
Practical Bootstrapping in Quasilinear Time

Jacob Alperin-Sheriff∗ Chris Peikert†

June 10, 2013

Abstract

Gentry’s “bootstrapping” technique (STOC 2009) constructs a fully homomorphic encryption (FHE)
scheme from a “somewhat homomorphic” one that is powerful enough to evaluate its own decryption
function. To date, it remains the only known way of obtaining unbounded FHE. Unfortunately, bootstrap-
ping is computationally very expensive, despite the great deal of effort that has been spent on improving
its efficiency. The current state of the art, due to Gentry, Halevi, and Smart (PKC 2012), is able to
bootstrap “packed” ciphertexts (which encrypt up to a linear number of bits) in time only quasilinear
Õ(λ) = λ · logO(1) λ in the security parameter. While this performance is asymptotically optimal up to
logarithmic factors, the practical import is less clear: the procedure composes multiple layers of expensive
and complex operations, to the point where it appears very difficult to implement, and its concrete runtime
appears worse than those of prior methods (all of which have quadratic or larger asymptotic runtimes).

In this work we give simple, practical, and entirely algebraic algorithms for bootstrapping in quasilin-
ear time, for both “packed” and “non-packed” ciphertexts. Our methods are easy to implement (especially
in the non-packed case), and we believe that they will be substantially more efficient in practice than
all prior realizations of bootstrapping. One of our main techniques is a substantial enhancement of the
“ring-switching” procedure of Gentry et al. (SCN 2012), which we extend to support switching between
two rings where neither is a subring of the other. Using this procedure, we give a natural method for
homomorphically evaluating a broad class of structured linear transformations, including one that lets us
evaluate the decryption function efficiently.

∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: jmas6@cc.gatech.edu
†School of Computer Science, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu. This material is based

upon work supported by the National Science Foundation under CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation,
and by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under Contract
No. FA8750-11-C-0098. The views expressed are those of the authors and do not necessarily reflect the official policy or position of
the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Government.

1 Introduction

Bootstrapping, a central technique from the breakthrough work of Gentry [Gen09b, Gen09a] on fully homo-
morphic encryption (FHE), converts a sufficiently powerful “somewhat homomorphic” encryption (SHE)
scheme into a fully homomorphic one. (An SHE scheme can support a bounded number of homomorphic
operations on freshly generated ciphertexts, whereas an FHE scheme has no such bound.) In short, boot-
strapping works by homomorphically evaluating the SHE scheme’s decryption function on a ciphertext that
cannot support any further homomorphic operations. This has the effect of “refreshing” the ciphertext, i.e., it
produces a new one that encrypts the same message and can handle more homomorphic operations. Boot-
strapping remains the only known way to achieve unbounded FHE, i.e., a scheme that can homomorphically
evaluate any efficient function using keys and ciphertexts of a fixed size.1

In order to be “bootstrappable,” an SHE scheme must be powerful enough to homomorphically evaluate
its own decryption function, using whatever homomorphic operations it supports. For security reasons, the
key and ciphertext sizes of all known SHE schemes grow with the depth and, to a lesser extent, the size of
the functions that they can homomorphically evaluate. For instance, under plausible hardness conjectures,
the key and ciphertext sizes of the most efficient SHE scheme to date [BGV12] grow quasilinearly in both
the supported multiplicative depth d and the security parameter λ, i.e., as Õ(d · λ). Clearly, the runtime of
bootstrapping must also grow with the sizes of the keys, ciphertexts, and decryption function. This runtime is
perhaps the most important measure of efficiency for FHE, because bootstrapping is currently the biggest
bottleneck by far in instantiations, both in theory and in practice.

The past few years have seen an intensive study of different forms of decryption procedures for SHE
schemes, and their associated bootstrapping operations [Gen09b, Gen09a, vDGHV10, GH11b, BV11a,
GH11a, BGV12, GHS12b]. The first few bootstrapping methods had moderate polynomial runtimes in the
security parameter λ, e.g., Õ(λ4). Brakerski, Gentry, and Vaikuntanathan [BGV12] gave a major efficiency
improvement, reducing the runtime to Õ(λ2). They also gave an amortized method that bootstraps Ω̃(λ)
ciphertexts at once in Õ(λ2) time, i.e., quasilinear runtime per ciphertext. However, these results apply only
to “non-packed” ciphertexts, i.e., ones that encrypt essentially just one bit each, which combined with the
somewhat large runtimes makes these methods too inefficient to be used very much in practice. Most recently,
Gentry, Halevi, and Smart [GHS12a] achieved bootstrapping for “packed” ciphertexts (i.e., ones that encrypt
up to Ω̃(λ) bits each) in quasilinear Õ(λ) runtime, which is asymptotically optimal in space and time, up to
polylogarithmic factors. For this they relied on a general “compiler” from another work of theirs [GHS12b],
which achieved SHE/FHE for sufficiently wide circuits with polylogarithmic multiplicative “overhead,” i.e.,
cost relative to evaluating the circuit “in the clear.”

Bootstrapping and FHE in quasi-optimal time and space is a very attractive and powerful theoretical result.
However, the authors of [GHS12b, GHS12a] caution that their constructions may have limited potential for
use in practice, for two main reasons: first, the runtimes, while asymptotically quasilinear, include very large
polylogarithmic factors. For realistic values of the security parameter, these polylogarithmic terms exceed
the rather small (but asymptotically worse) quasilinear overhead obtained in [BGV12]. The second reason
is that their bootstrapping operation is algorithmically very complex and difficult to implement (see the
next paragraphs for details). Indeed, while there are now a few working implementations of bootstrapping
(e.g., [GH11b, CCK+13]) that follow the templates from [Gen09b, Gen09a, vDGHV10, BGV12], we are
not aware of any attempt to implement any method having subquadratic runtime.

1This stands in contrast with leveled FHE schemes, which can homomorphically evaluate a function of any a priori bounded
depth, but using keys and ciphertexts whose sizes depend on the bound. Leveled FHE can be constructed without resorting to
bootstrapping [BGV12].

1

Is quasilinear efficient? The complexity and large practical overhead of the constructions in [GHS12b,
GHS12a] arise from two kinds of operations. First, the main technique from [GHS12b] is a way of homomor-
phically evaluating any sufficiently shallow and wide arithmetic circuit on a “packed” ciphertext that encrypts
a high-dimensional vector of plaintexts in multiple “slots.” It works by first using ring automorphisms
and key-switching operations [BV11a, BGV12] to obtain a small, fixed set of “primitive” homomorphic
permutations on the slots. It then composes those permutations (along with other homomorphic operations)
in a log-depth permutation network, to obtain any permutation. Finally, it homomorphically evaluates the
desired circuit by combining appropriate permutations with relatively simple homomorphic slot-selection and
ring operations.

In the context of bootstrapping, one of the key observations from [GHS12a] is that a main step of the
decryption procedure can be evaluated using the above technique. Specifically, they need an operation
that moves the coefficients of an encrypted plaintext polynomial, reduced modulo a cyclotomic polynomial
Φm(X), into the slots of a packed ciphertext (and back again). Once the coefficients are in the slots, they
can be rounded in a batched (SIMD) fashion, and then mapped back to coefficients of the plaintext. The
operations that move the coefficients into slots and vice-versa can be expressed as O(log λ)-depth arithmetic
circuits of size O(λ log λ), roughly akin to the classic FFT butterfly network. Hence they can be evaluated
homomorphically with polylogarithmic overhead, using [GHS12b]. However, as the authors of [GHS12a]
point out, the decryption circuit is quite large and complex – especially the part that moves the slots back to
the coefficients, because it involves reduction modulo Φm(X) for an m having several prime divisors. This
modular reduction is the most expensive part of the decryption circuit, and avoiding it is one of the main
open problems given in [GHS12a]. However, even a very efficient decryption circuit would still incur the
large polylogarithmic overhead factors from the techniques of [GHS12b].

1.1 Our Contributions

We give a new bootstrapping algorithm that runs in quasilinear Õ(λ) time per ciphertext with small poly-
logarithmic factors, and is algorithmically much simpler than previous methods. It is easy to implement,
and we believe that it will be substantially more efficient in practice than all prior methods. We provide
a unified bootstrapping procedure that works for both “non-packed” ciphertexts (which encrypt integers
modulo some p, e.g., bits) and “packed” ciphertexts (which encrypt elements of a high-dimensional ring), and
also interpolates between the two cases to handle an intermediate concept we call “semi-packed” ciphertexts.

Our procedure for non-packed ciphertexts is especially simple and efficient. In particular, it can work very
naturally using only cyclotomic rings having power-of-two index, i.e., rings of the form Z[X]/(1 +X2k),
which admit very fast implementations. This improves upon the method of [BGV12], which achieves
quasilinear amortized runtime when bootstrapping Ω̃(λ) non-packed ciphertexts at once. Also, while that
method can also use power-of-two cyclotomics, it can only do so by emulating Z2 (bit) arithmetic within Zp
for some moderately large prime p, which translates additions in Z2 into much more costly multiplications in
Zp. By contrast, our method works “natively” with any plaintext modulus.

For packed ciphertexts, our procedure draws upon high-level ideas from [GHS12b, GHS12a], but our
approach is conceptually and technically very different. Most importantly, it completely avoids the two main
inefficiencies from those works: first, unlike [GHS12b], we do not use permutation networks or any explicit
permutations of the plaintext slots, nor do we rely on a general-purpose compiler for homomorphically
evaluating arithmetic circuits. Instead, we give direct, practically efficient procedures for homomorphically
mapping the coefficients of an encrypted plaintext element into slots and vice-versa. In particular, our
procedure does not incur the large cost or algorithmic complexity of homomorphically reducing modulo
Φm(X), which was the main bottleneck in the decryption circuit of [GHS12a].

2

At a higher level, our bootstrapping method has two other attractive and novel features: first, it is entirely
“algebraic,” by which we mean that the full procedure (including generation of all auxiliary data it uses)
can be described as a short sequence of elementary operations from the “native instruction set” of the SHE
scheme. By contrast, all previous methods at some point invoke rather generic arithmetic circuits, e.g., for
modular addition of values represented as bit strings, or reduction modulo a cyclotomic polynomial Φm(X).
Of course, arithmetic circuits can be evaluated using the SHE scheme’s native operations, but we believe
that the distinction between “algebraic” and “non-algebraic” is an important qualitative one, and it certainly
affects the simplicity and concrete efficiency of the bootstrapping procedure.

The second nice feature of our method is that it completely decouples the algebraic structure of the
SHE plaintext ring from that which is needed by the bootstrapping procedure. In previous methods that use
amortization (or “batching”) for efficiency (e.g., [SV11, BGV12, GHS12a]), the ring and plaintext modulus
of the SHE scheme must be chosen so as to provide many plaintext slots. However, this structure may not
always be a natural match for the SHE application’s efficiency or functionality requirements. For example, the
lattice-based pseudorandom function of [BPR12] works very well with a ring Rq = Zq[X]/(Xn + 1) where
both q and n are powers of two, but for such parameters Rq has only one slot. Our method can bootstrap even
for this kind of plaintext ring (and many others), while still using batching to achieve quasilinear runtime.

1.2 Techniques

At the heart of our bootstrapping procedure are two novel homomorphic operations for SHE schemes over
cyclotomic rings: for non-packed (or semi-packed) ciphertexts, we give an operation that isolates the message-
carrying coefficient(s) of a high-dimensional ring element; and for (semi-)packed ciphertexts, we give an
operation that maps coefficients to slots and vice-versa.

