
A preliminary version of this work appeared in Advances in Cryptology – Crypto 2012. This is the
full version.

To Hash or Not to Hash Again?

(In)differentiability Results for H2 and HMAC

Yevgeniy Dodis∗ Thomas Ristenpart† John Steinberger‡ Stefano Tessaro§

June 12, 2013

Abstract

We show that the second iterate H2(M) = H(H(M)) of a random oracle H cannot achieve
strong security in the sense of indifferentiability from a random oracle. We do so by proving that
indifferentiability for H2 holds only with poor concrete security by providing a lower bound (via
an attack) and a matching upper bound (via a proof requiring new techniques) on the complexity
of any successful simulator. We then investigate HMAC when it is used as a general-purpose hash
function with arbitrary keys (and not as a MAC or PRF with uniform, secret keys). We uncover
that HMAC’s handling of keys gives rise to two types of weak key pairs. The first allows trivial
attacks against its indifferentiability; the second gives rise to structural issues similar to that which
ruled out strong indifferentiability bounds in the case of H2. However, such weak key pairs do not
arise, as far as we know, in any deployed applications of HMAC. For example, using keys of any
fixed length shorter than d− 1, where d is the block length in bits of the underlying hash function,
completely avoids weak key pairs. We therefore conclude with a positive result: a proof that HMAC
is indifferentiable from a RO (with standard, good bounds) when applications use keys of a fixed
length less than d− 1.

Keywords: Indifferentiability, Hash functions, HMAC.

∗Department of Computer Science, New York University, dodis@cs.nyu.edu
†Department of Computer Sciences, University of Wisconsin–Madison, rist@cs.wisc.edu
‡ Institute of Theoretical Computer Science, Tsinghua University, jpsteinb@gmail.com
§CSAIL, Massachusetts Institute of Technology, tessaro@csail.mit.edu

1

Contents

1 Introduction 3
1.1 The Second Iterate Paradox . 3
1.2 HMAC with Arbitrary Keys . 5
1.3 Discussion . 6
1.4 Prior Work . 6

2 Preliminaries 6

3 Second Iterates and their Security 8
3.1 Hash chains using Second Iterates . 8
3.2 An Example (Vulnerable) Application: Mutual Proofs of Work 11
3.3 An Indifferentiability Distinguisher for any Second Iterate 12
3.4 Indifferentiability Upper Bound for a Second Iterate 14

4 HMAC as a General-purpose Keyed Hash Function 18
4.1 Weak Key Pairs in HMAC . 19
4.2 Colliding Key Pairs and the Indifferentiability of HMAC 20
4.3 Ambiguous Key Pairs and the Indifferentiability of HMAC 22
4.4 Indifferentiability Upper Bound for HMAC with Restricted Keys 25

A Internal Collision Probabilities 34

B Proof of Theorem 3.2 35

C Proof of Theorem 4.2 40

D Proof of Theorem 3.3 44

2

1 Introduction

Cryptographic hash functions such as those in the MD and SHA families are constructed by extending
the domain of a fixed-input-length compression function via the Merkle-Damg̊ard (MD) transform.
This applies some padding to a message and then iterates the compression function over the resulting
string to compute a digest value. Unfortunately, hash functions built this way are vulnerable to
extension attacks that abuse the iterative structure underlying MD [24, 40]: given the hash of a
message H(M) an attacker can compute H(M ‖X) for some arbitrary X, even without knowing M .

In response, suggestions for shoring up the security of MD-based hash functions were made. The
simplest is due to Ferguson and Schneier [22], who advocate a hash-of-hash construction: H2(M) =
H(H(M)), the second iterate of H. An earlier example is HMAC [5], which similarly applies a hash
function H twice, and can be interpreted as giving a hash function with an additional key input. Both
constructions enjoy many desirable features: they use H as a black box, do not add large overheads,
and appear to prevent the types of extension attacks that plague MD-based hash functions.

Still, the question remains whether they resist other attacks. More generally, we would like that
H2 and HMAC behave like random oracles (ROs). In this paper, we provide the first analysis of these
functions as being indifferentiable from ROs in the sense of [14,33], which (if true) would provably rule
out most structure-abusing attacks. Our main results surface a seemingly paradoxical fact, that the
hash-of-hash H2 cannot be indifferentiable from a RO with good bounds, even if H is itself modeled
as a RO. We then explore the fall out, which also affects HMAC.

Indifferentiability. Coron et al. [14] suggest that hash functions be designed so that they “behave
like” a RO. To define this, they use the indifferentiability framework of Maurer et al. [33]. Roughly,
this captures that no adversary can distinguish between a pair of oracles consisting of the construction
(e.g., H2) and its underlying ideal primitive (an ideal hash H) and the pair of oracles consisting of
a RO and a simulator (which is given access to the RO). A formal definition is given in Section 2.
Indifferentiability is an attractive goal because of the MRH composition theorem [33]: if a scheme
is secure when using a RO it is also secure when the RO is replaced by a hash construction that is
indifferentiable from a RO. The MRH theorem is widely applicable (but not ubiquitously, c.f., [37]),
and so showing indifferentiability provides broad security guarantees.

While there exists a large body of work showing various hash constructions to be indifferentiable
from a RO (c.f., [1, 7, 12–14, 18, 19, 26]), none have yet analyzed either H2 or HMAC. Closest is the
confusingly named HMAC construction from [14], which hashes a message by computing H2(0d ‖M)
where H is MD using a compression function with block size d bits. This is not the same as HMAC
proper nor H2, but seems close enough to both that one would expect that the proofs of security given
in [14] apply to all three.

