we want to evaluate $h_{\alpha+1}$ from h_{α} and compare the result with (14.1). In $h_{\alpha+1}$, we have:

- 1. The previous conditions on h_{α} .
- 2. Two new variables $P_{\alpha+1}$ and $Q_{\alpha+1}$.
- 3. One more equation $P_{\alpha+1} \oplus Q_{\alpha+1} = b_{\alpha+1}$. We call X this equation.
- 4. 2α new non equalities: $P_{\alpha+1} \neq P_i$, $\forall i, 1 \leq i \leq \alpha$, and $Q_{\alpha+1} \neq Q_i$, $\forall i, 1 \leq i \leq \alpha$. We will denote by $\beta_1, \beta_2, \ldots, \beta_{2\alpha}$, the 2α equalities that should not be satisfied here (for example $P_{\alpha+1} = P_1$).

Let $B_i = \{(P_1, P_2, \dots, P_{\alpha+1}, Q_1, Q_2, \dots, Q_{\alpha+1}) \in I_n^{2\alpha+2} \text{ that satisfy the conditions on } h_\alpha,$ the equation X, and the equalities $\beta_i\}.$

Remark. We use here the notations β_i and β_j as in sections 6 and 7 (for other values) in order to illustrate the deep similarities between our analysis of h_{α} and our previous analysis of λ_{α} . We have

$$h_{\alpha+1} = 2^n h_\alpha - \left| \bigcup_{i=1}^{2\alpha} B_i \right|$$

Moreover, since 3 equalities β_i are necessarily not compatible with the conditions on h_{α} , we have:

$$h_{\alpha+1} = 2^n h_{\alpha} - \sum_{i=1}^{2\alpha} |B_i| + \sum_{i< j} |B_i \cap B_j| \quad (14.2)$$

• X + 1 equations.

We have $|B_i| = h_{\alpha}$ (since X and β_i will fix $P_{\alpha+1}$ and $Q_{\alpha+1}$), and $-\sum_{i=1}^{2\alpha} |B_i| = -2\alpha h_{\alpha}$.

• X + 2 equations.

X is : $P_{\alpha+1} \oplus Q_{\alpha+1} = b_{\alpha+1}$. To be compatible with the conditions on h_{α} the 2 new equalities should be of the type: $P_{\alpha+1} = P_i$ and $Q_{\alpha+1} = Q_j$, with $i \leq \alpha$ and $j \leq \alpha$. Therefore $P_i \oplus Q_j = b_{\alpha+1}$ We will denote by $h'_{\alpha}(b_1, \ldots, b_{\alpha})(i, j)$ or simply by $h'_{\alpha}(i, j)$ for simplicity, the number of $(P_1, \ldots, P_{\alpha}, Q_1, \ldots, Q_{\alpha}) \in I_n^{2\alpha}$ such that

- 1. We have the conditions on h_{α} (i.e. the P_i are pairwise distinct, the Q_i are pairwise distinct, and $\forall i, 1 \leq i \leq \alpha, p_i \oplus Q_i = b_i$).
- 2. $P_i \oplus Q_j = b_{\alpha+1}$ (this is one more affine equality).

Then:

$$\sum_{1 \le i < j \le 2\alpha} |B_i \cap B_j| = \sum_{i=1}^{\alpha} \sum_{j=1}^{\alpha} h'_{\alpha}(i,j)$$

and from (14.2), we get:

$$h_{\alpha+1} = (2^n - 2\alpha)h_{\alpha} + \sum_{i=1}^{\alpha} \sum_{j=1}^{\alpha} h'_{\alpha}(i,j) \quad (14.5)$$

Let $M = \{i, 1 \leq i \leq \alpha, b_i = b_{\alpha+1}\}$. Let Y(i, j) be the equation added in h'_{α} (i.e. Y(i, j) is $P_i \oplus Q_j = b_{\alpha+1}$). If $i \in M$, then $h'_{\alpha}(i, i) = h_{\alpha}$, and if $i \notin M$, then $h'_{\alpha}(i, i) = 0$. (This is because Y(i, i) is $P_i \oplus Q_i = b_{\alpha+1}$ and we have $P_i \oplus Q_i = b_i$). Moreover, if $i \in M$, then $\forall j, 1 \leq j \leq \alpha, j \neq i$, we have $h'_{\alpha}(i, j) = 0$, and $h'_{\alpha}(j, i) = 0$ (*).

