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Abstract. The Even-Mansour structure and the chopMD mode are two widely-used strategies in hash

function designs. They are adopted by many hash functions including two SHA-3 finalists, the JH hash

function and the Grøstl hash function. The Even-Mansour structure combining the chopMD mode is

supposed to enhance the security of hash functions against collision and preimage attacks, while our

results show that it is not possible to achieve this goal with an unbalanced compression function. In this

paper, we show generic attacks on the Even-Mansour hash functions including both collision and preim-

age attacks. Our attacks show the structure flaws of the Even-Mansour hash functions. All these attacks

can be applied to specific hash functions based on the Even-Mansour structure. We achieve the first

collision and (2nd-)preimage attacks on full JH and Grøstl respectively. For the JH hash function, we

achieve collision and (2nd-)preimage attacks on the full JH compression function with a time gain 210.22.

After a simple modification of the padding rules, we obtain full round collision and (2nd-)preimage at-

tacks on the modified JH hash function with a time gain 210.22. For the Grøstl hash function, we obtain

both collision and (2nd-)preimage attacks on the full Grøstl hash function with a limited time gain 20.58.
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1 Introduction

Cryptographic hash function is one of the most crucial parts of modern cryptography. A hash func-

tion takes a message of arbitrary length and produces a bit string of fixed length. The most common

ways to hash messages with variable length is to iterate a fixed-size compression function, for exam-

ple the famous Merkle-Damg̊ard construction [4, 14]. The underlying compression function is often

designed based on permutation-like components. For hash functions, three classical security notions

are mainly considered: collision resistance, second preimage resistance, and preimage resistance.

Many various non-ideal properties have been considered too.

Since the collision and preimage attacks on the MD4 family of hash functions [19, 20, 5, 18, 17]

have exploited many serious security weaknesses of these design strategies, various new and inter-

esting hash functions and structure designs have been proposed in the SHA-3 competition [11],

including JH [21] and Grøstl [8], two of the five finalists of the SHA-3 competition. The JH hash

function, designed by Hongjun Wu, uses both the Even-Mansour structure [7] and the chopMD mode

[3]. The compression function of JH uses a 1024 bit permutation, and the final digest is truncated to

the hash sizes of JH: 224, 256, 384 or 512 bits. The Grøstl hash function, designed by Praveen Gau-

ravaram et al., shares the same high level structure of JH with the Even-Mansour structure and the

chopMD mode. For Grøstl-512 and Grøstl-384, the size of the compression function is 1024 bits. For



Grøstl-256 and Grøstl-224, the size of the compression function is 512 bits. After iterative operations

of the compression function, the final output transformation is applied to the last chaining value,

then the final hash value is truncated. Since the proposition of JH and Grøstl, many cryptanalytic

results have been published. We summarize previous results on JH and Grøstl in Table 1 and Table 2.

Previous security results for the Even-Mansour hash function. In [12], collision and preim-

age attacks on the Even-Mansour [7] hash function are given. They apply their methods on several

hash functions including JH and Grøstl, claim to achieve significant results including both collision

and preimage attacks. We discover several flaws of their attack. The compression function of the

Even-Mansour hash function includes one permutation, two transformations and several xors. In

their attack model they omit the consumptions of the transformations and xors, but we discover

that these consumptions need to be considered and quantized carefully. Their methods to deal with

the message padding is not proper. These flaws of their attack increase the overall complexity sig-

nificantly, thus their results are not valid.

Our Contributions. In this paper, we fix the flaws in [12], and analyse the security of the Even-

Mansour hash functions. Both collision and preimage attacks are achieved for the Even-Mansour

hash function. In our attack model, we quantize the consumption of the compression function

carefully. We also find techniques to fix the padding problem. Our attacks provide a considerable

gain over the generic bound if the compression function is unbalanced. We also analyse the security

of Even-Mansour hash function with the chopMD mode [3]. Our results show that if the padding

method is not properly chosen, the chopMD mode does not enhance the security of the Even-

Mansour hash function.

We apply our attacks on the JH hash function. Both collision and preimage attacks on full round

of the JH compression function are provided with a time gain 210.22. Then we extend our attacks

on full round of the JH hash function with a modified padding method. For many variants of this

JH with modified padding, the overall time gain is 210.22. Our attacks are the first collision and

preimage attacks on full round JH. The results on JH are summarized in Table 1.

We also apply our attacks on the Grøstl hash function. For all variants of the Grøstl function,

we provide full round collision and preimage attacks with a time gain 20.58. Although these results

are quite limited with respect to the overall time gain, our attacks show the structure flaws of the

Grøstl chaining mode. These are the first collision and preimage attacks on full round Grøstl as

well. The results on Grøstl are summarized in Table 2.

