
Delegatable Pseudorandom Functions and Applications

Aggelos Kiayias 1, Stavros Papadopoulos2, Nikos Triandopoulos 3, and Thomas Zacharias 1

1Dept. of Informatics and Telecommunications, University of Athens, Greece. ,
aggelos@di.uoa.gr, th.zacharias@otenet.gr

2Dept. of Computer Science, Hong Kong University of Science and Technology, Hong-Kong. ,
stavrosp@cse.ust.hk

3RSA Laboratories, Cambridge, MA USA. , Nikolaos.Triandopoulos@rsa.com

Abstract

We put forth the problem of delegating the evaluation of a pseudorandom function (PRF) to an untrusted proxy.
A delegatable PRF, or DPRF for short, is a new primitive that enables a proxy to evaluate a PRF on a strict subset
of its domain using a trapdoor derived from the DPRF secret-key. PRF delegation is policy-based: the trapdoor is
constructed with respect to a certain policy that determines the subset of input values which the proxy is allowed
to compute. Interesting DPRFs should achieve low-bandwidth delegation: Enabling the proxy to compute the PRF
values that conform to the policy should be more efficient than simply providing the proxy with the sequence of
all such values precomputed. The main challenge in constructing DPRFs is in maintaining the pseudorandomness of
unknown values in the face of an attacker that adaptively controls proxy servers. A DPRF may be optionally equipped
with an additional property we call policy privacy, where any two delegation predicates remain indistinguishable in
the view of a DPRF-querying proxy: achieving this raises new design challenges as policy privacy and efficiency are
seemingly conflicting goals.

For the important class of policies described as (1-dimensional) ranges, we devise two DPRF constructions and
rigorously prove their security. Built upon the well-known tree-based GGM PRF family [15], our constructions are
generic and feature only logarithmic delegation size in the number of values conforming to the policy predicate.
At only a constant-factor efficiency reduction, we show that our second construction is also policy private. As we
finally describe, their new security and efficiency properties render our delegated PRF schemes particularly useful in
numerous security applications, including RFID, symmetric searchable encryption, and broadcast encryption.

1 Introduction
Due to its practical importance the problem of securely delegating computational tasks to untrusted third parties
comprises a particularly active research area. Generally speaking, secure delegation involves the design of protocols
that allow the controlled authorization for an—otherwise untrusted—party to compute a given function while achieving
some target security property (e.g., the verifiability of results or privacy of inputs/outputs) and also preserving the
efficiency of the protocols so that the delegation itself remains meaningful. Beyond protocols for the delegation of
general functionalities (e.g., [16, 31]) a variety of specific cryptographic primitives have been considered in this context
(see related work in Section 2).

Quite surprisingly, pseudorandom functions (PRFs), a fundamental primitive for emulating perfect randomness
via keyed functions which finds numerous applications in information security, have not been explicitly studied in the
context of delegation of computations (of PRF values). Hereby, we initiate a study on this matter.
A new PRF concept. We introduce a novel cryptographic primitive, called delegatable pseudorandom function
(DPRF) which enables the delegation of the evaluation of a pseudorandom function (PRF) to an untrusted proxy
according to a given predicate that defines the inputs on which the proxy will evaluate the PRF.

Specifically, let F be a PRF family, and P a set of predicates, called the delegation policy, defined over the domain
of F . A DPRF is a triplet (F , T, C) constructed with respect to P , which provides the elementary functionality shown
in Figure 1: For any secret key k and a predicate P ∈ P , the delegator computes a trapdoor τ via algorithm T , and
τ is transmitted to the proxy. The latter then runs algorithm C on τ to finally derive exactly the set of PRF values

1

VP = {fk(x)|P (x)}, where fk ∈ F , i.e., the PRF value on every input x satisfying predicate P , overall correctly
enabling the evaluation of PRF fk subject to predicate P without explicit knowledge of secret key k (or even the input
values AP = {x|P (x)}).

Delegator

k, P

τ
CT

fk(xi), ∀xi : P (xi)

Proxy

Figure 1: DPRF functionality

What motivates the above scheme is efficiency: As long as the trapdoor τ is sublinear in the size n = |{x|P (x)}|
of delegated PRF values, the delegation is meaningful as the delegator conserves resources (or otherwise the proxy
could be provided directly with the n PRF values in the delegated set VP = {fk(x)|P (x)}).

At the same time, the DPRF must retain the security properties of the underlying PRF, namely, (i) pseudorandom-
ness for any value x conforming to the delegation predicate P , i.e., P (x), and (ii) unpredictability for any noncon-
forming value x such that ¬P (x). In addition, a DPRF can optionally satisfy a policy privacy property which prevents
the proxy from inferring information about P or the delegated set {x|P (x)} from the trapdoor τ .
Our definitional framework. We introduce a formal definitional framework for the new primitive of DPRFs carefully
capturing all the above technical requirements. We first rigorously define the correctness and security requirements
that any DPRF should meet. Correctness captures the ability of the proxy to successfully evaluate the PRF on exactly
those inputs specified by predicate P . Security captures the requirement that the delegation capabilities of the PRF do
not compromise its core pseudorandomness property, but this condition goes beyond the standard security definition
of PRFs since the pseudorandomness attacker may now adaptively query a trapdoor delegation oracle with policies of
its choice.

Equally important is also a policy privacy property that a DPRF may optionally satisfy, intuitively capturing the
inability of a malicious proxy to learn any (non-trivial) property about the delegation set AP = {x|P (x)} (that is
not implied by set VP). Our security notion postulates that any two policies P, P ′ are indistinguishable provided that
|AP | = |AP ′ | and no PRF queries are obtained in the symmetric difference of AP , AP ′ (a necessary condition).
GGM-based realization for range predicates. We devise two efficient and provably secure DPRF constructions
for the case where the delegation policy contains predicates described by 1-dimensional ranges. Range-based policy
predicates is an interesting use case as many applications maintain an ordering over the PRF inputs and delegation
rights are defined with respect to ranges of such inputs.

Our first DPRF scheme is called best range cover or BRC for short, and relies on the well-known GGM PRF
family [15]. This family defines a PRF based on the hierarchical application of any length-doubling pseudorandom
generator (PRG) according to the structure induced by a tree, where input values are uniquely mapped to root-to-leaf
paths. By exploiting the above characteristics, our BRC scheme features logarithmic delegation size in the number of
values conforming to the policy predicate simply by having the trapdoor τ comprising a subset GP of PRG values that
(almost optimally) cover the target range VP of PRF values. We provide a formal security proof for the above scheme
which, interestingly, is far from being trivial as the adversary can now employ delegation queries to learn internal
PRG values in the tree (not simply leaf PRF values as in the security game in [15]). (We note that although similar
“range-covering” GGM-based constructions appear in the literature, e.g., [28], no formal security analysis has been
given).

However, our BRC scheme does not satisfy policy privacy as the structure of intermediate PRG values in GP
leaks information about predicate P . This motivates our second construction, called uniform range cover or URC
for short. This scheme augments BRC in a way that renders all trapdoors corresponding to ranges of the same size
indistinguishable. This is achieved by carefully having τ comprising a subset G′P of PRG values that cover the target
range VP of PRF values less optimally: G′P contains PRG values that are descendants of those values in GP at a tree
height that depends solely on |VP | (which by definition leaks to the adversary). More interestingly, by adopting the
above change, URC retains both the asymptotic logarithmic communication complexity of BRC and its DPRF security,
but it crucially achieves a policy privacy notion appropriately relaxed to our setting of range predicates. Inherently,

2

as we show, no tree-based DPRF scheme can satisfy our initial version of policy privacy, so we have to resort to a
sufficient relaxation which for technical reasons we call union policy privacy.
Main applications. Finally, our DPRF schemes, equipped with efficiency, security and policy privacy (our second
one only), lend themselves to new schemes that provide scalable solutions to a wide range of information security
and applied cryptography settings that involve the controlled authorization of PRF-based computations. Generally,
DPRFs are particularly useful in applications that rely on the evaluation of (secret) key-based cryptographic primitives
on specific inputs (according to an underlying policy): Using a DPRF scheme then allows a cost-efficient, yet secure
and private, key management for an untrusted proxy who is otherwise capable in executing a particular computational
task of interest.

We outline several such applications in which DPRFs are useful, including authentication and access control in
RFIDs, efficient batch querying in searchable encryption as well as broadcast encryption. Due to the underlying GGM
building component, our DPRFs are extremely lightweight, as their practical implementation entails a few repeated
applications of any efficient candidate instantiation of a PRG (e.g., HMAC or block ciphers).
Summary of contributions. Our main contributions are:

• We initiate the study of policy-based delegation of the task of evaluating a pseudorandom function on specific
input values and introduce the concept of delegatable PRFs (DPRFs).

• We develop a general and rigorous definitional framework for the new DPRF primitive, capturing properties
such as efficiency, correctness, security and policy privacy, and also offering a relaxed union policy privacy that
is arguably necessary for a wide DPRF class with range-based policies.

• We present a framework for constructing DPRF schemes for the important case where the delegation policy is
governed by range predicates over inputs; our framework augments the generic GGM construction framework
of [15] to provide two concrete DPRF schemes, namely schemes BRC and URC.

• We prove the security of our framework, thus also yielding the first security analysis of similar GGM-based
key-delegation schemes, and the union-policy privacy of URC.

• We describe several key applications of our DPRF primitive in the context of efficient key-delegation protocols
for authentication, access control and encryption purposes.