(Proof: This is because Y(i, j) is $P_i \oplus Q_j = b_{\alpha+1}$. Moreover $b_{\alpha+1} = b_i$, since $i \in M$, and $P_i \oplus Q_i = b_i$. So we would have $Q_i = Q_j$. Similarly, Y(j, i) is $P_j \oplus Q_i = b_{\alpha+1} = b_i$ and from $P_i \oplus Q_i = b_i$, we would have $P_j = P_i$). Therefore, from these results and (14.5), we have obtained:

Theorem 8 ("Orange equations") With $M = \{i, 1 \le i \le \alpha, b_i = b_{\alpha+1}\}$, we have:

$$h_{\alpha+1} = (2^n - 2\alpha + |M|)h_{\alpha} + \sum_{i \notin M} \sum_{j \notin M, j \neq i} h'_{\alpha}(i,j)$$

Theorem 9 ("First stabilisation formula")

$$\sum_{b_{\alpha+1}\in I_n} h_{\alpha+1} = (2^n - \alpha)^2 h_\alpha$$

Proof. This comes immediately from the fact that in $h_{\alpha+1}$ we have $P_{\alpha+1}$ and $Q_{\alpha+1}$ as new variables, with $P_{\alpha+1} \notin \{P_1, \ldots, P_{\alpha}\}$ and $Q_{\alpha+1} \notin \{Q_1, \ldots, Q_{\alpha}\}$.

Theorem 10 ("Second stabilisation formula") $\forall i, j, i \neq j, \sum_{b_{\alpha+1}\notin\{b_1,...,b_{\alpha}\}} h_{\alpha}(i, j) = h_{\alpha}.$

Proof. Theorem 10 follows immediately from (*) above (just as before Theorem 8).

First Approximation: Security in $O(\frac{m^3}{2^{2n}})$

From (14.2) we have: $h_{\alpha+1} \ge (2^n - 2\alpha)h_{\alpha}$. Then from (14.1)

$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} = \frac{h_{\alpha}}{\tilde{h}_{\alpha}} \frac{(2^n - 2\alpha)}{2^n - 2\alpha + \frac{\alpha^2}{2^n}}$$
$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} = \frac{h_{\alpha}}{\tilde{h}_{\alpha}} \left(1 - \frac{\frac{\alpha^2}{2^n}}{2^n - 2\alpha + \frac{\alpha^2}{2^n}}\right)$$

Now since $h_1 = 2^n$ and $V_1 = 2^n$,

$$h_{\alpha} \ge \tilde{h}_{\alpha} \left(1 - \frac{\alpha^2}{2^{2n} - 2\alpha \cdot 2^n + \alpha^2} \right)^{\alpha}$$
$$h_{\alpha} \ge \tilde{h}_{\alpha} \left(1 - \frac{\alpha^3}{2^{2n} - 2\alpha \cdot 2^n + \alpha^2} \right) \quad (14.3)$$

Therefore (from Theorem 7):

Theorem 11

$$Adv_{\alpha}^{PRF} \le \frac{2\alpha^3}{2^{2n} - 2\alpha \cdot 2^n + \alpha^2} \quad (14.4)$$

(and the probability to distinguish is $\frac{1}{2} \cdot Adv_m$ as usual).

We have proved security in $O(\frac{\alpha^3}{2^{2n}})$.

Remark. the fact that we have so far proved security when $\alpha \ll 2^{\frac{2n}{3}}$ is not very impressive compared with we have previously obtained with the H_{σ} technique (i.e. with the λ_{α} values). However, the fact that Adv^{PRF} decreases in 2^{2n} when α is fixed is interesting.

5 Second Approximation: Security in $O(\frac{m^4}{2^{3n}} + \frac{m^2}{2^{2n}})$

Lemma 1 If $i \notin M$, $j \notin M$, and $i \neq j$, we always have:

$$\frac{h_{\alpha}}{2^n}(1-\frac{4\alpha}{2^n}) \le h'_{\alpha}(i,j) \le \frac{h_{\alpha}}{2^n(1-\frac{4\alpha}{2^n})}$$

Proof. Without loss of generality, just by changing the order of the indices, we can assume that $i = \alpha - 1$ and $j = \alpha$, i.e. that the new equation Y is: $P_{\alpha-1} \oplus Q_{\alpha} = b_{\alpha+1}$. We will now evaluate h_{α} and h'_{α} from $h_{\alpha-2}$. When we go from $h_{\alpha-2}$ to h_{α} , we have 4 new variables $P_{\alpha}, Q_{\alpha}, P_{\alpha-1}, Q_{\alpha-1}$ such that $P_{\alpha} \oplus Q_{\alpha} = b_{\alpha}, P_{\alpha-1} \oplus Q_{\alpha-1} = b_{\alpha-1}$,