This paper is organized as follows: In Section 2, we specify some relevant preliminaries. In Section

3, we briefly describe the chopMD mode and the Even-Mansour hash functions. In Section 4, we first

describe the main idea of our attack by introducing 2-block attacks, then we extend it to k-block

situations. In Section 5, we apply our attacks on JH. We conclude and summarize our results in

Section 6. Due to the space limitation, we apply and summarize our results on Grøstl in Appendix

B.



Target Type Hash Size Round Memory Time Generic Time Reference

Hash Function Semi-free-start Collision 512 16/42 296.1 296.1 2256 [15]

Compression Function Semi-free-start Near-collision 512 22/42 295.6 295.6 2236 [15]

Compression Function Semi-free-start Near-collision 1024 37/42 257.6 2352 2396.7 [16]

Internal Permutation Distinguisher - full 257.6 2352 2762 [16]

Compression Function
Collision

1024
full 2512 2502.78 2512

Sect. 5.2
(Second) Preimage full 212 21014.78 21024

Hash Function with

Modified Padding

Collision
512

full 2256 2245.78 2256

Sect. 5.3

(Second) Preimage full 2316 2501.78 2512

Collision
384

full 2192 2181.78 2192

(Second) Preimage full 2252 2373.78 2384

Collision
256

full 2128.09 2125.16 2128

(Second) Preimage full 2188 2245.78 2256

Collision
224

full 2116.09 2117.15 2112

(Second) Preimage full 2172 2213.78 2224

Table 1. Summary of results for the JH hash function

Target Type Hash Size Round Memory Time Generic Time Reference

Grøstl-256 Preimage 256 5/10 2230.13 2244.85 2256 [22]

Grøstl-512 Preimage 512 8/14 2507 2507.32 2512 [22]

Grøstl-256 Collision 256 6/10 232 2112 2128 [9]

Grøstl-512 Collision 512 5/14 264 2176 2256 [13]

Grøstl-256 Inner

Permutation
Distinguisher - 9/10 264 2368 2384 [10]

Grøstl-512 Inner

Permutation
Distinguisher - 10/14 264 2392 2448 [10]

Grøstl-512
Collision

512
full 2256 2255.42 2256

Appendix B.2

(Second) Preimage full 2284 2511.42 2512

Grøstl-384
Collision

384
full 2192 2191.42 2192

(Second) Preimage full 2220 2383.42 2384

Grøstl-256
Collision

256
full 2128 2127.42 2128

(Second) Preimage full 2156 2255.42 2256

Grøstl-224
Collision

224
full 2112 2111.42 2112

(Second) Preimage full 2140 2223.42 2224

Table 2. Summary of results for the Grøstl hash function



2 Preliminaries

General Notation. For two bit strings a and b, a||b denotes the concatenation of a and b.

The Even-Mansour Structure. The Even-Mansour structure is a scheme for block ciphers pro-

posed by Even and Mansour in [7]. At first the n-bit plaintext is xored with the n-bit key K1, the

immediate value is used as the input of permutation F . The output of F is then xored with the n-bit

key K2, and the final result is the ciphertext. In [6], Dunkelman and Shamir state that the original

two-key Even-Mansour structure can be simplified into a single key structure with K1 = K2 = K.

The two variants of Even-Mansour structure are depicted in Fig. 1.
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Fig. 1. Two-Key and Single-Key Even-Mansour Structure

General Padding Method for Hash Functions. Suppose the length of the original message

M is len bits denoted with a l bit binary number, and the length of a single message block is N

bits, then the general padding method for hash functions can be denoted as: a single bit ′1′ followed

by k zero bits are appended to the original message, where k is the smallest non-negative solution

to the equation len + 1 + k ≡ (N − l) mod N . The binary number len is appended at last, thus

the message is a multiple of N bits. When the original message length is N − l + 1 bits short of

a multiple of N , the padding is a single bit ′1′ followed by len. This general padding method has

been adopted by various hash functions, including MD5, SHA-1, SHA-2, Whirlpool [1] and more.

3 Descriptions

In this section we first introduce the chopMD mode which is an iteration mode with output trun-

cation based on the Merkle-Darmg̊ard mode. Then we briefly describe the Even-Mansour hash

function which is used as the high level structure of many hash functions, including JH and Grøstl.

At last we introduce the notations used in this paper to calculate the time complexity in a single

compression function of the Even-Mansour hash function.

3.1 The ChopMD Mode

The chopMD mode is an iteration mode based on the Merkle-Darmg̊ard mode except that the final

hash value is truncated. Given a compression function f : 0, 1n+κ → 0, 1n, the chopMD mode is



defined as follows:
Function chopMDf

s (m) :

let m = (m1,m2, ...,ml)

y ←MDf (m1,m2, ...,ml)

return the first n− s bits of y.

In [3] Coron et al. gives the first formal security proof of chopMD. The chopMD mode is adopted

by many hash functions, including Keccak [2], JH, Grøstl et al.