Isolating coefficients. Our first homomorphic operation is most easily explained in the context of non-
packed ciphertexts, which encrypt single elements of the quotient ring Zp for some small modulus p, using
ciphertexts over some cyclotomic quotient ring Rq = R/qR of moderately large degree d = deg(R/Z) =
Õ(λ). We first observe that a ciphertext to be bootstrapped can be reinterpreted as an encryption of an
Rq-element, one of whose Zq-coefficients (with respect to an appropriate basis of the ring) “noisily” encodes
the message, and whose other coefficients are just meaningless noise terms. We give an simple and efficient
homomorphic operation that preserves the meaningful coefficient, and maps all the others to zero. Having
isolated the message-encoding coefficient, we can then homomorphically apply an efficient integer “rounding”
function (see [GHS12a] and Appendix B) to recover the message from its noisy encoding, which completes
the bootstrapping procedure. (Note that it is necessary to remove the meaningless noise coefficients first,
otherwise they would interfere with the correct operation of the rounding function.)

Our coefficient-isolating procedure works essentially by applying the trace function TrR/Z : R → Z
to the plaintext. The trace is the “canonical” Z-linear function from R to Z, and it turns out that for the
appropriate choice of Z-basis of R used in decryption, the trace simply outputs (up to some scaling factor)
the message-carrying coefficient we wish to isolate. One simple and very efficient way of applying the trace
homomorphically is to use the “ring-switching” technique of [GHPS12], but unfortunately, this requires the
ring-LWE problem [LPR10] to be hard over the target ring Z, which is clearly not the case. Another way
follows from the fact that TrR/Z equals the sum of all d automorphisms of R; therefore, it can be computed
by homomorphically applying each automorphism and summing the results. Unfortunately, this method takes
at least quadratic Ω(λ2) time, because applying each automorphism homomorphically takes Ω(λ) time, and
there are d = Ω(λ) automorphisms.

3

So, instead of inefficiently computing the trace by summing all the automorphisms at once, we consider
a tower of cyclotomic rings Z = R(0) ⊆ R(1) ⊆ · · · ⊆ R(r) = R, usually written as R(r)/ · · · /R(1)/R(0).
Then TrR/Z is the composition of the individual trace functions TrR(i)/R(i−1) : R(i) → R(i−1), and these
traces are equal to the sums of all automorphisms of R(i) that fix R(i−1) pointwise, of which there are exactly
di = deg(R(i)/R(i−1)) = deg(R(i)/Z)/ deg(R(i−1)/Z). We can therefore compute each TrR(i)/R(i−1)

in time linear in λ and in di; moreover, the number of trace functions to apply is at most logarithmic in
d = deg(R/Z) = Õ(λ), because each one reduces the degree by a factor of at least two. Therefore, by
ensuring that the degrees of R(r), R(r−1), . . . , R(0) decrease gradually enough, we can homomorphically
apply the full TrR/Z in quasilinear time. For example, a particularly convenient choice is to let R(i) be
the 2i+1st cyclotomic ring Z[X]/(1 + X2i) of degree 2i, so that every di = 2, and there are exactly
log2(d) = O(log λ) trace functions to apply.

More generally, when bootstrapping a semi-packed ciphertext we start with a plaintext value in Rq that
noisily encodes a message in Sp, for some subring S ⊆ R. (The case S = Z corresponds to a non-packed
ciphertext.) We show that applying the trace function TrR/S to the Rq-plaintext yields a new plaintext in Sq
that noisily encodes the message, thus isolating the meaningful part of the noisy encoding and vanishing
the rest. We then homomorphically apply a rounding function to recover the Sp message from its noisy Sq
encoding, which uses the technique described next.

Mapping coefficients to slots. Our second technique, and main technical innovation, is in bootstrapping
(semi-)packed ciphertexts. We enhance the recent “ring-switching” procedure of [GHPS12], and use it to
efficiently move “noisy” plaintext coefficients (with respect to an appropriate decryption basis) into slots
for batch-rounding, and finally move the rounded slot values back to coefficients. We note that all previous
methods for loading plaintext data into slots used the same ring for the source and destination, and so required
the plaintext to come from a ring designed to have many slots. In this work, we use ring-switching to go from
the SHE plaintext ring to a different ring having many slots, which is used only temporarily for batch-rounding.
This is what allows the SHE plaintext ring to be decoupled from the rings used in bootstrapping, as mentioned
above.

To summarize our technique, we first recall the ring-switching procedure of [GHPS12]. It was originally
devised to provide moderate efficiency gains for SHE/FHE schemes, by allowing them to switch ciphertexts
from high-degree cyclotomic rings to subrings of smaller degree (once enough homomorphic operations have
been performed to make this secure). We generalize the procedure, showing how to switch between two
rings where neither ring need be a subring of the other. The procedure has a very simple implementation,
and as long as the two rings have a large common subring, it is also very efficient (i.e., quasilinear in the
dimension). Moreover, it supports, as a side effect, the homomorphic evaluation of any function that is linear
over the common subring. However, the larger the common subring is, the more restrictive this condition on
the function becomes.

We show how our enhanced ring-switching can move the plaintext coefficients into the slots of the target
ring (and back), which can be seen as just evaluating a certain Z-linear function. Here we are faced with
the main technical challenge: for efficiency, the common subring of the source and destination rings must
be large, but then the supported class of linear functions is very restrictive, and certainly does not include
the Z-linear one we want to evaluate. We solve this problem by switching through a short sequence of
“hybrid” rings, where adjacent rings have a large common subring, but the initial and final rings have only
the integers Z in common. Moreover, we show that for an appropriately chosen sequence of hybrid rings,
the Z-linear function we want to evaluate is realizable by a sequence of allowed linear functions between
adjacent hybrid rings. Very critically, this decomposition requires the SHE scheme to use a highly structured

4

basis of the ring for decryption. The usual representation of a cyclotomic ring as Z[X]/Φm(X) typically
does not correspond to such a basis, so we instead rely on the tensorial decomposition of the ring and its
corresponding bases, as recently explored in [LPR13]. At heart, this is what allows us to avoid the expensive
homomorphic reduction modulo Φm(X), which is one of the main bottlenecks in previous work [GHS12a].2

Stepping back a bit, the technique of switching through hybrid rings and bases is reminiscent of standard
“sparse decompositions” for linear transformations like the FFT, in that both decompose a complicated high-
dimensional transform into a short sequence of simpler, structured transforms. (Here, the simple transforms
are computed merely as a side-effect of passing through the hybrid rings.) Because of these similarities, we
believe that the enhanced ring-switching procedure will be applicable in other domain-specific applications
of homomorphic encryption, e.g., signal-processing transforms or statistical analysis.

Organization. Section 2.1 recalls the extensive algebraic background required for our constructions, and
Section 2.2 recalls a standard ring-based SHE scheme and some of its natural homomorphic operations.
Section 3 defines the general bootstrapping procedure. Sections 4 and 5 respectively fill in the details of the
two novel homomorphic operations used in the bootstrapping procedure. Appendix A documents a folklore
transformation between two essentially equivalent ways of encoding messages in SHE schemes. Appendix B
describes an integer rounding procedure that simplifies the one given in [GHS12a], and Appendix C gives
some concrete choices of rings that our method can use in practice.

Acknowledgments. We thank Oded Regev for helpful discussions during the early stages of this research,
and the anonymous CRYPTO’13 reviewers for their thoughtful comments.

2 Preliminaries

For a positive integer k, we let [k] = {0, . . . , k − 1}. For an integer modulus q, we let Zq = Z/qZ
denote the quotient ring of integers modulo q. For integers q, q′, we define the integer “rounding” function
b·eq′ : Zq → Zq′ as bxeq′ = b(q′/q) · xe mod q′.

2.1 Algebraic Background

Throughout this work, by “ring” we mean a commutative ring with identity. For two rings R ⊆ R′, an
R-basis of R′ is a set B ⊂ R′ such that every r ∈ R′ can be written uniquely as an R-linear combination
of elements of B. For two rings R,S with a common subring E, an E-linear function L : R → S is one
for which L(r + r′) = L(r) + L(r′) for all r, r′ ∈ R, and L(e · r) = e · L(r) for all e ∈ E, r ∈ R. It is
immediate that such a function is defined uniquely by its values on any E-basis of R.

2.1.1 Cyclotomic Rings

For a positive integer m called the index, let Om = Z[ζm] denote the mth cyclotomic ring, where ζm is an
abstract element of orderm over Q. (In particular, we do not view ζm as any particular complex root of unity.)
The minimal polynomial of ζm over Q is themth cyclotomic polynomial Φm(X) =

∏
i∈Z∗m(X−ωim) ∈ Z[X],

where ωm = exp(2π
√
−1/m) ∈ C is the principal mth complex root of unity, and the roots ωim ∈ C range

2The use of more structured representations of cyclotomic rings in [LPR13] was initially motivated by the desire for simpler and
more efficient algorithms for cryptographic operations. Interestingly, these representations yield moderate efficiency improvements
for computations “in the clear,” but dramatic benefits for their homomorphic counterparts!

5

over all the primitive complex mth roots of unity. Therefore, Om is a ring extension of degree n = ϕ(m)
over Z. (In particular, O1 = O2 = Z.) Clearly, Om is isomorphic to the polynomial ring Z[X]/Φm(X) by
identifying ζm with X , and has the “power basis” {1, ζm, . . . , ζn−1

m } as a Z-basis. However, for non-prime-
power m the power basis can be somewhat cumbersome and inefficient to work with. In Section 2.1.4 we
consider other, more structured bases that are essential to our techniques.

If m|m′, we can view the mth cyclotomic ringOm as a subring ofOm′ = Z[ζm′], via the ring embedding
(i.e., injective ring homomorphism) that maps ζm to ζ

m′/m
m′ . The ring extension Om′/Om has degree

d = ϕ(m′)/ϕ(m), and also d automorphisms τi (i.e., automorphisms of Om′ that fix Om pointwise),
which are defined by τi(ζm′) = ζim′ for each i ∈ Z∗m′ such that i = 1 (mod m). The trace function
Tr = TrOm′/Om

: Om′ → Om can be defined as the sum of these automorphisms:

TrOm′/Om
(a) =

∑
i

τi(a) ∈ Om.

Notice that Tr is Om-linear by definition. If Om′′/Om′/Om is a tower of ring extensions, then the trace
satisfies the composition property TrOm′′/Om

= TrOm′/Om
◦TrOm′′/Om′

.
An important element in the mth cyclotomic ring is

g :=
∏

odd prime p|m

(1− ζp) ∈ Om. (2.2)

Also define m̂ = m/2 if m is even, otherwise m̂ = m, for any cyclotomic index m. It is known that g|m̂
(see, e.g., [LPR13, Section 2.5.4]). The following lemma shows how the elements g in different cyclotomic
rings, and the ideals they generate, are related by the trace function.

Lemma 2.1. Let m|m′ be positive integers and let g ∈ R = Om, g′ ∈ R′ = Om′ and m̂, m̂′ be as defined
above. Then TrR′/R(g′R′) = (m̂′/m̂) · gR, and in particular, TrR′/R(g′) = (m̂′/m̂) · g.

Later on we use the scaled trace function (m̂/m̂′) TrR′/R, which by the above lemma maps the ideal g′R
to gR, and g′ to g.

Proof. Let Tr = TrR′/R. To prove the first claim, we briefly recall certain properties of R∨, the fractional
ideal “dual” to R; see [LPR13, Section 2.5.4] for further details. First, R∨ = (g/m̂)R, and similarly
(R′)∨ = (g/m̂′)R′. It also follows directly from the definition of the dual ideal that Tr((R′)∨) = R∨; see
for example [GHPS12, Equation 2.2]. Therefore, Tr(g′R′) = (m̂′/m̂) · gR.