2 Related Work

Secure delegation of computations. The notion of delegation of cryptographic operations is already mature: Starting
from early work on proxy signatures [26] and proxy cryptography [5], basic primitives such as signatures (e.g., [26, 6])
and encryption (e.g.,[2, 20, 17]) have been studied in the context of an untrusted proxy who is authorized to operate
on signatures or ciphertexts. Recently, there has also been an increased interest in verifiability and privacy of general
outsourced computations (e.g., [8, 1, 31, 16, 7]) or specific crypto-related operations (e.g., [18, 13, 4]). To the best of
our knowledge, however, no prior work explicitly and formally examines the delegation of PRFs.
PRF extensions. Closer to our DPRF new primitive are the known extensions of PRFs, namely verifiable PRFs
(VPRFs) (e.g., [10, 25, 27]) and oblivious PRFs (OPRFs) (e.g., [21, 14]). A VPRF provides a PRF value along with
a non-interactive proof with which anyone can verify the correctness of the PRF value. Although such proofs can
be useful in third-party settings, they are not related to the delegation of the PRF evaluation without the secret key.
Similarly, an OPRF is a two-party protocol that securely implements functionality (k, x) → (⊥, fk(x))—that is, a
party evaluates a PRF value without knowledge of the secret key. Yet, although the party that provides the key can be
viewed to preserve resources, this setting does not match our PRF delegation setting as there is no input privacy (it is
the second party who provides the input x) neither communication efficiency when applied over many values. Related
work includes algebraic PRFs, employed in [4] to achieve optimal private verification of outsourced computation.
GGM framework. This refers to the seminal work by Goldreich et al. [15] showing how to generically construct
a PRF given black-box access to a length-doubling PRG. The approach is based on a tree structure over which hier-
archical invocations of the PRG produce the PRF values at the leaves. Our constructions extend this framework in
non-trivial ways: First, we support delegation of PRF evaluations; second, our security is proved in a much stronger
adversarial setting where the adversary gets to adaptively learn also intermediate PRG values. The GGM framework

3

as well as its tree-based key-derivation structure have been widely used in the literature; also for special/limited dele-
gation purposes in the context of access control [28] and forward security [19]. Yet, to the best of our knowledge, no
such known key-derivation method has been analyzed fully in a security model like ours that allows for adaptive PRG
queries and addresses policy privacy issues.

3 Definitions
A pseudorandom function family (PRF) F is a family of functions {fk : A → B | k ∈ K} so that K is efficiently
samplable and all F ,K, A,B are indexed by a security parameter λ. The security property of a PRF is as follows: for
any probabilistic polynomial-time (PPT) A running in time polynomial in λ it holds that

|Pr[Afk(·) = 1]− Pr[AR(·) = 1]| = negl(λ) ,

where negl denotes a negligible function and the probability above is taken over the coins of A and the random
variables k and R which are uniform over the domains K and (A→ B) respectively.
Delegatable PRFs. The notion of delegation for PRFs is defined with respect to a delegation policy P , i.e. P is a set
of predicates defined over A, also indexed by λ, where each predicate P has an efficient public encoding, so that the
set of elements in A that satisfy P , denoted as AP = {x ∈ A | P (x)}, is efficiently derived.

Definition 1 (Delegatable PRF) A triple (F , T, C) is called a delegatable PRF (DPRF) w.r.t. policy P provided it
satisfies two properties, correctness and security, that are defined individually below.

Correctness. T is a PPT algorithm such that given a description of P ∈ P and a key k ∈ K, it outputs a “trapdoor”
τ intended to be used along with the deterministic PT algorithm C for the computation of every element of A that
satisfies the predicate P . For fixed P, k, the algorithm C can be considered as a function

C : StP,k −→ B × StP,k ,

where StP,k is a set of states and the output C(s) is a pair that consists of a PRF value and a (new) state. We
augment the domain and range of C with a special value ⊥ that will be used to denote the final state. We denote
C(s) = 〈CL(s), CR(s)〉 and define recursively the set of reachable states from a subset S of StP,k as

R(S) , S ∪R(CR(S)).

The elements of the DPRF that are produced given an initial state s will be defined using the complete set of
reachable states given s. We say that a set S is R-closed provided it holds R(S) = S. For a singleton S = {s}, we
will write R(s) instead of R({s}), and we will also denote by R(s) the closure of s under R, i.e., the fixpoint of the
recursive equation forR that also contains s.

Definition 2 (Correctness) The DPRF scheme (F , T, C) is correct for a policy P if for every P, k :

1. {τ | τ ← T (P, k)} ∪ {⊥} ⊆ StP,k.

2. CR(⊥) = ⊥ (termination condition).

3. There exists a polynomial p1 s.t. |AP | ≤ p1(λ).

4. There exists a polynomial p2 s.t. for every τ ← T (P, k):

(i) ⊥ ∈ R(τ) (termination guarantee).

(ii) |R(τ)| ≤ p2(|AP |) (efficiency).

(iii) {fk(x) | P (x)} = fk(AP) = {CL(s) | s ∈ R(τ)} (completeness).

4

According to the above conditions, all possible trapdoors corresponding to a certain policy predicate P are valid
initial inputs for C. Starting from an arbitrary trapdoor for P , the proxy can execute a number of steps, compute the
DPRF image of every argument x that fulfills P , and terminate when it reaches the final state ⊥, where no further
useful information can be derived.

We note that the condition 3 of correctness stems from the fact that we consider the setting where the proxy wishes
to eventually compute all the delegated PRF values. If this is not necessary (or desirable) for the DPRF application, the
condition can be relaxed to any size of AP (including super-polynomial sizes). Obviously in this case, completeness
(item 4(iii) above) will have to be relaxed as well since the proxy cannot hope to be able to compute all the delegated
PRF values. There are a number of ways to capture this by suitably modifying the way C works; for instance: (i) C
may produce a random sample of fk(AP), (ii) C may be given the value x as input and return fk(x) provided that
x ∈ AP , (iii) C may be given the lexicographic rank of an element x within AP and return fk(x).
Security. For security we consider the case where the server is malicious and model DPRF security as a game GASEC

between an attacker A and a challenger C indexed by parameter λ. Due to the delegation capabilities of DPRFs the
security game is more elaborate than the definition of a plain PRF, as shown next.

DPRF Security Game GASEC(1
λ)

1. The challenger C selects k from K.

2. The adversary A is allowed to interact with C and ask two types of queries:
(a) PRF queries for a value x ∈ A; to those queries C responds with fk(x) and adds the value x to a set Lque.
(b) delegation queries for a policy predicate P ∈ P; to those queries C responds with τ ← T (P, k) and adds P to a
set Lpol.

3. The adversary A submits a challenge query x∗ to which the challenger C responds as follows: it flips a coin b and if
b = 1 it responds with y∗ = fk(x

∗), otherwise responds with a random value y∗ from B.

4. The adversary A continues as in step 2.

5. The adversary A terminates by returning a single bit b̃. Subsequently the game returns a bit which is 1 if and only the
following holds true:

(b = b̃) ∧ (x∗ 6∈ Lque) ∧ ∀P ∈ Lpol : ¬P (x∗).

Definition 3 (Security) The DPRF scheme (F , T, C) is secure for a policy P if for any PPT A, it holds that

Pr[GASEC(1λ) = 1] ≤ 1

2
+ negl(λ).

We make the following observations about the definition. First, it is easy to see that a delegatable PRF is indeed
a PRF. Specifically, any PRF attacker A against fk can be turned into an attacker A′ that wins the DPRF game
described above. We provide only a simple sketch of this which follows by a standard “walking” argument (the
reader familiar with such arguments may skip to the next paragraph). Fix some PPT A and let α be its non-negligible
distinguishing advantage. There will be some polynomial q so that, for any λ, q(λ) is an upper bound on the number
of queries submitted to A’s oracle by A. Given such q and for fixed λ, we define the hybrid oracle (fk/R)j for any
j ∈ {0, . . . , q(λ)} that operates as follows: (fk/R)j responds as fk(·) in the first q(λ) − j queries and as R(·) in
the last j queries. Taking such sequence of oracles into account, by triangular inequality, it follows that there exists
some value j ∈ {0, . . . , q(λ)− 1} for which the distinguishing probability will be at least α/q(λ) forA to distinguish
between two successive hybrid oracles (fk/R)j and (fk/R)j+1 when R is a random function. This follows from the
fact that A distinguishes the “extreme” hybrids fk(·) and R(·) with probability α. We now construct A′ as follows
out of A: A′ plays the DPRF game and queries the DPRF function for the q(s)− j first queries of A. Then it submits
the (j + 1)-th query of A as the challenge. Finally it completes the simulation of A by answering any remaining
queries of A with random values drawn from B. It is easy to see that the distinguishing advantage of A′ is α/q(λ),
i.e., non-negligible in λ.

Second, we observe that there is a trivial construction of a delegatable PRF from any PRF: Consider an ordering
≤ over A, e.g. the lexicographical order. For fixed P, k set T (P, k) = 〈fk(x1), . . . , fk(xn)〉, where xi is the i-th
element of AP according to ≤. Given τ , the set of states is StP,k = {τ, (2, τ), . . . , (n, τ),⊥} and the reconstruction
function C can be simply defined to be a table-lookup. It is straightforward to show that (F , T, C) is a DPRF as long
as the underlying family F is a PRF, since any delegation query can be intepreted as a series of polynomially many
PRF queries.

5

The existence of a trivial DPRF construction w.r.t. arbitrary policies from any given PRF motivates our primitive:
Interesting DPRF constructions will be those that are communication efficient, i.e., they allow trapdoors with size that
is sublinear in the number of elements that satisfy the corresponding policy predicate.
(General) Policy privacy. We next consider an additional policy privacy property that goes beyond the standard
(D)PRF security and is quite relevant in the context of a delegatable PRF. In order to model this privacy condition
we use an indistinguishability game GAPP carried out between an attacker A and a challenger C indexed by a security
parameter λ. The game proceeds as follows:

DPRF Policy Privacy Security Game GAPP(1
λ)

1. The challenger C selects k from K.

2. The adversaryA is allowed to interact with C and ask the two types of queries as in the case of the DPRF security game
GASEC.

3. The adversaryA submits two policy predicates P0, P1 to C. The challenger flips a bit b and computes τ∗ ← T (Pb, k).
It returns τ∗ to the adversary.

4. The adversary continues as in step 2 and terminates returning a bit b̃. The game terminates with 1 provided that

(b = b̃) ∧ (|AP0 | = |AP1 |) ∧ (AP0 6= AP1)∧

∧∀a ∈ Lque : a 6∈ (AP0 4AP1)∧
∧∀P ∈ Lpol : AP ∩ (AP0 4AP1) = ∅.

Definition 4 (Policy privacy) The DPRF scheme (F , T, C) for a policy P satisfies policy privacy if for any PPT A,
it holds that

Pr[GAPP(1λ) = 1] ≤ 1

2
+ negl(λ).