3.2 The Even-Mansour Hash Function

The Even-Mansour hash function is based on the Even-Mansour structure. This high level structure

has been adopted by several hash functions, including JH, Grøstl, et al. Let F be a 2n bit permu-

tation, P1,P2 be two transformations on 2n bits, the Even-Mansour hash function can be denoted

as

hi = F (hi−1 ⊕mi)⊕ P1(mi)⊕ P2(hi−1)

where hi−1, hi,mi ∈ {0, 1}2n. Let h0 be a fixed initial value IV , and chops be the last s bits of a

2n-bit hash value, a 2-block Even-Mansour hash function with chopMD mode is depicted in Fig. 2.

We use Tcomp to denote the time of calculating a single compression function of the Even-Mansour

hash function, TF to denote the time of calculating a single F function, and TP to denote the time

of calculating the other parts of a single compression function including the L1, L2 transformation

and 2 xors. Since under many situations the Even-Mansour hash function is unbalanced and TF

costs much more than TP , we define the advantage of TP over TF as 2Adv = TP /TF , then we have

Tcomp = TF + TP = (1 + 2Adv)TP

4 Attacks on the Even-Mansour Hash Function

In this section we describe the attacks on Even-Mansour hash function including both collision

and preimage attacks. Our attack exploits the structure flaws of the Even-Mansour hash function,

especially when the compression function is unbalanced. We consider all these attacks under the

generic padding method setting, and apply these attacks for hash function with or without the

chopMD mode. Both collision and preimage attacks on 2-block Even-Mansour hash function are

given first. Then we extend these attacks to k-block situations. At last we show a simple time-

memory tradeoff strategy of these attacks. All these attacks can be easily applied to JH and Grøstl.

4.1 Collision Attack on 2-block Even-Mansour Hash Function

We assume that F is an ideal 2n bit permutation, and the adversary never makes repeat queries. We

use two message blocks (m1,m2), and fix the initial chaining value h0 to IV where IV is a 2n-bit

constant given by the specific hash function. We first consider attacks on the Even-Mansour hash

function with the chopMD mode, then we consider attacks without the chopMD mode. As depicted

in Fig. 2, the whole attack procedure is as follows:
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Fig. 2. 2-Block Even-Mansour Hash Function with the chopMD Mode

Step 1. Set h0 to the given IV .

Step 2. Choose r1 random values of x1 and get r1 values of y1, thus we get r1 random pairs of

(x1, y1). According to the Even-Mansour hash function, we have:

m1 = h0 ⊕ x1

h1 = P1(m1)⊕ P2(h0)⊕ y1

so we can get r1 random pairs of (x1, y1,m1, h1).

Step 3. Since m2 is the last message block whose last l+ 1 bits are already fixed using the generic

padding method, and m2 = h1 ⊕ x2, we fix the last l + 1 bits of h1 to a fixed value, 0l+1 for

example, then by choosing corresponding values of x2, we ensure the last l+ 1 bits of m2 satisfy

padding. After we get r1 random pairs of (x1, y1,m1, h1), about r1/2
l+1 pairs of them satisfy

that the last l + 1 bits of h1 are all 0, thus we get r1/2
l+1 random pairs of (x1, y1,m1, h1) with

the last l + 1 bits of h1 set to 0.

Step 4. Fix the last l + 1 bits of x2 to 1||len, and choose r2 random values for other bits of x2,

we get r2 values of y2 respectively, thus we get r2 random pairs of (x2, y2). According to the

restraints on h1 and x2, the values of m2 satisfy padding naturally.

Step 5. For each pair of (x1, y1,m1, h1) and (x2, y2), according to the Even-Mansour hash function,

we compute m2 = h1 ⊕ x2 and also h2 = P1(m2)⊕ P2(h1)⊕ y2. Since there are r1/2
l+1 random

values of h1 and r2 random pairs of (x2, y2), thus we can get r1r2/2
l+1 random values of h2.

Step 6. If the final hash value is truncated to s bits where s < 2n, we let r1r2/2
l+1 = 2s/2, thus

we get 2s/2 random values of h2 and chops. According to the birthday paradox, we can find two

values colliding at chops with probability 1− e−1/2.

Complexity Analysis.

Using the notations described in Section 3.2, the time complexity analysis is as follows:

Step 2. needs r1(TF + TP ) calculations.

Step 4. needs r2TF calculations.

Step 5. needs r1r2TP /2
l+1 calculations.

We neglect the time of Step 6, since if chops are well sorted, the time to detect a collision is

negligible. The time of Step 1 and Step 3 is also negligible. During the attack, we need to store

r1/2
l+1 pairs of (x1, y1) which satisfy the h1 restraint, and r2 pairs of (x2, y2). We also need to



store 2s/2 values of h2 to detect collisions. We use 2n bits, the size of the chaining value, as a basic

memory unit, the complexity of this attack is:T =
r1(TF+TP )+r2TF+

r1r2TP
2l+1

Tcomp

M = 2(r1/2
l+1 + r2) + 2r1r2/2

l+1

Use the advantage 2Adv we define above, the complexity can be rewritten as:{
T =

r1(1+2Adv)+r22Adv+
r1r2
2l+1

1+2Adv

M = 2(r1/2
l+1 + r2) + r1r2/2

l+1

We need to ensure r1r2/2
l+1 > 2s/2 and also r1 > 2l+1 to get enough pairs to launch a valid attack.

