
Domain-Polymorphic Programming of
Privacy-Preserving Applications ?

Dan Bogdanov, Peeter Laud, and Jaak Randmets

Cybernetica, Ülikooli 2, 51003 Tartu, Estonia
{dan.bogdanov,peeter.laud,jaak.randmets}@cyber.ee

Abstract. Secure Multiparty Computation (SMC) is seen as one of the
main enablers for secure outsourcing of computation. Currently, there are
many different SMC techniques (garbled circuits, secret sharing, homo-
morphic encryption, etc.) and none of them is clearly superior to others
in terms of efficiency, security guarantees, ease of implementation, etc.
For maximum efficiency, and for obeying the trust policies, a privacy-
preserving application may wish to use several different SMC techniques
for different operations it performs. A straightforward implementation of
this application may result in a program that (i) contains a lot of dupli-
cated code, differing only in the used SMC technique; (ii) is difficult to
maintain, if policies or SMC implementations change; and (iii) is difficult
to reuse in similar applications using different SMC techniques.
In this paper, we propose a programming language with associated com-
pilation techniques for simple orchestration of multiple SMC techniques
and multiple protection domains. It is a simple imperative language with
function calls where the types of data items are annotated with pro-
tection domains and where the function declarations may be domain-
polymorphic. This allows most of the program code working with private
data to be written in a SMC-technique-agnostic manner. It also allows
rapid deployment of new SMC techniques and implementations in exist-
ing applications. We have implemented the compiler for the language,
integrated it with an existing SMC framework, and are currently using
it for new privacy-preserving applications.

1 Introduction

Secure multiparty computation (SMC) is a cryptographic method for n different
parties to evaluate a function (y1, . . . , yn) = f(x1, . . . , xn) so that each party Pi
provides the input xi and learns the output yi such that no party can learn the

? This research was, in part, funded by the U.S. Government. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
U.S. Government. Distribution Statement A (Approved for Public Release, Distri-
bution Unlimited). This research has also been supported by the European Regional
Development Fund through the Estonian Center of Excellence in Computer Science,
EXCS.

inputs or outputs of another party. The first protocols for secure multiparty com-
putation were proposed by Yao [23]. The techniques have been developed since
then and several practical implementations of programmable secure computation
have been created [13, 3, 8, 7].

When developing an application making use of SMC techniques (or other,
possibly non-cryptographic secure computation techniques), we may want to
use more than one technique simultaneously, and/or we may want to defer the
choice of particular SMC techniques to a later stage of development. The main
reason for this is efficiency — different operations may be fastest using different
techniques, even when considering the costs of translating between data repre-
sentations [11]. Confidentiality policies may compound this issue, stating that
different pieces of data must be treated with techniques providing protection
against different kinds of adversaries (passive vs. active; the size of coalitions it’s
able to form). In this case, we may use faster techniques for data needing less pro-
tection. Also, in our quest for speed, we may want to try out and profile different
SMC techniques; this should be possible without rewriting the application.

We have responded to the wish to simultaneously use multiple SMC tech-
niques by developing a secure computation runtime which is modular and makes
the integration of new techniques easy. The application programmer, in order
to make full use of the capabilities of the runtime, needs a language to express
the functionality of the application and the possible choices of SMC techniques,
without being forced to commit to particular techniques too early. The goal of
this paper is to present such a programming language, describe its compilation
and integration with the runtime. The design of the language has been somewhat
inspired by Jif [15]. Several design choices have also been affected by our unique
practical experience in developing SMC applications.

Our contribution. In this paper we present an implementation of the secure
programming model. Our main contributions include the introduction of pro-
tection domains as an abstraction for a set of SMC protocols and the design of
a programming language (an extension of SecreC [9, 20]) that uses protection
domains as its foundation. The notion of protection domains is elaborated on
in Sect. 2 of this paper. The language is a simple, strongly typed imperative
language where each variable and piece of data carries its protection domain as
part of its type information. Importantly, our type system supports protection
domain polymorphism. This allows the actual choices of SMC techniques to be
done after the implementation of the subroutines of the application. This also
allows the development of libraries of common privacy-preserving functionali-
ties that can be used with many SMC techniques. To obtain speed-ups from
the existence of particularly fast protocols for some common functionality with
some SMC technique, our language also supports specializations (full and par-
tial) of polymorphic functions. The language and its type system are described
in Sect. 3.

We have developed a compiler for our programming language that translates
programs that use protection domains to bytecode executables that run on a
secure computation runtime that enforces the protection domain restrictions.

In this paper (Sect. 4 and Sect. 5), we present the translation of our language
to a monomorphic intermediate language; its further translation to bytecode is
standard.

Related work. Several languages for programming secure computation systems
have been proposed [13, 17, 8, 21, 14]. However, these language do not provide a
clear separation of data with different policies on the type system level. Further-
more, some of them are fixed to a single secure computation paradigm.

Our design has been influenced by the Decentralized Label Model (DLM) [16]
and its implementation in Jif [15]. A label in DLM is closely related to our notion
of a protection domain and label polymorphism appeared in Jif. The polymor-
phism is even more fine-grained in information flow analyses for programs in
ML [18] or Haskell [12]. Our choice of following the imperative paradigm was
influenced by its ubiquity in cryptographic literature.

2 Protection Domains

We start by defining the protection domains and their kinds.

Definition 1. A protection domain kind (PDK) is a set of data representations,
algorithms and protocols for storing and computing on protected data.

Definition 2. A protection domain (PD) is a set of data that is protected with
the same resources and for which there is a well- defined set of algorithms and
protocols for computing on that data while keeping the protection.

Each protection domain belongs to a certain protection domain kind and
each protection domain kind can have several protection domains.

A typical example of a PDK is secret sharing, with implementations for shar-
ing, reconstruction, and arithmetic operations on shared values. A PD in this
PDK would specify the actual parties doing the secret sharing, and the num-
ber of cooperating parties for reconstruction. Another example of a PDK is a
fully homomorphic encryption scheme with operations for encryption, decryp-
tion, as well as for addition and multiplication of encrypted values. Here different
keys correspond to different PD-s. Non-cryptographic methods for implementing
PDK-s may involve trusted hardware or virtualization. In general, a PDK has
to provide

1. A list of data types used in the PDK.
2. For each data type in a PDK we need:

(a) a classification and declassification functions to convert between public
and protected representation of values,

(b) protocols or functions that perform operations on protected values

The functions performing secure operations should be universally composable so
they can be combined into programs [5].

Constructing a useful PDK from secure multiparty computation is non-
trivial, as many such schemes only support a few secure operations. It may be
possible to construct more complex secure computation operations by compos-
ing simpler ones, but dedicated protocols have been shown to be more efficient
in practice. We have identified several protocol suites that are suitable for im-
plementation as protection domain runtimes with some work, including, but not
limited to [2, 3, 6].

Our programming model includes a special public protection domain that
does not apply any protective measures. The public protection domain is useful
for working with values like public constants that do not have to be hidden.