 $\begin{aligned} \forall i, 1 \leq i \leq \alpha - 2, \ P_{\alpha-1} \neq P_i \\ \forall i, 1 \leq i \leq \alpha - 2, \ Q_{\alpha-1} \neq Q_i \\ \forall i, 1 \leq i \leq \alpha - 1, \ P_{\alpha} \neq P_i \\ \forall i, 1 \leq i \leq \alpha - 1, \ Q_{\alpha} \neq Q_i \\ \end{aligned} \\ \begin{aligned} & \text{For } P_{\alpha-1}, \text{ we have between } 2^n - (\alpha - 2) \text{ and } 2^n - 2(\alpha - 2) \text{ possibilities. Now, when } P_{\alpha-1} \text{ is fixed,} \\ & \text{for } P_{\alpha}, \text{ we have between } 2^n - (\alpha - 1) \text{ and } 2^n - 2(\alpha - 1) \text{ possibilities.} \end{aligned}$

Therefore:

$$(2^n - 2(\alpha - 1))(2^n - 2(\alpha - 2))h_{\alpha - 2} \le h_\alpha \le (2^n - (\alpha - 1))(2^n - (\alpha - 2))h_{\alpha - 2}$$

 So

$$(2^{2n} - 4\alpha \cdot 2^n)h_{\alpha-2} \le h_{\alpha} \le 2^{2n}h_{\alpha-2} \quad (15.1)$$

Similarly, when we go from $h_{\alpha-2}$ to h'_{α} , we have 4 new variables $P_{\alpha}, Q_{\alpha}, P_{\alpha-1}, Q_{\alpha-1}$ such that: $P_{\alpha} \oplus Q_{\alpha} = b_{\alpha}, P_{\alpha-1} \oplus Q_{\alpha-1} = b_{\alpha-1}, P_{\alpha-1} \oplus Q_{\alpha} = b_{\alpha+1}$, and $\forall i, 1 \leq i \leq \alpha - 2$: $P_{\alpha-1} \neq P_i, Q_{\alpha-1} \neq Q_i, P_{\alpha} \neq P_i$, and $Q_{\alpha} \neq Q_i$. (we necessarily have $P_{\alpha} \neq P_{\alpha-1}$ and $Q_{\alpha} \neq Q_{\alpha-1}$ since $P_{\alpha} \oplus P_{\alpha-1} = b_{\alpha} \oplus b_{\alpha+1}$ and $Q_{\alpha} \oplus Q_{\alpha-1} = b_{\alpha} \oplus b_{\alpha+1}$ and these values are $\neq 0$ since $i \notin M$ and $j \notin M$).

Therefore, for P_{α} we have between $2^n - (\alpha - 2)$ and $2^n - 4(\alpha - 2)$ possibilities.

$$(2^n - 4(\alpha - 2))h_{\alpha - 2} \le h_{\alpha} \le (2^n - (\alpha - 2))h_{\alpha - 2} \quad (15.2)$$

From (15.1) and (15.2), we obtain lemma 1, as claimed.

Security in $O(\frac{m^2}{2^{2n}} + \frac{m^4}{2^{3n}})$ From (14.6) and Lemma 1, we have:

$$h_{\alpha+1} \ge (2^n - 2\alpha + |M|)h_{\alpha} + [(\alpha - |M|)(\alpha - |M|) - \alpha]\frac{h_{\alpha}}{2^n}(1 - \frac{4\alpha}{2^n})$$
$$h_{\alpha+1} \ge (2^n - 2\alpha + |M| + \frac{\alpha^2 - 2|M|\alpha + |M|^2 - \alpha}{2^n})h_{\alpha} - \frac{4\alpha^3}{2^{2n}}h_{\alpha}$$

We have

$$|M| + \frac{-2|M|\alpha + |M|^2}{2^n} \ge 0 \Leftrightarrow \alpha \le \frac{2^n + |M|}{2}$$

We will assume that $\alpha \leq \frac{2^n}{2}$ (this condition could be improved with further analysis). Then

$$h_{\alpha+1} \ge (2^n - 2\alpha + \frac{\alpha^2 - \alpha}{2^n} - \frac{4\alpha^3}{2^{2n}})h_{\alpha}$$
$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \ge \frac{2^n - 2\alpha + \frac{\alpha^2 - \alpha}{2^n} - \frac{4\alpha^3}{2^{2n}}}{2^n - 2\alpha + \frac{\alpha^2}{2^n}} \frac{h_{\alpha}}{\tilde{h}_{\alpha}}$$
$$\frac{h_{\alpha+1}}{\tilde{h}_{\alpha+1}} \ge (1 - \frac{\alpha}{(2^n - \alpha)^2} - \frac{4\alpha^3}{2^n(2^n - \alpha)^2})\frac{h_{\alpha}}{\tilde{h}_{\alpha}}$$