We choose r1(1 + 2Adv) = r22
Adv and r1r2/2

l+1 = 2s/2, the result is then as follows:

r1 = 2s/4+l/2+1/2
√

2Adv

1+2Adv

r2 = 2s/4+l/2+1/2
√

1+2Adv

2Adv

T =
2s/4+l/2+3/2

√
2Adv(1+2Adv)+2s/2

1+2Adv

M = 2s/4−l/2+1/2
√

2Adv

1+2Adv + 2s/4+l/2+3/2
√

1+2Adv

2Adv + 2s/2

We need to make sure T < 2s/2, so that this attack is better than the brute force attack, that is

almost equivalent as

s/4 + l/2 + 3/2 < s/2 ⇒ s > 2l + 6

In the end, if s > 2l + 6, the adversary can make r1 + r2 queries of F , and find a collision with

probability 1 − e−1/2 with time T and memory M for the Even-Mansour hash function with the

chopMD mode.

When the Even-Mansour hash functions does not apply the chopMD mode, m2 doesn’t need to

be the last message block. We remove the l + 1 bits restraints on the padding of m2. The whole

attack procedure is almost the same, except we remove the restraints on h1 and x2. We achieve

r1r2 random pairs of (x1, y1, x2, y2) in the end. Since the length of the hash value is 2n bit, we let

r1r2 = 2n, according to the birthday paradox, we can find two values colliding at h2 with probability

1− e−1/2. The whole complexity can be denoted as:{
T = r1(1+2Adv)+r22Adv+r1r2

1+2Adv

M = 2(r1 + r2) + r1r2

We choose r1r2 = 2n and r1(1 + 2Adv) = r22
Adv, the result is as follows:

r1 = 2n/2
√

2Adv

1+2Adv

r2 = 2n/2
√

1+2Adv

2Adv

T =
2n/2+1

√
2Adv(1+2Adv)+2n

1+2Adv

M = 2n/2+1
√

2Adv

1+2Adv + 2n/2+1
√

1+2Adv

2Adv + 2n

In the end, the adversary can make r1+r2 queries of F , and find a collision with probability 1−e−1/2

with time T and memory M for the Even-Mansour hash function without the chopMD mode.



4.2 2-block Preimage and Second Preimage Attack

For preimage and second preimage attacks on the Even-Mansour hash function with the chopMD

mode, the attack procedure is almost the same as collision attacks. We need to match a s bit hash

value in the end, so we need to make sure that r1r2/2
l+1 > 2s and also r1 > 2l+1 to have enough

pairs to launch a preimage or second preimage attack. We only have to store the pairs (x1, y1, h1),

since h2 can be checked on the fly. Due to the space limitation we summarize the results of our

attack in Appendix A.1.

The preimage attack on the Even-Mansour hash function without the chopMD mode is almost

the same, except that we need to match a 2n bit hash value in the end. Second preimage attack on

the Even-Mansour hash function without the chopMD mode is a little different from above attacks,

since m2 doesn’t need to be the last message block, and there are some small tweaks of the attack

parameters. We summarize these results in Appendix A.1 as well.

4.3 Extending the Attacks to k-blocks

h0 x1 y1

m1

h1

F

P1

P2

x2 y2

m2

h2

F

P1

P2

hk−2 xk−1 yk−1

mk−1

hk−1

F

P1

P2

xk yk

mk

hkF

P1

P2

chops
s

Fig. 3. k-Block Even-Mansour Hash Function with the chopMD Mode

In this part, we extend the 2-block attacks to k-block situations. The k-block attacks require

less memory, and also provide more freedom to choose attack parameters. We consider all attack

models: both collision and preimage attacks, either with or without the chopMD mode. A k-block

attack on the Even-Mansour hash function is depicted in Fig. 3, the whole attack procedure is as

follows:

Step 1. Set h0 to the given IV .

Step 2. Choose ri random values for xi, and obtain ri pairs of (xi, yi) for i = 1, 2, ..., k − 1 respec-

tively.



Step 3. For each pair of (x1, y1, x2, y2, ..., xk−1, yk−1), compute the value of hk−1, we can get
∏k−1
i=1 ri

values of hk−1. If mk is the last message block and need to satisfy padding, we fix the last l+ 1

bits of hk−1 to 0, and obtain
∏k−1
i=1 ri/2

l+1 values of hk−1.

Step 4. If mk is the last message block, we fix the last l + 1 bits of xk to the length padding of

mk. Randomly choose rk values of xk, and obtain rk pairs of (xk, yk). Combine with the values

of hk−1, we can obtain
∏k
i=1 ri/2

l+1 values of hk if mk is the last message block, and
∏k
i=1 ri

values of hk if mk is not the last message block.