Our programming language will allow the application developer to define
protection domain kinds and instantiate these kinds as individual protection
domains. Each PDK (including the public one) supports a range of data types
and operations on those data types; the operations are accessed through system
calls whose implementation (as a cryptographic algorithm or protocol) is beyond
the scope for application programmer. The data type of each value used in the
program is annotated with its protection domain. In order to write generic code,
our programming language makes use of polymorphism.

3 Polymorphic Language

We will now describe the programming language for expressing SMC applica-
tions. In this paper, we concentrate on the details related to protection domains.
We skip the features that are also necessary for the ease of use of the lan-
guage (e.g. the module system, multi-dimensional arrays, arithmetic operators
and overload resolution), but are orthogonal to the semantics and type system
of the protection domains, and are also more straightforward to implement.

3.1 Abstract Syntax

The polymorphic language program consists of a sequence of declarations fol-
lowed by a program body. Every declaration is either a protection domain kind
declaration, protection domain declaration, or a function declaration.

P ::= (pdk k; | pd d : k; | F)∗ B (1)

Functions are optionally quantified over some protection domains and their
body consists of either a system call invocation or a block of variable declarations
followed by a statement.

F ::= [Q] f(x1 : d1 t1, . . . ,xn : dn tn) : d0 t0 (B | S)
Q ::= ∀ α1, . . . ,αn. α ::= d | d : k
S ::= syscall(f) B ::= {(xi : di ti;)∗ s}

(2)

Data types, denoted with t, are not fixed, but definitely include integers
int, booleans bool, and vectors of integers int[] and booleans bool[]. Kind

variables are denoted with k, protection domain variables with d, function and
system call names with f , and variables with x. A special protection domain
name public is reserved and is considered predefined. Public data types public t
are often written t+ for conciseness.

In addition to usual WHILE-language constructs the language includes some
array operations.

s ::= skip | s1 ; s2 | x = e | x[e1] = e2
| if e then s1 else s2 | while e do s | return e

e ::= x | ct | e :: d | f(e1, . . . ,en)
| e1[e2] | mkarr(e1,e2) | length(e)

3.2 Examples

The first example demonstrates that the selection of protection domains that a
given algorithm is invoked on can greatly affect its performance. Consider the
task of computing the Hamming distance between two vectors. We can imple-
ment this by comparing the input vectors point-wise in domain D and summing
the result in a different protection domain DT. The user of this algorithm is free
to select both protection domains provided that they support used operations.

∀ D, DT. hammingDist(x : D int[], y : D int[]) : DT int {

eq : D bool[] = x != y; // pointwise comparison

ns : DT int[] = boolToInt(reclassify(eq));

return sum(ns);

}

Listing 1. Hamming distance

We will explore the performance of the previous algorithm by looking at
two different protection domain kinds, both available on our runtime system.
The first is additive secret sharing (among three parties) and the second is XOR
secret sharing where data is bit-wise additively shared (also among three parties).
Assume that integers are 64-bit wide and both protection domains are run on
the same set of physical machines. In this particular case the algorithm performs
best if the input is XOR shared and output is additively shared. In this case only
8 communication rounds are required for doing the computation. If both input
and output are additively shared then the computation takes 10 communication
rounds [4].

As the second example consider the task of sorting a vector of integers in
privacy-preserving manner. The sorting method is polymorphic over the pro-
tection domain — the only restriction is that the given protection domain kind
supports basic arithmetic and comparison. The generic sorting function operates
by constructing a sorting network and obliviously performing compare-and-swap
on pairs provided by the network.

∀ D. sort(src : D int[]) : D int[] {

i : public int;

a, b, c : D int;

alength : public int = length(src);

sn : public int[] = constructSortingNetwork(alength);

for (i=0; i < length(sn)-1; i = i + 2) {

a = src[sn[i+0]]; b = src[sn[i+1]];

c = isLessThan(a, b);

src[sn[i+0]] = c*a + (1 - c)*b;

src[sn[i+1]] = c*b + (1 - c)*a;

}

return src;

}

Listing 2. Generic sort

However, we can do better if we have more information about the given pro-
tection domain kind. In particular, if a protection domain kind K provides a fast
method to shuffle vectors, an efficient method for sorting can be implemented.
Comparison results of shuffled vector can be declassified and control flow of the
program can depend on the declassified results. Sorting can be overloaded for
this special case and when sorting a vector the overload resolution mechanism
selects the appropriate implementation.

∀ D:K. sort(src : D int[]) : D int[] {

dest : D int[] = shuffle(src);

// Sort dest vector using public comparisons:

// declassify(isLessThan(dest[i], dest[j]))

return dest;

}

Listing 3. Specialized sort

We have, for readability, in the examples above, used syntactic sugar and
operators, such as arithmetic, that we have not defined syntactically. All of those
operations can be modeled through system calls. Both of the for-loops can be
implemented using a while-loop.

3.3 Static Semantics

A polymorphic language program must satisfy a number of conditions in order
to be considered valid, to have a (dynamic) semantics, and to be compilable.
The main verification pass, which we state as a type system, makes sure that for
all function calls in the program, there is a function declaration that matches it.
A final pass ensures that all variables are initialized before being used and all
(finite) execution paths through function bodies (except the main function) end
with a return statement. Here we only consider the type checking phase.

In order to state typing judgments for various parts of the program, we will
give unique labels to all function declarations. Let L be the set of labels of
function declarations. Let us introduce the following notation:

– For a program P , let pdk(P) and pd(P) be the sets of protection domain
kinds and protection domains declared in P . For d ∈ pd(P), let kind(d) ∈
pdk(P) be the kind of the protection domain d.

– For a function declaration f ` in program P , let argP (`) be the list of decla-
rations of its formal arguments, and retP (`) be the return type declaration.

– For a program P and a function name f let implP (f ; d1 t1, . . . , dn tn → d0) ∈
L denote the label of a function declaration in P that has the name f and is
the best match among all those declarations with the name f , and with the
type matching the arguments with protection domains d1, . . . , dn ∈ pd(P)
and data types t1, . . . , tn, and output with the protection domain d0. If there
is no such function declaration, or if there are multiple equally good matches,
then let the value of implP (. . .) be ⊥.

– For a label ` ∈ L let δ(`) be the set of protection domains quantified in the
declaration of the function with label `.

– Let bodyP (`) be the body of the function declared at the label ` ∈ L. For
a mapping θ : δ(`) → pd(P), let bodyθP (`) be the body of the function
declared at label `, where all protection domains d ∈ δ(`) have been syntac-
tically replaced with protection domains dθ. We define argθP (`), and retθP (`)
in identical manner by syntactically replacing domains d in δ(`) by dθ.

– For a function declaration F labeled ` and protection domains d′0, . . . , d
′
n let

θ = unif `(d
′
0, . . . , d

′
n) be a mapping from δ(`) to protection domains declared

by the program, such that d′i = diθ for every quantified di.
– Let body(P) denote the body of a program P .