The above definition suggests that the trapdoor that corresponds to a certain policy predicate hides the predicate
itself, at least among all policy predicates that enable the same number of elements and when the adversary does not
know the PRF value of any element that satisfies one of them but not the other. Observe that all the restrictions stated
are necessary: if |AP0

| 6= |AP1
|, then the adversary can distinguish P0 from P1 by counting the number of new PRF

values it computes starting from state τ∗ and ending in ⊥. In addition, if the adversary learns any PRF value of an
argument x within AP0 4AP1 , either by making a PRF query or a delegation query, then it can quess b by computing
{CL(s) | s ∈ R(τ)} and running the equality test CL(s)

?
= fk(x) at each execution step.

We will next argue that even though desirable, the above property conflicts with efficiency (sublinear trapdoors)
for a wide class of schemes. This will motivate relaxing the property as we will see in the end of the section; the reader
unwilling to go over the details of the lower bound type of argument we sketch below may skip directly to the policy
privacy relaxation in the end of the section.

Assume that the policy predicates are ranges [a, b] that lie in an interval [0, 2λ − 1]. Then, no efficient and policy
private DPRF scheme exists, if the trapdoor generation algorithm T (P, k) is deterministic and public and the delegated
computation is tree-wise, i.e., for each range the trapdoor is a specific array of keys that enable in a deterministic way
the calculation of the final set of values through a tree-like derivation. Indeed, for every 0 < j ≤ b − a the delegated
computation of the intersection [a + j, b] must be identical for [a, b] and [a + j, b + j]. Otherwise, an adversary can
make PRF queries for all the values in [a + j, b] and, since it knows the way that each unique trapdoor of [a, b] and
[a+ j, b+ j] computes the PRF values of the range [a+ j, b], can thus distinguish the two range predicates by making
the corresponding equality tests. By induction, this implies that for any j < a− b, in the trapdoor of [a, b] there exist
keys d0, . . . , dj that allow the computation of fk(a), . . . , fk(a+ j) respectively. Thus, the size of the trapdoor of the
range [a, b] consists of r = b− a+ 1 = #[a, b] keys which means that the DPRF cannot be efficient (i.e., delegate the
range with a trapdoor size less than the set of values being delegated).

The above argument suggests that if policy privacy is to be attained we need trapdoors at least as long as the
values we delegate. However the trivial construction for ranges, i.e., when the trapdoor of [a, b] is the 〈fk(a), fk(a +
1), . . . , fk(b)〉 does not satisfy policy privacy. For instance, when delegating [1, 3] and [3, 5] the attacker can easily
distinguish them by obtaining the value fk(3) (it belongs in the intersection hence the attacker is allowed to have it)
and checking its location within the trapdoor vector. Nevertheless, arranging the PRF values of [a, b] as so that fk(x)
is placed in position xmod(r) is a solution that works. Given the inefficiency of this construction we omit a detailed

6

proof and instead provide a toy example for the ranges [0, 3], [1, 4], [2, 5], [3, 6], [4, 7] of size 4 below. Policy privacy
follows from the fact that elements that belong in two overlapping ranges will be placed in the same fixed location in
the two corresponding vector trapdoors, as shown below.

fk(0) fk(1) fk(2) fk(3)
fk(4) fk(1) fk(2) fk(3)
fk(4) fk(5) fk(2) fk(3)
fk(4) fk(5) fk(6) fk(3)
fk(4) fk(5) fk(6) fk(7)

In our oncoming constructions, we obtain efficient DPRFs out of tree-based PRFs where the values computed are
at the leaves of a full binary tree, and the policy predicates are ranges covered by proper subtrees. In this case, even
allowing a probabilistic trapdoor generator does not suffice to provide policy privacy for a very efficient scheme. To
see this, let [a, b] be a range of size r and τ be a trapdoor for [a, b] of size g(r) = O(logc r), i.e., g(r) is polylogarithmic
in r, hence also in λ. By the Pigeonhole principle, there exists a delegation key y in τ that computes all the values
corresponding to a set T ⊆ [a, b] of size at least r/g(r), that is, a subtree T of depth at least d ≥ log(r)− log(g(r)) =
ω(1). Assuming w.l.o.g. that r/g(r) is an integer, the latter implies that there exists a value x ∈ [a, b] with a zero suffix
of length d that is computed by this key y. Since, there are g(r) such possibles values x ∈ [a, b], an adversary has
significant probability 1/g(r) of guessing x. Then it can make a query x, receive fk(x) and submit as the challenge
the two policies P0 = [a, b] and P1 = [x, b + (x − a)]. After it receives the challenge trapdoor τ∗, it can locate all
keys that correspond to subtrees of size ≥ d and check if there is minimum leaf value (an all-zero path) in some of
these subtrees that equals to fk(x). Then, the adversary can distinguish effectively P0, P1 since x cannot be covered
by any subtree of size d in a trapdoor for [a+x, b+ (x−a)]. This argument can be extended to more general tree-like
delegation schemes but we omit further details as it already demonstrates that efficient tree-like constructions require
a somewhat more relaxed definition of policy privacy (which we introduce below).
Union policy privacy. We finally introduce the notion of union policy privacy, where the adversary is restricted from
making queries in the intersection of the challenge policy predicates (but is allowed to query at arbitrary locations
outside the targeted policy set). We model this property by a game GAUPP(1λ) that proceeds identically as GAPP(1λ)

but terminates with 1 provided that all the following relaxed conditions are met: b = b̃, |AP0
| = |AP1

|, AP0
6= AP1

,
∀a ∈ Lque : a 6∈ (AP0

∪AP1
) and ∧∀P ∈ Lpol : AP ∩ (AP0

∪AP1
) = ∅. Obviously, for policies consisting of disjoint

predicates, games GAPP(1λ) and GAUPP(1λ) are equivalent.

4 Constructions
In this section we present DPRF schemes for range policy predicates. In Section 4.1 we describe a first construction,
called best range cover (BRC), which satisfies the correctness and security properties of DPRFs, achieving trapdoor
size logarithmic in the range size. However, BRC lacks the policy privacy property. In Section 4.2 we build upon
BRC and obtain a policy-private DPRF scheme, called uniform range cover (URC), which retains the trapdoor size
complexity of BRC. In Section 4.3 we include the security proofs of the two schemes. In Section 4.4 we prove the
policy privacy property of URC.

4.1 The BRC Construction
Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator and G0(k), G1(k) be the first and second half of the string
G(k), where the specification of G is public and k is a secret random seed. The GGM pseudorandom function family
[15] is defined as F = {fk : {0, 1}n → {0, 1}λ}k∈{0,1}λ , such that fk(xn−1 · · ·x0) = Gx0

(· · · (Gxn−1
(k))), where

n is polynomial in λ and xn−1 · · ·x0 is the input bitstring of size n.
The GGM construction defines a binary tree on the PRF domain. We illustrate this using Figure 2, which depicts

a binary tree with 4 levels. The leaves are labeled with a decimal number from 0 to 15, sorted in ascending order.
Every edge is labeled with 0 (1) if it connects a left (resp. right) child. We label every internal node with the binary
string determined by the labels of the edges along the path from the root to this node. Suppose that the PRF domain
is {0, 1}4. Then, the PRF value of 0010 is fk(0010) = G0(G1(G0(G0(k)))). Observe that the composition of G is
performed according to the edge labels in the path from the root to leaf 2 = (0010)2, selecting the first (second) half

7

of the output of G when the label of the visited edge is 0 (resp. 1). Based on the above, the binary representation of
the leaf labels constitute the PRF domain, and every leaf is associated with the PRF value of its label.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

(0010)2

0

0

0

1
00

fk(00) = G0(G0(k))

fk(0010) = G0(G1(G0(G0(k))))

001

1

01

[2, 7] (0111)2

1

1

Figure 2: A GGM tree example

Note that we can also associate every internal node of the GGM tree with a partial PRF value, by performing
the composition of G as determined by the path from the root to that node. For example, node 00 in Figure 2 is
associated with partial PRF G0(G0(k)). Henceforth, for simplicity, we denote by fk(xn−1 · · ·xj) the partial PRF
Gxj (· · · (Gxn−1

(k))). Observe that if a party has the partial PRF fk(xn−1 · · ·xj), then it can compute the PRF
values of all 2j inputs that have prefix xn−1 · · ·xj , simply by following a DFS traversal in the subtree with root
xn−1 · · ·xj and composing with seed fk(xn−1 · · ·xj). In our running example, using the partial PRF value at node
00, we can derive the PRF values of the inputs in (decimal) range [0, 3] as fk(0000) = G0(G0(fk(00))), fk(0001) =
G1(G0(fk(00))), fk(0010) = G0(G1(fk(00))), and fk(0011) = G1(G1(fk(00))).

For any range [a, b] of leaf labels, there is a (non-unique) set of subtrees in the GGM tree that cover exactly the
corresponding leaves. For instance, [2, 7] is covered by the subtrees rooted at nodes 001 and 01 (colored in grey).
According to our discussion above, a party having the partial PRF values of these subtree roots and the subtree depths,
it can derive all the PRF values of the leaves with labels in [a, b]. In our example, having (fk(001), 1) and (fk(01), 2),
it can derive the PRF values of the leaves with labels in [2, 7]. Our first construction is based on the above observations.
In particular, given a range policy predicate [a, b] ∈ P with size |AP | = b − a + 1, it finds the minimum number of
subtrees that cover [a, b], which is similar to finding the canonical subsets for 1-dimensional range queries. As such,
we call this scheme as best range cover (BRC).

The BRC DPRF construction is a triplet (F , T, C), where F is the GGM PRF family described above with tree
depth n. The delegation policy is P = {[a, b] | 0 ≤ a < b ≤ a + λγ ≤ 2n − 1}, where γ is a constant integer.
The trapdoor generation algorithm T of BRC is given below. This algorithm takes as input secret key k and a range
predicate [a, b] ∈ P . It outputs a delegation trapdoor τ that enables the computation of fk(x) for every x whose
decimal representation is in [a, b] (i.e., the PRF values of the leaves in the GGM tree with labels in [a, b]). T initially
finds the first bit in which a and b differ (Line 2), which determines the common path from the root to leaves a and
b. Suppose that this common path ends at node u. T then traverses the left and right subtree of u separately (Lines
3-10 and 11-18, respectively). We will describe only the left traversal (the right one is performed symmetrically). T
continues the path from the left child of u, denoted by v, to a. It checks whether a is the leftmost leaf of v’s subtree.
In this case the PRF value of v is included in τ along with the depth of v’s subtree, and the traversal terminates (Lines
3-4). Otherwise, it includes the PRF value of the right child of v and the depth of the subtree rooted at that child, and
continues the traversal in the left child of v iteratively (Lines 5-10).