1.1 The Second Iterate Paradox

Towards refuting the above intuition, consider that H2(H(M)) = H(H2(M)). This implies that an
output of the construction H2(M) can be used as an intermediate value to compute the hash of the
message H(M). This property does not exist in typical indifferentiable hash constructions, which pur-
posefully ensure that construction outputs are unlikely to coincide with intermediate values. However,
and unlike where extension attacks apply (they, too, take advantage of outputs being intermediate
values), there are no obvious ways to distinguish H2 from a RO.

Our first technical contribution, then, is detailing how this structural property might give rise to
vulnerabilities. Consider computing a hash chain of length ℓ using H2 as the hash function. That is,
compute Y = H2ℓ(M). Doing so requires 2ℓ H-applications. But the structural property of H2 iden-
tified above means that, given M and Y one can compute H2ℓ(H(M)) using only one H-application:

3

H(Y) = H(H2ℓ(M)) = H2ℓ(H(M)). Moreover, the values computed along the first hash chain,
namely the values Yi ← H2i(M) and Y ′

i ← H2i(H(M)) for 0 ≤ i ≤ ℓ are disjoint with overwhelming
probability (when ℓ is not unreasonably large). Note that for chains of RO applications, attempting
to cheaply compute such a second chain would not lead to disjoint chains. This demonstrates a way
in which a RO and H2 differ.

We exhibit a cryptographic setting, called mutual proofs of work, in which the highlighted structure
of H2 can be exploited. In mutual proofs of work, two parties prove to each other that they have
computed some asserted amount of computational effort. This task is inspired by, and similar to,
client puzzles [20,21,27,28,39] and puzzle auctions [41]. We give a protocol for mutual proofs of work
whose computational task is computing hash chains. This protocol is secure when using a random
oracle, but when using instead H2 an attacker can cheat by abusing the structural properties discussed
above.

Indifferentiability lower bound. The mutual proofs of work example already points to the
surprising fact that H2 does not “behave like” a RO. In fact, it does more, ruling out proofs of
indifferentiability for H2 with good bounds. (The existence of a tight proof of indifferentiability
combined with the composition theorem of [33] would imply security for mutual proofs of work,
yielding a contradiction.) However, we find that the example does not surface well why simulators
must fail, and the subtlety of the issues here prompt further investigation. We therefore provide
a direct negative result in the form of an indifferentiability distinguisher. We prove that should
the distinguisher make q1, q2 queries to its two oracles, then for any simulator the indifferentiability
advantage of the distinguisher is lower-bounded by 1 − (q1q2)/qS − q2S/2

n. (This is slightly simpler
than the real bound, see Section 3.3.) What this lower bound states is that the simulator must make
very close to min{q1q2, 2

n/2} queries to prevent this distinguisher’s success. The result extends to
structured underlying hash functions H as well, for example should H be MD-based.

To the best of our knowledge, our results are the first to show lower bounds on the number of
queries an indifferentiability simulator must use. That a simulator must make a large number of
queries hinders the utility of indifferentiability. When one uses the MRH composition theorem, the
security of a scheme when using a monolithic RO must hold up to the number of queries the simulator
makes. For example, in settings where one uses a hash function needing to be collision-resistant and
attempts to conclude security via some (hypothetical) indifferentiability bound, our results indicate
that the resulting security bound for the application can be at most 2n/4 instead of the expected 2n/2.

Upper bounds for second iterates. We have ruled out good upper bounds on indifferentiability,
but the question remains whether weak bounds exist. We provide proofs of indifferentiability for H2

that hold up to about 2n/4 distinguisher queries (our lower bounds rule out doing better) when H
is a RO. We provide some brief intuition about the proof. Consider an indifferentiability adversary
making at most q1, q2 queries. The adversarial strategy of import is to compute long chains using
the left oracle, and then try to “catch” the simulator in an inconsistency by querying it on a value
at the end of the chain and, afterwards, filling in the intermediate values via further left and right
queries. But the simulator can avoid being caught if it prepares long chains itself to help it answer
queries consistently. Intuitively, as long as the simulator’s chains are a bit longer than q1 hops, then
the adversary cannot build a longer chain itself (being restricted to at most q1 queries) and will never
win. The full proofs of these results are quite involved, and so we defer more discussion until the
body. We are unaware of any indifferentiability proofs that requires this kind of nuanced strategy by
the simulator.

4

1.2 HMAC with Arbitrary Keys

HMAC was introduced by Bellare, Canetti, and Krawczyk [5] to be used as a pseudorandom function
or message authentication code. It uses an underlying hash function H; let H have block size d bits
and output length n bits. Computing a hash HMAC(K,M) works as follows [30]. If |K| > d then
redefine K ← H(K). Let K ′ be K padded with sufficiently many zeros to get a d bit string. Then
HMAC(K,M) = H(K ′ ⊕ opad ‖H(K ′ ⊕ ipad ‖M)) where opad and ipad are distinct d-bit constants.
The original (provable security) analyses of HMAC focus on the setting that the key K is honestly
generated and secret [3, 5]. But what has happened is that HMAC’s speed, ubiquity, and assumed
security properties have lead it to be used in a wide variety of settings.

Of particular relevance are settings in which existing (or potential) proofs of security model HMAC
as a keyed RO, a function that maps each key, message pair to an independent and uniform point.
There are many examples of such settings. The HKDF scheme builds from HMAC a general-purpose
key derivation function [31, 32] that uses as key a public, uniformly chosen salt. When used with a
source of sufficiently high entropy, Krawczyk proves security using standard model techniques, but
when not proves security assuming HMAC is a keyed RO [32]. PKCS#5 standardizes password-based
key derivation functions that use HMAC with key being a (low-entropy) password [36]. Recent work
provides the first proofs of security for the HMAC-based key derivation function, should HMAC be
modeled as a keyed RO [9]. Ristenpart and Yilek [38], in the context of hedged cryptography [4], use
HMAC in a setting whose cryptographic security models allow adversarially specified keys. Again,
proofs model HMAC as a keyed RO.