Complexity Analysis.

Step 2. needs
∑k−1

i=1 riTF calculations.

Step 3. needs {r1 + r1r2 + r1r2r3...+
∏k−1
i=1 ri}TP calculations.

Step 4. needs rkTF +
∏k
i=1 riTP /2

l+1 calculations if mk is the last block, and rkTF +
∏k
i=1 riTP if

mk is not the last message block.

During the attack, we need to store ri pairs of (xi, yi) for i = 1, 2, ..., k. For collision attacks, we

need to store the final hash values to detect collision, we denote this part of memory requirement

in red. The overall complexity can be denoted as:{
T =

∑k
i=1 ri2

Adv+{r1+r1r2+r1r2r3+...+
∏k−1

i=1 ri}+
∏k

i=1 ri/2
l+1

1+2Adv

M = 2
∑k

i=1 ri+
∏k
i=1 ri/2

l+1

when mk is the last block, and{
T =

∑k
i=1 ri2

Adv+{r1+r1r2+r1r2r3+...+
∏k−1

i=1 ri}+
∏k

i=1 ri
1+2Adv

M = 2
∑k

i=1 ri+
∏k
i=1 ri

when mk is not the last block. By choosing appropriate values for ri, i = 1, 2, ..., k−1, k, we achieve

all variants of attacks. Due to the space limitation, we summarize our results in Appendix A.2.

The time complexity of the k-block attacks is only a slight better than the 2-block attacks, since

it is mainly dominated by the last matching part. The memory requirements reduce for preimage

and second preimage attacks. The k-block attacks also provide the attacker much more freedom to

choose attack parameters. In the remaining part of this paper, we mainly use k-block attacks, and

choose parameters carefully to launch valid attacks with relatively low memory requirements.

4.4 Time-Memory Tradeoff

Simple time-memory tradeoff strategy can be applied to all the attacks above. By choosing corre-

sponding parameters, the adversary achieve the balance between time and memory, as long as the

overall time complexity doesn’t exceed the generic bound. The attack parameters need to be chosen

carefully using the time-memory tradeoff strategy. We omit more specific descriptions about the

time-memory tradeoff strategy of our attack. Notice the time-memory tradeoff strategy helps us to

choose attack parameters in attacks on both JH and Grøstl.



5 Attacks on the JH Hash Function

In this section, we apply the attacks described in the previous section to the JH hash function, and

get both collision attack and preimage attack on the full JH compression function. If we modify

the padding algorithm of JH to the generic padding method, we can obtain collision and preimage

attacks on the full JH hash function. As far as we know, these are the first collision and preimage

attacks on full round JH. We mainly apply k-block attacks. Due to the large value of l, we have

to choose the attack parameters carefully. We still fail to get any collision attacks better than the

generic attack for JH-m-224.

5.1 The JH Hash Function

The JH hash function is an iterative hash function which adopts both the Even-Mansour structure

and the chopMD mode. It takes message blocks of 512 bits as input and produces a hash value of

224, 256, 384 and 512 bits. The compression function of JH is based on the Even-Mansour structure.

The two 2n-bit transformation P1 and P2 are defined as follows: P1(mi||0n) = (0n||mi) and P2(hi)

is a zero transformation. Let F be the 2n-bit JH permutation, the compression function of JH is

defined as:

f(hi−1, gi−1,mi) = F (hi−1 ⊕mi||gi−1)⊕ (0n||mi)

where mi−1, hi−1, gi−1 ∈ {0, 1}n denotes the message block and the chaining value respectively. For

one JH compression function, the calculation of TP is about 1024 bit xors, and the calculation of TF

includes multiple operations equivalent to 1190*1024 bit xors, thus the advantage we define above

is about 2Adv = 1190 = 210.22.

After iterative operations of all the message blocks, the final hash value is truncated to 512, 384,

256 or 224 bits respectively. The compression function of JH with the chopMD mode is depicted in

Fig. 4. Since our attack is independent of the inner permutation, we omit the specifications of F

here, more details about the JH hash function can be found in [21].

5.2 Attacks on k-block JH Compression Function

When we attack the full JH compression function, the length of the hash value is 2n = 1024 bits,

and we do not consider padding issues for all variants of attacks. The k-block attack is depicted in

Fig. 4, and the attack procedure is described as follows:

Step 1. Set (h0||g0) to the given IV of JH.

Step 2. Choose ri random values of xi and get ri values of yi, for i = 0, 1, ..., k − 1, k, thus we get

ri random pairs of (xi, yi).

Step 3. For each pair of (x1, y1, x2, y2, ..., xk−1, yk−1), compute the value of (gk−1, hk−1), we can

get
∏k−1
i=1 xi values of (gk−1, hk−1).

Step 4. Combine the values of (gk−1, hk−1) and (xk, yk), we can obtain
∏k
i=1 ri values of (gk, hk).