8

The Trapdoor Generation Algorithm T in BRC
Input: a, b : 0 ≤ a < b ≤ a+ λγ ≤ 2n − 1 and k ∈ {0, 1}λ
Output: Trapdoor τ for computing the PRFs for [a, b]
1. τ ← 〈〉
2. t← max{i | ai 6= bi}
3. if (∀i ≤ t : ai = 0) then
4. Append (fk(an−1 · · · at), t) to τ
5. else
6. µ← min{i | i < t ∧ ai = 1}
7. for i = t− 1 to µ+ 1
8. if ai = 0 then
9. Append (fk(an−1 · · · ai+11), i) to τ
10. Append (fk(an−1 · · · aµ), µ) to τ
11. if (∀i ≤ t : bi = 1) then
12. Append (fk(bν−1 · · · bt), t) to τ
13. else
14. ν ← min{i | i < t ∧ bi = 0}
15. for i = t− 1 to ν + i
16. if bi = 1 then
17. Append (fk(bn−1 · · · bi+10), i) to τ
18. Append (fk(bn−1 · · · bν), ν) to τ
19. return τ

In the example of Figure 2, for input [2, 7], T outputs trapdoor τ = 〈(fk(001), 1), (fk(01), 2)〉. By its description,
it is easy to see that the algorithm covers the input range with maximal subtrees. However, there is one exception; if
the input range is exactly covered by a single subtree (e.g., [4, 7]), then T covers it with two subtrees (rooted at 010
and 011, respectively). In general, T in BRC always covers the input range with at least two subtrees. This is due to a
technical requirement in the proof of correctness of our second DPRF construction (described in Section 4.2), whose
trapdoor generation algorithm builds upon that of BRC.

We next describe the PRF computation algorithm C of BRC. For fixed P = [a, b] of size r and key k, we define the
set of states as StP,k = {τ, (1, τ), . . . , (r − 1, τ),⊥}, where τ = 〈(y1, d1), . . . , (ym, dm)〉 is the trapdoor produced
by algorithm T . Note that, every y value corresponds to a partial PRF value associated with the root of a GGM
subtree. Therefore, there is a natural ordering of PRF values for a given τ , starting from the leftmost leaf of the
subtree of y1 to the rightmost leaf of the subtree of ym. Note that this order is not necessarily the same as the order
of the leaves in the GGM tree. Starting from the PRF value of the leftmost leaf of the y1 subtree, C computes
in every next step the PRF value of the next leaf in the ordering discussed above. Specifically, C starts with state
τ and computes C(τ) = 〈G0(· · · (G0(y1))), (1, τ)〉, where the composition is performed d1 times. Next, given
state (i, τ), C locates the unique subtree that covers the (i + 1)-th leaf x in the ordering of τ . Specifically, it finds
the pair (yt, dt) in τ , where t is such that

∑t−1
ρ=1 2dρ ≤ i <

∑t
ρ=1 2dρ . Then, the suffix xdt · · ·x0 is the binary

representation of i −∑t−1
ρ=1 2dρ ∈ [0, 2dt − 1]. Given this suffix, C can compute fk(x) = Gx0

(· · · (Gxdt (yt))) and
output C((i, τ)) = 〈Gx0(· · · (Gxdt (yt))), (i+ 1, τ)〉. Note that, for input state (r − 1, τ), C outputs C((r − 1, τ)) =
〈G1(· · · (G1(ym))),⊥〉, where the composition is performed dm times.

In the example of Figure 2, the trapdoor for range [2, 14] is 〈(fk(01), 2), (fk(001), 1), (fk(10), 2), (fk(110), 1),
(fk(1110), 0)〉. Algorithm C computes the PRF values for leaves 4, 5, 6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14 in this order,
i.e.,

C(τ) = 〈G0(G0(fk(01))), (1, τ)〉 = 〈fk(0100), (1, τ)〉 →
C((1, τ)) = 〈G1(G0(fk(01))), (2, τ)〉 = 〈fk(0101), (2, τ)〉 →
...
C((12, τ)) = 〈fk(1110),⊥〉.

Based on the above description, some partial PRF values are computed multiple times in C, e.g., fk(011) is
computed twice; once during calculating fk(0110) and once for fk(0111). Note that this can be easily avoided by
employing an external data structure of size O(r); every PRF value is computed once, stored in the data structure, and
retrieved in a next step if necessary. In this manner, the computational cost of C can become O(r), since we compute
one PRF value for every node in the subtrees covering the range (of size r).

The correctness of BRC is stated in the following theorem.

9

Theorem 1 The BRC DPRF construction (F , T, C) w.r.t delegation policy P = {[a, b] | 0 ≤ a < b ≤ a + λγ ≤
2n − 1}, where n is the depth of the underlying GGM tree, γ is a constant integer, and λγ is the maximum range size,
is correct.

Proof. We will prove that all conditions of Definition 2 are satisfied. Condition 1 is met by the definition of the
set of states StP,k in algorithm C. Moreover, since R(τ) = StP,k, conditions 2, 4(i) and 4(ii) are directly satisfied
by the description of algorithm C. Condition 3 holds because the size of range r (which determines the number of
values conforming to the range policy predicate) is upper bounded by λγ which is a polynomial. Therefore, it remains
to prove that condition 4(iii) is satisfied. Based on our description on C, it is apparent that the algorithm computes
exactly the PRF values of the leaves covered by the subtrees corresponding to the y values included in τ by algorithm
T . Hence, it suffices prove that the labels of these leaves are exactly [a, b].

Let t = max{i | ai 6= bi}. Also, let V1, V2 be the sets of arguments of the PRF values computed by Lines 3-10
and 11-18 of algorithm T , respectively. It holds that

V1 = {x ∈ [0, 2n − 1] | xn−1 · · ·xt = an−1 · · · at∧
∧ (∃i < t : [xi = 1 ∧ ai = 0] ∨ x = a)} =

= {x ∈ [0, 2n − 1] | a ≤ x ≤ an−1 · · · at1 · · · 1}
= [a, an−1 · · · at1 · · · 1] .

Similarly, we get that V2 = [bn−1 · · · bt0 · · · 0, b]. Observe that, by the definition of t, at = 0 and bt = 1. Thus, it
holds that an−1 · · · at1 · · · 1 + 1 = bn−1 · · · bt0 · · · 0. This means that [a, b] = V1 ∪ V2, which concludes our proof.

We next discuss the trapdoor size complexity in BRC. Let V1, V2 be the sets of arguments of the PRF values
computed by Lines 3-10 and 11-18 of algorithm T , respectively. Then, |V1| + |V2| = r. We will analyze |V1| (the
analysis for V2 is similar). Observe that, in every step in Lines 3-10, the algorithm covers more than b|V1|/2c values
of V1 with a maximal subtree of the sub-range defined by V1. Iteratively, this means that the algorithm needs no more
than log(r) maximal subtrees to cover the entire sub-range of V1. Consequently, the total number of elements in τ is
O(log(r)).

We have explained the correctness of BRC and its efficient trapdoor size. We also prove its security in Section 4.3.
However, BRC does not satisfy policy privacy, even for non-intersecting policy predicates. We illustrate with a simple
example in Figure 2. Consider ranges [2, 7] and [9, 14], both with size 6. The trapdoors generated for these ranges
are 〈((fk(001), 1), (fk(01), 2)〉 and 〈(fk(101), 1), (fk(1001), 0), (fk(110), 1), (fk(1110), 0)〉, respectively. Clearly,
these trapdoors are distinguishable due to their different sizes. This motivates our second DPRF construction presented
in the next sub section.

4.2 The URC Construction
Consider again the ranges [2, 7] and [9, 14], for which BRC generates two distinguishable trapdoors, 〈((fk(001), 1),
(fk(01), 2)〉 and 〈(fk(101), 1), (fk(1001), 0), (fk(110), 1), (fk(1110), 0)〉, respectively. Instead of computing the
trapdoor of [2, 7] as above, assume that we generate an alternative trapdoor equal to

〈(fk(010), 1), (fk(0010), 0), (fk(011), 1), (fk(0011), 0)〉

Observe that this trapdoor appears to be indistinguishable to that of [9, 14]; the two trapdoors have the same
number of elements, the first parts of their elements are all partial PRFs, whereas their second parts (i.e., the depths)
are pairwise equal. This suggests that, we could achieve policy privacy, if we could devise a trapdoor algorithm T
such that, for any range predicate of a fixed size r it always generates a trapdoor with a fixed number of elements and a
fixed sequence of depths. More simply stated, the algorithm should produce uniform trapdoors for ranges of the same
size. The challenge is to design such an algorithm retaining the logarithmic trapdoor size of BRC. Next, we present
our second DPRF construction, called uniform range cover (URC), which enjoys the efficiency of BRC and the union
policy privacy property.

URC builds upon BRC. In particular, it starts by producing a trapdoor as in BRC, and then modifies it to generate
a uniform trapdoor for the given range r. Before embarking on its detailed description, we must investigate some
interesting properties of the trapdoors of BRC, and provide some important definitions. Recall that a trapdoor in BRC
is a sequence of elements, where the first part is a (full or partial) PRF value, and the second is a depth value. Moreover,
the depths have some useful structure, which we call decomposition and formalize as follows:

10

Definition 5 Let r be an integer greater than 1. A pair of non-negative integral sequences D = ((k1, . . . , kc),
(l1, . . . , ld)) is called a decomposition of r if the following hold:

(i)
∑c
i=1 2ki +

∑d
j=1 2lj = r

(ii) k1 > · · · > kc and l1 > · · · > ld

A decomposition of r D = ((k1, . . . , kc), (l1, . . . , ld)) is a worst-case decomposition (w.c.d.) of r if it is of maximum
size, i.e., for every decomposition of r D′ = ((k′1, . . . , k

′
c′), (l′1, . . . , l

′
d′)), we have that c′ + d′ ≤ c + d. We define

MD , max{k1, l1} as the maximum integer that appears in D.