As mentioned previously, we would expect a priori that one can show that HMAC is indifferen-
tiable from a keyed RO even when the attacker can query arbitrary keys. Then one could apply the
composition theorem of [33] to derive proofs of security for the settings just discussed.

Weak key pairs in HMAC. We are the first to observe that HMAC has weak key pairs. First,
there exist K 6= K ′ for which HMAC(K,M) = HMAC(K ′,M). These pairs of keys arise because
of HMAC’s ambiguous encoding of differing-length keys. Trivial examples of such “colliding” keys
include any K,K ′ for which either |K| < d and K ′ = K ‖ 0s (for any 1 ≤ s ≤ d − |K|), or |K| > d
and K ′ = H(K). Colliding keys enable an easy attack that distinguishes HMAC(·, ·) from a random
function R(·, ·), which also violates the indifferentiability of HMAC. On the other hand, as long as H
is collision-resistant, two keys of the same length can never collide. Still, even if we restrict attention
to (non-colliding) keys of a fixed length, there still exist weak key pairs, but of a different form
that we term ambiguous. An example of an ambiguous key pair is K,K ′ of length d bits such that
K ⊕ ipad = K ′ ⊕ opad. Because the second least significant bit of ipad and opad differ (see Section 4)
and assuming d > n − 2, ambiguous key pairs of a fixed length k only exist for k ∈ {d − 1, d}.
The existence of ambiguous key pairs in HMAC leads to negative results like those given for H2. In
particular, we straightforwardly extend the H2 distinguisher to give one that lower bounds the number
of queries any indifferentiability simulator must make for HMAC.

Upper bounds for HMAC. Fortunately, it would seem that weak key pairs do not arise in typical
applications. Using HMAC with keys of some fixed bit length smaller than d − 1 avoids weak key
pairs. This holds for several applications, for example the recommendation with HKDF is to use n-bit
uniformly chosen salts as HMAC keys. This motivates finding positive results for HMAC when one
avoids the corner cases that allow attackers to exploit weak key pairs.

Indeed, as our main positive result, we prove that, should H be a RO or an MD hash with ideal
compression functions, HMAC is indifferentiable from a keyed RO for all distinguishers that do not

query weak key pairs. Our result holds for the case that the keys queried are of length d or less. This
upper bound enjoys the best, birthday-bound level of concrete security possible (up to small constants),

5

and provides the first positive result about the indifferentiability of the HMAC construction.

1.3 Discussion

The structural properties within H2 and HMAC are, in theory, straightforward to avoid. Indeed,
as mentioned above, Coron et al. [14] prove indifferentiable from a RO the construction H2(0d ‖M)
where H is MD using a compression function with block size d bits and chaining value length n ≤ d
bits. Analogously, our positive results about HMAC imply as a special case that HMAC(K,M), for
any fixed constant K, is indifferentiable from a RO.

We emphasize that we are unaware of any deployed cryptographic application for which the use
of H2 or HMAC leads to a vulnerability. Still, our results show that future applications should, in
particular, be careful when using HMAC with keys which are under partial control of the attacker.
More importantly, our results demonstrate the importance of provable security in the design of hash
functions (and elsewhere in cryptography), as opposed to the more common “attack-fix” cycle. For
example, the hash-of-hash suggestion of Ferguson and Schneier [22] was motivated by preventing the
extension attack. Unfortunately, in so doing they accidentally introduced a more subtle (although less
dangerous) attack, which was not present on the original design.1 Indeed, we discovered the subtlety
of the problems within H2 and HMAC, including our explicit attacks, only after attempting to prove
indifferentiability of these constructions (with typical, good bounds). In contrast, the existing indiffer-
entiability proofs of (seemingly) small modifications of these hash functions, such as H2(0d ‖M) [14],
provably rule out these attacks.

1.4 Prior Work

There exists a large body of work showing hash functions are indifferentiable from a RO (c.f., [1, 7,
12–14, 18, 19, 26]), including analyses of variants of H2 and HMAC. As mentioned, a construction
called HMAC was analyzed in [14] but this construction is not HMAC as standardized. Krawczyk [32]
suggests that the analysis of H2(0‖M) extends to the case of HMAC, but does not offer proof.2 HMAC
has received much analysis in other contexts. Proofs of its security as a pseudorandom function under
reasonable assumptions appear in [3, 5]. These rely on keys being uniform and secret, making the
analyses inapplicable for other settings. Analysis of HMAC’s security as a randomness extractor
appear in [17, 23]. These results provide strong information theoretic guarantees that HMAC can be
used as a key derivation function, but only in settings where the source has a relatively large amount
of min-entropy. This requirement makes the analyses insufficient to argue security in many settings
of practical importance. See [32] for further discussion.

2 Preliminaries

Notation and games. We denote the empty string by λ. If |X| < |Y | then X ⊕ Y signifies that the

X is padded with |Y |− |X| zeros first. For set X and value x, we write X ∪← x to denote X ← X ∪{x}.
For non-empty sets Keys, Dom, and Rng with |Rng| finite, a random oracle f : Keys ×Dom→ Rng

is a function taken randomly from the space of all possible functions Keys × Dom → Rng. We
will sometimes refer to random oracles as keyed when Keys is non-empty, whereas we omit the first
parameter when Keys = ∅.

1We note the prescience of the proposers of H2, who themselves suggested further analysis was needed [22].
2Fortunately, the HKDF application of [32] seems to avoid weak key pairs, and thus our positive results for HMAC

appear to validate this claim [32] for this particular application.