For the second claim, we first show the effect of the trace on g′ when m′ = m · p for some prime p.
If p divides m, then m̂′/m̂ = m′/m = p, the degree of R′/R is ϕ(m′)/ϕ(m) = p, and g′ = g ∈ R, so
Tr(g′) = Tr(g) = p · g. Now suppose p does not divide m. If p = 2, then m is even and m′ is odd, so
m̂′/m̂ = (m′/2)/m = 1, the degree of R′/R is 1, and g′ = g ∈ R, so Tr(g′) = g. Otherwise p is odd, so
m̂′/m̂ = m′/m = p and g′ = (1− ζp)g. Therefore Tr(g′) = Tr(1− ζp) · g = p · g, where the final equality
follows from Tr(1) = p− 1 and Tr(ζp) = ζ1

p + ζ2
p + · · · ζp−1

p = −1.
The general case follows from the composition property of the trace, by iteratively applying the above

case to any cyclotomic tower R(r)/R(r−1)/ · · · /R(0), where R(r) = R′ and R(0) = R, and the ratio of the
indices of R(i), R(i−1) is prime for every i = 1, . . . , r.

6

2.1.2 Tensorial Decomposition of Cyclotomics

An important fact from algebraic number theory, used centrally in this work (and in [LPR13]), is the tensorial
decomposition of cyclotomic rings (and their bases) in terms of subrings. Let Om1 ,Om2 be cyclotomic
rings. Then their largest common subring is Om1 ∩ Om2 = Og where g = gcd(m1,m2), and their smallest
common extension ring, called the compositum, is Om1 + Om2 = Ol where l = lcm(m1,m2). When
considered as extensions ofOg, the ringOl is isomorphic to the ring tensor product ofOm1 andOm2 , written
as (sometimes suppressing Og when it is clear from context)

Ol/Og ∼= (Om1/Og)⊗ (Om2/Og).

On the right, the ring tensor product is defined as the set of allOg-linear combinations of pure tensors a1⊗a2,
with ring operations defined by Og-bilinearity:

(a1 ⊗ a2) + (b1 ⊗ a2) = (a1 + b1)⊗ a2,

(a1 ⊗ a2) + (a1 ⊗ b2) = a1 ⊗ (a2 + b2),

c(a1 ⊗ a2) = (ca1)⊗ a2 = a1 ⊗ (ca2)

for any c ∈ Og, and the mixed-product property (a1 ⊗ a2) · (b1 ⊗ b2) = (a1b1)⊗ (a2b2). The isomorphism
with Ol/Og then simply identifies a1 ⊗ a2 with a1 · a2 ∈ Ol. Note that any a1 ∈ Om1 corresponds to the
pure tensor a1 ⊗ 1, and similarly for any a2 ∈ Om2 .

The following simple lemma will be central to our techniques.

Lemma 2.2. Let m1,m2 be positive integers and g = gcd(m1,m2), l = lcm(m1,m2). Then for any
Og-linear function L̄ : Om1 → Om2 , there is an (efficiently computable) Om2-linear function L : Ol → Om2

that coincides with L̄ on the subring Om1 ⊆ Ol.

Proof. WriteOl ∼= Om1 ⊗Om2 , where the common base ringOg is implicit. Let L : (Om1 ⊗Om2)→ Om2

be the Og-linear function uniquely defined by L(a1 ⊗ a2) = L̄(a1) · a2 ∈ Om2 for all pure tensors a1 ⊗ a2.
Then because (a1 ⊗ a2) · b2 = a1 ⊗ (a2b2) for any b2 ∈ Om2 by the mixed-product property, L is also
Om2-linear. Finally, for any a1 ∈ Om1 we have L(a1 ⊗ 1) = L̄(a1) by construction.

2.1.3 Ideal Factorization and Plaintext Slots

Here we recall the unique factorization of prime integers into prime ideals in cyclotomic rings, and, fol-
lowing [SV11], how the Chinese remainder theorem can yield several plaintext “slots” that embed Zq as a
subring, even for composite q. Similar facts for composite moduli are presented in [GHS12a], but in terms of
p-adic approximations and Hensel lifting. Here we give an ideal-theoretic interpretation using the Chinese
remainder theorem, which we believe is more elementary, and is a direct extension of the case of prime
moduli.

Let p ∈ Z be a prime integer. In themth cyclotomic ringR = Om = Z[ζm] (which has degree n = ϕ(m)
over Z), the ideal pR factors into prime ideals as follows. First writem = m̄ ·pk where p - m̄. Let e = ϕ(pk),
and let d be the multiplicative order of p modulo in Z∗m̄, and note that d divides ϕ(m̄) = n/e. The ideal pR
then factors into the product of eth powers of ϕ(m̄)/d = n/(de) distinct prime ideals pi, i.e.,

pR =
∏

pei .

7

Each prime ideal pi has norm |R/pi| = pd, so each quotient ring R/pi is isomorphic to the finite field Fpd .
In particular, it embeds Zp as a subfield. (Although we will not need this, the prime ideals are concretely
given by pi = pR + Fi(ζm)R, where Φm̄(X) =

∏
i Fi(X) (mod p) is the mod-p factorization of the m̄th

cyclotomic polynomial into ϕ(m̄)/d distinct irreducible polynomials of degree d.)
We now see how to obtain quotient rings ofR that embed the ring Zq, where q = pr for some integer r ≥ 1.

(The case of arbitrary integer modulus q follows immediately from the Chinese remainder theorem.) Here we
have the factorization qR =

∏
i p
re
i , and it turns out that each quotient ring R/prei embeds Zq as a subring.

One easy way to see this is to notice that q is the smallest power of p in prei , so the integers {0, . . . , q − 1}
representing Zq are distinct modulo prei .

By the Chinese Remainder Theorem (CRT), for q = pr the natural ring homomorphism from Rq to
the product ring

⊕
i(R/p

re
i) is an isomorphism. When the natural plaintext space of a cryptosystem is Rq,

we refer to the ϕ(m̄)/d quotient rings R/prei as the plaintext “Zq-slots” (or just “slots”), and use them to
store vectors of Zq-elements via the CRT isomorphism. With this encoding, ring operations in Rq induce
“batch” (or “SIMD”) component-wise operations on the corresponding vectors of Zq elements. We note
that the CRT isomorphism is easy to compute in both directions. In particular, to map from a vector of
Zq-elements to Rq just requires knowing a fixed mod-q CRT set C = {ci} ⊂ R for which ci = 1 (mod prei)
and ci = 0 (mod prej) for all j 6= i. Such a set can be precomputed using, e.g., a generalization of the
extended Euclidean algorithm.

Splitting in cyclotomic extension rings. Now consider a cyclotomic extension R′/R where R′ = Om′ =
Z[ζm′] for some m′ divisible by m. Then for each prime ideal pi ⊂ R dividing pR, the ideal piR′ factors into
equal powers of the same number of prime ideals p′i,i′ ⊂ R′, where all the p′i,i′ are distinct. The ideal p′i,i′
is said to “lie over” pi (and pi in turns lies over p). Since p′i,i′ are also the prime ideals appearing in the
factorization pR′, we can determine their number and multiplicity exactly as above. Letting m̄′, e′ and d′

be defined as above for R′, we known that pR′ =
∏
i,i′(p

′
i,i′)

e′ , where there are a total of ϕ(m̄′)/d′ distinct
prime ideals p′i,i′ . Therefore, each pi splits into exactly (ϕ(m̄′) · d)/(ϕ(m̄) · d′) ideals each; this number is
sometimes called the “relative splitting number” of p in R′/R.

2.1.4 Product Bases

Our bootstrapping technique relies crucially on certain highly structured bases and CRT sets, which we call
“product bases (sets),” that arise from towers of cyclotomic rings. Let Om′′/Om′/Om be such a tower, let
B′′ = {b′′j′′} ⊂ Om′′ be any Om′-basis of Om′′ , and let B′ = {b′j′} ⊂ Om′ be any Om-basis of Om′ . Then it
follows immediately that the product set B′′ ·B′ := {b′′j′′ · b′j′} ⊂ Om′′ is an Om-basis of Om′′ .3 Of course,
for a tower of several cyclotomic extensions and relative bases, we can obtain product bases that factor with a
corresponding degree of granularity.

Factorization of the powerful and decoding bases. An important structured Z-basis of Om, called
the “powerful” basis in [LPR13], was defined in that work as the product of all the power Z-bases
{ζ0, ζ1, . . . , ζϕ(pe)−1} of Ope (where ζ = ζpe), taken over all the maximal prime-power divisors pe of m.
In turn, it is straightforward to verify that the power Z-basis of Ope can be obtained from the tower
Ope/Ope−1/ · · · /Z, as the product of all the power Opi−1-bases {ζ0

pi
, . . . , ζdi−1

pi
} of Opi for i = 1, . . . , e,

where di = ϕ(pi)/ϕ(pi−1) ∈ {p − 1, p} is the degree of Opi/Opi−1 . Therefore, the powerful basis has a

3Formally, this basis is a Kronecker product of the bases B′′ and B′, which is typically written using the ⊗ operator. We instead
use · to avoid confusion with pure tensors in a ring tensor product, which the elements of B′′ ·B′ may not necessarily be.

8

“finest possible” product structure. (This is not the case for other commonly used bases of Om, such as the
power Z-basis, unless m is a prime power.)

Similarly, [LPR13] defines the “decoding” Z-basis D of a certain fractional ideal O∨m = (g/m̂)Om,
which is the “dual ideal” ofOm, to be the dual basis of the conjugate powerful basis. Unlike the powerful basis,
the decoding basis has optimal noise tolerance (see [LPR13, Section 6.2]) and is therefore a best choice to use
in decryption, when using the dual ideal O∨m appropriately in a cryptosystem. For simplicity, our formulation
of the cryptosystem (see Section 2.2) avoids using O∨m by “scaling up” to (m̂/g)O∨m = Om, and so we are
interested in factorizations of the scaled-up Z-basis (m̂/g)D of Om. As shown in [LPR13, Lemma 6.3], this
basis is very closely related to the powerful basis, and has a nearly identical product structure arising from the
towersOpe/Ope−1/ · · · /Z for the maximal prime-power divisors pe ofm. The only difference is in the choice
of the lowest-level Z-bases of eachOp/Z, which are taken to be {ζjp + ζj+1

p + · · ·+ ζp−2
p }j∈{0,...,p−2} instead

of the power basis. In summary, the preferred Z-basis of Om used for decryption also has a finest-possible
product structure.

Factorization of CRT sets. Using the splitting behavior of primes and prime ideals, we can also define
CRT sets having a finest-possible product structure. First consider any cyclotomic extension Om′/Om, and
suppose that prime integer p splits in Om into distinct prime ideals pi. In turn, each pi splits in Om′ into the
same number k of prime ideals p′i,i′ , which are all distinct. For simplicity, assume for now that p does not
divide m or m′, so none of the ideals occur with multiplicity.

A mod-p CRT set C = {ci} for Om satisfies ci = 1 (mod pi) and ci = 0 (mod pj) for j 6= i; therefore,
ci = 1 (mod p′i,i′) and ci = 0 (mod p′j,i′) for all i′ and all j 6= i. We can choose a set S = {si′} ⊂ Om′
of size k such that C ′ = S · C is a mod-p CRT set for Om′ , as follows: partition the ideals p′i,i′ arbitrarily
according to i′, and define si′ ∈ Om′ to be congruent to 1 modulo all those ideals p′i,i′ in the i′th component
of the partition, and 0 modulo all the other ideals p′j,j′ . Then it is immediate that each product ci · si′
is 1 modulo p′i,i′ , and 0 modulo all other p′j,j′ . Therefore, C ′ = S · C is a mod-p CRT set for Om′ . The
generalization of this process to the case where p factors into powers of the ideals, and to moduli q = pr, is
immediate.