By the description of algorithm T in BRC, for fixed range size r, the depths in the trapdoor can be separated into
two sequences that form a decomposition of r. Each sequence corresponds to a set of full binary subtrees of decreasing
size that cover leaves in the range predicate. The usage of the worst case decomposition will become clear soon.

The following lemma shows that the maximum integer that appears in any decomposition of r and, hence, the
maximum depth of a subtree in a cover of a range of size r, can have just one of two consecutive values that depend
only on r.

Lemma 1 Let D = ((k1, . . . , kc), (l1, . . . , ld)) be a decomposition of r. Define B(r) , dlog(r + 2)e − 2. Then
MD ∈ {B(r), B(r) + 1}. In addition, if MD = B(r) + 1 then the second largest value is less than MD.

Proof. Observe that r > 1⇒ B(r) ≥ 0. By the two properties of D, we have that

r =

c∑
i=1

2ki +

d∑
j=1

2lj ≤ 2k1+1 + 2l1+1 − 2 ≤

≤ 2MD+2 − 2⇔ 2MD+2 ≥ r + 2⇒MD ≥ B(r).

Since 2B(r)+2 ≥ 2log(r+2) > r ≥ 2k1 + 2l1 , we have that the maximum value MD ∈ {k1, l1} is less than B(r) + 2
and k1, l1 cannot be both equal to B(r) + 1.

By Lemma 1, the trapdoor that is generated by BRC for a range P = [a, b] of size |AP | = r, even if this trapdoor
corresponds to a w.c.d. of r, consists of at most |{0, . . . , B(r)}|+ |{0, . . . , B(r) + 1}| = 2B(r) + 3 pairs. Hence, the
trapdoor size is O(log(r)), which complies with the bound we described in Section 4.1. Moreover, since |AP | ≤ λγ ,
every trapdoor has no more than 2dlog(λγ + 2)e − 1 pairs. In our security and privacy proofs, for simplicity, we will
use the upper bound 3γlog(λ) that holds for λγ > 1.

Observe that two trapdoors that correspond to the same w.c.d. (i.e., the two sequences in the decomposition are
identical pairwise) appear indistinguishable. Moreover, we have proven that a trapdoor following a w.c.d. retains the
logarithmic size in r. Therefore, our goal for the trapdoor algorithm T in URC is to construct a converter that takes as
input a BRC trapdoor, and produces an alternative trapdoor that complies with a fixed w.c.d. Before proceeding to the
details of T , we must prove the following vital theorem.

Theorem 2 Let D = ((k1, . . . , kc), (l1, . . . , ld)) be a decomposition of r. Then all the elements in {0, . . . ,MD}
appear in D iff D is a w.c.d. of r.

Proof. Assume that the implication does not hold and let x be the maximum integer in {0, . . . ,MD} that does not
appear in D. Since x < MD, x + 1 is in {0, . . . ,MD}. Assume w.l.o.g. that lj = x + 1. If x > k1, then the
decomposition of r, ((x, k1, . . . , kc), (l1, . . . , lj−1, x, lj+1, . . . , ld)), is of greater size than that of D. If i = min{i |
x < ki}, then the decomposition of r, ((k1, . . . , ki, x, ki+1, . . . , kc), (l1, . . . , lj−1, x, lj+1, . . . , ld)), is of greater size
than that of D. Both cases contradict to the hypothesis, hence, x must appear in D.

For the converse, let D′ = ((k′1, . . . , k
′
c′), (l

′
1, . . . , l

′
d′)) be a w.c.d. of r. Then the integers 0, . . . ,MD′ appear in

D′. By Lemma 1, all integers 0, . . . , B(r) appear in D and D′. By removing the integers 0, . . . , B(r) from D and
D′, the remaining integers are y1 ≥ . . . ≥ ys and z1 ≥ . . . ≥ zt, respectively. Since an integer cannot appear more
than twice in a decomposition of r and, by Lemma 1, the maximum possible value B(r) + 1 cannot appear more than
once, we have that y1, . . . , ys and z1, . . . , zt are sequences of distinct integers s.t.

∑s
i=1 2yi =

∑t
j=1 2zj . Assume

that there exists a minimum index ρ ≤ s s.t. yρ 6= zρ and that w.l.o.g yρ > zρ. Then we have the contradiction

11

s∑
i=1

2yi ≥
∑
i<ρ

2yi + 2yρ >
∑
i<ρ

2yi + 2zρ+1 − 1 ≥

≥
∑
i<ρ

2zi +
∑
i≥ρ

2zi =

t∑
j=1

2zj =

s∑
i=1

2yi .

Thus, {y1, . . . , ys} and {z1, . . . , zt} are equal, and therefore D is a w.c.d. of r.

A consequence of Theorem 2 and Lemma 1 is that, for every integer r > 1, a w.c.d. of r is a proper rearrangement
of the integers that appear in the w.c.d. r where the first sequence is (B(r), . . . , 0) and the second sequence is the
remaining integers in the decomposition in decreasing order. We term this unique w.c.d. as uniform decomposition of
r. The main idea in URC is to always generate a trapdoor that complies with the uniform decomposition of r.

We are ready to describe algorithm T in URC, whose pseudo code is provided below.

The Trapdoor Generation Algorithm T in URC
Input: a, b : 0 ≤ a < b ≤ a+ λγ ≤ 2n − 1 and k ∈ {0, 1}λ
Output: Trapdoor τ for computing the PRFs for [a, b]

1. Invoke τ = T (a, b, k) = 〈(y1, d1), . . . , (yn, dm)〉 from
BRC

2. Let D = ((d1, . . . , dc), (dc+1, . . . , dm)) be the
corredponding decomposition of r = b− a+ 1

3. while there is a maximum integer x in {0, . . . ,MD} that
does not appear in D:

4. Find the rightmost pair (yi, x+ 1) and compute values
y0i = G0(yi), y1i = G1(yi)

5. Remove (yi, x+ 1) from τ , properly insert the pairs
(y0i , x) and (y1i , x) in τ respecting the definition of the
decomposition and update D accordingly

6. if the leftmost sequence of D is not (B(r), . . . , 0) then
7. Arrange τ according to the uniform decomposition of r
8. return τ

The process starts with invoking the T algorithm of BRC to get an initial trapdoor τ (Line 1). Let D be the
decomposition implied by τ (Line 2). The loop in Lines 3-5 utilizes Theorem 2 and works as follows. It finds the
highest depth x that does not exist inD, and “splits” the partial PRF value yi in the rightmost pair in τ with depth x+1,
producing two new partial PRF values with depth x, i.e., y0i = G0(yi) and y1i = G1(yi). (Line 4). Note that these
values correspond to the two children of the subtree of yi. Thus, if we substitute element (yi, x+ 1) by (y0i , x), (y1i , x)
in τ , then the trapdoor can still produce the same leaf PRF values as before. However, at all times we wish the sequence
of depths in τ to form a decomposition. Hence, after removing (yi, x + 1), we appropriately insert (y0i , x) in the left
pair sequence and (y1i , x) in the right pair sequence of τ (Line 5). Upon termination of the loop, all the values in
{0, . . . ,MD} appear in D and, thus, we have reached a w.c.d. according to Theorem 2. The process concludes, after
properly re-arranging the elements of τ , such that they comply with the unique uniform decomposition of r (Line 7).
This is done deterministically, by simply filling the missing depths from {0, . . . , B(r)} in the left sequence with the
unique appropriate pair that exists (by Theorem 2) in the right sequence.

In our running example, for the range [2, 7], the T algorithm in URC converts the original token retrieved by the
trapdoor algorithm of BRC, τ = 〈(fk(001), 1), (fk(01), 2)〉, as follows (we underline a newly inserted element to the
left sequence, and depict as bold a newly inserted element to the right sequence):

〈(fk(001), 1), (fk(01), 2)〉
↓

〈(fk(0010), 0), (fk(01), 2), (fk(0011),0)〉
↓

〈(fk(010), 1), (fk(0010), 0), (fk(011),1), (fk(0011), 0)〉

12

The C algorithm of URC is identical to BRC, because the trapdoor in URC has exactly the format expected by
this algorithm, i.e., pairs of PRF values corresponding to GGM subtrees along with their depths. Moreover, during the
evolution of the initial BRC trapdoor into one of uniform decomposition in the T algorithm of URC, a partial PRF
value y is substituted by two new PRF values that can generate the same leaf PRF values as y. As such, the correctness
of the BRC scheme is inherited in URC. Finally, due to Lemma 1, the size of a w.c.d. (and, hence, also a uniform
decomposition) of r is O(log(r)), which means that the trapdoor size in URC is also O(log(r)).

4.3 Security
In this section we prove the security of BRC and URC. Both proofs rely on the security of the pseudorandom generator
of the underlying GGM construction. However, DPRFs entail a more involved security game than GGM and, hence,
the constructions require more complex proofs. The reason is that, contrary to the case of GGM where the adversary
obtains only leaf PRFs, the adversary in a DPRF can obtain also partial PRF values in the GGM tree through the
trapdoors.

Note that the formation of a trapdoor (which is independent of k) for a range predicate P of size r is deterministic
and public in both BRC and URC. Thus, when querying the oracle in the security game, the adversary can map the
partial or full PRF values appearing in τ for a selected P to subtrees in the GGM tree. This implies that it can reduce its
delegation queries to prefixes for strings in {0, 1}n, where n is the depth of the GGM tree. Hence, any queried prefix
of the adversary is denoted as xn−1 · · ·xt, where the maximum value of t depends on the maximum possible range
size λγ . Since the size of every trapdoor is O(log(λ)), a PPT adversary makes polynomially many such queries. The
formation of a trapdoor does not play any role in the security of a DPRF scheme, since the challenge will always be a
single PRF value. Therefore, there will be no separation in proving the security of the BRC and the URC constructions.

In order to prove the security property of the DPRF schemes, we insure and exploit the security of two special
cases. First, we consider the case that the adversary is non-adaptive, i.e., it poses all its queries in advance.