For the JH compression function, 2n = 1024, 2Adv = 210.22. We do not consider padding issues,

and use 1024 bits, the size of the chaining value, as a basic memory unit. Refer to the results in

Section 4, the main results are summarized below.
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Fig. 4. k-block JH Hash Function with the chopMD Mode

Collision Attack. Let k = 512 and
∏512
i=1 ri = 2512 and r1 = r2 = ... = r512 = 2, the attack

parameters are as follows: 
r1 = r2 = ... = r512 = 2

T =
512×2×210.22+ 2512−2

2−1
+2512

1+210.22
= 2502.78

M = 2× 512× 2 + 2512 = 2512

Preimage and Second Preimage Attack. Let k = 1024 and
∏1024
i=1 ri = 21024 and r1 = r2 =

... = r1024 = 2, the attack parameters are as follows:
r1 = r2 = ... = r1024 = 2

T =
1024×2×210.22+ 21024−2

2−1
+21024

1+21024
= 21014.78

M = 2× 1024× 2 = 212

5.3 Attacks on k-block JH Hash Function with the Generic Padding Method

The original JH hash function appends at least 512 bits to the original message during the padding

procedure, so there are only 2 possible values of the last message block, 0384||len or 10383||len.

We lack of freedom to choose the attack parameters, and our attacks can’t be applied to the JH

hash function. But if we consider the JH hash function with the generic padding method, we can

achieve both collision and preimage attacks for this modified version of JH, denoted with JH-m. For

JH-m, 2n = 1024, l = 128, 2Adv = 210.22, s = 512, 384, 256 or 224. The padding issues need to be

considered. By choosing corresponding values of hk−1 and xk, we satisfy the padding restraints. Due

to the large value of l, we need to choose appropriate attack parameters carefully using the time-

memory tradeoff strategy. We still get no collision attacks better than generic attack for JH-m-224.

The main results are summarized in Table 3.



Target Type k r1, ..., rk−1 rk Memory Time Generic Time

JH-m-512
Collision 199 2 2187 2256 2245.78 2256

(Second) Preimage 327 2 2315 2316 2501.78 2512

JH-m-384
Collision 167 2 2155 2192 2181.78 2192

(Second) Preimage 263 2 2251 2252 2373.78 2384

JH-m-256
Collision 135 2 2123 2128.09 2125.16 2128

(Second) Preimage 199 2 2187 2288 2245.78 2256

JH-m-224
Collision 127 2 2115 2116.09 2117.15 2112

(Second) Preimage 183 2 2171 2172 2213.78 2224

Table 3. Summary of Attack Parameters for JH-m

6 Conclusion

In this paper we describe both collision and preimage attacks on the Even-Mansour hash functions

with or without the chopMD mode. We carry our attacks on 2-block situations at first, then extend to

k-block occasions. We also show a simple time-memory tradeoff strategy of these attacks. Our results

show the structure flaws of the Even-Mansour hash function. These attacks provide a considerable

gain especially when the compression function is quite unbalanced. We also discover that if the

generic padding method is used, the chopMD mode does not improve the security of the Even-

Mansour hash functions.

We apply our attacks on JH and Grøstl respectively. For the JH hash function, we achieve both

collision and preimage attacks on the full round JH compression function with a time gain 210.22.

If we consider the JH hash function with the generic padding method, our attacks work for the JH

hash function as well. In the end we apply our attacks on all variants of full round Grøstl with a

limited time gain 20.58.

Our results show the importance for the Even-Mansour hash function to have a balanced com-

pression function. The practical security of the chopMD mode is also challenged. The padding

method of hash functions should be reconsidered, since the padding method of JH does prevent our

attacks effectively.
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A Attacks on the Even-Masnour Hash Function

A.1 Parameters for 2-block Preimage and Second Preimage Attacks

For Even-Mansour hash function with the chopMD Mode.

Preimage and Second Preimage Attacks. m2 is the last message block, the attack param-

eters are as follows: {
T = r1(1+2Adv)+r22Adv+r1r2/2l+1

1+2Adv

M = 3r1/2
l+1
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Choose r1r2/2
l+1 = 2s and r1(1 + 2Adv) = r22

Adv, the result is as follows:

r1 = 2s/2+l/2+1/2
√

2Adv

1+2Adv

r2 = 2s/2+l/2+1/2
√

1+2Adv

2Adv

T =
2s/2+l/2+3/2

√
2Adv(1+2Adv)+2s

1+2Adv

M = 3× 2s/2−l/2−1/2
√

2Adv

1+2Adv

For Even-Mansour Hash Function without the chopMD Mode.