6

We use code-based games [10] to formalize security notions and within our proofs. In the execution
of a game G with adversary A, we denote by GA the event that the game outputs true and by AG ⇒ y
the event that the adversary outputs y. Fixing some RAM model of computation, our convention is
that the running time Time(A) of an algorithm A includes its code size. Queries are unit cost, and we
will restrict attention to the absolute worst case running time which must hold regardless of queries
are answered.

Hash functions. A hash function H[P] : Keys×Dom→ Rng is is a family of functions from Dom

to Rng, indexed by a set Keys, that possibly uses (black-box) access to an underlying primitive P (e.g.,
a compression function). We call the hash function keyed if Keys is non-empty, and key-less otherwise.
(In the latter case, we omit the first parameter.) We assume that the number of applications of P in
computing H[P](K,M) is the same for all K,M with the same value of |K| + |M |. This allows us
to define the cost of computing a hash function H[P] on a key and message whose combined length
is ℓ, denoted Cost(H, ℓ), as the number of calls to P required to compute H[P](K,M) for K,M with
|K| + |M | = ℓ. For a keyed random oracle R : Keys × Dom → Rng, we fix the convention that
Cost(R, ℓ) = 1 for any ℓ for which there exists a key K ∈ Keys and message M ∈ Dom such that
|K|+ |M | = ℓ.

A compression function is a hash function for which Dom = {0, 1}n × {0, 1}d and Rng = {0, 1}n

for some numbers n, d > 0. Our focus will be on keyless compression functions, meaning those of
the form f : {0, 1}n × {0, 1}d → {0, 1}n. Our results lift in a straightforward way to the dedicated-
key setting [8]. The ℓ-th iterate of H[P] is denoted Hℓ[P], and defined for ℓ > 0 by Hℓ[P](X) =
H[P](H[P](· · ·H[P](X)) · · ·) where the number of applications of H is ℓ. We let H0[P](X) = X. We
will often write H instead of H[P] when the underlying primitive P is clear or unimportant.

Merkle-Damg̊ard. Let Pad : {0, 1}≤L → ({0, 1}n)+ be an injective padding function. The one
used in many of the hash functions within the SHA family outputs M ‖ 10r ‖ 〈|M |〉64 where 〈|x|〉64 is
the encoding of the length of M as a 64-bit string and r is the smallest number making the length a
multiple of d. This makes L = 264 − 1. The function MD[f] : ({0, 1}n)+ → {0, 1}n is defined as

MD[f](M) = f(f(· · · f(f(IV,M1),M2), · · ·),Mk)

where |M | = kd and M1 ‖ · · · ‖ Mk. The function SMD[f] : {0, 1}≤L → {0, 1}n is defined as
SMD[f](M) = MD[f](Pad(M)).

Indifferentiability from a RO. Let R : Keys × Dom → Rng be a random oracle. Consider a
hash construction H[P] : Keys × Dom → Rng from an ideal primitive P . Let game RealH[P] be the

game whose main procedure runs an adversary AFunc,Prim and returns the bit that A outputs. The
procedure Func on input K ∈ Keys and M ∈ Dom returns H[P](K,M). The procedure Prim on input
X returns P (X). For a simulator S, let game IdealR,S be the game whose main procedure runs an
adversary AFunc,Prim and returns the bit that A outputs. The procedure Func on input K ∈ Keys and
M ∈ Dom returns R(K,M). The procedure Prim on input X returns SR(X). The indifferentiability
advantage of D is defined as

Advindiff
H[P],R,S(D) = Pr

[
RealDH[P] ⇒ y

]
− Pr

[
IdealDR,S ⇒ y

]
.

We focus on simulators that must work for any adversary, though our negative results extend as well
to the weaker setting in which the simulator can depend on the adversary. The total query cost σ of
an adversary D is the cumulative cost of all its Func queries plus q2. (This makes σ the total number
of P uses in game RealH[P]. In line with our worst-case conventions, this means the same maximums
hold in IdealR,S although here it does not translate to P applications.)

We note that when Keys is non-empty, indifferentiability here follows [8] and allows the distin-

7

main PrAH,P,E

V← ⊥ ; α← λ

(K,M)←$APrim,Ext

z ← H [P](K,M)

Ret ((K,M) 6= V[z] ∧ Q[z] = 1)

procedure Prim(u):

v ← P (u) ; α← α ‖ (u, v) ; Ret v

procedure Ext(z):

Q[z]← 1 ; V[z]← E(z, α) ; Ret V[z]

Figure 1: The game for defining preimage awareness.

guisher to choose keys during an attack. This reflects the desire for a keyed hash function to be
indistinguishable from a keyed random oracle for arbitrary uses of the key input.

Preimage awareness [19]. An extractor is a deterministic algorithm that takes as input a point
z and a string α (called the advice string) and returns a string or ⊥. The game PrAH[P],E shown
in Figure 1 defines the security experiment for preimage awareness. For a function H using an ideal
primitive P , an extractor E , and an adversary A we define the advantage function

Advpra
H[P],E(A) = Pr

[
PrAA

H[P],E ⇒ true
]
.

3 Second Iterates and their Security

Our investigation begins with the second iterate of a hash function, meaning H2(M) = H(H(M))
where H : Dom→ Rng for sets Dom ⊇ Rng. For simplicity, let Rng = {0, 1}n and assume that H is
itself modeled as a RO. Is H2 good in the sense of being like a RO? Given that we are modeling H as
a RO, we would expect that the answer would be “yes”. The truth is more involved. As we’ll see in
Section 4, similar subtleties exist in the case of the related HMAC construction.