Lemma 2 The BRC and URC DPRF schemes with depth n and maximum range size λγ are secure against PPT
adversaries that make all their queries, even the challenge query, non-adaptively.

Proof. Let A be such an adversary against a DPRF scheme of depth n and maximum range size λγ . We define
recursively two sequences of non-adaptive PPT adversaries A = An, . . . ,A1 and PPT algorithms Sn, . . . , S1 as
follows. For i = n − 1, . . . , 1, Ai on input 1λ, initially invokes Ai+1 receiving all of its non-adaptive queries, and
chooses a random value k′ in {0, 1}λ. If a query xi · · ·xt has the same most significant bit (MSB) as the challenge
query, Ai makes the query xi−1 · · ·xt, and responds with the received value y. Otherwise, it responds with the value
Gxt(· · · (Gxi−1(k′))). It returns Ai+1’s output.

For i = n, . . . , 1, on input (z0, z1) ∈ {0, 1}2λ, Si invokes Ai and receives all of its queries. For every query
xi−1 · · ·xt, it responds with Gxt(· · · (Gxi−2

(zxi−1
))) (or zx0

for i = 1). On the challenge phase, it flips a coin b and
acts as the challenger in the DPRF security game. It returns 1 iff Ai returns b.

We denote by qi and pi the probability that Si outputs 1 when it receives its input from the uniform distribution U2λ

in {0, 1}2λ and the pseudorandom distribution G(Uλ), respectively. By the definition of Si, pn = Pr[GASEC(1λ) = 1]
while q1 ≤ 1/2, since it corresponds to a totally random game.

We observe thatAn−1, . . . ,A1 behave like attackers against the security of DPRF schemes with respective depths
n− 1, . . . , 1, enhanced with the abort option. The behavior of Ai as an attacker is the same as Ai+1’s, when the latter
interacts with a modified challenger that replaces the two possible partial PRF values for the MSB of a prefix, with two
random values. Following the previous notation, we have that pi = qi+1. Since G(Uλ) and U2λ are indistinguishable,
it holds that |pi − qi| ≤ εi(λ), where εi(·) is a negligible function. We also have

|pn − q1| = |
n∑
i=1

(pi − qi)| ≤
n∑
i=1

|pi − qi| ≤
n∑
i=1

εi(λ),

hence Pr[GASEC(1λ) = 1] = pn ≤ q1 + n · ε(λ) ≤ 1/2 + n · ε(λ), where ε(λ) = max
i
{εi(λ)}.

We use the above lemma to prove the security of a special category of DPRF schemes, where the maximum range
size is at least half of [0, 2n − 1], which represents the biggest interval where range predicates are defined. This will
serve as a stepping stone for designing our final security proof.

13

Lemma 3 The BRC and URC DPRF schemes with depth n and maximum range size λγ are secure if 2n−1 ≤ λγ < 2n.

Proof. Let A be a PPT adversary. We construct a non-adaptive adversary B for the DPRF security game that on input
1λ chooses randomly a challenge x∗ in [0, 2n − 1] and makes the log(n) queries that cover all the possible values
except from x∗. Namely, B makes queries x∗n−1⊕ 1, . . . , x∗n−1 · · ·x∗i ⊕ 1, . . . , x∗n−1 · · ·x∗0 ⊕ 1 and submits challenge
x∗. It receives responses yn−1, . . . , y0 respectively, along with y∗ which is the response to x∗. Then, it invokes A and
plays the security game with A, as a challenger that can respond approprietly for every value that is not x∗ or a range
that does not contain x∗. If A sets x∗ as a challenge, then B responds with y∗, and returns A’s guess. Otherwise, A
has either made a query which is a prefix of x∗, or it has submitted a challenge different than x∗, so B terminates the
game it plays with A and returns a random bit ,as guess to its challenge.

Let E be the event that B guesses A’s challenge, i.e. A’s challenge is x∗. By the description of B we have that

Pr[GBSEC(1λ) = 1 ∧ ¬E] = (1− 1/2n) · 1/2 and

Pr[GBSEC(1λ) = 1 ∧ E] = 1/2n · Pr[GASEC(1λ) = 1].

Since B is non-adaptive, by Lemma 2 we get that for some negligible function ε(·), Pr[GBSEC(1λ) = 1] ≤ 1/2 + ε(λ).
By adding the above equations we have that

1/2n · (Pr[GASEC(1λ) = 1]− 1/2) + 1/2 ≤ 1/2 + ε(λ),

so, Pr[GASEC(1λ) = 1] ≤ 1/2 + 2n · ε(λ) ≤ 1/2 + 2λγ · ε(λ).

We can now apply Lemma 3 to prove the security of our constructions.

Theorem 3 The BRC and URC DPRF schemes with depth n and maximum range size λγ are secure.

Proof. See Appendix A.

4.4 Policy Privacy
This section analyzes the policy privacy of URC. According to Section 3, URC cannot satisfy the general policy privacy
property, because it is efficient. We illustrate with a toy example. For challenge ranges [2, 5] and [4, 7], the trapdoors
will contain PRF values corresponding to subtrees covering the ranges as [2, 3], {4}, {5} and [4, 5], {6}, {7}, respec-
tively. Therefore, the adversary can issue query for leaf 4 and receive a PRF value y. Having 〈(y1, 1), (y2, 0), (y3, 0)〉
as challenge trapdoor, it can check whether y2 = y, which happens only when [2, 5] was chosen by the challenger.

Nevertheless, in the theorem below we prove that URC achieves union policy privacy. The main idea can be
observed on the above example. In the union policy privacy game, the adversary cannot obtain a PRF value for a leaf
in the intersection of the challenge ranges, i.e., for 4 and 5. This prevents the adversary from launching the attack
described above.

Theorem 4 The URC scheme with depth n and maximum range size λγ is a DPRF scheme with union policy privacy.

Proof. See Appendix A.

5 Applications
In this section we discuss interesting applications of the general DPRF primitive and our specialized range construc-
tions. We stress, though, that their applicability is not limited to these scenarios; we are confident that they can capture
a much wider set of applications.
Authentication and access control in RFID. Radio Frequency Identification (RFID) is a popular technology that is
expected to become ubiquitous in the near future. An RFID tag is a small chip with an antenna. It typically stores a
unique ID along with other data, which can be transmitted to a reading device lying within a certain range from the
tag. Suppose that a trusted center (TC) possesses a set of RFID tags (attached to books, clothes, etc), and distributes
RFID readers to specified locations (e.g., libraries, campuses, restaurants, etc.). Whenever a person or object carrying

14

a tag lies in proximity with a reader, it transmits its data (e.g., the title of a book, the brand of a jacket, etc.). The TC
can then retrieve these data from the RFID readers, and mine useful information (e.g., hotlist books, clothes, etc.).

Despite its merits, RFID technology is challenged by security and privacy issues. For example, due to the avail-
ability and low cost of the RFID tags, one can easily create tags with arbitrary information. As such, an adversary may
impersonate other tags, and provide falsified data to legitimate readers. On the other hand, a reader can receive data
from any tag in its vicinity. Therefore, sensitive information may be leaked to a reader controlled by an adversary. For
example, the adversary may learn the ID and the title of a book stored in a tag, match it with public library records,
and discover the identity and reading habits of an individual.

Motivated by the above, the literature has addressed authentication and access control in RFID. A notable paradigm
was introduced in [28], which can be directly benefited by DPRFs. At a high level, every tag is associated with a key,
and the TC delegates to a reader a set of these keys (i.e., the reader is authorized to authenticate and access data from
only a subset of the tags). The goal is for the TC to reduce certain costs, e.g., the size of the delegation information
required to derive the tag keys.

Observe that a DPRF (F , T, C) is directly applicable to the above setting. F is defined on the domain of the
tag IDs, and its range is the tag keys. Given a delegation predicate on the tag IDs, the TC generates a trapdoor via
algorithm T , and sends it to the reader. The latter runs C on the trapdoor to retrieve the tag keys. In fact, for the
special case where the access policy is a range of IDs, the delegation protocol suggested in [28] is identical to the
non-private BRC scheme (we should stress though that [28] lacks rigorous definitions and proofs). Range policies are
meaningful, since tag IDs may be sequenced according to some common theme (e.g., books on the same topic are
assigned consecutive tag IDs). In this case, a range policy concisely describes a set of tags (e.g., books about a certain
religion) and, hence, the system can enjoy the logarithmic delegation size of BRC. However, as explained in Section 4,
BRC leaks the position of the IDs in the tree, which may further leak information about the tags. Although [28]
addresses tag privacy, it provides no privacy formulation, and overlooks the above structural leakage. This can be
mitigated by directly applying our policy-private URC construction for delegating tag keys to the readers. To sum up,
DPRFs find excellent application in authentication and access control in RFID, enabling communication-efficient tag
key delegation from the TC to the reader. Moreover, policy-private DPRFs provide a higher level of protection for the
tag IDs against the readers.
Batch queries in symmetric searchable encryption. Symmetric searchable encryption (SSE) [22, 9] enables queries
to be processed directly on ciphertexts generated with symmetric encryption. Although SSE is a general paradigm,
here we focus on the definitions and schemes of [9]. These works support the special case of keyword queries, and
provide an acceptable level of provable security. The general framework underlying [9] is as follows. In an offline
stage, a client encrypts his data with his secret key k, and uploads the ciphertexts c to an untrusted server. He also
creates and sends a secure index I on the data for efficient keyword search, which is essentially an encrypted lookup
table or inverted index. Given a keyword w, the client generates a query token τw using k, and forwards it to the
server. It is important to stress that this trapdoor is merely comprised of one or more PRF values computed on w with
k, which were used as keys to encrypt I . For simplicity and w.l.o.g., we assume that τw is a single PRF value. The
server uses τw on I and retrieves the IDs of the ciphertexts associated with w. The results c1, . . . , cm are retrieved and
transmitted back to the client, who eventually decrypts them with his key. The security goal is to protect both the data
and the keyword from the server.