For an arbitrary cyclotomic index m, consider any cyclotomic tower Om/ · · · /Z. Then a mod-q CRT set
with corresponding product structure can be obtained by iteratively applying the above procedure at each
level of the tower. A finest-possible product structure is obtained by using tower of maximal length (i.e., one
in which the ratio of indices at adjacent levels is always prime).

2.2 Ring-Based Homomorphic Cryptosystem

Here we recall a somewhat-homomorphic encryption scheme whose security is based on the ring-LWE
problem [LPR10] in arbitrary cyclotomic rings. For our purposes we focus mainly on its decryption function,
though below we also recall its support for “ring switching” [GHPS12]. For further details on its security
guarantees, various homomorphic properties, and efficient implementation, see [LPR10, BV11b, BGV12,
GHS12c, GHPS12, LPR13].

Let R = Om ⊆ R′ = Om′ be respectively the mth and m′th cyclotomic rings, where m|m′. The
plaintext ring is the quotient ring Rp for some integer p; ciphertexts are made up of elements of R′q for some
integer q, which for simplicity we assume is divisible by p; and the secret key is some s ∈ R′. The case
m = 1 corresponds to “non-packed” ciphertexts, which encrypt elements of Zp (e.g., single bits), whereas
m = m′ corresponds to “packed” ciphertexts, and 1 < m < m′ corresponds to what we call “semi-packed”
ciphertexts. Note that without loss of generality we can treat any ciphertext as packed, since R′p embeds Rp.

9

But the smaller m is, the simpler and more practically efficient our bootstrapping procedure can be. Since
our focus is on refreshing ciphertexts that have large noise rate, we can think of m′ as being somewhat small
(e.g., in the several hundreds) via ring-switching [GHPS12], and q also as being somewhat small (e.g., in the
several thousands) via modulus-switching. Our main focus in this work is on a plaintext modulus p that is a
power of two, though for generality we present all our techniques in terms of arbitrary p.

A ciphertext encrypting a message µ ∈ Rp under secret key s′ ∈ R′ is some pair c′ = (c′0, c
′
1) ∈ R′q×R′q

satisfying the relation
c′0 + c′1 · s′ =

q

p
· µ+ e′ (mod qR′) (2.5)

for some error (or “noise”) term e′ ∈ R′ such that e′ · g′ ∈ g′R′ is sufficiently “short,” where g′ ∈ R′ is as
defined in Equation (2.2).4 Informally, the “noise rate” of the ciphertext is the ratio of the “size” of e′ (or
more precisely, the magnitude of its coefficients in a suitable basis) to q/p.

We note that Equation (2.5) corresponds to what is sometimes called the “most significant bit” (msb)
message encoding, whereas somewhat-homomorphic schemes are often defined using “least significant
bit” (lsb) encoding, in which p and q are coprime and c′0 + c′1s

′ = e′ (mod qR′) for some error term
e′ ∈ µ + pR′. For our purposes the msb encoding is more natural, and in any case the two encodings are
essentially equivalent: when p and q are coprime, we can trivially switch between the two encodings simply by
multiplying by p or p−1 modulo q (see Appendix A). When p divides q, we can use homomorphic operations
for the msb encoding due to Brakerski [Bra12]; alternatively, we can switch to and from a different modulus
q′ that is coprime with p, allowing us to switch between lsb and msb encodings as just described. In practice,
it may be preferable to use homomorphic operations for the lsb encoding, because they admit optimizations
(e.g., the “double-CRT representation” [GHS12c]) that may not be possible for the msb operations (at least
when p divides q).

2.2.1 Decryption

At a high level, the decryption algorithm works in two steps: the “linear” step simply computes v′ =
c′0 + c′1 · s′ =

q
p · µ+ e′ ∈ R′q, and the “non-linear” step outputs bv′ep ∈ Rp using a certain “ring rounding

function” b·ep : R′q → Rp. As long as the error term e′ is within the tolerance of the rounding function, the
output will be µ ∈ Rp. This is all entirely analogous to decryption in LWE-based systems, but here the
rounding is n-dimensional, rather than just from Zq to Zp.

Concretely, the ring rounding function b·ep : R′q → Rp is defined in terms of the integer rounding function
b·ep : Zq → Zp and a certain “decryption” Z-basis B′ = {bj} of R′, as follows.5 Represent the input v′ ∈ R′q
in the decryption basis as v′ =

∑
j v
′
j · b′j for some coefficients v′j ∈ Zq, then independently round the

coefficients, yielding an element
∑
bv′jep · b′j ∈ R′p that corresponds to the message µ ∈ Rp (under the

standard embedding of Rp into R′p).

4Quantitatively, “short” is defined with respect to the canonical embedding of R′, whose precise definition is not needed in this
work. The above system is equivalent to the one from [LPR13] in which the message, error term, and ciphertext components are all
taken over the “dual” fractional ideal (R′)∨ = (g′/m̂′)R′ in the m′th cyclotomic number field, and the error term has an essentially
spherical distribution over (R′)∨. In that system, decryption is best accomplished using a certain Z-basis of (R′)∨, called the
decoding basis, which optimally decodes spherical errors. The above formulation is more convenient for our purposes, and simply
corresponds with multiplying everything in the system of [LPR13] by an m̂′/g′ factor. This makes e′ · g′ ∈ g′R′ = m̂′(R′)∨) short
and essentially spherical in our formulation. See [LPR10, LPR13] for further details.

5In our formulation, the basis B′ is (m̂′/g′) times the decoding basis of (R′)∨. See Section 2.1.4 and Footnote 4.

10

2.2.2 Changing the Plaintext Modulus

We use two operations on ciphertexts that alter the plaintext modulus p and encrypted message µ ∈ Rp. The
first operation changes p to any multiple p′ = dp, and produces an encryption of some µ′ ∈ R′p′ such that
µ′ = µ (mod pR′). To do this, it simply “lifts” the input ciphertext c′ = (c′0, c

′
1) ∈ (R′q)

2 to an arbitrary
c′′ = (c′′0, c

′′
1) ∈ (R′q′)

2 such that c′′j = c′j (mod qR′), where q′ = dq. This works because

c′′0 + c′′1 · s′ ∈ c′0 + c′1 · s′ + qR′ =
(q
p
· µ+ e′

)
+ qR′ =

q′

p′
(µ+ pR′) + e′ (mod q′R′).

Notice that this leaves the noise rate unchanged, because the noise term is still e′, and q′/p′ = q/p.
The second operation applies to an encryption of a message µ ∈ Rp that is known to be divisible by some

divisor d of p, and produces an encryption of µ/d ∈ Rp/d. The operation actually leaves the ciphertext c′

unchanged; it just declares the associated plaintext modulus to be p/d (which affects how decryption is
performed). This works because

c′0 + c′1 · s′ =
q

p
µ+ e′ =

q

p/d
· (µ/d) + e′ (mod qR′).

Notice that the noise rate of the ciphertext has been divided by d, because the noise term is still e′ but
q/p′ = d(q/p).

2.2.3 Ring Switching

We rely heavily on the cryptosystem’s support for switching ciphertexts to a cyclotomic subring S′ of R′,
which as a side-effect homomorphically evaluates any desired S′-linear function on the plaintext. Notice
that the linear function L is applied to the plaintext as embedded in R′p; this obviously applies the induced
function on the true plaintext space Rp.

Proposition 2.3 ([GHPS12], full version). Let S′ ⊆ R′ be cyclotomic rings. Then the above-described
cryptosystem supports the following homomorphic operation: given any S′-linear function L : R′p → S′p
and a ciphertext over R′q encrypting (with sufficiently small error term) a message µ ∈ R′p, the output is a
ciphertext over S′q encrypting L(µ) ∈ S′p.

The security of the procedure described in Proposition 2.3 is based on the hardness of the ring-LWE
problem in S′, so the dimension of S′ must be sufficiently large. The procedure itself is quite simple and
efficient: it first switches to a secret key that lies in the subring S′, then it multiplies the resulting ciphertext
by an appropriate fixed element of R′ (which is determined solely by the function L). Finally, it applies to the
ciphertext the trace function TrR′/S′ : R

′ → S′. All of these operations are quasi-linear time in the dimension
of R′/Z, and very efficient in practice. In particular, the trace is a trivial linear-time operation when elements
are represented in any of the bases we use. The ring-switching procedure increases the effective error rate of
the ciphertext by a factor of about the square root of the dimension of R′, which is comparable to that of a
single homomorphic multiplication. See [GHPS12] for further details.

3 Overview of Bootstrapping Procedure

Here we give a high-level description of our bootstrapping procedure. We present a unified procedure for
non-packed, packed, and semi-packed ciphertexts, but note that for non-packed ciphertexts, Steps 3a and 3c
(and possibly 1c) are null operations, while for packed ciphertexts, Steps 1b, 1c, and 2 are null operations.

11

Recalling the cryptosystem from Section 2.2, the plaintext ring is Rp and the ciphertext ring is R′q, where
R = Om ⊆ R′ = Om′ are cyclotomic rings (so m|m′), and q is a power of p. The procedure also uses a
larger cyclotomic ring R′′ = Om′′ ⊇ R′ (so m′|m′′) to work with ciphertexts that encrypt elements of the
original ciphertext ring R′q. To obtain quasilinear runtimes and exponential hardness (under standard hardness
assumptions), our procedure imposes some mild conditions on the indices m, m′, and m′′:

• The dimension ϕ(m′′) of R′′ must be quasilinear, so we can represent elements of R′′ efficiently.

• For Steps 2 and 3, all the prime divisors of m and m′ must be small (i.e., polylogarithmic).

• For Step 3, m and m′′/m must be coprime, which implies that m and m′/m must be coprime also.
Note that the former condition is always satisfied for non-packed ciphertexts (where m = 1). For
packed ciphertexts (where m = m′), the latter condition is always satisfied, which makes it easy
to choose a valid m′′. For semi-packed ciphertexts (where 1 < m < m′), we can always satisfy
the latter condition either by increasing m (at a small expense in practical efficiency in Step 3; see
Section 5.1.3), or by effectively decreasingm slightly (at a possible improvement in practical efficiency;
see Section 3.2).

For example, when m = 1, both m′ and m′′ can be powers of two.
The input to the procedure is a ciphertext c′ = (c′0, c

′
1) ∈ (R′q)

2 that encrypts some plaintext µ ∈ Rp
under a secret key s′ ∈ R′, i.e., it satisfies the relation

v′ = c′0 + c′1 · s′ =
q

p
· µ+ e′ (mod qR′)

for some small enough error term e′ ∈ R′. The procedure computes a new encryption of bv′ep = µ (under
some secret key, not necessarily s′) that has substantially smaller noise rate than the input ciphertext. It
proceeds as follows (explanatory remarks appear in italics):

1. Convert c′ to a “noiseless” ciphertext c′′ over a large ring R′′Q that encrypts a plaintext (g′/g)u′ ∈ R′q′ ,
where g′ ∈ R′, g ∈ R and m̂, m̂′ ∈ Z are as defined in (and following) Equation (2.2), q′ = (m̂′/m̂)q,
and u′ = v′ (mod qR′). This proceeds in the following sub-steps (see Section 3.1 for further details).

Note that g′/g ∈ R′ by definition, and that it divides m̂′/m̂.

(a) Reinterpret c′ as a noiseless encryption of v′ = q
p · µ+ e′ ∈ R′q as a plaintext, noting that both

the plaintext and ciphertext rings are now taken to be R′q.
This is purely a conceptual change in perspective, and does not involve any computation.