We have not specified how the function implP , for finding the concrete lo-
cation of the function, given the function name and types of the arguments,
is implemented. There are multiple possible implementations, for instance, we
could return the first match or we could select a match that, in some sense,
best fits the template parameters. Regardless of the implementation the type
checking judgements remain the same. In our actual implementation, we select
the function declaration that (i) quantifies over the least number of polymorphic
protection domains, and (ii) out of those, has the strictest kind annotations. If
multiple such function definitions match then a type error is raised.

In the type system, the following kinds of judgments will be considered.

– ∆ ` P means that the program P is well-typed in instantiation context ∆.
– ∆;P ; θ ` f ` means that the function f with label ` in the program P is well-

typed if protection domains in δ(`) are bound to the protection domains
given by θ.

– ∆;P ; d0 t0;x1 : d1 t1, . . . , xn : dn tn ` s means that in the program P , in a
function returning a value with data type t0 in protection domain d0, the
statement s is well-typed if the variables xi have the protection domains di
and the data types ti. Shorthand Γ is often used to represent the product of
types x1 : d1 t1, . . . , xn : dn tn, and we write G as shorthand for ∆;P ; d0 t0;Γ .

– ∆;P ; d0 t0;Γ ` B means that, in the given context, the function body B (a
system call, or an inner block) is well-typed.

– ∆;P ;Γ ` e : d t means that the expression e, in the given context, has data
type t in protection domain d. We write H as a shorthand for ∆;P ;Γ .

The function ∆ stores the instantiations of (polymorphic) functions to given
protection domains of the parameters and the return type. More formally, the
instantiation context ∆ is a function that maps function name f , return domain
d0, and domains of parameters d1, . . . , dn to pairs consisting of the location ` ∈ L,
and substitution θ.

∆;P ;⊥⊥; ∅ ` body(P)

∆ ` P

∆;P ; retθP (`); argθP (`) ` bodyθP (`)

∆;P ; θ ` f `
∆;P ; d0 t0;Γ, x1 : d1 t1, . . . , xn : dn tn ` s

∆;P ; d0 t0;Γ ` {x1 : d1 t1; . . . ; xn : dn tn; s}

G ` skip

G ` s1 G ` s2
G ` s1 ; s2

H ` e : bool+ G ` s1 G ` s2
G ` if e then s1 else s2

H ` e : bool+ G ` s
G ` while e do s

H ` e : d0 t0

G ` return e

(x : d t) ∈ Γ H ` e : d t

G ` x = e
(x : d t[]) ∈ Γ H ` e1 : int+ H ` e2 : d t

G ` x[e1] = e2

H ` ct : t+
(x : d t) ∈ Γ
H ` x : d t

H ` e : d t

H ` e :: d : d t

H ` e1 : d t[] H ` e2 : int+

H ` e1[e2] : d t
H ` e1 : d t H ` e2 : int+

H ` mkarr(e1,e2) : d t[]

H ` e : d t[]

H ` length(e) : int[]+

H ` e1 : d1 t1 . . . H ` en : dn tn
f ` = implP (f ; d1 t1, . . . , dn tn → d) (`, θ) = ∆(f, d, d1, . . . , dn)

θ = unif `(d, d1, . . . , dn) ∆;P ; θ ` f ` d t = retθP (`)

H ` f(e1, . . . ,en) : d t

Fig. 1. Typing judgments of the polymorphic language

The typing rules are presented in the Fig. 1. There are two noteworthy points.
First, our typing rules are not to be interpreted inductively, but co-inductively.
Intuitively, we consider a typing judgment to be valid if it belongs to a set of
typing judgments where all elements can be justified using these rules and the
judgments in this set. There exists the largest such set; it is obtained by starting
from the set of all possible typing judgments and iteratively deleting from it all
judgments that cannot be justified.

The second point is that these rules constitute the definition of typability, but
are not intended to describe an actual type-checking algorithm. The actual algo-
rithm deployed in our compiler has similarities to the instantiation of templates
during the compilation of C++ programs.

Similarly to existing languages for programming secure computation, we let
the control flow of the program to only depend on public values. This reflects

the common consideration of the costs of hiding the control flow as too high
to perform automatically (it would involve the execution of both branches, and
obliviously selecting the result of one of them). If needed, the programmer has
to explicitly encode the branching on private values (or it could be provided
as syntactic sugar). Similar considerations allow the pattern of array access to
depend on public values only.

For a well-typed program the instantiation context that the program type
checks under is not unique. This is because the type checking rules do not restrict
the instantiation context in any way but only require that some specific set of
instantiations occur. However, the following proposition provides us that, for any
well-typed program, there exists the unique smallest instantiation context that
the program type checks under.

Proposition 1. If the program P is well-typed such that ∆ ` P and ∆′ ` P
then ∆ ∩∆′ ` P .

Proof. By structural recursion on the type checking rules.

Incompleteness Due to Ambiguity Notice that, according to the type check-
ing rules, it’s possible to construct a program that is well-typed but, in practice,
should be rejected by the compiler as evaluating it would leads to ambiguous
behavior. Consider a function ∀d.f():d int[] polymorphic in the return type,
that is invoked in context that does not provide a concrete protection domain.
For example, length(f()), this expression is well-typed, but the concrete pro-
tection domain that the polymorphic function needs to return can be picked
arbitrarily. In practice we reject programs that lead to this kind of ambiguous
behavior. This issue seems to rise in static semantics of many programming lan-
guages that allow qualified types [10] and, according to our knowledge, there is
no elegant solution [22].

3.4 Dynamic Semantics

We will in the following define a small-step operational semantics of the poly-
morphic language. To define the small-step transition rules of the language we
extend the abstract syntax of expressions with all possible values that variables
can take: e ::= . . . | d v.

Values carry the protection domain and are pairs consisting of a protection
domain d, and some representation v ∈ Val (for simplicity of treatment, we
conflate all data types to a single set Val here) which is left abstract. Public
values public v may be denoted as v+ for conciseness. Arrays are denoted with
a, indices with i, and length of array with l. Let ai be a value that is stored
in the cell with coordinate i in the array a. Let a[i 7→ v] denote array that is
otherwise equal to a, except that the cell at coordinate i contains the value v.
Let length(a) be the length l of the array a. Let mkarr(v, l) be array with length
l, where all cells contain the value v. We assume that if an index of an array is

not in valid range it is mapped to that ranged in some manner. A special bottom
value ⊥ ∈ Val is used to denote uninitialized or undefined values.

In order to specify the evaluation order we define statement evaluation con-
text S and expression evaluation contexts E using a simple grammar in Fig. 2.
We choose to evaluate expressions from left to right in a deterministic order. For
every evaluation context we define a mapping from expressions to either state-
ments or expressions respectively. The definitions of the functions S[−] : e→ s,
and E [−] : e → e have been omitted, but are easily defined by structural recur-
sion on the respective grammars.