We start with the following observations. When computing H2(M) for some M , we refer to the
value H(M) as an intermediate value. Then, we note that the value Y = H2(M) is in fact the
intermediate value used when computing H2(X) for X = H(M). Given Y = H2(M), then, one can
computeH2(H(M)) directly by computingH(Y). That the hash value Y is also the intermediate value
used in computing the hash of another message is cause for concern: other hash function constructions
that are indifferentiable from a RO (c.f., [2,7,8,14,26]) explicitly attempt to ensure that outputs are not
intermediate values (with overwhelming probability over the randomness of the underlying idealized
primitive). Moreover, prior constructions for which hash values are intermediate values have been
shown to not be indifferentiable from a RO. For example Merkle-Damg̊ard-based iterative hashes fall
to extension attacks [14] for this reason. Unlike with Merkle-Damg̊ard, however, it is not immediately
clear how an attacker might abuse the structure of H2.

3.1 Hash chains using Second Iterates

We turn our attention to hash chains, where potential issues arise. Hash chains, formed by repeatedly
applying the hash function to some message, are used in a variety of settings such as password-based
cryptography [36] and forward-secure pseudorandom number generators [11]. For a hash function H,
we define a hash chain Y = (Y0, . . . , Yℓ) to be a sequence of ℓ + 1 values where Y0 is a message and
Yi = H(Yi−1) for 1 ≤ i ≤ ℓ. Likewise when using H2 a hash chain Y = (Y0, . . . , Yℓ) is a sequence of
ℓ+1 values where Y0 is a message and Yi = H2(Yi−1) for 1 ≤ i ≤ ℓ. We refer to Y0 as the start of the
hash chain and Yℓ as the end. Two chains Y, Y ′ are non-overlapping if no value in one chain occurs in
the other, meaning Yi 6= Y ′

j for all 0 ≤ i ≤ j ≤ ℓ.
For any hash function and given the start and end of a hash chain Y = (Y0, . . . , Yℓ), one can readily

8

H HY0 YℓY1 · · · Yℓ−1HY ′
0 H Y ′

ℓ−1 H Y ′
ℓ

H2ℓ(Y0)

H2ℓ(Y ′
0)

Figure 2: Diagram of two hash chains Y = (Y0, . . . , Yℓ) and Y ′ = (Y ′
0 , . . . , Y

′
ℓ) for hash function H2.

compute the start and end of a new chain with just two hash calculations. That is, set Y ′
0 ← H(Y0)

and Y ′
ℓ ← H(Yℓ). However, the chain Y ′ = (Y ′

0 , . . . , Y
′
ℓ) and the chain Y overlap. For good hash

functions (i.e., ones that behave like a RO) computing the start and end of a non-overlapping chain
given the start and end of a chain Y0, Yℓ requires at least ℓ hash computations (assuming ℓ≪ 2n/2).

Now consider H2. Given the start and end of a chain Y = (Y0, . . . , Yℓ), one can readily compute
a non-overlapping chain Y ′ = (Y ′

0 , . . . , Y
′
ℓ) using just two hash computations instead of the expected

2ℓ computations. Namely, let Y ′
0 ← H(Y0) and Y ′

ℓ ← H(Yℓ). Then these are the start and end of the
chain Y ′ = (Y ′

0 , . . . , Y
′
ℓ) because

H2ℓ(Y ′
0) = H2ℓ(H(Y0)) = H(H2ℓ(Y0))

which we call the chain-shift property of H2. Moreover, assuming H is itself a RO outputing n-bit
strings, the two chains Y, Y ′ do not overlap with probability at least 1−(2ℓ+2)2/2n. Figure 2 provides
a pictoral diagram of the two chains Y and Y ′.

The above discussion points out a way in which H2 and a RO differ. We now formalize this
difference via a toy security game. Game CHAINH[P],n,ℓ is shown in Figure 3. It tasks an attacker
with computation of a hash chain of length ℓ for a hash function H[P]. The attacker is additionally
given the start and end of an honestly generated hash chain, and the attacker can make at most
ℓ ·Cost(H,n)−1 queries to the primitive underlying the hash construction — one less query than that
needed to compute a new hash chain directly. The attacker succeeds if it can nevertheless compute a
the start and end of a hash chain that does not overlap with the honestly generated one. We define
the advantage of an CHAINH[P],n,ℓ-adversary A by

Advchain
H[P],n,ℓ(A) = Pr

[
CHAINA

H[P],n,ℓ⇒ true
]
.

We consider below two constructions:

• The second iterate H2[P] defined by computing P (P (M)) and where P : Dom → {0, 1}n that is
a random oracle. To win, the attacker must somehow compute a length ℓ hash chain for H2[P]
using at most 2ℓ− 1 queries to P .

• The hash function is a random oracle, formallyH[P] is defined by P (M) where P : Dom→ {0, 1}n

is a RO. To win, the attacker must somehow compute a length ℓ hash chain for H[P] using at
most ℓ− 1 queries to P .

Chain security of a RO. We start with the latter bullet point: We show that no attacker can
achieve good advantage in the CHAINH,P,n,ℓ game for H[P](M) = P (M) when ℓ≪ 2n/2.