(b) Using the procedure described in Section 2.2.2, change the plaintext (and ciphertext) modulus to
q′ = (m̂′/m̂)q, yielding a noiseless encryption of some u′ ∈ R′q′ such that u′ = v′ (mod qR′).
Note that this step is a null operation if the original ciphertext was packed, i.e., if m = m′.
We need to increase the plaintext modulus because homomorphically computing TrR′/R in Step 2
below introduces an m̂′/m̂ factor into the plaintext, which we will undo by scaling the plaintext
modulus back down to q. (See Section 3.2 for an alternative choice of q′.)

(c) Multiply the ciphertext from the previous step by g′/g ∈ R′, yielding a noiseless encryption of
plaintext (g′/g)u′ ∈ R′q′ .
The factor (g′/g) ∈ R′ is needed when we homomorphically compute TrR′/R in Step 2 below.
Note that g′/g = 1 if and only if every odd prime divisor of m′ also divides m, e.g., if m = m′.

12

(d) Convert to a noiseless ciphertext c′′ that still encrypts (g′/g)u′ ∈ R′q′ , but using a large enough
ciphertext ring R′′Q for some R′′ = Om′′ ⊇ R′ and modulus Q� q′.
A larger ciphertext ring R′′Q is needed for security in the upcoming homomorphic operations, to
compensate for the low noise rates that will need to be used. These operations will expand the
initial noise rate by a quasipolynomial λO(log λ) factor in total, so the dimension of R′′ and the
bit length of Q can be Õ(λ) and Õ(1), respectively.

The remaining steps are described here only in terms of their effect on the plaintext value and ring. Using
ring- and modulus-switching, the ciphertext ring R′′ and modulus Q may be made smaller as is convenient,
subject to the security and functionality requirements. (Also, the ciphertext ring implicitly changes during
Steps 3a and 3c.)

2. Homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R to the encryption of (g′/g)u′ ∈ R′q′ ,
to obtain an encryption of plaintext

u =
m̂

m̂′
· TrR′/R

(g′
g
· u′
)

=
q

p
· µ+ e ∈ Rq

for some suitably small error term e ∈ R. See Section 4 for further details.

This step changes the plaintext ring from R′q′ to Rq, and homomorphically isolates the noisy Rq-
encoding of µ. It is a null operation if the original ciphertext was packed, i.e., if m = m′.

3. Homomorphically apply the ring rounding function b·ep : Rq → Rp, yielding an output ciphertext that
encrypts buep = µ ∈ Rp. This proceeds in three sub-steps, all of which are applied homomorphically
(see Section 5 for details):

(a) Map the coefficients uj of u ∈ Rq (with respect to the decryption basis B of R) to the Zq-slots
of a ring Sq, where S is a suitably chosen cyclotomic.
This step changes the plaintext ring from Rq to Sq. It is a null operation if the original ciphertext
was non-packed (i.e., if m = 1), because we can let S = R = Z.

(b) Batch-apply the integer rounding function b·e : Zq → Zp to the Zq-slots of Sq, yielding a
ciphertext that encrypts the values µj = bujep ∈ Zp in its Zp-slots.
This step changes the plaintext ring from Sq to Sp. It constitutes the only non-linear operation on
the plaintext, with multiplicative depth dlg pe · (logp(q)− 1) ≈ log(q), and as such is the most
expensive in terms of runtime, noise expansion, etc.

(c) Reverse the map from the step 3a, sending the values µj from the Zp-slots of Sp to coefficients
with respect to the decryption basis B of Rp, yielding an encryption of µ =

∑
j µjbj ∈ Rp.

This step changes the plaintext ring from Sp to Rp. Just like step 3a, it is a null operation for
non-packed ciphertexts.

3.1 Obtaining a Noiseless Ciphertext

Step 1 of our bootstrapping procedure is given as input a ciphertext c′ = (c′0, c
′
1) over R′q that encrypts

(typically with a high noise rate) a message µ ∈ Rp under key s′ ∈ R′, i.e., v′ = c′0 + c′1 ·s′ =
q
p ·µ+e′ ∈ R′q

for some error term e′. We first change our perspective and view c′ as a “noiseless” encryption (still under s′)

13

of the plaintext value v′ ∈ R′q, taking both the plaintext and ciphertext rings to be R′q. This view is indeed
formally correct, because

c′0 + c′1 · s′ =
q

q
· v′ + 0 (mod qR′).

Next, in preparation for the upcoming homomorphic operations we increase the plaintext (and ciphertext)
modulus to q′, and multiply the resulting ciphertext by g′/g. These operations clearly preserve noiselessness.
Finally, we convert the ciphertext ring to R′′Q for a sufficiently large cyclotomic R′′ ⊇ R′ and modulus Q� q
that is divisible by q. This is done by simply embedding R′ into R′′ and introducing extra precision, i.e.,
scaling the ciphertext up by a Q/q factor. It is easy to verify that these operations also preserve noiselessness.

3.2 Variants and Optimizations

Our basic procedure admits a few minor variants and practical optimizations, which we discuss here.

Smaller temporary modulus q′. In Step 1b we increase the plaintext modulus from q to q′ = rq where
r = m̂′/m̂, and at the end of Step 2 we reduce the modulus back to q because the plaintext is divisible by r.
The net effect of this, versus using a modulus q throughout, is that the modulus Q is larger by an r factor, as
are the error rates used for key-switching in Step 2. This does not affect the asymptotic cost of bootstrapping,
but it may have a small impact in practice. Instead, we can increase the modulus to only q′ = (r/d)q, where d
is the largest divisor of r coprime with q. Then in Step 2 we can remove an (r/d) factor from the plaintext by
scaling the modulus back down to q, and keep track of the remaining d factor and remove it upon decryption.
(We could also remove the d factor by multiplying the ciphertext by d−1 mod q, but this would increase the
noise rate by up to a q/2 factor, which is typically much larger than the m̂′/m̂ factor we were trying to avoid
in the first place.)

Using a smaller index m in Steps 2 and 3. Steps 3a and 3c can be much more costly in practice than
Step 2, because they require working with rings that have at least ϕ(m) Zq-slots. As the number of needed
slots increases, the indices of such rings tend to grow quickly, and involve more prime divisors of larger
size (though asymptotically the indices remain quasilinear); see Appendix C for some examples. So, in
practice it may be faster to invoke Step 3 a few times to evaluate the rounding function over a smaller ring
R̃ = Om̃ ⊂ R, for some proper divisor m̃ of m. Our procedure can be adapted to work in this way, even if
the original plaintext µ is an arbitrary element of the plaintext space Rp.

The main facts we use are that the decryption basis B of R factors as B = B′ · B̃, where B̃ is the
decryption basis of R̃, and in particular B′ is an optimally short R̃-basis of R. (See Section 2.1.4.) Moreover,
applying the ring rounding function on any u ∈ Rq is equivalent to independently applying the ring rounding
function on each of u’s R̃q-coefficients with respect to B′. Lastly, the R̃q-coefficients of u can be individually
extracted using the trace function TrR/R̃ on certain fixed (short) multiples of u. (This all just generalizes the

case R̃ = Z in the natural way.) Using these facts, in Step 2 we can homomorphically apply TrR/R̃ several

times to obtain encryptions of the R̃q-coefficients of the noisy encoding u ≈ (q/p) · µ, then use Step 3 to
homomorphically round those coefficients to get the R̃p-coefficients of µ ∈ Rp, and finally reassemble the
pieces by homomorphically multiplying by the short basis elements in B′, and summing the results.

Note that the above method requires evaluating TrR/R̃ a total of ϕ(m)/ϕ(m̃) times in Step 2, and the

same goes for the R̃q rounding function in Step 3. Because each evaluation takes quasilinear time no matter
what m̃ is, the asymptotic performance can only worsen as m̃ decreases. However, in practice there may be
benefits in choosing m̃ to be slightly smaller than m.

14

4 Homomorphic Trace

Here we show how to perform Step 2 of our bootstrapping procedure, which homomorphically evaluates the
scaled trace function (m̂/m̂′) TrR′/R on an encryption of (g′/g)u′ ∈ R′q′ , where recall that: g′ ∈ R′, g ∈ R
are as defined in Equation (2.2), and (g′/g) divides (m̂′/m̂); the plaintext modulus is q′ = (m̂′/m̂)q; and

u′ = v′ =
q

p
· µ+ e′ (mod qR′),

where e′ · g′ ∈ g′R′ is sufficiently short. Our goal is to show that:

1. the scaled trace of the plaintext (g′/g)u′ is some u = q
p · µ+ e ∈ Rq, where e · g ∈ gR is short, and

2. we can efficiently homomorphically apply the scaled trace on a ciphertext c′′ over some larger ring
R′′ = Om′′ ⊇ R′.

4.1 Trace of the Plaintext

We first show the effect of the scaled trace on the plaintext (g′/g)u′ ∈ R′q′ . By the above description of
u′ ∈ R′q′ and the fact that (g′/g)q divides q′ = (m̂′/m̂)q, we have

(g′/g)u′ = (g′/g)v′ = (g′/g)

(
q

p
· µ+ e′

)
(mod (g′/g)qR′).

Therefore, letting Tr = TrR′/R, by R-linearity of the trace and Lemma 2.1, we have

Tr((g′/g)u′) = Tr(g′/g) · q
p
· µ+ Tr(e′ · g′)/g

=
m̂′

m̂

(
q

p
· µ+ e

)
(mod q′R),

where e = (m̂/m̂′) Tr(e′ · g′)/g ∈ R. Therefore, after scaling down the plaintext modulus q′ by an m̂′/m̂
factor (see Section 2.2.2), the plaintext is q

p · µ+ e ∈ Rq.
Moreover, e · g = (m̂/m̂′) Tr(e′ · g′) ∈ gR is short because e′ · g′ ∈ g′R′ is short; see, e.g., [GHPS12,

Corollary 2.2]. In fact, by basic properties of the decoding/decryption basis (as defined in [LPR13]) under
the trace, the coefficient vector of e with respect to the decryption basis of R is merely a subvector of the
coefficient vector of e′ with respect to the decryption basis of R′. Therefore, e is within the error tolerance of
the rounding function on Rq, assuming e′ is within the error tolerance of the rounding function on R′q.

4.2 Applying the Trace

Now we show how to efficiently homomorphically apply the scaled trace function (m̂/m̂′) TrR′/R to an
encryption of any plaintext in R′q′ that is divisible by (g′/g). Note that this condition ensures that the output
of the trace is a multiple of m̂/m̂′ in Rq′ (see Lemma 2.1), making the scaling a well-defined operation that
results in an element of Rq.

First recall that TrR′/R is the sum of all ϕ(m′)/ϕ(m) automorphisms of R′/R, i.e., automorphisms
of R′ that fix R pointwise. Therefore, one way of homomorphically computing the scaled trace is to
homomorphically apply the proper automorphisms, sum the results, and scale down the plaintext and its
modulus. While this “sum-automorphisms” procedure yields the correct result, computing the trace in this way
does not run in quasilinear time, unless the number ϕ(m′)/ϕ(m) of automorphisms is only polylogarithmic.