Preimage Attack. m2 is the last message block, the attack parameters are as follows:{
T = r1(1+2Adv)+r22Adv+r1r2/2l+1

1+2Adv

M = 3r1/2
l+1

Choose r1r2/2
l+1 = 22n and r1(1 + 2Adv) = r22

Adv, the result is as follows:

r1 = 2n+l/2+1/2
√

2Adv

1+2Adv

r2 = 2n+l/2+1/2
√

1+2Adv

2Adv

T =
2n+l/2+3/2

√
2Adv(1+2Adv)+22n

1+2Adv

M = 3× 2n−l/2−1/2
√

2Adv

1+2Adv

Second Preimage Attack. m2 doesn’t need to be the last message block, the attack param-

eters are as follows: {
T = r1(1+2Adv)+r22Adv+r1r2

1+2Adv

M = 3r1

Choose r1r2 = 22n and r1(1 + 2Adv) = r22
Adv, the result is as follows:

r1 = 2n
√

2Adv

1+2Adv

r2 = 2n
√

1+2Adv

2Adv

T =
2n+1
√

2Adv(1+2Adv)+22n

1+2Adv

M = 3× 2n
√

2Adv

1+2Adv

A.2 Parameters for k-block Attacks

Choose appropriate values for ri, i = 1, 2, ..., k−1, k, the results of all attack variants are summarized

as follows:

For Even-Mansour Hash function with the chopMD Mode:

Collision Attack. Choose
∏k
i=1 ri/2

l+1 = 2s/2 and r1 = r2 = ... = rk−1 = r,
∏k
i=1 r = rk2

Adv,

mk is the last block, the attack parameters are as follows:

r1 = r2 = ... = rk−1 = 2(s/4+l/2+1/2+Adv/2)/k

rk = 2s/4+l/2+1/2−Adv/2

T =
(k−1)2(s/4+l/2+1/2+Adv/2)/k2Adv+2s/4+l/2+1/2−Adv/2+ 2s/4+l/2+1/2+Adv/2−2(s/4+l/2+1/2+Adv/2)/k

2(s/4+l/2+1/2+Adv/2)/k−1
+2s/2

1+2Adv

M = 2(k − 1)2(s/4+l/2+1/2+Adv/2)/k + 2s/4+l/2+3/2−Adv/2 + 2s/2



Preimage and Second Preimage Attack. Choose
∏k
i=1 ri/2

l+1 = 2s and r1 = r2 = ... =

rk−1 = r,
∏k
i=1 r = rk2

Adv, mk is the last block, the attack parameters are as follows:

r1 = r2 = ... = rk−1 = 2(s/2+l/2+1/2+Adv/2)/k

rk = 2s/2+l/2+1/2−Adv/2

T =
(k−1)2(s/2+l/2+1/2+Adv/2)/k2Adv+2s/2+l/2+1/2−Adv/2+ 2s/2+l/2+1/2+Adv/2−2(s/2+l/2+1/2+Adv/2)/k

2(s/2+l/2+1/2+Adv/2)/k−1
+2s

1+2Adv

M = 2(k − 1)2(s/2+l/2+1/2+Adv/2)/k + 2s/2+l/2+3/2−Adv/2

For Even-Mansour Hash function without the chopMD Mode:

Collision Attack. Choose
∏k
i=1 ri = 2n and r1 = r2 = ... = rk−1 = r,

∏k
i=1 r = rk2

Adv, mk is

not the last block, the attack parameters are as follows:

r1 = r2 = ... = rk−1 = 2(n/2+Adv/2)/k

rk = 2n/2−Adv/2

T =
(k−1)2(n/2+Adv/2)/k2Adv+2n/2−Adv/2+ 2n/2+Adv/2−2(n/2+Adv/2)/k

2(n/2+Adv/2)/k−1
+2n

1+2Adv

M = 2(k − 1)2(n/2+Adv/2)/k + 2n/2−Adv/2+1 + 2n

Preimage Attack. Choose
∏k
i=1 ri/2

l+1 = 22n and r1 = r2 = ... = rk−1 = r,
∏k
i=1 r = rk2

Adv,

mk is the last block, the attack parameters are as follows:

r1 = r2 = ... = rk−1 = 2(n+l/2+1/2+Adv/2)/k

rk = 2n+l/2+1/2−Adv/2

T =
(k−1)2(n+l/2+1/2+Adv/2)/k2Adv+2n+l/2+1/2−Adv/2+ 2n+l/2+1/2+Adv/2−2(n+l/2+1/2+Adv/2)/k

2(n+l/2+1/2+Adv/2)/k−1
+22n

1+2Adv

M = 2(k − 1)2(n+l/2+1/2+Adv/2)/k + 2n+l/2+3/2−Adv/2

Second Preimage Attack. Choose
∏k
i=1 ri = 22n and r1 = r2 = ... = rk−1 = r,

∏k
i=1 r =

rk2
Adv, mk is not the last block, the attack parameters are as follows:

r1 = r2 = ... = rk−1 = 2(n+Adv/2)/k

rk = 2n−Adv/2

T =
(k−1)2(n+Adv/2)/k2Adv+2n−Adv/2+ 2n+Adv/2−2(n+Adv/2)/k

2(n+Adv/2)/k−1
+22n

1+2Adv

M = 2(k − 1)2(n+Adv/2)/k + 2n+1−Adv/2

B Attacks on the Grøstl Hash Function

In this section, we apply our attacks to the Grøstl hash function, and achieve the first collision and

preimage attacks on full round Grøstl. Although the time gain is quite limited, it shows structure

flaws of the Grøstl hash function. We consider k-block attacks for all variants of the Grøstl hash

function.