S ::= S ; s2 | x = E | x[E] = e2 | x[v+] = E
| return E | if E then s1 else s2

E ::= [] | E :: d | E[e2] | (d v)[E] | f(d1 v1, . . . ,E,ei, . . . ,en)
| mkarr(E,e2) | mkarr(d v,E) | length(E)

Fig. 2. Evaluation context

The semantics is a set of triples that we denote C◦
κ→ C•. Here C◦ is a

program configuration (defined below), C• is the configuration after making a
single step in the program, and κ is the action performed during that step.
If the step was not an invocation of a system call, then the action is empty
(denoted either with τ or by simply omitting it). If the step consisted of making
a system call with name f , arguments v1, . . . , vn in protection domains d1, . . . , dn,
returning a value v0 in the protection domain d0 then we denote the action with
κ ≡ v0 = f(d0, d1, v1, . . . , dn, vn). The only source of system calls in the
polymorphic language is the syscall construct.

A configuration C = c1 : . . . : cn : cn+1 consists of a list of stack frames,
where every frame ci, other than the last, consists of a statement evaluation
context S, return domain d, and local environment γ. A configuration always
consists of at least one stack frame. The context S acts as a return position, and
if the current procedure returns we plug the returned value into the context S of
the previous stack frame. The last stack frame cn+1 does not contain the return
position.

The program configuration C◦ is either a program 〈P 〉 or a pair of configu-
ration and statement 〈C, s〉. The target configuration C• of transition may be a
regular program configuration C◦ or a configuration C if the evaluation halts.

With such set-up, the definition of the triples C◦
κ→ C• is quite straightfor-

ward. First we define the expression evaluation rules in the form γ ` 〈e〉 ⇒ 〈d v〉,
stating that the expression e evaluates to the value v in protection domain d,
if the values and protection domains of variables occuring in e are given by γ.
The transition rules for the statements are in the form ∆ ` 〈C, s〉 κ→ 〈C ′, s′〉,
where s is the statement still left to execute in the currently running function,
and C is the current list of stack frames, containing the values of the variables
in s, as well as the triple (S, d, γ) for each frame in the call stack. Here γ con-

tains the values of its local variables and the statement context S expresses both
the statement still left to execute in this frame, as well as the location for the
value d v returned by the called function. The instantiation context ∆ has the
same meaning as in Sec. 3.3; we will always use the unique smallest context. The
expression evaluation and transition rules are defined in Appendix A.

3.5 Trace Semantics

Trace is a sequence of program states that are connected by actions. Individual
states of trace are hidden and denoted with • as we are only concerned about
which sequences of actions a program may perform. Traces may be empty, finite
or infinite. For example, configuration in final state has trace •, but a infinite
trace • → • . . . corresponds to configuration which performs no actions and loops
indefinitely. A set of all finite traces T ∗, infinite traces T ω, and arbitrary traces
T ∞ are defined over the set of labels A corresponding to actions (i.e. system
calls) a program may perform.

Trace semantics of a well-typed program ∆ ` P is defined by a set of se-
quences of labels JP K ⊆ T ∞ by collecting all finite and infinite traces starting
with the program configuration 〈P 〉. All finite traces have to stop in some config-
uration C as we assume that the body of the program does not contain a return
statement.

JP K = {• κ1→ • . . . • κn→ • | ∆ ` 〈P 〉 κ1→ . . .
κn→ C}

∪ {• κ1→ • . . . | ∆ ` 〈P 〉 κ1→ . . .}
(3)

3.6 Security of Information Flow

The protection domains give us a simple discipline for information flow control.
An observer able to access data only in certain protection domains will learn
nothing about data in other domains, as long as no operation explicitly transfers
data between these protection domains.

The semantics (3) specifies the order in which system calls are made. The
actual execution of the program depends on the implementations of these system
calls. The semantics JfK of an arity-k system call f is a function with the type
PD × (PD × Val)k × W → Val × W, where PD is the set of all protection
domains and Val is the set of possible values the program operates on. The
result of the system call depends not only on its arguments and their (and the
result’s) protection domains, but also (e.g. when inputting values) on the outside
environment. We letW denote the set of possible states of the environment. This
state can change due to the system call, thus codomain of JfK also contains W.

The initial state of the environment is distributed according to W ∈ D(W),
this distribution is known to everyone (D(X) denotes the set of probability
distributions over the set X). The distribution W and the semantics of system
calls define a probability distribution over the set of traces JP K. In this setting,
the semantics of all system calls can be assumed to be deterministic, as the
random coins they might use may be considered to be a part of W.

To speak about information flow security, we partition the set of protection
domains into “low” and “high” domains: PD = PDL ∪̇ PDH , with public ∈
PDL. Similarly, the state of the world has“low”and“high”part:W =WL×WH ;
these parts must be independent in the initial distribution W . For each label
κ ≡ v0 = f(d0, d1, v1, . . . , dn, vn) we define its low-slice κ by replacing each vi by
a placeholder ∗ iff di ∈ PDH ; this definition straightforwardly extends to traces.
A label κ is a declassification label if d0 ∈ PDL, but di ∈ PDH for some i. We
require that the semantics of system calls JfK only has the information flows that
we expect it to have: the low-part of the state of the environment output by JfK
may only depend on the low inputs to JfK, and the value v0 output by JfK may
depend on the high-part of the state of the environment only if d0 ∈ PDH .

We can show that unless κ is a declassification label, the execution of a
system call labeled κ does not increase the low-adversary’s (that can observe
the low-slices of traces) knowledge about the high-part of the initial state of
the environment. We define a probabilistic notion of the knowledge —similar
to [1]— of the adversary after observing the low-slice of the trace so far. The

adversary’s knowledge KN T ,wL

P is a probability distribution that assigns to each
pair (w′, T ′), where w′ ∈ W and T ′ is a trace, the probability that the execution
of the program P started in state w′ and proceeded along the trace T ′, given
that the low-slice of the trace so far has been T and the initial low-part of the
state of the environment was wL. We can show (see Appendix D) that if κ is not

a declassification label, then KN T ,wL

P = KN T ;κ,wL

P .

4 Monomorphic Language

The monomorphic language is a WHILE-language with functions and PDs. The
notion of protection domains remains in the language but the run-time behavior
of the language no longer depends on them. All dynamic dispatches have been
resolved; the function calls in the monomorphic language are statically bound.
The majority of program optimizations and static analysis should be done at
the level of the monomorphic language.

Syntactically the target language has only few differences from the high level
language (1) and (2). The first is that functions can no longer be polymorphically
quantified over protection domains, and every function definition is uniquely
indexed to distinguish between the instances of the same polymorphic language
function. We also assume that every function call refers to the unique index ι.
Another syntactic difference is that qualified expressions are not present in the
monomorphic language.