15

Instead, we consider a sufficiently fine-grained tower of cyclotomic rings

R(r)/ · · · /R(1)/R(0),

where R′ = R(r), R = R(0), and each R(i) = Omi , where mi is divisible by mi−1 for i > 0; for the
finest granularity we would choose the tower so that every mi/mi−1 is prime. Notice that the scaled trace
function (m̂/m̂′) TrR′/R is the composition of the scaled trace functions (m̂i−1/m̂i) TrR(i)/R(i−1) , and that
g′/g is the product of all g(i)/g(i−1) for i = 1, . . . , r, where g(i) ∈ R(i) is as defined in Equation (2.2). So,
another way of homomorphically applying the full scaled trace is to apply the corresponding scaled trace
in sequence for each level of the tower, “climbing down” from R′ = R(r) to R = R(0). In particular, if
we use the above sum-automorphisms procedure with a tower of finest granularity, then there are at most
log2(m′/m) = O(log λ) levels, and since we have assumed that every prime divisor of m′/m is bounded by
polylogarithmic in the security parameter λ, the full procedure will run in quasilinear Õ(λ) time.

For technical reasons related to the analysis of noise terms under automorphisms, we actually use the sum-
automorphisms procedure only on levels R(i)/R(i−1) = Omi/Omi−1 of the tower where every odd prime
dividing mi also divides mi−1. Otherwise, we instead apply the scaled trace via an alternative procedure
using ring-switching, which has essentially the same runtime (see Section 4.2.2 below for details). In fact,
the alternative procedure can actually be used for any level of the tower, but it has the slight disadvantage of
requiring the index of the ciphertext ring to be divisible by at least one prime that does not divide mi; this is
why we prefer not to use it when, e.g., mi is a power of two.

4.2.1 Details of the Sum-Automorphisms Procedure

Here we specify the procedure for homomorphically applying the scaled trace by summing automorphisms, as
sketched above. Let R′/R = Om′/Om be a cyclotomic extension, where here m,m′ are just dummy indices,
not necessarily the ones from above. As already mentioned, we require that every odd prime dividing m′

also divides m. The procedure takes as input a ciphertext c′′ over some R′′ ⊇ R′ that encrypts a plaintext
w′ ∈ R′q′ under secret key s′′ ∈ R′′, where q′ = (m̂′/m̂)q and w′ is divisible by (g′/g). It proceeds as
follows:

1. Compute ciphertexts τi(c′′) over R′′ for a certain set of automorphisms τi of R′′/R that induce the
automorphisms of R′/R. These ciphertexts will respectively encrypt τi(w′) ∈ R′q′ under secret
key τi(s′′). Then key-switch [BV11a, BGV12] these to ciphertexts c(i) encrypting τi(w′) under a
common secret key s̃. See below for further details.

2. Sum the ciphertexts c(i) (component-wise) to get a new ciphertext c̃ that encrypts (under secret key s̃)
the plaintext TrR′/R(w′) =

∑
i τi(w

′) ∈ Rq′ , which is divisible by m̂′/m̂.

3. Using the procedure from Section 2.2.2, reduce the plaintext modulus to q, resulting in a ciphertext
that encrypts the scaled trace (m̂/m̂′) TrR′/R(w′) ∈ Rq under s̃.

The correctness of Steps 2 and 3 is immediate, so we just need to give the details of Step 1. We need to
choose automorphisms τi of R′′/R that induce the automorphisms of R′/R. Recall that the latter are defined
by τj(ζm′) = ζjm′ for all j ∈ Z∗m′ such that j = 1 (mod m). For each such j, we choose an i ∈ Z∗m′′ such
that i = j (mod m′) and such that i is 1 modulo every prime p that divides m′′ but not m′; this is possible
by the Chinese Remainder Theorem. Then τi(ζm′′) = ζim′′ is an automorphism of R′′/R that induces τj ,
because i = 1 (mod m) and

τi(ζm′) = ζ
(m′′/m′)i
m′′ = ζjm′ .

16

Also, by our assumption on m,m′, each i we use is 1 modulo every prime that divides m′′, because every
such prime either divides m, or does not divide m′, or is 2.

To complete the details of Step 1, we need to show why the ciphertext τi(c′′) encrypts τi(w′) ∈ R′q′ under
secret key τi(s′′). This follows from the decryption relation for c′′, and the fact that τi is a ring homomorphism
that induces an automorphism of R′ and fixes Z ⊆ R pointwise:

τi(c
′′
0) + τi(c

′′
1) · τi(s′′) =

q

p
· τi(µ) + τi(e

′′),

where the error term e′′ ∈ R′′ of c′′ is such that e′′ · g′′ is short (under the canonical embedding of R′′).
The only subtlety is that we need τi(e′′) · g′′ to be short. We show below that g′′ = τi(g

′′), from which it
follows that τi(e′′) · g′′ = τi(e

′′ · g′′), which is short because the automorphisms of R′′ simply permute the
coordinates of the canonical embedding, and hence preserve norms (see, e.g., [LPR10, Lemma 5.6]). To see
that g′′ = τi(g

′′), recall that i ∈ Z∗m′′ is 1 modulo every prime p that divides m′′. Therefore, τi fixes every ζp
and hence also fixes g′′.6

Lastly, we briefly analyze the efficiency of the procedure. Applying automorphisms to the ciphertext ring
elements is a trivial linear-time operation in the dimension, when the element is represented in any of the
structured bases we consider (and also in the so-called “Chinese remainder” basis). Similarly, key-switching
is quasilinear time in the bit length of the ciphertext, which itself is quasilinear in our context.

4.2.2 Applying the Trace via Ring-Switching

Here we describe the alternative procedure for applying the scaled trace, which uses the ring-switching
technique from [GHPS12] (see Proposition 2.3). Let R′/R = Om′/Om be an arbitrary cyclotomic extension,
wherem,m′ are again dummy variables. For this procedure, we require that the ciphertext ringR′′ = Om′′ ⊇
R′ be such that m′′/m′ is coprime with m′, but otherwise we can choose m′′ however we like. As before, the
input is a ciphertext c′′ over R′′ that encrypts a plaintext w′ ∈ R′q′ , where w′ is divisible by (g′/g).

The main idea is that since m′ and m′′/m′ are coprime, we can write R′′ ∼= R′ ⊗ U where U = Om′′/m′
and the tensor product is over the largest common base ring Z. Then the R-linear function TrR′/R is induced
by the (R ⊗ U)-linear function L : (R′ ⊗ U) → (R ⊗ U) defined by L(a′ ⊗ u) = TrR′/R(a′) ⊗ u for all
a′ ∈ R′, u ∈ U . So, using the ring-switching procedure from Proposition 2.3, we can homomorphically
evaluate L on ciphertext c′′, yielding an encryption of TrR′/R(w′), and then scale down the plaintext and its
modulus as usual. One nice fact we highlight is that using ring-switching to evaluate the function TrR′/R
does not incur any multiplicative increase in the noise rate, only a small additive one from the key-switching
step. This is because the factor associated with the function TrR′/R that is applied to the ciphertext in the
ring-switching procedure is simply 1.

One very important point is that ring-switching requires ring-LWE to be hard over the target ring
Om′′·m/m′ ∼= R⊗ U , so its dimension must be sufficiently large, but at the same time we cannot make the
dimension of R′′ = Om′′ too large, for efficiency reasons. Therefore, we only use the procedure when m′/m
is small, and for sufficiently large m′′. Note that if the m′′ associated with a given input ciphertext is too
small, we can trivially increase it by embedding into a larger cyclotomic ring.

6If, contrary to our assumption, m′ was divisible by one or more primes that did not divide m, then the error term τi(e
′′ · g′′)

appearing in the ciphertext would be accompanied by a factor of g′′/τi(g′′). The expansion associated with this term can be bounded
and is not excessive, but it depends on the number and sizes of the primes dividing m′ and not m. By contrast, the alternative
procedure described in Section 4.2.2 incurs no multiplicative increase in the noise rate.

17

5 Homomorphic Ring Rounding

In this section we describe how to efficiently homomorphically evaluate the “ring rounding function”
b·ep : Rq → Rp, where R = Om is the mth cyclotomic ring. Conceptually, we follow the high-level
strategy from [GHS12a], but instantiate it with very different technical components. Recall from Section 2.2.1
that the rounding function expresses its input u in the “decryption” Z-basis B = {bj} of R, as u =

∑
j uj · bj

for uj ∈ Zq, and outputs buep :=
∑

jbujep · bj ∈ Rp. Unlike with integer rounding from Zq to Zp, it is
not clear whether this rounding function has a low-depth arithmetic formula using just the ring operations
of R. One difficulty is that there are an exponentially large number of values in Rq that map to a given
value in Rp, which might be seen as evidence that a corresponding arithmetic formula must have large depth.
Fortunately, we show how to circumvent this issue by using an additional homomorphic operation, namely,
an enhancement of ring-switching. In short, we reduce the homomorphic evaluation of the ring rounding
function (from Rq to Rp) very simply and efficiently to that of several parallel (batched) evaluations of the
integer rounding function (from Zq to Zp).

5.1 Overview

Suppose we choose some cyclotomic ring S = O` having a mod-q CRT set C = {cj} ⊂ S of cardinality
exactly |B|. That is, we have a ring embedding from the product ring Z|B|q into Sq, given by u 7→

∑
j uj · cj .

Note that the choice of the ring S is at our convenience, and need not have any relationship to the plaintext
ring Rq. We express the rounding function Rq → Rp as a sequence of three steps:

1. Map u =
∑

j uj · bj ∈ Rq to
∑

j uj · cj ∈ Sq, i.e., send the Zq-coefficients of u (with respect to the
decryption basis B) to the Zq-slots of Sq.

2. Batch-apply the integer rounding function from Zq to Zp to the slot values uj , to get
∑

jbujep ·cj ∈ S2.

3. Invert the map from the first step to obtain buep =
∑

jbuje2 · bj ∈ R2.

Using batch/SIMD operations [SV11], the second step is easily achieved using the fact that Sq embeds the
product of several copies of the ring Zq, via the CRT elements cj . That is, we can simultaneously round all
the coefficients uj to Zp, using just one evaluation of an arithmetic procedure over S corresponding to one
for the integer rounding function from Zq to Zp.

We now describe one way of expressing the first and third steps above, in terms of operations that can
be evaluated homomorphically. The first simple observation is that the function mapping u =

∑
j uj · bj to∑

j uj · cj is induced by a Z-linear function L̄ : R→ S. Specifically, L̄ simply maps each Z-basis element bj
to cj . Now suppose that we choose S so that its largest common subring with R is Z, i.e., the indices m, ` are
coprime. Then letting T = R+ S = Om` ∼= R⊗ S be the compositum ring, Lemma 2.2 yields an S-linear
function L : T → S that coincides with L̄ on R ⊆ T , and in particular on u. The ring-switching procedure
from Proposition 2.3 can homomorphically evaluate any S-linear function from T to S, and in particular, the
function L. Therefore, by simply embedding R into T , we can homomorphically evaluate L̄(x) = L(x) by
applying the ring-switching procedure with L.

Unfortunately, there is a major problem with the efficiency of the above approach: the dimension (over Z)
of the compositum ring T is the product of those of R and S, which are each at least linear in the security
parameter. Therefore, representing and operating on arbitrary elements in T requires at least quadratic time.

18

5.1.1 Efficiently Mapping from B to C

In hindsight, the quadratic runtime of the above approach should not be a surprise, because we treated
L̄ : R → S as an arbitrary Z-linear transformation, and B,C as arbitrary sets. To do better, L̄, B, and C
must have some structure we can exploit. Fortunately, they can—if we choose them carefully. We now
describe a way of expressing the first and third steps above in terms of simple operations that can be evaluated
homomorphically in quasilinear time.