Suppose that the client wishes to search for a batch of N keywords w1, . . . , wN . For instance, the client may ask
for documents that contain multiple keywords of his choice (instead of just a single one). As another example, assume
that the client’s data are employee records, and each record contains a salary attribute that takes as values intervals of
the form [iK, (i+ 1)K] (i.e., instead of exact salaries). These intervals can serve as keywords in SSE search. Suppose
that the client wishes to retrieve records with salaries in a range of intervals, e.g., [1K, 10K]. Observe that this cannot
be processed with a single keyword query (no record is associated with [1K, 10K]). To overcome this while utilizing
the SSE functionality, the client can ask 9 distinct queries with keywords “[1K, 2K]”, “[2K, 3K]”, . . ., “[9K, 10K]”,
which cover the query range [1K, 10K]. Such scenarios are handled with “traditional” SSE as shown in Figure 3(a).
Given a predicate P that describes the keywords w1, . . . , wN in the batch query, the client generates N trapdoors
τw1 , . . . , τwN using the standard SSE trapdoor algorithm, and sends them to the server. The server then searches I
with every τwi following the SSE protocol. Apparently, for large N , the computational and communication cost at the
client is greatly impacted.

We can augment the discussed SSE framework with DPRF functionality, in order to support batch queries with
sublinear (in N) processing and communication cost at the client, while providing provable security along the lines
of [22]. Figure 3(b) illustrates our enhanced SSE architecture. Recall that τwi is practically a PRF on wi produced

15

Client

k, P

τw1
, . . . , τwN

c1, . . . , cm

Server

Trapdoor Search I, c

(a) “Traditional” SSE

Client

k, P c1, . . . , cm

Server

Search

I, c

CT
τw1

, . . . , τwN

DPRF

τ

(b) SSE augmented with DPRFs

Figure 3: Batch keyword query processing in SSE

with key k. Therefore, instead of computing a PRF value for every wi himself, the client delegates the computation of
these PRF values to the server by employing a DPRF (F , T, C), where F is defined over the domain of the keywords.
Given predicate P and k, the client runs T and generates trapdoor τ , which is sent to the server. The latter executes
C on τ to produce τw1

, . . . , τwN . Execution then proceeds in the same manner as in “traditional” SSE. Observe that,
for the special case of ranges, if URC is used as the DPRF, the computational and communication cost at the client
decreases from O(N) to O(log(N)).

The above framework can be proven secure against adaptive adversaries along the lines of [9]. The most important
alteration in the security game and proof is the formulation of the information leakage of the C algorithm of the DPRF.
Although a policy-private DPRF provides predicate indistinguishability, there may still be some information leaked
from C about the computed PRFs, which may be critical in SSE. Specifically, C may disclose some relationships
between two PRF values satisfying the predicate P . For instance, in our URC scheme, C may disclose that two PRF
values correspond to adjacent domain values (e.g., when the two values are produced as left and right children in a
subtree). Through this leakage, the adversary may infer that, e.g., two ciphertexts are employee records with adjacent
salary intervals (but these values will remain encrypted obviously). If we incorporate this leakage information to the
simulator in the security game, then slight modifications in the proof methodology of [9] suffice in order to perfectly
simulate the real execution DPRF-enhanced SSE framework; despite this moderate privacy loss the scheme offers an
exponential improvements in terms of efficiency which from a practical point of view is a more deciding factor. We
defer the detailed definitions and proofs to the long version of this paper.
Broadcast encryption. In a broadcast encryption scheme [12, 29, 30] a sender wishes to transmit data to a set of
receivers so that at each transmission the set of receivers excluded from the recipient set can be chosen on the fly by
the sender. In particular this means that the sender has to be able to make an initial key assignment to the recipients
and then use the suitable key material so that only the specific set of users of its choosing can receive the message. In
such schemes it was early on observed that there is a natural tradeoff between receiver memory storage and ciphertext
length (e.g., see lower bounds in [24]). The intuition behind this is that if the receivers have more keys this gives to
the sender more flexibility in the way it can encrypt a message to be transmitted.

In the above sense one can think of the key assignment step of a broadcast encryption scheme as a PRF defined
over the set Φ which contains all distinct subsets that the broadcast encryption scheme assigns a distinct key. Given
this configuration the user u will have to obtain all the keys corresponding to subsets S ∈ Φ for which it holds that
u ∈ S (we denote those subsets by Su ⊆ Φ). In DPRF language this would correspond to a delegation policy for a
PRF: users will need to store the trapdoor that enables the evaluation of any value in the delegated key set Su.

Seen in this way, any DPRF is a key assignment mechanism for a broadcast encryption scheme that saves space
on receiver storage. For example our construction for ranges gives rise to the following broadcast encryption scheme:

16

receivers [n] = {1, . . . , n} are placed in sequence; each receiver u ∈ [n] is initialized with the trapdoor for a range
[u − t, u + t] for some predetermined parameter t ∈ Z. In this broadcast encryption scheme the sender can very
efficiently enable any range of receivers that is positioned at distance at most t from a fixed location v ∈ [n]. This
is done with a single ciphertext (encrypted with the key of location v). Any receiver of sufficient proximity t to
location v can derive the corresponding decryption key from its trapdoor. Furthermore, given the efficiency of our
construction, storage on receivers is only logarithmic on t. While the semantics of this scheme are more restricted than
a full-fledged broadcast encryption scheme (which enables the sender to exclude any subset of users on demand) it
succinctly illustrates the relation between broadcast encryption and DPRF; further investigation in the relation between
the two primitives from a construction point of view will be motivated by our notion.

Regarding policy privacy, it is interesting to point out that this security property is yet unstudied in the domain
of broadcast encryption. A different privacy notion [3, 23, 11] was in fact put forth that deals with the structure of
ciphertext. Our policy privacy on the other hand deals with the privacy of memory contents from the receiver point of
view. Maintaining the indistinguishability of the storage contents is a useful security measure in broadcast encryption
schemes and our DPRF primitive will motivate the study of this security property in the context of braodcast encryption
(note that none of the tree-like key-delegation methods used in broadcast encryption schemes prior to our work satisfy
policy privacy).

6 Conclusion
We have introduced the new concept of delegatable pseudorandom functions (DPRFs), a new cryptographic primitive
that allows for policy-based computation at an untrusted proxy of PRF values without knowledge of a secret or even
the input values. We provided formal definitions of the core properties of DPRFs for (1) correctness, the ability of the
proxy to compute PRF values only for inputs that satisfy a given predicate, (2) security, the standard pseudorandom-
ness guarantee but against a stronger adversary that also issues delegation queries, and (3) policy privacy, preventing
leakage of the secret preimages of the computed PRF values. Moreover, we presented two DPRF constructions along
with a comprehensive analysis in terms of their security and privacy guarantees and some inherent trade-offs with
efficiency. Our proposed DPRFs are generic, yet practical, based on the well-understood and widely-adopted GGM
design framework for PRFs and, as we showed, they find direct application in many key delegation or derivation
settings providing interesting new results. Further exploration of DPRFs holds promise for new interesting results.
Open problems include: Designing DPRFs for other classes of predicates, establishing upper and lower bounds on the
connection between efficiency and policy privacy, and studying applications in other settings.

References
[1] M. J. Atallah and K. B. Frikken. Securely outsourcing linear algebra computations. In ASIACCS, pp 48–59,

2010.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption schemes with applications to
secure distributed storage. ACM TISSEC, 9(1):1–30. 2006.

[3] A. Barth, D. Boneh, and B. Waters. Privacy in encrypted content distribution using private broadcast encryption.
In Financial Cryptography, pp 52–64, 2006.

[4] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In CRYPTO,
pp. 111–131, 2011. Springer-Verlag.

[5] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography. In EUROCRYPT,
1998.

[6] A. Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature schemes for delegation of signing rights.
Journal of Cryptology, 25:57–115, 2012.

[7] R. Canetti, B. Riva, and G. N. Rothblum. Practical delegation of computation using multiple servers. In CCS,
pp. 445–454, 2011.

17

[8] K.-M. Chung, Y. T. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In CRYPTO, pp. 483–501, 2010.

[9] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved definitions
and efficient constructions. In CCS, 2006.

[10] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys. In PKC, pp. 416–431,
2005.

[11] N. Fazio and I. M. Perera. Outsider-anonymous broadcast encryption with sublinear ciphertexts. In PKC, 2012.

[12] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO, pp. 480–491, 1993.

[13] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations, with
applications. In CCS, pp. 501–512, 2012.

[14] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom functions.
In TCC, pp. 303–324, 2005.

[15] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792–807, 1986.

[16] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for muggles. In
STOC, 2008.

[17] M. Green and G. Ateniese. Identity-based proxy re-encryption. ACNS, 2007.

[18] S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic computations. In TCC, 2005.

[19] G. Itkis. Handbook of Information Security, Forward Security J. Wiley & Sons, 2006.

[20] A.-A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS, 2003.

[21] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and secure
computation of set intersection. In TCC, pp. 577–594, 2009.

[22] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In CCS, 2012.

[23] B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption: Adaptive security and efficient
constructions in the standard model. In PKC, 2012.

[24] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In EUROCRYPT, pp. 512–526, 1998.

[25] A. Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh separation. In CRYPTO,
2002.

[26] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing operation. In CCS, pp. 48–57,
1996.

[27] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS, pp. 120–130, 1999.

[28] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable pseudonym protocol enabling ownership transfer
of RFID tags. In SAC, pp. 276–290, 2006.

[29] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In CRYPTO, 2001.

[30] M. Naor and B. Pinkas. Efficient trace and revoke schemes. Int. J. Inf. Sec., 9(6):411–424, 2010.

[31] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: verifiable computation
from attribute-based encryption. In TCC, pp. 422–439, 2012.

18

Proof of Theorem 3
By Lemma 3, it suffices to show for the case that λγ < 2n−1. This is definitely the interesting case, since 2n is
normally superpolynomial in λ. Let A be a PPT adversary against the DPRF scheme that makes at most q(λ) queries
and d be the minimum integer that λγ < 2d. We construct a PPT PRF distinguisher B that makes oracle queries of
fixed size n′ = n − d ≥ 1. On input 1λ, B flips a coin b, invokes A and initializes a security game, itself being the
challenger. By the bound on the size of the ranges, all queries of A have length greater than n′1. Thus, for every
query xn−1 · · ·xt, we have that t < d and B responds by making query xn−1 · · ·xd, which is of length n′, receiving
a value y and answering to A as Gxt(· · · (Gxd−1

(y))). If A submits a challenge, B acts as a normal challenger would
do according to option b. Finally, B returns 1 iff A returns b. Clearly, when B’s oracle is a PRF Fk of length n′ B
returns 1 iff A wins GASEC(1λ).