Therefore

$$h_{\alpha} \ge (1 - \frac{\alpha}{(2^n - \alpha)^2} - \frac{4\alpha^3}{2^n (2^n - \alpha)^2})^{\alpha} \tilde{h_{\alpha}}$$
$$h_{\alpha} \ge (1 - \frac{\alpha^2}{(2^n - \alpha)^2} - \frac{4\alpha^4}{2^n (2^n - \alpha)^2}) \tilde{h_{\alpha}} \quad (15.3)$$

Now from (15.3) we have for all CPA-2 attacks with m queries:

$$Adv^{PRF} \le \frac{m^2}{(2^n - m)^2} + \frac{4m^4}{2^n(2^n - m)^2}$$
 (15.4)

(here we do not need to say "when $m \leq \frac{2^n}{2}$ " since for larger α , this value is larger than 1). **Remark.** (15.4) gives security in $O(\frac{m^2}{2^{2n}} + \frac{m^4}{2^{3n}})$ with m queries as wanted in this section. In (15.4), we have two terms. The first term in $\frac{m^2}{2^{2n}}$ is consistent with the fact that when m = 2 for example we know that we must have a term in 2^{2n} (see Appendix B). The second term gives security only when $m \ll 2^{\frac{3n}{4}}$ and we know from the analysis of the λ_{α} values that this term can be improved. This can be done either by a more precise analysis of the values λ'_{α} , or by trying to combine the results that we have already obtained on the λ_{α} and h_{α} values.

6 An induction formula on h'_{α} ("First purple equations")

7 A simple variant of the schemes with only one permutation

Instead of $G = f_1 \oplus f_2$, $f_1, f_2 \in_R B_n$, we can study $G'(x) = f(x||0) \oplus f(x||1)$, with $f \in_R B_n$ and $x \in I_{n-1}$. This variant was already introduced in [2] and it is for this that in [2] p.9 the security in $\frac{m}{2^n} + O(n)(\frac{m}{2^n})^{3/2}$ is presented. In fact, from a theoretical point of view, this variant G' is very similar to G, and it is possible to prove that our analysis can be modified to obtain a similar proof of security for G'.

8 A simple property about the Xor of two permutations and a new conjecture

I have conjectured this property:

$$\forall f \in F_n$$
, if $\bigoplus_{x \in I_n} f(x) = 0$, then $\exists (g, h) \in B_n^2$, such that $f = g \oplus h$.

Just one day after this paper was put on eprint, J.F. Dillon pointed to us that in fact this was proved in 1952 in [5]. We thank him a lot for this information. (This property was proved again independently in 1979 in [15]).

A new conjecture. However I conjecture a stronger property. Conjecture:

$$\forall f \in F_n$$
, if $\bigoplus_{x \in I_n} f(x) = 0$, then the number H of $(g, h) \in B_n^2$,
such that $f = g \oplus h$ satisfies $H \ge \frac{|B_n|^2}{2n^{2^n}}$.

Variant: I also conjecture that this property is true in any group, not only with Xor.

Remark: in this paper, I have proved weaker results involving m equations with $m \ll O(2^n)$ instead of all the 2^n equations. These weaker results were sufficient for the cryptographic security wanted.

9 Conclusion

The results in this paper improve our understanding of the PRF-security of the Xor of two random permutations. More precisely in this paper we have proved that the Adaptive Chosen Plaintext security for this problem is in $O(2^n)$, and we have obtained an explicit O function. These results belong to the field of finding security proofs for cryptographic designs above the "birthday bound". (In [1, 8, 12], some results "above the birthday bound" on completely different cryptographic designs are also given). Since building PRF from PRP has many practical applications, we believe that these results are of real interest both from a theoretical point of view and a practical point of view. Our proofs need a few pages, so are a bit hard to read, but the results obtained are very easy to use and the mathematics used are elementary (essentially combinatorial and induction arguments). Moreover, we have proved (in Section 5) that this cryptographic problem of security is directly related to a very simple to describe and purely combinatorial problem. We have obtained this transformation by using the " H_{σ} technique", i.e. combining the "coefficient H technique" of [11, 12] and a specific computation of the standard deviation of H. (In a way, from a cryptographic point of view, this is maybe the most important result, and all the analysis after Section 5 can be seen as combinatorial mathematics and not cryptography anymore). It is also interesting to notice that in our proof with have proceeded with "necessary and sufficient" conditions, i.e. that the H_{σ} property that we proved is exactly equivalent to the cryptographic property that we wanted. Moreover, as we have seen, less strong results of security are quickly obtained.