Claim 3.1 Let H[P] be the hash that applies a RO P : Dom → {0, 1}n to each input with Dom ⊇

{0, 1}n and let ℓ ∈ [1 .. 2n/6]. Then for any A it holds that Advchain
H,P,n,ℓ(A) ≤

(3ℓ)2

2n . �

9

main CHAINH,P,n,ℓ:

i← 0

Y0←$ {0, 1}n ; For i = 1 to ℓ do Yi ← H [P](Yi−1)

(Y ∗
0 , Y ∗

ℓ)←$APrim(Y0, Yℓ)

Y ′
0 ← Y ∗

0 ; For i = 1 to ℓ do Y ′
i ← H [P](Y ′

i−1)

Y ← {Y0, . . . , Yℓ}

Y ′ ← {Y ′
0 , . . . , Y

′
ℓ }

If (Y ′
ℓ = Y ∗

ℓ) ∧ ((Y ∩ Y ′) = ∅) then Ret true

Ret false

procedure Prim(M):

i← i+ 1

If i ≥ ℓ · Cost(H,n) then Ret ⊥

Ret P (M)

Figure 3: The chain-making game.

Proof: We can assume that A makes exactly ℓ− 1 queries to Prim. Let P̃ : Dom→ {0, 1}n map each
input to an output selected uniformly without replacement. Then a standard argument shows that

Advchain
H,P,n,ℓ(A) ≤ Advchain

H,P̃ ,n,ℓ
(A) +

(3ℓ− 1)2

2n
. (1)

To win the game gainst H[P̃], the adversary A must output Y ∗
0 , Y

∗
ℓ such that the associated chain

Y ′
0 , . . . , Y

′
ℓ is non-overlapping with Y0, . . . , Yℓ and with Y ′

0 = Y ∗
0 and Y ′

ℓ = Y ∗
ℓ . But A observes ℓ − 1

of the ℓ values Y ′
0 , . . . , Y

′
ℓ . Let i ∈ [1 .. ℓ] be the index such that Y ′

i was not returned to A by Prim.
First consider the case that i = ℓ. Then, Y ′

ℓ is a fresh choice made after A finishes execution, and
so Y ∗

ℓ = Y ′
ℓ with probability 1/(2n − (3ℓ − 1)). (Since we are disallowing collisions, Y ′

ℓ is uniformly
selected from a set of size 2n − (3ℓ − 1).) Now consider the case that i < ℓ. Then, for the chain to
be completed, the value Y ′

i , chosen after A finishes executing, must equal the value M queried by A
that had response Y ′

i+1. But this occurs, again, with probability at most 1/(2n − (3ℓ− 1)). Since we

restricted attention to 1 ≤ ℓ ≤ 2n/6, it holds that Advchain
H,P̃ ,n,ℓ

(A) ≤ 2/2n. Substituting into (1) above

yields the claim.

Attack against H2. Now let the hash function be H2[P] = P (P (M)) for P : Dom → {0, 1}n a
RO. We give an adversary A that wins the CHAINH2[P],n,ℓ game with probability 1 − ℓ2/2n. Let A
work as follows. Upon execution with inputs Y0, Yℓ, it queries Y ∗

0 ← Prim(Y0) and Y ∗
ℓ ← Prim(Yℓ).

It then returns (Y ∗
0 , Y

∗
ℓ). Then, letting Y ′

0 = Y ∗
0 and Y ′

1 , . . . , Y
′
ℓ be the values computed in the main

procedure of the CHAINH2[P],n,ℓ game, we see that the chain-shift property of H2 means that Y ′
ℓ = Y ∗

ℓ .
Moreover, no element in Y ′

0 , . . . , Y
′
ℓ collides with an element in Y0, . . . , Yℓ with probability 1 − ℓ2/2n,

this probability being over the random coins used by P . The adversary therefore achieves the stated
advantage.

Discussion. All the above exhibits a way in which H2 fails to behave like a RO. Moreover, the attack
against H2 generalizes to other hash function constructions that are second iterates, for example when
using the second iterate of the Merkle-Damg̊ard construction [16,34].

But what does it imply about indifferentiability? Recall that the composition theorem of Maurer
et al. [33], as discussed further by Ristenpart et al. [37], states —informally speaking— that a cryp-
tosystem secure relative to any single-stage3 game in the ROM will remain secure when replacing the
RO with a hash construction that is indifferentiable from a RO. We have above given a game in which
no attacker succeeds in the ROM, but there exists an adversary that succeeds when the RO is replaced
with H2. This might seem to directly rule out H2 being indifferentiable from a RO. But we must

3The security games we consider fall into this category, which just mandates that the adversary maintains state
throughout the entire experiment. See [37] for further discussion.

10

be careful. The gap between security and insecurity above is conditioned upon the limited number
of queries, and such limitations must be carefully handled when indifferentiability is considered. In
particular, the results above only would lead to contradicting a positive indifferentiability result using
a simulator that does not make so many queries that the bound in Claim 3.1 becomes close to one.

We will tackle these subtleties head-on in Section 3.3, by giving a distinguisher that differentiates
H2 from a RO for any simulator that does not make sufficiently many queries. Before that, we first
explore the implications of the surfaced structural property of H2: Might it lead to vulnerabilities in
applications?

3.2 An Example (Vulnerable) Application: Mutual Proofs of Work

In the last section we saw that the second iterate fails to behave like a RO in the context of hash
chains. But the security game detailed in the last section may seem far removed from real protocols.
For example, it’s not clear where an attacker would be tasked with computing hash chains in a setting
where it, too, was given an example hash chain. We suggest that just such a setting could arise in
protocols in which parties want to assert to each other, in a verifiable way, that they performed some
amount of computation. Such a setting could arise when parties must (provably) compare assertions
of computational power, as when using cryptographic puzzles [20,21,27,28,39,41]. Or this might work
when trying to verifiably calibrate differing computational speeds of the two parties’ computers. We
refer to this task as a mutual proof of work.