Consequently, we construct a PPT adversary Ã against the security of a DPRF of depth d and maximum range size
λγ as follows: Ã invokesA and chooses a random index j ∈ [q(λ)] and q(λ)−1 random values k1, . . . , kj−1, kj+1, . . . ,

kq(λ) ∈ {0, 1}λ. Index j reflects Ã’s worst-case attempt to guess which of all of possible different prefixes of length
n′ that will appear in A’s queries will be the one that a prospective challenge query will have. Then Ã keeps count of
the different prefixes of length n′ that gradually appear and reacts to a query xn−1 · · ·xt according to the following
checks:

• If xn−1 · · ·xd is the i-th prefix and i 6= j, then it responds with Gxt(· · · (Gxd−1
(ki))).

• If xn−1 · · ·xd is the j-th prefix, then if all of queries made that have the j-th prefix, along with xn−1 · · ·xt,
cover the whole subtree of prefix xn−1 · · ·xd, then Ã terminates the game with A, locates an element

xn−1 · · ·xdzd−1 · · · z0

that has not been covered yet, submits zd−1 · · · z0 as its challenge and returns a random bit. Otherwise, it makes
query xd−1 · · ·x0 and responds with the received value y.

• If t = 0 and xn−1 · · ·x0 is A’s challenge query, then if xn−1 · · ·xd is not the j-th prefix, then Ã terminates
the game with A, locates an element zn−1 · · · z0 that has the j-th prefix and has not been covered yet, submits
zd−1 · · · z0 as its challenge and returns a random bit. Otherwise, it submits challenge xd−1 · · ·x0, gets value y∗

and responds with y∗.

If A ever aborts or returns a value not in {0, 1}, Ã submits a valid challenge and returns a random guess as above.
Thus, Ã follows its own security game in any case. If A returns a value in {0, 1}, after it has followed the phases of a
proper security game, then Ã returns A’s output. By the choice of d, 2d−1 ≤ λγ < 2d, hence Lemma 3 implies that
Ã has negligible distinguishing advantage.

By the description of Ã, the interaction between A and B in the case that B’s oracle is random and A submits a
challenge and a value in {0, 1} is fully simulated by Ã when the latter’s guess for the prefix ofA’s challenge is correct.
Formally, let C be the event that A submits a challenge, E be the event that Ã guesses this challenge and B be the
event that A returns a value in {0, 1}. For brevity, we denote C̃ := C ∧B. It holds that

Pr[BR(1λ) = 1|C̃] = Pr[GÃSEC(1λ) = 1|C̃ ∧ E]. (1)

Assume that A wins GASEC(1λ) with a non-negligible distinguishing advantage ε(·), so Pr[BFk(1λ) = 1] > 1/2 +
ε(λ). But Fk is a PRF, so Pr[BR(1λ) = 1] > 1/2 + δ(λ) for some non-negligible function δ(·). If A does not submit
a challenge, then its output is independent from the coin-flip of B, hence Pr[BR(1λ) = 1|¬C] ≤ 1/2. We have that
Pr[BR(1λ) ∧ ¬C̃] = Pr[BR(1λ) = 1 ∧ ¬C] and Pr[BR(1λ) = 1 ∧ C̃] + Pr[BR(1λ) = 1 ∧ ¬C̃] > 1/2 + δ(λ), thus
we get that Pr[BR(1λ) = 1∧ C̃] > δ(λ) and Pr[C̃] > δ(λ). Moreover, if Pr[BR(1λ) = 1|C̃]−1/2 ≤ ζ(λ), for some
negligible function ζ(·), then

Pr[BR(1λ) = 1] = Pr[C̃] · Pr[BR(1λ) = 1|C̃]+

+ Pr[¬C̃] · Pr[BR(1λ) = 1|¬C̃] ≤ 1/2 + ζ(λ),

1Recall that even a range of maximum size 2d will be covered by subtrees of depth < d.

19

so Pr[BR(1λ) = 1|C̃]− 1/2 > δ′(λ) for some non-negligible function δ′(·). Applying (1), we get,

Pr[GÃSEC(1λ) = 1 ∧ C̃] =

= Pr[C̃] · (Pr[E] · Pr[BR(1λ) = 1|C̃] + 1/2 · (1− Pr[E])).

Moreover, Pr[GÃSEC(1λ) = 1 ∧ ¬C̃] = 1/2 · (1− Pr[C̃]), so by adding the two equations we have that

Pr[GÃSEC(1λ) = 1] =

= 1/2 + Pr[C̃] · Pr[E] · (Pr[BR(1λ) = 1|C̃]− 1/2) >

> 1/2 + (δ(λ) · δ′(λ))/q(λ),

which contradicts Lemma 3.

Proof of Theorem 4
LetA be a PPT adversary that wins the union policy privacy game with non-negligible advantage ε(·), i.e., Pr[GAPP(1λ) =
1] > 1/2 + ε(λ). Let P0, P1 be the two challenge ranges and b the chosen random bit, hence A receives the chal-
lenge trapdoor τb for Pb. We define a sequence of hybrid games GA0 (1λ), . . . , GAλγ (1λ), where Gi is executed as the
original game GAUPP(1λ) during the pre-challenge and the post-challenge phase. Define the ordering <D over the
distinct elements of a decomposition D as follows: x <D y iff x < y or x = y and x is in the left sequence of
D. The only modification in GAi (1λ) is that the first i elements in the challenge trapdoor, arranged according to the
decomposition ordering <D of the depths, are the same as τb’s, and all the other elements are replaced by random
values in {0, 1}λ. Since GAλγ (1λ) is the original game, and in GA0 (1λ) the trapdoor is totally random, it holds that
Pr[GAλγ (1λ) = 1]− Pr[GA0 (1λ) = 1] > ε(λ).

LetEr be the event that the size of the challenge ranges |AP0
|, |AP1

| thatA submits is r. Then for some b ∈ {0, 1}
and r ∈ [λγ]

Pr[GAλγ (1λ) = 1 ∧ b ∧ Er]− Pr[GA0 (1λ) = 1 ∧ b ∧ Er] > ε(λ)/2λγ

Consider the uniform decomposition of r, D = ((k1, . . . , kc), (l1, . . . , ld)). The different elements of D are arranged
as z1 <D · · · <D zc+d. We observe that for j ≥ c + d the games Gj and Gλγ are identical. So Pr[GAc+d(1

λ) =

1∧ b∧Er]−Pr[GA0 (1λ) = 1∧ b∧Er] > ε(λ)/2λγ , which implies that there exists an i ∈ [c+ d] ⊆ [3γlog(λ)] such
that

Pr[GAi (1
λ) = 1 ∧ b ∧ Er]− Pr[GAi−1(1

λ) = 1 ∧ b ∧ Er] > ε(λ)/6γλγ log(λ)

We will show that for these fixed b, r, i, we can construct an adversaryAi for the security game of a DPRF construction
of depth n − zi that has non-negligible winning advantage. The main idea is that Ai invokes A and simulates either
Gi or Gi−1 on selected challenge Pb of size r depending on the value of the challenge bit bi for the security game
GAiSEC(1λ).

On input 1λ, Ai computes D and arranges its elements as z1 <D · · · <D zc+d. It invokes A and answers all of its
pre-challenge queries as follows: for each query xn−1 · · ·xt, if t ≥ zi, it just transfers the query, receives value y, and
responds with y. Otherwise it makes query xn−1 · · ·xzi , receives value y, and responds withGxt(· · · (Gxzi−1

(y))). In
the challenge phase, if |APb | 6= r, thenAi terminates the game with A, chooses a valid random challenge, and returns
a random bit. Otherwise, it makes i−1 queries and computes the<D-first i−1 partial delegation keys y1, . . . , yi−1 of
τb as in the pre-challenge phase, and sets the string x∗n−1 · · ·x∗zi that corresponds to the i-th partial key as its challenge
receiving y∗. It arranges the values y1, . . . , yi−1, y∗ according to the order that τb imposes and “fills” the c + d − i
remaining positions of a trapdoor-like array τi with c+ d− i random values in {0, 1}λ. It returns τi to A and answers
to A’s post-challenge queries as in the pre-challenge phase. If A returns 0, then Ai returns 1, otherwise it returns a
random bit.

We compute the probability that Ai wins the security game as

Pr[GAiSEC(1λ) = 1] = Pr[GAiSEC(1λ) = 1 ∧ ¬Er]+
+ Pr[GAiSEC(1λ) = 1 ∧ Er ∧ bi = 1]+

+ Pr[GAiSEC(1λ) = 1 ∧ Er ∧ bi = 0].

(2)

It holds that Pr[GAiSEC(1λ) = 1 ∧ ¬Er] = 1/2 · (1− Pr[Er]).

20

For the other two terms, we observe that when bi = 1,Ai simulatesGi when b andEr occur, whereas when bi = 0
Ai simulates Gi−1 when b and Er occur. Therefore,

Pr[GAiSEC(1λ) = 1 ∧ Er ∧ bi = 1] =

= 1/4 · Pr[Er] · (1 + Pr[GAi (1λ) = 1|b ∧ Er])

Pr[GAiSEC(1λ) = 1 ∧ Er ∧ bi = 0] =

= 1/4 · Pr[Er] · (1− Pr[GAi−1(1λ) = 1|b ∧ Er])

By adding Pr[GAiSEC(1λ) = 1] as evaluated by Eq. 2

Pr[GAiSEC(1
λ) = 1] = 1/2 + 1/2 · (Pr[GAi (1λ) = 1 ∧ b ∧ Er]−

− Pr[GAi−1(1
λ) = 1 ∧ b ∧ Er]).

Therefore, Pr[GAiSEC(1λ) = 1] > 1
2 + ε(λ)/12γλγ log(λ), which contradicts Theorem 3.

21

	Introduction
	Related Work
	Definitions
	Constructions
	The BRC Construction
	The URC Construction
	Security
	Policy Privacy

	Applications
	Conclusion