References

- William Aiello and Ramarathnam Venkatesan. Foiling Birthday Attacks in Length-Doubling Transformations - Benes: A Non-Reversible Alternative to Feistel. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT '96, volume 1070 of Lecture Notes in Computer Science, pages 307–320. Springer-Verlag, 1996.
- [2] Mihir Bellare and Russell Impagliazzo. A Tool for Obtaining Tighter Security Analyses of Pseudorandom Function Based Constructions, with Applications to PRP to PRF Conversion. ePrint Archive 1999/024: Listing for 1999.
- [3] Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-Rackoff Backwards: Increasing Security by Making Block Ciphers Non-invertible. In Kaisa Nyberg, editor, Advances in cryptology EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 266–280. Springer-Verlag, 1998.
- [4] Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building PRFs from PRPs. In Hugo Krawczyk, editor, Advances in Cryptology – CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages 370–389. Springer-Verlag, 1998.
- [5] Marshall Hall Jr. A Combinatorial Problem on Abelian Groups. Proceedings of the Americal Mathematical Society, 3(4):584–587, 1952.
- [6] Stefan Lucks. The Sum of PRPs Is a Secure PRF. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 470–487. Springer-Verlag, 2000.
- [7] Avradip Mandal, Jacques Patarin, and Valérie Nachef. Indifferentiability beyond the Birthday Bound for the Xor of Two Public Random Permutations. In Guang Gong and Kishan Chand Gupta, editors, Progress in Cryptology – INDOCRYPT 2010, volume 6948 of Lecture Notes in Computer Science, pages 69–81. Springer-Verlag, 2010.
- [8] Ueli Maurer and Krzysztof Pietrzak. The Security of Many-Round Luby-Rackoff Pseudo-Random Permutations. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 544–561. Springer-Verlag, 2003.
- [9] Jacques Patarin. Generic Attacks for the Xor of k Random Permutations. Paper accepted at ACNS 2013.
- [10] Jacques Patarin. Introduction to Mirror Theory: Analysis of Systems of Linear Equalities and Linear Non Equalities for Cryptography. Cryptology ePrint archive: 2010/287: Listing for 2010.
- [11] Jacques Patarin. Etude de Générateurs de Permutations Basés sur les Schémas du DES. In Ph. Thesis. Inria, Domaine de Voluceau, France, 1991.
- [12] Jacques Patarin. Luby-Rackoff: 7 Rounds are Enough for $2^{n(1-\epsilon)}$ Security. In Dan Boneh, editor, Advances in Cryptology CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 513–529. Springer-Verlag, 2003.

Table 1: Summary of the results on h_m for m = 1, 2, 3

	• If $b_1 \neq b_2$:	• If b_1, b_2, b_3 are pairwise distinct :
	$h_2 = 2^n (2^n - 2)$	$h_3 = 2^n (2^{2n} - 6.2^n + 10)$
$h_1 = 2^n$	• If $b_1 = b_2$:	• If $b_1 = b_2 \neq b_3$:
	$h_2 = 2^n (2^n - 1)$	$h_3 = 2^n (2^{2n} - 5 \cdot 2^n + 6)$
		• If $b_1 = b_2 = b_3$:
		$h_3 = 2^n (2^{2n} - 3 \cdot 2^n + 2)$
\downarrow		• If we have no equality in $\mathcal{S}(*)$:
$Adv_1 = 0$		$h'_3 = 2^n(2^n - 4)$
	$h'_{2} = 2^{n}$	• If we have 1 equality in \mathcal{S} :
		$h'_3 = 2^n (2^n - 3)$
		• If we have 2 equalities in \mathcal{S} :
		$h'_3 = 2^n (2^n - 2)$
	\downarrow	
	$Adv_2 = \frac{1}{2^n(2^n-1)}$	$h_3'' = 2^n$
	$Adv_2 \simeq \frac{1}{2^{2n}}$	
		\downarrow
		If $n \ge 3$, $Adv_3 = \frac{1}{2^{2n}} \left(\frac{3 \cdot 2^{2n} - 12 \cdot 2^n + 4}{(2^n - 1)(2^n - 2)} \right)$
		$Adv_3 \simeq \frac{3}{2^{2n}}$

- [13] Jacques Patarin. On linear systems of equations with distinct variables and Small block size. In Dongho Wan and Seungjoo Kim, editors, *ICISC 2005*, volume 3935 of *Lecture Notes in Computer Science*, pages 299–321. Springer-Verlag, 2006.
- [14] Jacques Patarin. A Proof of Security in $O(2^n)$ for the Xor of Two Random Permutations . In Reihaneh Safavi-Naini, editor, *ICITS 2008*, volume 5155 of *Lecture Notes in Computer Science*, pages 232–248. Springer-Verlag, 2008. An extended version is also on eprint.
- [15] F. Salzborn and G. Szekeres. A Problem in Combinatorial Group Theory. Ars Combinatoria, 7:3–5, 1979.