4.1 Dynamic Semantics

Operational semantics of the monomorphic language (Appendix B) is defined
in very similar style to the polymorphic language semantics. A major difference
is that environment no longer stores domain types of values, and due to the
lack of dynamic dispatch, the semantic rules do not depend on the instance

environment ∆. We shall not define all of the language concepts because they
are almost identical to those presented for the polymorphic language semantics.

Trace semantics of the monomorphic language program is defined using the
same notion of traces as defined for the polymorphic language. It’s possible
because the traces hide the individual configurations between the transitions,
but the labels are same between the language semantics. Trace semantics of
monomorphic language program P ′ is defined by a set of sequences of labels
JP ′K ⊆ T ∞ analogously to the polymorphic language trace semantics.

5 Translation

This section covers a type-directed method for translating programs of the poly-
morphic language to the programs of the monomorphic language. The type-
directed translation methods model compilation to intermediate representation.

5.1 Translation Methods

Type-directed methods for translating statements are in the form ∆;P ; d0 t0;Γ `
s s′ where s is a statement of the polymorphic language and s′ is a statement of
the monomorphic language. The context∆ contains instantiations of functions to
some particular protection domains, and Γ is the type environment for variables,
d0 and t0 denote the return type of the current function. Translation rules of
expressions are in the form ∆;P ;Γ ` e e′ : d t, where e is expression of the
polymorphic language, e′ is expression of the monomorphic language, d is the
domain type, and t is the data type of the expression.

The translation methods follow the type checking rules directly. There are,
however, few notable points. The first difference is that in the monomorphic
language we refer to the concrete instances of polymorphic functions using the
index ι = (`, θ) where ` is the label of function in the polymorphic language and θ
is the substitution to concrete protection domains. Due to unambiguity this index
is unique for every function call. Second notable point is that the translation
does not always produce a well-typed monomorphic language program — the
instantiation context might contain instantiations that do not type. If given
smallest ∆ such that ∆ ` P P ′ then P ′ type checks.

5.2 Functional Correctness

Informally we wish to show that the original program and the translated pro-
gram give rise to the same set of sequences of system calls. First we will define
equivalence relation between the polymorphic and monomorphic language pro-
gram configurations. Next we will assert a lemma that intuitively states that
equivalent program configurations will eventually transition into equivalent con-
figurations. Finally, we will state a theorem to establish that the translation to
monomorphic form preserves semantics.

To establish an equivalence relation between polymorphic and monomor-
phic language configurations we define equivalence relation between: environ-
ments, singleton configurations, and program configurations. Two environments
Γ ` γ ≡ γ′ are equivalent under the given type environment Γ if, for every
(xi : di ti) ∈ Γ , there exists vi ∈ Val, such that γ(xi) = di vi and γ′(xi) = vi.
Additionally, if a variable does not occur in the type environment Γ it must not
occur in either of the environments. Given equivalent environments the equiva-
lence of singleton configurations rises naturally, and equivalence of configurations
and program configurations follows from statement translation rules.

∆;P ; d′0 t
′
0;Γ ′ ` C ≡ C ′ Γ ` γ ≡ γ′

∆;P ; d0 t0;Γ ` S[d0⊥] S ′[⊥]

∆;P ; d0 t0;Γ ` (S, d0, γ) : C ≡ (S ′, γ′) : C ′
G ` C ≡ C ′ G ` s s′

G ` 〈C, s〉 ≡ 〈C ′, s′〉

We write C◦
κ∗

→ C•, for both polymorphic and monomorphic program con-
figurations, if it’s possible to transition from the source configuration to the
destination configuration by performing the action κ followed and preceded by
some finite number of empty transitions. For empty transitions we allow that

C◦
τ∗

→ C◦.

Lemma 1 (Weak bisimulation). Let G be statement type checking context.
For every two equivalent program configurations G ` C◦ ≡ C ′

◦
the following

conditions hold:

1. For every label κ and configuration C• if ∆ ` C◦ κ→ C• there exists C ′
•

such

that ` C ′◦ κ
∗

→ C ′
•

and G ` C• ≡ C ′•.
2. For every label κ and configuration C ′

•
if ` C ′◦ κ→ C ′

•
there exists C• such

that ∆ ` C◦ κ
∗

→ C• and G ` C• ≡ C ′•.

Proof. By structural recursion over the translation methods.

Finite traces are said to be equivalent if they are equal without their empty
transitions. We say that two infinite traces T, T ′ ⊆ T ω are equivalent T ∼= T ′ if
for every prefix of T there exists equivalent prefix of T ′. Notice that, according
to our definition, a finite trace can never be equivalent to an infinite trace. This
matches with intuition that, given enough time, a non-terminating program can
always be distinguished from a terminating program no matter the system calls
they perform. Sets of traces are equivalent if for every trace from one set there
exists equivalent trace in another. More formally T ∼= T ′ if for every T ∈ T
there exists T ′ ∈ T ′ such that T ∼= T ′, and for every T ′ ∈ T ′ there exists T ∈ T
such that T ∼= T ′.

Theorem 1. For every well-typed polymorphic language program ∆ ` P and a
monomorphic language program P ′ if ∆ ` P P ′ then the trace semantics of
the two programs are equivalent JP K ∼= JP ′K.

5.3 Security

The secure information flow property we stated in Sect. 3.6 was specified in
terms of the set of program traces making up the semantics of the program.
In particular, the property did not directly refer to the program that generated
those traces. One could then also ask for a particular program in the intermedi-
ate language whether it satisfies that information flow property; some of them
would satisfy it for a particular choice of PDL, while the others wouldn’t. But
as the translation from the polymorphic language to the monomorphic language
preserves the semantics of the program, we immediately obtain that the transla-
tion of any polymorphic language program satisfies the secure information flow
property stated in Sect. 3.6.

6 Implementation

Our compiler translates from the described polymorphic language to the de-
scribed monomorphic language, performs certain program optimizations on the
translated code, and then translates it further to a bytecode that is handled by
our distributed SMC runtime. The runtime interfaces with PDK implementa-
tions (using system calls) that are also distributed among the nodes executing
the runtime. Each PD requires a number of nodes (that we call “roles” by an
analogue with cryptographic protocols) to run securely. To deploy an applica-
tion, we select for each role of each PD in that application a physical node that
executes the code for that role in this PD. Currently, we have implementations
of two PDKs, based on [4, 19]. The PDs in these two PDKs use two or three
parties, respectively.

Our compiler can successfully translate polymorphic code to bytecode that is
targeted to both protection domains. This code can successfully be executed on
our runtime and tests show that the execution and results are correct for both
domains.

7 Conclusion

Efficient combining of different SMC techniques is crucial for obtaining accept-
able performance for privacy-preserving outsourced computations. Equipping the
programmer with easy-to-use tools to guide the combination is a big step towards
this. In this paper, we have presented a language that allows fine-grained orches-
tration of different techniques with minimum effort by the programmer.