The main idea is as follows, and is summarized in Figure 1. Instead of mapping directly from R to S,
we will express L̄ as a sequence of linear transformations L̄1, . . . , L̄r through several “hybrid” cyclotomic
rings R = H(0), H(1), . . . ,H(r) = S. For sets B and C with an appropriate product structure, these
transformations will respectively map A0 = B ⊂ H(0) to some structured subset A1 ⊂ H(1), then A1 to
some structured subset A2 ⊂ H(2), and so on, finally mapping Ar−1 to Ar = C ⊂ H(r). In contrast to
the inefficient method described above, the hybrid rings will be chosen so that each compositum T (i) =
H(i−1) +H(i) of adjacent rings has dimension just slightly larger (by only a polylogarithmic factor) than that
of R. This is achieved by choosing the indices of H(i−1), H(i) to have large greatest common divisor, and
hence small least common multiple. For example, the indices can share almost all the same prime divisors
(with multiplicity), and have just one different prime divisor each. Of course, other tradeoffs between the
number of hybrid rings and the dimensions of the compositums are also possible.

The flip side of this approach is that using ring-switching, we can homomorphically evaluate only E(i)-
linear functions L̄i : H(i−1) → H(i), where E(i) = H(i−1) ∩H(i) is the largest common subring of adjacent
hybrid rings. Since each E(i) is large by design (to keep the compositum T (i) small), this requirement is
quite strict, yet we still need to construct linear functions L̄i that sequentially map B = A0 to C = Ar. To
achieve this, we construct all the sets Ai to have appropriate product structure. Specifically, we ensure that
for each i = 1, . . . , r, we have factorizations

Ai−1 = Aout
i−1 · Zi, Ai = Ain

i · Zi (5.2)

for some set Zi ⊂ E(i), where bothAout
i−1 andAin

i are linearly independent overE(i). (Note that for 1 ≤ i < r,
each Ai needs to factor in two ways over two subrings E(i−1) and E(i), which is why we need two sets Ain

i

and Aout
i .) Then, we simply define L̄i to be an arbitrary E(i)-linear function that bijectively maps Aout

i−1 to Ain
i .

(Note that Aout
i−1 and Ain

i have the same cardinality, because Ai−1 and Ai do.) It immediately follows that L̄i
bijectively maps Ai−1 to Ai, because

L̄i(Ai−1) = L̄i(A
out
i−1 · Zi) = L̄i(A

out
i−1) · Zi = Ain

i · Zi

by E(i)-linearity and the fact that Zi ⊂ E(i).

Summarizing the above discusion, we have the following theorem.

Theorem 5.1. Suppose there exists a sequence of cyclotomic rings R = H(0), H(1), . . . ,H(r) = S and
sets Ai ⊂ H(i) such that for all i = 1, . . . , r, we have Ai−1 = Aout

i−1 · Zi and Ai = Ain
i · Zi for some sets

Zi ⊂ E(i) = H(i−1) ∩H(i) and Aout
i−1, A

in
i that are each E(i)-linearly independent and of equal cardinality.

Then there is a sequence of E(i)-linear maps L̄i : H(i−1) → H(i), for i = 1, . . . , r, whose composition
L̄r ◦ · · · ◦ L̄1 bijectively maps A0 to Ar.

5.1.2 Applying the Map Homomorphically

So far we have described how our desired map between plaintext rings R and S can be expressed as a
sequence of linear maps through hybrid plaintext rings. In the context of bootstrapping, for security these

19

B ⊂ R = H(0)

T (1)

E(1)

H(1)

T (2)

E(2)

H(2) = S ⊃ C

em
be

d
H (1)-linear

E(1)-linear
(induced)

em
bed

H (2)-linear
E(2)-linear
(induced)

Figure 1: An example mapping from B ⊂ R to C ⊂ S, via a sequence of hybrid rings. Each E(i) =
H(i−1) ∩H(i) is a largest common subring, and each T (i) = H(i−1) + H(i) is a compositum, of adjacent
hybrid rings. For any E(i)-linear function from H(i−1) to H(i), there is a corresponding H(i)-linear function
from T (i) to H(i) that coincides with it on H(i−1) (see Lemma 2.2).

plaintext rings typically need to be embedded in some larger ciphertext rings, because the dimensions of
R,S are not large enough to securely support the very small noise used in bootstrapping. For example,
following Step 2 of our bootstrapping procedure (Section 3), we have a ciphertext over the ring R′′ where
R′′ = Om′′ ⊇ R for some m′′ of our choice that is divisible by m. We need to choose the sequence of hybrid
ciphertext rings so that they admit linear functions (over the respective largest common subrings) that induce
the desired ones on the underlying plaintext rings. This turns out to be very easy to do, as we now explain.

LetH,H ′ be adjacent hybrid plaintext rings having largest common subringE = H∩H ′ and compositum
T = H +H ′. Then we want the corresponding ciphertext rings to be H̃ ∼= H ⊗ U , H̃ ′ ∼= H ′ ⊗ U ′ for some
cyclotomic rings U,U ′, and the largest common subring and compositum of H̃, H̃ ′ to be Ẽ ∼= E ⊗ (U ∩ U ′)
and T̃ ∼= T ⊗ (U + U ′), respectively (where all the tensor products are over the common base ring Z).
Then any E-linear function L : H → H ′ is induced by any Ẽ-linear function L̃ : H̃ → H̃ ′ satisfying
L̃(h⊗ 1) = L(h)⊗ 1, which is the function we actually apply when switching between ciphertext rings.

To satisfy the above conditions, it is sufficient (and in fact necessary) to choose the respective indices u, u′

of U,U ′ so that lcm(u, u′) is coprime with lcm(h, h′), where h, h′ are the respective indices of H,H ′. Then
the ciphertext rings H̃, H̃ ′ have indices hu and h′u′, and their compositum has index lcm(h, h′) · lcm(u, u′),
which must be quasilinear for asymptotic efficiency. In typical instantiations, in order to get enough additional
slots in each successive ring, h′/h will be moderately large and lcm(h, h′) ≈ h′. So to ensure that all the
ciphertext rings are about the same size, we can choose u/u′ ≈ h′/h and lcm(u, u′) ≈ u.

5.1.3 Mapping Selected Coefficients

In some settings we may only need to map certain coefficients into slots, i.e., map a particular portion of B to
a CRT set of appropriate size. For example, when bootstrapping a semi-packed ciphertext over R′ = Om′
with plaintext over R̃ = Om̃, we may need to artificially expand our view of the plaintext ring to some
R = Om, so that m is coprime with m′/m (see the constraints listed at the start of Section 3). In such a
case, the decryption basis B of R factors as B = B′ · B̃, where B̃ is the decryption basis of R̃ and B′ ⊂ R
is a particular R̃-basis of R. Since the true message is really only over R̃, it can be shown that the only
coefficients we need to recover the message are associated with the subset b′ · B̃ ⊆ B for a particular fixed

20

b′ ∈ B′. Therefore, when designing the hybrid rings and CRT sets we only need |B̃| slots in total. When
initially switching from R through the hybrid rings, we do so in a way that maps b′ to one entry of a CRT set
and all the other elements of B′ to zero, then continue by mapping all of B̃ to a CRT set as usual. Note that
we still need to go through just as many hybrid rings to map from R to S, but the size of S can be significantly
smaller because it needs fewer CRT slots.

5.2 Construction

By Theorem 5.1 and the ring-switching procedure, in order to map B ⊂ R to a CRT set C of some ring S
of our choice in a way that can be efficiently evaluated homomorphically, we just need to construct hybrid
cyclotomic rings R = H(0), H(1), . . . ,H(r) = S and sets Ai ⊂ H(i) (where A0 = B and Ar = C) to satisfy
the following two properties for each i = 1, . . . , r:

1. Each compositum T (i) = H(i−1) +H(i) is not too large, i.e., its dimension is quasilinear.

2. The sets Ai−1, Ai factor as described in Equation (5.2).

The remainder of this subsection is dedicated to providing such a construction.

5.2.1 Decomposition of R and Basis B ⊂ R

For our given ring R = Om and its Z-basis B used in decryption, we consider a tower of cyclotomic rings

R(r)/R(r−1)/ · · · /R(1)/R(0),

where R(r) = R and R(0) = O1 = Z, and each R(i) has index mi, which is divisible by mi−1 for i > 0. For
example, in a finest-grained decomposition, r is the number of prime divisors (with multiplicity) of m, and
the ratios mi/mi−1 are all these prime divisors in some arbitrary order. A coarser-grained decomposition
may be used as well, but will tend to make the compositum rings T (i) larger.

We need Z-bases Bi of the rings R(i) that have a product structure induced by the tower. Specifically, for
each i = 1, . . . , r we need to have the factorization

Bi = B′i ·Bi−1 ⊂ R(i) (5.5)

for some set B′i ⊂ R(i) that is linearly independent over R(i−1). We also need the basis B(r) of R = R(r)

to be the one used for decryption. As shown in Section 2.1.4, the scaled-up “decoding” basis of R has a
finest-possible factorization, so we can use it as B for any choice of the tower.

We mention that the power basis {1, ζm, ζ2
m, . . . , ζ

ϕ(m)−1
m } of R, which is implicitly the one used when

representing R as the polynomial ring Z[X]/Φm(X), does not have the required product structure when m
is divisible by two or more odd primes, but that it does coincide with the scaled-up decoding basis when m is
a power of 2. (See [LPR13] for details.)

5.2.2 Ring S and CRT Set C ⊂ S.

We next design S = O` so that it also yields a tower of cyclotomic rings S(r)/S(r−1)/ · · · /S(1)/S(0), where
S(r) = S and S(0) = Z, and each S(i) has index `i. As described in Sections 2.1.3 and 2.1.4, there are
structured mod-q CRT sets C̃i of S(i) that factor as

C̃i = C̃ ′i · C̃i−1,

21

where C̃ ′i ⊂ S(i) is an S(i−1)-linearly independent set whose cardinality is the “relative splitting number”
of p in S(i)/S(i−1), i.e., the number of distinct prime ideals in S(i) lying over any prime ideal divisor of p
in S(i−1).

We need to choose the ring S and its tower so that for all i = 1, . . . , r,

• the respective indices mr−i+1, `i of R(r−i+1), S(i) are coprime (certainly it suffices for m and ` to be
coprime, but this is not always necessary);

• the dimension ϕ(mr−i+1 · `i) is not too large (specifically, it is quasi-linear in the security parameter);

• the relative splitting number |C̃ ′i| ≥ |B′r−i+1|.

We can then easily define structured CRT sets Ci ⊂ C̃i ⊂ S(i) of the appropriate cardinality, and in
particular C = Cr, as follows. Define C0 = {1} ⊂ Z = S(0). Then for each i = 1, . . . , r, let C ′i ⊆ C̃ ′i be an
arbitrary subset having cardinality exactly |B′r−i+1|, and define

Ci = C ′i · Ci−1 ⊂ C̃i. (5.7)

5.2.3 Hybrid Rings H(i) and Sets Ai ⊂ H(i)

Informally, with each successive hybrid ring we remove another level from the R-tower and add on another
level to the S-tower, and similarly with the corresponding components of the structured sets B and C.
Formally, for i = 0, 1, . . . , r we define

H(i) = Omr−i `i
∼= R(r−i) ⊗ S(i), (5.8)

Ai = Br−i · Ci ⊂ H(i),

where the tensor product in Equation (5.8) applies to the rings as extensions of Z, and the isomorphism holds
because gcd(mr−i, `i) ≤ gcd(mr−i+1, `i) = 1 by design. Note that H(0) = Omr = R, H(r) = O`r = S,
and A0 = Br = B, Ar = Cr = C, as required.

For each i = 1, . . . , r, because mr−i+1 and `i are coprime, it is straightforward to verify that the largest
common subring E(i) = H(i−1) ∩H(i) and compositum T (i) = H(i−1) +H(i) are

E(i) = Omr−i `i−1
∼= R(r−i) ⊗ S(i−1)

T (i) = Omr−i+1 `i
∼= R(r−i+1) ⊗ S(i),

where the tensor products above are over the common base ring Z. Note that the dimension of T (i)/Z is
ϕ(mr−i+1 · `i), which is quasi-linear in the security parameter by construction.