Appendices

A Examples of h_m with m = 1, 2 or 3

As examples, we present here the exact values for h_m and h'_m when m = 1, 2 or 3. The values that we will obtain are summarized in Table 1.

(*) h'_3 denotes the condition h_3 plus $X : P_1 \oplus Q_3 = b_4$ with $b_1 \neq b_4$ and $b_3 \neq b_4$. S denotes these 4 equalities: $b_2 = b_3$, $b_2 = b_1 \oplus b_3 \oplus b_4$, $b_2 = b_4$ and $b_1 = b_4$. From h_m we get the exact value for Adv_m by using Theorem 5 (and Theorem 4 to get the value of \tilde{h}_m). **A.1** m = 1

By definition, h_1 is the number of $P_1, Q_1 \in I_n$ such that $P_1 \oplus Q_1 = b_1$. Therefore, $h_1 = 2^n$. Now from $Adv_1 = \frac{1}{2^{2n}} \sum_{b_1 \in I_n} |h_1 - \tilde{h_1}|$ and $\tilde{h_1} = 2^n$, we get: $Adv_1 = 0$.

A.2
$$m = 2$$

By definition, h_2 is the number of $P_1, P_2, Q_1, Q_2 \in I_n$ such that: $P_1 \neq P_2, Q_1 \neq Q_2, P_1 \oplus Q_1 = b_1$ and $P_2 \oplus Q_2 = b_2$. We have $Q_1 \neq Q_2 \Leftrightarrow P_1 \oplus P_2 \neq b_1 \oplus b_2$.

Case 1. $b_1 \neq b_2$. Then $h_2 = 2^n(2^n - 2)$ (because for P_1 we have 2^n possibilities, and then for P_2 , we have $2^n - 2$ possibilities).

Case 2. $b_1 = b_2$. Then $h_2 = 2^n(2^n - 1)$ (because for P_1 we have 2^n possibilities, and then for P_2 , we have $2^n - 1$ possibilities).

Now from $Adv_2 = \frac{1}{2 \cdot [2^n (2^n - 1)]^2} \sum_{b_1, b_2 \in I_n} |h_2 - \tilde{h_2}|$ and $\tilde{h_2} = \frac{[2^n (2^n - 1)]^2}{2^{2n}} = (2^n - 1)^2$, we get: $Adv_2 = \frac{1}{2^n (2^n - 1)} \simeq \frac{1}{2^{2n}}$.

Standard deviation for m = 2

Les σ be the standard deviation of h_2 when $b_1, b_2 \in_R I_n$. $\sigma = \sqrt{V(h_2)} = \sqrt{E(h_2 - \tilde{h_2})^2}$. Let σ' be the average deviation of h_2 when $b_1, b_2 \in_R I_n$. $\sigma' = E(|h_2 - \tilde{h_2}|)$.

$$V(h_2) = \frac{1}{2^{2n}} [2^n (2^n - 1)^2 + 2^n (2^n - 1)] = 2^n - 1$$

Therefore $\sigma = \sqrt{2^n - 1} \simeq \frac{h_2}{2^{1.5n}}$.

$$\sigma' = \frac{1}{2^{2n}} [2^n (2^n - 1) + 2^n (2^n - 1).1]$$

Therefore $\sigma' = \frac{2(2^n-1)}{2^n} \simeq \frac{2\tilde{h_2}}{2^{2n}}$. We see that here $\sigma' \simeq \frac{2\sigma}{\sqrt{2^n}}$. So σ is much larger than σ' when n is large. This is one of the reasons that explains that when m is fixed and small the approximation of Adv obtained by Bienaymé-Tchebichev from σ (used in [14]) gives when m is fixed and small only $Adv \leq O(\frac{1}{2^n})$ while the real Advantage is in $O(\frac{1}{2^{2n}})$.

A.3 *m* = 3

In section 4 we have sen that (orange equation):

$$h_{\alpha+1} = (2^n - 2\alpha + |M|)h_{\alpha} + \sum_{i \notin M} \sum_{j \notin M, j \neq i} h'_{\alpha}(i,j)$$

with $M = \{i, 1 \le i \le \alpha, b_i = b_{\alpha+1}\}.$

With $\alpha = 2$, this formula will give us h_3 from h_2 and h'_2 .

 $M = \{i, 1 \le i \le 2, b_i = b_3\}.$

Case 1. b_1, b_2, b_3 are pairwise distinct. Then |M| = 0 and $h_3 = (2^n - 4)h_2 + 2h'_2$. $h_3 = (2^n - 4).2^n \cdot (2^n - 2) + 2.2^n$.