References

1. Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, encryption
and key release policies. In: IEEE Symposium on Security and Privacy. pp. 207–
221. IEEE Computer Society (2007)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In:
Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of
Computing. STOC’88. pp. 1–10 (1988)

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) Proceedings of the 13th
European Symposium on Research in Computer Security, ESORICS ’08. Lecture
Notes in Computer Science, vol. 5283, pp. 192–206. Springer (2008)

4. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. International Journal of Informa-
tion Security 11(6), 403–418 (2012)

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual Symposium on Foundations of Com-
puter Science. FOCS’01. pp. 136–145. IEEE Computer Society (2001)

6. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Pro-
ceedings of the 32nd Annual Cryptology Conference. CRYPTO’12. Lecture Notes
in Computer Science, vol. 7417, pp. 643–662. Springer (2012)

7. Geisler, M.: Cryptographic Protocols: Theory and Implementation. Ph.D. thesis,
Aarhus University (February 2010)

8. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) Proceedings of the 17th ACM Conference on Computer and
Communications Security. CCS’10. pp. 451–462. ACM (2010)

9. Jagomägis, R.: SecreC: a Privacy-Aware Programming Language with Applications
in Data Mining. Master’s thesis, Institute of Computer Science, University of Tartu
(2010)

10. Jones, M.: Qualified Types: Theory and Practice. Distinguished Dissertations in
Computer Science, Cambridge University Press (2003)

11. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic Protocol Selection in Se-
cure Two-Party Computations. In: 20th Network and Distributed System Security
Symposium (NDSS) (2013)

12. Li, P., Zdancewic, S.: Encoding information flow in haskell. In: CSFW. p. 16. IEEE
Computer Society (2006)

13. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure Two-Party Com-
putation System. In: Proceedings of the 13th USENIX Security Symposium.
USENIX’04. pp. 287–302. USENIX (2004)

14. Mitchell, J.C., Sharma, R., Stefan, D., Zimmerman, J.: Information-flow control
for programming on encrypted data. In: Chong, S. (ed.) CSF. pp. 45–60. IEEE
(2012)

15. Myers, A.C.: Jflow: Practical mostly-static information flow control. In: Appel,
A.W., Aiken, A. (eds.) POPL. pp. 228–241. ACM (1999)

16. Myers, A.C., Liskov, B.: Complete, safe information flow with decentralized la-
bels. In: IEEE Symposium on Security and Privacy. pp. 186–197. IEEE Computer
Society (1998)

17. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: Hicks, M.W. (ed.) Proceedings of the 2007
Workshop on Programming Languages and Analysis for Security. PLAS’07. pp.
21–30. ACM (2007)

18. Pottier, F., Simonet, V.: Information flow inference for ml. In: Launchbury, J.,
Mitchell, J.C. (eds.) POPL. pp. 319–330. ACM (2002)

19. Pullonen, P., Bogdanov, D., Schneider, T.: The design and implementation of a two-
party protocol suite for sharemind 3. Tech. Rep. T-4-17, Cybernetica AS, Tartu,
http://research.cyber.ee/. (2012)

20. Ristioja, J.: An analysis framework for an imperative privacy-preserving program-
ming language. Master’s thesis, Institute of Computer Science, University of Tartu
(2010)

21. Schröpfer, A., Kerschbaum, F., Mueller, G.: L1 - An Intermediate Language for
Mixed-Protocol Secure Computation. In: Proceedings of the 35th Annual IEEE
International Computer Software and Applications Conference. COMPSAC’11. pp.
298–307. IEEE Computer Society (2011)

22. Vytiniotis, D., Peyton Jones, S., Schrijvers, T., Sulzmann, M.: Outsidein (x) mod-
ular type inference with local assumptions. Journal of Functional Programming
21(4-5), 333–412 (2011)

23. Yao, A.C.C.: Protocols for Secure Computations (Extended Abstract). In: 23rd
Annual Symposium on Foundations of Computer Science. FOCS’82. pp. 160–164.
IEEE (1982)

A Dynamic Semantics of the Polymorphic Language

A.1 Expressions

The transition rules for expressions (Fig. 3) are in form γ ` 〈e〉 ⇒ 〈d v〉. The ex-
pression evaluation rules can only be applied to expressions with fully evaluated
subexpressions. The rules are completely standard. Function calls are handled
by statement evaluation rules.

γ ` 〈ct〉 ⇒ 〈c+〉 γ ` 〈x〉 ⇒ 〈γ(x)〉 γ ` 〈d v :: d〉 ⇒ 〈d v〉

γ ` 〈mkarr(d v,l+)〉 ⇒ 〈dmkarr(v, l)〉 γ ` 〈length(d v)〉 ⇒ 〈length(v)+〉

γ ` 〈(d v)[i+]〉 ⇒ 〈d vi〉

Fig. 3. Polymorphic language expression evaluation rules

A.2 Statements

Transition rules for statements (Fig. 4) are either in the form ∆ ` 〈C, s〉 κ→
〈C ′, s′〉 or, if evaluation of the statement halts, in the form ∆ ` 〈C, s〉 κ→ C ′.
Most rules are fairly standard and we only highlight some of them. Throughout
this section we denote pairs that consist of protection domain d and environment
γ with just γ. Every rule apart from the one for system calls and the one for
function calls passes the protection domain along with the environment. We have
also omitted the program P from the context of every rule.

∆ ` 〈P 〉 → 〈⊥, ε, body(P)〉
γ′ = γ[x1 7→ d1⊥, . . . , xn 7→ dn⊥]

∆ ` 〈γ, {x1 : d1 t1; . . . ; xn : dn tn; s}〉 → 〈γ′, s〉
∆ ` 〈C, s〉 κ→ 〈C′, s′〉

∆ ` 〈(S, γ) : C, s〉 κ→ 〈(S, γ) : C′, s′〉
∆ ` 〈C, s〉 κ→ C′

∆ ` 〈(S, γ) : C, s〉 κ→ (S, γ) : C′

∆ ` 〈γ, s1〉
κ→ γ′

∆ ` 〈γ, s1;s2〉
κ→ 〈γ′, s2〉

∆ ` 〈γ, s1〉
κ→ 〈γ′, s′〉

∆ ` 〈γ, s1;s2〉
κ→ 〈γ′, s′;s2〉

∆ ` 〈γ, x = d v〉 → γ[x 7→ d v]

γ(x) = d a

∆ ` 〈γ, x[i+] = d v〉 → γ[x 7→ d a[i 7→ v]]

∆ ` 〈γ, if true+ then s1 else s2〉 → 〈γ, s1〉

∆ ` 〈γ, if false+ then s1 else s2〉 → 〈γ, s2〉

∆ ` 〈γ, while e do s〉 → 〈γ, if e then (s ; while e do s) else skip〉

∆ ` 〈γ, skip〉 → γ ∆ ` 〈(S ′, γ′) : γ,S[return d v]〉 → 〈γ′,S ′[d v]〉
κ ≡ v = f(d0, γ)

∆ ` 〈(S ′, γ′) : (d0, γ), syscall(f)〉 κ→ 〈γ′,S ′[d0 v]〉
γ ` 〈e〉 ⇒ 〈e′〉

∆ ` 〈γ,S[e]〉 → 〈γ,S[e′]〉

Fig. 4. Polymorphic language statement evaluation rules

If a return statement, with evaluated sub-expression, is reached within arbi-
trary statement evaluation context. The top-most stack frame is removed, and
the value is inserted into the evaluation context of the caller. The current state-
ment evaluation context is discarded entirely.