B.1 The Grøstl Hash Function

The Grøstl hash function is an iterative hash function which produces a hash value of 224, 256, 384

or 512 bits. For Grøstl-224 and Grøstl-256, the original message is padded to be a multiple of 512

bits. For Grøstl-384 and Grøstl-512, the original message is padded to be a multiple of 1024 bits.

The Grøstl compression function adopts the Even-Mansour structure. It is built from two distinct

2n bit permutation F and Q. The compression function of Grøstl is defined as:

f(hi−1,mi) = F (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1

The calculation of TF costs almost as much as TQ, so the advantage is about 2Adv = tF /tQ = 1.

After iterative operations of all the message blocks, the Grøstl hash function performs the output

transformation Ω on the last chaining value. Ω is defined as:

h = Ω(hk) = chops(F (hk)⊕ hk)

For Grøstl-224 and Grøstl-256, the final hash value is truncated from 512 bits to 224 or 256 bits

respectively. For Grøstl-384 and Grøstl-512, the final hash value is truncated from 1024 bits to

384 or 512 bits respectively. Fig. 5 depicts the Grøstl compression function with the final output

transformation. Since our attack is independent of the inner constructions of F and Q, we omit

these details here. More information about the Grøstl hash function can be found in [8].

B.2 Attacks on the Grøstl Hash Function
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Fig. 5. k-Block Grøstl Hash Function with the chopMD Mode

In this part, we apply both collision and preimage attacks on the Grøstl hash function. The

attack procedures are very similar to previous attacks, and we get a time gain 20.58. Although the

gain is quite limited, it shows structure flaws of Grøstl. The k-block attack on Grøstl is depicted in

Fig. 5, the attack procedure is as follows:



Step 1. Set h0 to the given IV .

Step 2. Choose ri random values of xi for i = 1, 2, ..., k − 1, we get ri random pairs of (xi, yi)

respectively.

Step 3. Since mk is the last message block, we fix the last l + 1 bits of hk−1 to 0l+1.

Step 4. Fix the last l+ 1 bits of xk to 1||len, and choose rk random values for other bits of xk, we

get rk random pairs of (xk, yk).

Step 5. For all pairs of (x1, y1), (x2, y2), ..., (xk−1, yk−1), (xk, yk), we calculate the last chaining

value hk and then the final hash value h. We get
∏k
i=1 ri/2

l+1 random pairs of h in the end.

Complexity Analysis.

Step 2. needs
∑k−1

i=1 riTF calculations.

Step 4. needs rkTF calculations.

Step 5. needs {r1 + r1r2 + r1r2r3...+
∏k−1
i=1 ri}TQ +

∏k
i=1 ri(TQ + TF )/2l+1 calculations.

During the attack, we need to store ri pairs of (xi, yi) for i = 1, 2, ..., k. For collision attacks,

we need to store the final hash values to detect collision as well, we denote this part of memory

requirement in red. Consider the cost of the final output transformation, the overall complexity is

as follows: {
T =

∑k
i=1 riTF+{r1+r1r2+r1r2r3+...+

∏k−1
i=1 ri}TQ+

∏k
i=1 ri(TQ+TF )/2l+1

TF+TQ+TF

M = 2
∑k

i=1 ri+
∏k
i=1 ri/2

l+1

Since F and Q are almost the same, we consider TF = TQ. The complexity can be rewritten as:{
T =

∑k
i=1 ri+{r1+r1r2+r1r2r3+...+

∏k−1
i=1 ri}+

∏k
i=1 ri/2

l

3

M = 2
∑k

i=1 ri+2s/2

Choose appropriate values of ri for i = 1, 2, ..., k − 1, k, we get various attacks on Grøstl. The

corresponding attack parameters are summarized in Table 4

Target Type k r1, ...rk−1 rk Memory Time Generic Time

Grøstl-512
Collision 167 2 2155 2256 2255.42 2256

(Second) Preimage 295 2 2283 2284 2511.42 2512

Grøstl-384
Collision 135 2 2123 2192 2191.42 2192

(Second) Preimage 231 2 2219 2220 2383.42 2384

Grøstl-256
Collision 103 2 291 2128 2127.42 2128

(Second) Preimage 167 2 2155 2156 2255.42 2256

Grøstl-224
Collision 95 2 283 2112 2111.42 2112

(Second) Preimage 151 2 2139 2140 2223.42 2224

Table 4. Summary of Attack Parameters for Grøstl
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