 $h_3 = 2^n (2^{2n} - 6.2^n + 10)$ and since $\tilde{h}_3 = \frac{[2^n (2^n - 1)(2^n - 2)]^2}{2^{3n}} = 2^{3n} - 6.2^{2n} + 13.2^n - 12 + \frac{4}{2^n}$, we have $h_3 - \tilde{h}_3 = -3.2^n + 12 - \frac{4}{2^n}$. Therefore, when $n \ge 2$, we have $h_3 < \tilde{h}_3$ in this case 1 (and without loss of generality, we can assume $n \ge 2$ since for n = 1 we have only two values in I_n but here the

number m of queries is m = 3).

Case 2. We have $b_1 = b_3 \neq b_2$. Then |M| = 1, $h_3 = (2^n - 3)h_2$, $h_3 = (2^n - 3).2^n(2^n - 2)$, $h_3 = 2^n(2^{2n} - 5.2^n + 6)$. Here $h_3 - \tilde{h_3} = 2^{2n} - 7.2^n + 12 - \frac{4}{2^n} = (2^n - 2)(2^n - 5 + \frac{2}{2^n})$. Therefore, when $n \geq 3$, we have $h_3 > \tilde{h_3}$, and when n = 3, we have $h_3 < \tilde{h_3}$.

Case 2 bis. We can check that when $b_1 = b_2 \neq b_3$ we obtain the same value (this is obvious by symmetry of the hypothesis but not obvious from the orange equation).

Here |M| = 0 and $h_3 = (2^n - 4)h_2 + 2h'_2$.

$$h_3 = (2^n - 4) \cdot 2^{,} (2^n - 1) + 2 \cdot 2^n$$

$$h_3 = 2^n (2^{2n} - 5 \cdot 2^n + 6)$$
 as in Case 2.

Case 3. $b_1 = b_2 = b_3$. Here |M| = 2 and $h_3 = (2^n - 2)h_2 = (2^n - 2)2^n(2^n - 1)$ So $h_3 = 2^n(2^{2n} - 3.2^n + 2)$ and $h_3 - \tilde{h_3} = 3.2^{2n} - 11.2^n + 12 - \frac{4}{2^n}$ and it is easy to see that this is always ≥ 0 if $n \geq 0$. (We can also say that we have

$$h_3 \ge \tilde{h_3} \iff 2^n (2^n - 1)(2^n - 2) \ge \frac{[2^n (2^n - 1)(2^n - 2)]^2}{2^{3n}}$$
$$\Leftrightarrow 2^{2n} \ge (2^n - 1)(2^n - 2)$$

since $n \ge 2$ since we have m = 3 queries). Therefore h_3 is always $\ge \tilde{h_3}$ in Case 3. Finally, from

$$Adv_3 = \frac{1}{2 \cdot [2^n (2^n - 1)(2^n - 2)]^2} \sum_{b_1, b_2, b_3 \in I_n} |h_3 - \tilde{h_3}|$$

or from

$$Adv_3 = \frac{1}{[2^n(2^n-1)(2^n-2)]^2} \sum_{b_1, b_2, b_3/h_3 < \tilde{h}_3} (\tilde{h}_3 - h_3)$$

we obtain, if $n \geq 3$

$$Adv_3 = \frac{1}{[2^n(2^n-1)(2^n-2)]^2} 2^n (2^n-1)(2^n-2)(3.2^n-12+\frac{4}{2^n})$$
$$Adv_3 = \frac{1}{2^{2n}(2^n-1)(2^n-2)} (3.2^{2n}-12.2^n+4) \simeq \frac{3}{2^{2n}}$$

(We did not need the value h'_3 to compute h_3 . However these values are directly given from section 6 (i.e. the "first purple equations").

B Example of unusual values for h_m

 h_m ; or more precisely, $h_m(b)$, is the number of $(P_1, P_2, \ldots, P_m, Q_1, \ldots, Q_m) \in I_n^{2m}$ such that

- 1. The P_i are pairwise distinct.
- 2. The Q_i are pairwise distinct.
- 3. $\forall i, 1 \leq i \leq m, P_i \oplus Q_i = b_i$.

The average value of h_m , when $(b_1, \ldots, b_m) \in I_n^m$ is:

$$\tilde{h_m} = \frac{(2^n(2^n - 1)\dots(2^n - m + 1))^2}{2^{nm}} \quad (\text{cf Theorem 4})$$

Theorem 12 When b_i is a constant, i.e. $\forall i, 1 \leq i \leq m, b_i = b_1$, we have:

$$h_m = 2^n (2^n - 1) \dots (2^n - m + 1)$$

Proof. We have to choose the P_i pairwise distinct, and then the values Q_i are fixed and pairwise distinct by: $\forall i, 1 \leq i \leq m, Q_i = b_1 \oplus P_i$.