System calls are somewhat similar to return statement, but have the effect
of calling the system function with currently active stack frame. The system call
gets entire stack frame as argument which is unpacked to fit the form defined
previously. For environment γ = ε[x1 7→ d1 v1, . . . , xn 7→ dn vn] the call f(d0, γ)
is equal to f(d0, d1 v1, . . . , dn vn).

A.3 Function Calls

Function calls – with fully evaluated parameters – are handled by statement
evaluation rules. If such function call is reached within some statement evalua-
tion context S the statement evaluation context will be pushed onto the return
stack, the rule transitions into evaluating the function body, and new stack frame
is constructed. The new environment within the stack frame maps the formal
parameters to the values of the actual parameters.

The appropriate protection domain of the return type is selected dynamically
using judgments in the form γ `d S : d′ (see Fig. 6), where d is the current domain
context. The judgment will match with every possible security domain d′ that
the evaluation context can reside in. The rule for function call could lead to
ambiguous behaviour but all function calls of an unambiguously-typed program
can be evaluated unambiguously.

d0 t0 = retθP (`) γ `d S : d0 (`, θ) = ∆(f, d0, d1, . . . , dn)
γ′ = ε[xi 7→ di vi | xi : di ti ∈ argθ(`)] B = bodyθP (`)

∆ ` 〈γ, d,S[f(d1 v1, . . . ,dn vn)]〉 → 〈(S, d, γ) : (d0, γ
′), B〉

Fig. 5. Polymorphic language function call evaluation

γ `d S : d′

γ `d S ; s2 : d′
γ(x) = d v γ `d E : d′

γ ` x = E : d′
γ(x) = d v γ `d E : d′

γ ` x[v+1] = E : d′

γ `public E : d

γ ` x[E] = e2 : d

γ `d E : d′

γ `d return E : d′
γ `public E : d′

γ ` if E then s1 else s2 : d′

γ `d [] : d

γ `d E : d′

γ `d E :: d : d′
γ `d E : d′

γ `d E[e2] : d′
γ `public E : d′

γ `d (d v)[E] : d′

γ `d E : d′

γ `d mkarr(E,e2) : d′
γ `public E : d′

γ ` mkarr(d v,E) : d′
γ ` E : d′

γ `public length(E) : d′

γ ` E : d′

γ ` f(d1 v1, . . . ,E,ei, . . . ,en) : d′

Fig. 6. Domain of the evaluation context

B Monomorphic Language Semantics

See Fig. 8 for the transitions of the statements of the monomorphic language.
The evaluation of expressions is defined in Fig. 7.

γ ` 〈x〉 ⇒ 〈γ(x)〉 γ ` 〈ct〉 ⇒ 〈c〉 γ ` 〈v[i]〉 ⇒ 〈vi〉

γ ` 〈mkarr(v, l)〉 ⇒ 〈mkarr(v, l)〉 γ ` 〈length(v)〉 ⇒ 〈length(v)〉

Fig. 7. Monomorphic language expression evaluation rules

C Translation Rules

See Fig. 9 for translation rules from polymorphic language to monomorphic
language.

D Proof of Information Flow Security

The initial state w ∈ W of the environment of the program P is distributed
according to W . The adversary is assumed to know the low-part wL of the
initial state. During the execution of P , the adversary is also assumed to see the
low-slice of the label of each occurring transition.

` 〈P 〉 → 〈ε, body(P)〉
γ′ = γ[x1 7→ ⊥, . . . , xn 7→ ⊥]

` 〈γ, {x1 : d1 t1; . . . ; xn : dn tn; s}〉 → 〈γ′, s〉
` 〈C, s〉 κ→ C′

` 〈(S, γ) : C, s〉 κ→ (S, γ) : C′

` 〈C, s〉 κ→ 〈C′, s′〉
` 〈(S, γ) : C, s〉 κ→ 〈(S, γ) : C′, s′〉

` 〈γ, skip〉 → γ

` 〈γ, s1〉
κ→ 〈γ′, s′〉

` 〈γ, s1 ; s2〉
κ→ 〈γ′, s′ ; s2〉

` 〈γ, s1〉
κ→ γ′

` 〈γ, s1 ; s2〉
κ→ 〈γ′, s2〉

` 〈γ, x = v〉 → γ[x 7→ v]

γ(x) = a

` 〈γ, x[i] = v〉 → γ[x 7→ a[i 7→ v]]

` 〈γ, if true then s1 else s2〉 → 〈γ, s1〉

` 〈γ, if false then s1 else s2〉 → 〈γ, s2〉

` 〈γ, while e do s〉 → 〈γ, if e then (s ; while e do s) else skip〉

` 〈(S ′, γ′) : γ,S[return v]〉 → 〈γ′,S ′[v]〉
γ ` 〈e〉 ⇒ 〈e′〉

` 〈γ,S[e]〉 → 〈γ,S[e′]〉
γ = [x1 7→ v1, . . . , xn 7→ vn] κ ≡ v = f(d0, d1, v1, . . . , dn, vn)

` 〈(S ′, γ′) : γ,S[syscall(f, d0, d1, . . . , dn)]〉 κ→ 〈γ′,S ′[v]〉

γ′ = ε[xi 7→ vi | ∀xi : di ti ∈ argP (f ι)]

` 〈γ,S[f ι(v1, . . . , vn)]〉 → 〈(S, γ) : γ′, bodyP (f ι)〉

Fig. 8. Monomorphic language statement evaluation rules

Besides the low-slices of transition labels and traces (according to the parti-
tioning PDL ∪̇ PDH of the set of protection domains PD), we can also speak
about low-slices of program configurations. Recall that a program configuration
is a pair 〈C, s〉 or an item C, where s is a statement (Sect. 3.1) and C is a
sequence (S1, d1, γ1) : · · · : (Sn, dn, γn) : (dn+1, γn+1), where n ≥ 0, Si is a state-
ment evaluation context (Fig. 2), di is the protection domain of the value to be
returned from this frame and γi is a mapping from variables to values annotated
with protection domains. All values appearing in s and Si are annotated with
their protection domains as well. To form the low-slice 〈C, s〉 or C, we replace
all annotated values d v in s and Si with the placeholders d ∗, if d ∈ PDH . We
have, that the low-slice of the execution of the program P can be recovered from
the low-slices of the labels of the transitions taken during the execution.