Mutual proofs-of-work. For the sake of brevity, we present an example hash-chain-based protocol
and dispense with a more general treatment of mutual proofs of work. Consider the two-party protocol
shown in the left diagram of Figure 4. Each party initially chooses a random nonce and sends it to
the other. Then, each party computes a hash chain of some length —chosen by the computing
party— starting with the nonce chosen by the other party, and sends the chain’s output along with
the chain’s length to the other party. At this point, both parties have given a witness that they
performed a certain amount of work. So now, each party checks the other’s asserted computation,
determining if the received value is the value resulting from chaining together the indicated number
of hash applications and checking that the hash chains used by each party are non-overlapping. Note
that unlike puzzles, which require fast verification, here the verification step is as costly as puzzle
solution.

The goal of the protocol is to ensure that the other party did compute exactly their declared number
of iterations. Slight changes to the protocol would lead to easy ways of cheating. For example, if during
verification the parties did not check that the chains are non-overlapping, then P2 can easily cheat by
choosing X1 so that it can reuse a portion of the chain computed by P1

Security would be achieved should no cheating party succeed at convincing an honest party using
less than ℓ1 (resp. ℓ2) work to compute Y1 (resp. Y2). The game POWH[P],n,ℓ1 formalizes this security

goal for a cheating P2; see the right portion of Figure 4. We letAdvpow
H[P],n,ℓ1

(A) = Pr
[
POWA

H[P],n,ℓ1

]
.

Note that the adversary A only wins should it make q < ℓ2 ·Cost(H,n) queries, where ℓ2 is the value
it declared and Cost(H) is the cost of computing H. Again we will consider both the hash function
H[P](M) = P (M) that just applies a RO P and also H2[P](M) = P (P (M)), the second iterate of a
RO. In the former case the can make only ℓ2 − 1 queries and in the latter case 2ℓ2 − 1.

When H[P](M) = P (M), no adversary making q < ℓ2 queries to Prim can win the POWH[P],n,ℓ1

game with high advantage. Intuitively, the reason is that, despite being given X1 and Y1 where
Y1 = P ℓ1(X1), a successful attacker must still compute a full ℓ2-length chain and this requires ℓ2
calls to P . A treatment of this follows closely Claim 3.1 and its proof, and so we omit the details.
Intuitively, the reason is that, despite being given X1 and Y1 where Y1 = P ℓ1(X1), a successful attacker

11

P1 P2

X2←$ {0, 1}n X2
- X1←$ {0, 1}n

X1
�

Y1 ← Hℓ1(X1) ℓ1, Y1
- Y2 ← Hℓ2(X2)

ℓ2, Y2
�

Ŷ1 ← {H
i(X1) | 0 ≤ i ≤ ℓ1} Ŷ1 ← {H

i(X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i(X2) | 0 ≤ i ≤ ℓ2} Ŷ2 ← {H

i(X2) | 0 ≤ i ≤ ℓ2}

Y ′
2 ← Hℓ2(X2) Y ′

1 ← Hℓ1(X1)

Ret (Y ′
2 = Y2) ∧ (Ŷ1 ∩ Ŷ2 = ∅) Ret (Y ′

1 = Y1) ∧ (Ŷ1 ∩ Ŷ2 = ∅)

main POWH[P],n,ℓ1 :

X2←$ {0, 1}n

X1←$APrim(X2)

Y1 ← Hℓ1 [P](X1)

(ℓ2, Y2)←$APrim(ℓ1, Y1)

Ŷ1 ← {H
i[P](X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i[P](X2) | 0 ≤ i ≤ ℓ2}

Y ′
2 ← Hℓ2 [P](X2)

If q ≥ ℓ2 ·Cost(H,n) then

Ret false

Ret (Y ′
2 = Y2 ∧ Ŷ1 ∩ Ŷ2 = ∅)

subroutine Prim(u)

q ← q + 1 ; Ret P (u)

Figure 4: Example protocol (left) and adversarial P2 security game (right) for mutual proofs of work.

must still compute a full ℓ2-length chain and this requires ℓ2 calls to P .

Attack against any second iterate. Now let us analyze this protocol’s security when we use
as hash function H2[P] = P (P (M)) for a RO P : Dom → Rng with Rng ⊆ Dom. We can abuse the
chain-shift property of H2 in order to win the POWH2,P,n,ℓ1 game for any n > 0 and ℓ1 > 2. Our
adversary A works as follows. It receives X2 and then chooses it’s nonce as X1 ← Prim(X2). When it
later receives Y1 = P 2ℓ1(X1), the adversary proceeds by setting ℓ2 = ℓ1+1 and setting Y2 ← Prim(Y1).
Then by the chain-shift property we have that

Y2 = P (Y1) = P (P 2ℓ1(X1)) = P (P 2ℓ1(P (X2))) = P 2ℓ1+2(X2)) = P 2ℓ2(X2) .

The two chains will be non-overlapping with high probability (over the coins used by P). Finally, A
makes only 2 queries to Prim, so the requirement that q < 2ℓ2 is met whenever ℓ1 > 1.

Discussion. As far as we are aware, mutual proofs of work have not before been considered — the
concept may indeed be of independent interest. A full treatment is beyond the scope of this work. We
also note that, of course, it is easy to modify the protocols using H2 to be secure. Providing secure
constructions was not our goal, rather we wanted to show protocols which are insecure using H2 but
secure when H2 is replaced by a monolothic RO. This illustrates how, hypothetically, the structure
of H2 could give rise to subtle vulnerabilities in an application.