This value $2^n(2^n-1)\dots(2^n-m+1)$ is the maximum possible value for h_m , since when P_1,\dots,P_m are fixed, there is at most one possibility for Q_1,\dots,Q_m .

Remark. Il is conjectured that the minimum value for h_m is obtained when the values b_1, \ldots, b_m are pairwise distinct. When m is small (for example $m \leq \sqrt{2^n}$), this is proven, but when $m = 2^n$ for example, no proof of this conjecture is known.

From the results above, when b_i is a constant, we have:

$$h_m/\tilde{h_m} = \frac{2^{nm}}{2^n(2^n-1)\dots(2^n-m+1)} = \frac{1}{(1-\frac{1}{2^n})(1-\frac{2}{2^n})\dots(1-\frac{m-1}{2^n})}$$

It is easy to see that this expression can tend to infinity when m is large and $\sqrt{2^n} \ll m \leq 2^n$ (by taking the log of $h_m/\tilde{h_m}$ for example). Therefore, we see that $h_m/\tilde{h_m}$ is not bounded in general. Unlike this result, h_m is generally $\geq \tilde{h_m}(1-\epsilon)$ where ϵ is small (see the results of this paper, when $m \ll 2^{\frac{2n}{3}}$ for example).

Figure 1: The different values h_m

Figure 1 illustrate these results. (This figure is a classical figure in "Mirror Theory", i.e. it appears often when we deal with sets of linear equalities and linear non equalities).

It is also interesting to notice that very large values h_m exist, but do not occur often, and that very large values h_m will affect more the standard deviation $\sigma(h_m)$ of h_m than the average deviation $\sigma'(h_m)$ of h_m . ($\sigma(h_m) = \sqrt{E(h-h_m)^2}$ and $\sigma'(h_m) = E(|h-h_m|)$).

C About my Conjecture on H_{2^n}

In [5] in 1952 (and independently in [14] in 1979) it was proved that:

$$\forall f \in F_n, \text{ if } \oplus_{x \in I_n} f(x) = 0, \text{ then } \exists (g,h) \in B_n^2 \text{ such that } f = g \oplus h$$

([5] was pointed to me by J.F. Dillon).

A new conjecture

Since 2008, I conjectured a stronger property.

Conjecture: $\forall f \in F_n$, if $\bigoplus_{x \in I_n} f(x) = 0$, then the number H of $(g,h) \in B_n^2$ such that $f = g \oplus h$ satisfies $H \geq \frac{|B_n|^2}{2^{n \cdot 2^n}}$.

Variant: I also conjectures that this property is true in any group (commutative or not), not only with Xor.

In this paper I have proved results involving m equations with $m \ll O(2^n)$ instead of all the 2^n equations. These results were sufficient for the cryptographic security wanted (cf Figure 2).

Zone 1
$$\sqrt{2^n}$$
 Zone 2 $\frac{2^n}{3}$ Zone 3 2^n-1 Zone 4 2^n

Figure 2: The different cases for the values m

Zone 1: (i.e. "below the birthday bound"): when $1 \le m \ll \sqrt{2^n}$. Zone 2: (i.e. the cryptographic zone "above the birthday bound"): when $\sqrt{2^n} \le m \le \frac{2^n}{3}$: the properties of this zone are the main subject of this paper. Zone 3: $\frac{2^n}{3} \le m \le 2^n - 1$: this zone was not studied carefully in this paper. Our proof technique may also give some results in this zone, but this was not studied.

Zone 4: $m = 2^n - 1$ and $m = 2^n$: the zone of the new conjecture, and of [5] and [14].

Equivalent Conjectures

Let $\tilde{H}_{\alpha} = \frac{|B_n|^2}{2^{n\alpha}}$ be the average value of H_{α} .

Theorem 13 The new conjecture given above is equivalent to each of these (not proved properties):

- 1. $\forall f \in F_n, if \oplus_{x \in I_n} f(x) = 0, then \ H_{2^n}(f) \ge \frac{|B_n|^2}{2^{n \cdot 2^n}} (= \tilde{H_{2^n}})$ 2. $\forall f \in F_n, \ H_{2^n - 1}(f) \ge \frac{H_{2^n - 1}}{2^n} (= \frac{|B_n|^2}{2^{n \cdot 2^n}})$
- 3. $\forall f \in F_n, \forall \alpha, 1 \leq \alpha \leq 2^n 1, H_{\alpha}(f) \geq \frac{\tilde{H}_{\alpha}}{2^n}$
- 4. $\forall \alpha, 1 \leq \alpha \leq 2^n 1, \forall b_1, \dots, b_\alpha, h_\alpha(b_1, \dots, b_\alpha) \geq \frac{\tilde{h}_\alpha}{2^n}$

Proof of Theorem 13.