Lemma 2. Let P be a well-typed program and C◦1
κ1→ C•1 and C◦2

κ2→ C•2 two of
possible steps that it may make. If C◦1 = C◦2 and κ1 = κ2, then C•1 = C•2 .

Proof. The low-slice of a context contains full information about the control flow
of the program, hence C◦1 and C◦2 both make the same step. If it is an assignment
of a value to a variable (or to an array element), and the assigned value has a
low protection domain, then the value must be the same in C◦1 and C◦2 , hence
the variable will have the same value in both C•1 and C•2 . If the assigned value
has a high protection domain, then it is replaced with the placeholder ∗ in both
C◦1 and C◦2 , as well as in C•1 and C•2 . If the step is corresponds to a choice in

F = {g | (`, θ) = ∆(f, d1, . . . , dn), ∆; θ ` f ` g} ∆;P ;⊥⊥; ∅ ` body(P) B

∆ ` P pdk(P) pd(P)F B
∆;P ; d0 t0;Γ, x1 : d1 t1, . . . , xn : dn tn ` s s′

G ` {x1 : d1 t1; . . . ;xn : dn tn; s} {x1 : d1 t1; . . . ;xn : dn tn; s
′}

Γ = x1 : d1 t1, . . . , xn : dn tn
∆;P ; d0 t0;Γ ` syscall(f) syscall(f, d0, d1, . . . , dn)

∆;P ; retθP (`); argθP (`) ` bodyθP (`) B

∆;P ; θ ` f ` f (`,θ)(argθP (`)):d0 t0 B

G ` skip skip

G ` s1 s′1 G ` s2 s′2

G ` s1 ; s2 s′1 ; s′2
H ` e e′ : bool+ G ` s1 s′1 G ` s2 s′2

G ` if e then s1 else s2 if e′ then s′1 else s′2
H ` e e′ : bool+ G ` s s′

G ` while e do s while e′ do s′

H ` e e′ : d0 t0

G ` return e return e′
(x : d t) ∈ Γ H ` e e′ : d t

G ` x = e x = e′

H ` e1 e′1 : int+ (x : d t[]) ∈ Γ H ` e2 e′2 : d t

G ` x[e1] = e2 x[e′1] = e′2

H ` ct ct : t+
(x : d t) ∈ Γ
H ` x x : d t

H ` e e′ : d t

H ` e :: d e′ : d t
H ` e1 e′1 : d t[] H ` e2 e′2 : int+

H ` e1[e2] e′1[e
′
2] : d t

H ` e1 e′1 : d t H ` e2 e′2 : int+

H ` mkarr(e1,e2) mkarr(e′1,e
′
2) : d t[]

H ` e e′ : d t

H ` length(e) length(e′) : int+

H ` e1 e′1 : d1 t1 . . . H ` en e′n : dn tn
f ` = implP (f ; d1 t1, . . . , dn tn → d) (`, θ) = ∆(f, d, d1, . . . , dn)

θ = unif `(d, d1, . . . , dn) d t = retθP (`)

H ` f(e1, . . . , en) f (`,θ)(e′1, . . . , e
′
n) : d t

Fig. 9. Translation methods

some if- or while-statement then the value branched on must be public, it will
not be replaced with ∗ in C◦1 and C◦2 , and hence both C◦1 and C◦2 branch in the
same direction. If C◦1 and C◦2 make a function call or return a value, then the
passed values are either equal (if they have low protection domains) or replaced
with the placeholder in the low-slice (if they have high protection domains). A
low-security value returned from a system call can be found from the low-slice
of the labels κ1 and κ2. ut

For each possible initial environment w ∈ W, the semantics JfK of the system
calls f and the program P uniquely determine the trace (an element of JP K) of

the execution. Denote this trace by TrJ·K(w,P). Let T be the set of all low-slices

of transition labels. For each T ∈ T ∗ and each wL ∈ WL, let IT ,wL

P be the set
of possible initial environments, the low-part of which is wL and the execution
from which starts with transitions, the low-slices of which make up T . Formally,

IT ,wL

P = {w′ |w′L = wL ∧ T v TrJ·K(w′, P)},

where v denotes that a sequence is a prefix of the other one. The knowledge of
an adversary observing the execution of P is characterized by a probability dis-

tribution KN T ,wL

P obtained by projecting W to IT ,wL

P . To project a probability
distribution D ∈ D(X) to a set Y ⊆ X means setting the probabilities of all
x ∈ X\Y to 0 and rescaling the probabilities of all x ∈ X, such that their sum
is still equal to 1. After observing the prefix of the trace T and knowing that the
low-part of the initial environment was equal to wL, the adversary knows that

the initial environment had to belong to the set IT ,wL

P . The relative probabilities
of the elements in this set are the same as their relative probabilities in W .

The set of possible initial states is not changed by observing the low-slice of
one more transition, unless it is a declassification transition. Namely,

Lemma 3. Let wL ∈ Wl, T ∈ T
∗

and κ ∈ T , such that κ is not a declassifica-

tion label. Then either IT ;κ,wL

P = IT ,wL

P or IT ;κ,wL

P = ∅.

Proof. We first note that the low-slice of the program context and the low-part

of the environment are the same for all w′ ∈ IT ,wL

P after the execution that
produces the trace with the low-slice κ. Indeed, they do not depend on w′ at
the beginning of the execution (the low-part of the environment is wL and the
low-slice of the context is empty) and, according to Lemma 2, the contexts stay
equal after each step of the program. Similarly, the low-part of the environment
in different executions evolves in the same way (due to the constraints placed on
the semantics of the system calls, its changes can be deduced from the low-slice
of the execution trace).

We now note that the low-slice of the current program context, as well as
the low-part of the current environment determine the low-slice of the label
of the next transition, unless this label is a declassification label. Indeed, the
current program point is uniquely determined, hence it is determined whether
the next transition is silent or a system call f(d0, d1 v1, . . . , dn vn). If it is a

system call then the domains d0, . . . , dn are determined by the low-slice of the
program context. In the low-slice of the label κ′ of the next transition, the values
v1, . . . , vn are included if the corresponding domains d1, . . . , dn are in PDL. In
this case, these values can be found from the low-slice of the program context. If
some di is in PDH , then only a placeholder is included in κ′ instead of the value
vi. The value v0 returned by the system call is included in κ′ only if d0 ∈ PDL.
In this case, v0 can be computed from the values vi (i ∈ {1, . . . , n}) included in
κ′ and the low-part of the current environment. The low-part of the environment
after this step can also be computed from the same values and the low-part of
the current environment.

As κ′ is uniquely determined, we have IT ;κ,wL

P = IT ,wL

P if κ = κ′, and

IT ;κ,wL

P = ∅ otherwise. ut

Considering the definition of KN T ,wL

P , the previous lemma immediately im-
plies

Proposition 2. Let wL ∈ Wl, T ∈ T
∗

and κ ∈ T , such that κ is not a declas-

sification label. Then KN T ;κ,wL

P = KN T ,wL

P .