Lemma 5.2. The sets Ai−1, Ai factor as in Equation (5.2), i.e., Ai−1 = Aout
i−1 · Zi and Ai = Ain

i · Zi for
some sets Zi ⊂ E(i) and Aout

i−1, A
in
i that are each E(i)-linearly independent and of equal cardinality.

Proof. Define Zi = Br−i · Ci−1 ⊂ E(i). Recall from Equation (5.5) that Br−i+1 = B′r−i+1 · Br−i,
where B′r−i+1 ⊂ R(r−i+1) is linearly independent over R(r−i) ⊂ H(i−1), and hence also over E(i) ∼=
R(r−i)⊗S(i−1) (because it corresponds to the set of pure tensors B′r−i+1⊗{1} ⊂ R(r−i+1)⊗S(i−1)). Then

Ai−1 = (B′r−i+1 ·Br−i) · Ci−1 = B′r−i+1 · Zi
is the desired factorization. Similarly, recall from Definition (5.7) that Ci = C ′i ·Ci−1, where C ′i ⊆ C̃ ′i ⊂ S(i)

is linearly independent over S(i−1), and hence also over E(i). Then we have the desired factorization

Ai = Br−i · (C ′i · Ci−1) = C ′i · Zi.

Finally, we have |Aout
i−1| = |B′r−i+1| = |C ′i| = |Ain

i | by design of C ′i.

22

References

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ICTS, pages 309–325. 2012.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. Pseudorandom functions and lattices. In EUROCRYPT,
pages 719–737. 2012.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In CRYPTO, pages 868–886. 2012.

[BV11a] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. 2011.

[BV11b] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and
security for key dependent messages. In CRYPTO, pages 505–524. 2011.

[CCK+13] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully
homomorphic encryption over the integers. In EUROCRYPT, pages 315–335. 2013.

[Gen09a] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009.
http://crypto.stanford.edu/craig.

[Gen09b] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GH11a] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In FOCS, pages 107–109. 2011.

[GH11b] C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, pages 129–148. 2011.

[GHPS12] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart. Ring switching in BGV-style homomorphic
encryption. In SCN, pages 19–37. 2012. Full version at http://eprint.iacr.org/
2012/240.

[GHS12a] C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption.
In Public Key Cryptography, pages 1–16. 2012.

[GHS12b] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, pages 465–482. 2012.

[GHS12c] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO,
pages 850–867. 2012.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. J. ACM, 2013. To appear. Preliminary version in Eurocrypt 2010.

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In EURO-
CRYPT, pages 35–54. 2013.

[SV11] N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint Archive,
Report 2011/133, 2011. http://eprint.iacr.org/.

23

http://crypto.stanford.edu/craig
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/

[vDGHV10] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over
the integers. In EUROCRYPT, pages 24–43. 2010.

A Transformation Between LSB and MSB Encodings

Here we describe a folklore transformation between the “least significant bit” and “most significant bit”
message encodings for (ring-)LWE-based cryptosystems.

Let plaintext modulus p and ciphertext modulus q be coprime, fix integers cp, cq such that cpp+ cqq = 1,
and observe that cp = p−1 (mod q) and cq = q−1 (mod p).

• An lsb encoding of a value µ ∈ Zp is any v ∈ Zq such that v = e (mod q) for some integer
e ∈ [−q/2, q/2) where e = µ (mod p).

• An msb encoding of µ is any w ∈ Zq such that bwep := bw · (p/q)e = µ (mod p).

If v ∈ Zq is an lsb encoding of µ ∈ Zp, then we claim that p−1 · v ∈ Zq is an msb encoding of
−q−1 · µ ∈ Zp. Indeed, since v = e (mod q) for some e ∈ (µ+ pZ) ∩ [−q/2, q/2), we have

bp−1 · vep =
⌊

1−cqq
p · e · pq

⌉
=
⌊
(1
q − cq) · e

⌉
= −cq · e = −q−1 · µ (mod p).

In the other direction, if w ∈ Zq is an msb encoding of µ ∈ Zp, then we claim that p ·w is an lsb encoding
of −q · µ ∈ Zp. Indeed, by assumption we have

bwep = bw · (p/q)e = w · (p/q)− f = µ (mod p)

for some f ∈ 1
qZ ∩ [−1/2, 1/2). Multiplying by q and letting e = q · f ∈ Z ∩ [−q/2, q/2), we have

p · w − e = q · µ (mod pq).

Reducing this modulo q, we get p · w = e (mod q), and reducing it modulo p, we have e = −q · µ (mod p).
The above facts make it possible to convert between lsb and msb representations of (ring-)LWE ciphertexts,

simply by multiplying the ciphertext by p or p−1 modulo q. This works because decryption recovers a Zq-
encoding of the message simply as a linear function of the ciphertext, so the p or p−1 factor simply “passes
through” the ciphertext to the encoding. (In the ring setting, the encoding of plaintext ring elements is
coefficient-wise in a certain basis, so the same reasoning applies.) If q = −1 (mod p), then the above
transformations preserve the message exactly. In other cases, we can just keep track of the factors of −q or
−q−1 introduced by the conversions (which may be affected by other homomorphic operations), and remove
them upon decryption.

B Integer Rounding Procedure

Here we recall (a close variant of) the efficient arithmetic procedure from [GHS12a] for computing the integer
rounding (or “msb”) function msbq = b·e2 : Zq → Z2, where q = 2` is a power of two. (The procedure
easily generalizes to any prime base.) The multiplicative depth and cost (in number of operations) of the
procedure are not precisely analyzed in [GHS12a], and the procedure as written turns out to be suboptimal
in depth and number of operations by log2(q) factors, because it (homomorphically) raises ciphertexts to
large powers in an inner loop. So for completeness, here we present a simplified and optimized version of

24

Algorithm 1 Arithmetic procedure for computing msbq : Zq → Z2 [GHS12a]

Input: Element x ∈ Zq, where q = 2` for some positive integer `
Output: msbq(x) ∈ Z2

1: w0 ← x // w0 ∈ Zq
2: for i← 1, . . . , `− 1 do
3: y ← x // y ∈ Zq, y = x (mod 2i+1)
4: for j ← 0, . . . , i− 1 do
5: wj ← w2

j // now wj = lsb(bx/2jc) (mod 2i−j+1)

6: y ← (y − wj)/2 mod (q/2j+1) // now y ∈ Zq/2j+1 , y = bx/2j+1c (mod 2i−j)

7: wi ← y // wi ∈ Zq/2i , wi = bx/2ic (mod 2)

8: return wr−1 ∈ Z2

the procedure, and an analysis of its depth and cost. It uses the standard ring operations of Z2j , as well as
division by 2 of values that are guaranteed to be even, all of which can be implemented homomorphically for
the system described in Section 2.2 (see also Section 2.2.2).

Correctness follows from [GHS12a, Lemma 2]. The main idea is that when initially assigned, each wj
has the same least-significant bit as bx/2jc, i.e., wj = bx/2jc (mod 2) (but its other bits may not agree
with x’s). Each time wj is squared in Step 5, its least-significant bit remains the same, but an additional
more-significant bit is set to zero. That is, after t squarings, wj = lsb(bx/2jc) (mod 2t+1). Therefore, in
iteration i, the inner loop “shifts away” the i least-significant bits of x, leaving the (i+ 1)st bit intact in the
least significant position (but possibly changing the others), at which point we can assign wi and maintain the
invariant.

We now briefly analyze the homomorphic evaluation of the procedure, in terms of its induced noise
growth and runtime cost. The most important observation is that although it is written using a doubly nested
loop, the procedure actually has multiplicative depth exactly `− 1 = log2(q/2). This is because in the inner
loop, each wj for j = 0, . . . , i− 1 can be squared in parallel (Step 5). Each squaring of the plaintext value
wj ∈ Zq/2j induces the usual small polynomial expansion (q/2j) · nc (where c ≈ 1) in the noise rate of the
associated ciphertext. The iterated subtractions and divisions by 2 (Step 6) cause no growth at all in the noise
rate: each subtraction sums (at worst) the noise rates of the associated ciphertexts, and division by 2 halves
the noise rate.

In the ith iteration, the procedure performs i homomorphic multiplications and i subtractions (and also i
divisions by 2, but these are trivial as homomorphic operations). Therefore, the procedure uses a total of
`(`− 1)/2 homomorphic multiplications and subtractions each.

C Concrete Choices of Rings

Here, for p = 2 and several values of the original cyclotomic index m, we give some workable values for the
target cyclotomic index `, along with the indices of the intermediate “hybrid” rings, the dimensions of the
compositum rings, etc. In the tables below, and following the notation in Section 5:

• mr−i+1 is the index of the ring Rr−i+1 at step i;

• `i is the index of the ring Si at step i;

• ϕ(mr−i+1 · `i) is the dimension of the compositum ring at step i;

25

• |B′r−i+1| is the dimension of the intermediate ring extension R(r−i+1)/R(r−i);

• |C̃ ′i| is the “relative splitting number” of p = 2 in the extension S(i)/S(i−1).

All the indices are lower bounds needed to support the functionality of the ring-rounding technique on the
plaintext space (Section 5). Larger ciphertext indices may be required to ensure adequate security for all the
homomorphic operations; see Section 5.1.2.

Table 1: Concrete choices for mr = 512, ϕ(mr) = 256

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 512 73 8 8 18432

2 64 1387 = 73 · 19 8 9 41472

3 8 9709 = 1387 · 7 4 6 38836

4 2 29127 = 9709 · 3 2 2 15552

5 1 29127 15552

Table 2: Concrete choices for mr = 256, ϕ(mr) = 128

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 256 17 2 2 2048

2 128 221 = 17 · 13 4 4 12288

3 32 1547 = 221 · 7 4 6 18432

4 8 7735 = 1547 · 5 4 4 18432

5 2 23205 = 7735 · 3 2 2 9216

6 1 23205 9216

Table 3: Concrete choices for mr = 128, ϕ(mr) = 64

Step i mr−i+1 `i |B′r−i+1| |C̃ ′i| ϕ(mr−i+1 · `i)

1 128 17 2 2 1024

2 64 221 = 17 · 13 4 4 6144

3 16 1105 = 221 · 5 4 4 6144

4 4 3315 = 1105 · 3 2 2 3072

5 2 9945 = 3315 · 3 2 3 4608

6 1 9945 4608

26

	Introduction
	Our Contributions
	Techniques

	Preliminaries
	Algebraic Background
	Cyclotomic Rings
	Tensorial Decomposition of Cyclotomics
	Ideal Factorization and Plaintext Slots
	Product Bases

	Ring-Based Homomorphic Cryptosystem
	Decryption
	Changing the Plaintext Modulus
	Ring Switching

	Overview of Bootstrapping Procedure
	Obtaining a Noiseless Ciphertext
	Variants and Optimizations

	Homomorphic Trace
	Trace of the Plaintext
	Applying the Trace
	Details of the Sum-Automorphisms Procedure
	Applying the Trace via Ring-Switching

	Homomorphic Ring Rounding
	Overview
	Efficiently Mapping from B to C
	Applying the Map Homomorphically
	Mapping Selected Coefficients

	Construction
	Decomposition of R and Basis B R
	Ring S and CRT Set C S.
	Hybrid Rings H(i) and Sets Ai H(i)

	Transformation Between LSB and MSB Encodings
	Integer Rounding Procedure
	Concrete Choices of Rings