3.3 An Indifferentiability Distinguisher for any Second Iterate

In this section we prove that any indifferentiability proof for the double iterate H2 is subject to
inherent quantitative limitations. Recall that indifferentiability asks for a simulator S such that no
adversary can distinguish between the pair of oracles H2[P], P and R,S where P is some underlying
ideal primitive and R is a RO with the same domain and range as H2. The simulator can make queries
to R to help it in its simulation of P . Concretely, building on the ideas behind the above attacks in
the context of hash chains, we show that in order to withstand a differentiating attack with q queries,
any simulator for H2[P], for any hash construction H[P] with output length n, must issue at least

Ω(min{q2, 2n/2}) queries to the RO R. As we explain below, such a lower bound severely limits the
concrete security level which can be inferred by using the composition theorem for indifferentiability,
effectively neutralizing the benefits of using indifferentiability in the first place.

12

The distinguisher. In the following, we let H = H[P] be an arbitrary hash function with n-bit
outputs relying on a primitive P , such as a fixed input-length random oracle or an ideal cipher. We are
therefore addressing an arbitrary second iterate, and not focusing on some particular ideal primitive
P (such as a RO as in previous sections) or construction H. Indeed, H could equally well be Merkle-
Damg̊ard and P an ideal compression function, or H could be any number of indifferentiable hash
constructions using appropriate ideal primitive P .

Recall that Func and Prim are the oracles associated with construction and primitive queries to
H2 = H2[P] and P , respectively. Let w, ℓ be parameters (for now, think for convenience of w = ℓ).
The attacker Dw,ℓ starts by issuing ℓ queries to Func to compute a chain of n-bit values (x0, x1, . . . , xℓ)
where xi = H2(xi−1) and x0 is a random n-bit string. Then, it also picks a random index j ∈ [1 .. w],
and creates a list of n-bit strings u[1], . . . ,u[w] with u[j] = xℓ, and all remaining u[i] for i 6= j are
chosen uniformly and independently. Then, for all i ∈ [1 .. w], the distinguisher Dw,ℓ proceeds in asking
all Prim queries in order to compute v[i] = H(u[i]). Subsequently, the attacker compute y0 = H(x0)
via Prim queries, and also computes the chain (y0, y1, . . . , yℓ) such that yi = H2(yi−1) by making ℓ Func
queries. Finally, it decides to output 1 if and only if yℓ = v[j] and xℓ as well as v[i] for i 6= j are not in
{y0, y1, . . . , yℓ}. The attacker Dw,ℓ therefore issues a total of 2ℓ Func queries and (2w+1) ·Cost(H,n)
Prim queries.

In the real-world experiment, the distinguisher Dw,ℓ outputs 1 with very high probability, as the
condition yℓ = v[j] always holds by the chain-shifting property of H2. In fact, the only reason for D
outputting 0 is that one of xℓ and v[i] for i 6= j incidentally happens to be in {y0, y1, . . . , yℓ}. The
(typically small) probability that this occurs obviously depends on the particular construction H[P]
at hand; it is thus convenient to define the shorthand

p(H,w, ℓ) = Pr [{xℓ,H(U1), . . . ,H(Uw−1)} ∩ {y0, y1, . . . , yℓ} 6= ∅] ,

where x0, y0, x1, . . . , yℓ−1, xℓ, yℓ are the intermediate value of a chain of 2ℓ+1 consecutive evaluations
of H[P] starting at a random n-bit string x0, and U1, . . . , Uw−1 are further independent random n-bit
values. In Appendix A we prove that for H[P] = P = R for a random oracle R : {0, 1}∗ → {0, 1}n

we have p(H,w, ℓ) = Θ((wℓ + ℓ2)/2n). Similar reasoning can be applied to essentially all relevant
constructions.

In contrast, in the ideal-world experiment, we expect the simulator to be completely ignorant about
the choice of j as long as it does not learn x0, and in particular it does not know j while answering
the Prim queries associated with the evaluations of H(u[i]). Consequently, the condition required for
Dw,ℓ to output 1 appears to force the simulator, for all i ∈ [1 .. w], to prepare a distinct chain of ℓ
consecutive R evaluations ending in v[i], hence requiring w · ℓ random oracle queries.

The following theorem quantifies the advantage achieved by the above distinguisher Dw,ℓ in differ-
entiating against any simulator for the construction H[P]. Its proof is given in Appendix B.

Theorem 3.2 [Attack against H2] Let H[P] be an arbitrary hash construction with n-bit outputs,
calling a primitive P , and let R : {0, 1}∗ → {0, 1}n be a random oracle. For all integer parameters
w, ℓ ≥ 1, there exists an adversary Dw,ℓ making 2ℓ Func-queries and (w + 1) · Cost(H,n) Prim-queries
such that for all simulators S,

Advindiff
H2[P],R,S(Dw,ℓ) ≥ 1− p(H,w, ℓ) −

5ℓ2

2n+1
−

qSℓ

2n
−

q2S
2n
−

qS
w · ℓ

−
1

w
,

where qS is the overall number of R queries by S when replying to Dw,ℓ’s Prim queries.

Discussion. We now elaborate on Theorem 3.2. If we consider the distinguisherDw,ℓ from Theorem 3.2,
we observe that by the advantage lower bound in the theorem statement, if ℓ, w ≪ 2n/4 and conse-
quently p(H,w, ℓ) ≈ 0, the number of queries made by the simulator, denoted qS = qS(2ℓ, w + 1)

13

must satisfy qS = Ω(w · ℓ) = Ω(q1 · q2) to ensure a sufficiently small indifferentiability advantage.
This in particular means that in the case where both q1 and q2 are large, the simulator must make
a quadratic effort to prevent the attacker from distinguishing. Below, in Theorem 3.3, we show that
this simulation effort is essentially optimal.

In many scenarios, this quadratic lower bound happens to be a problem, as we now illustrate. As
a concrete example, let SS = (key, sign, ver) be an arbitrary signature scheme signing n bits messages,

and let S̃S[R] = (k̃ey
R
, s̃ign

R
, ṽerR) for R : {0, 1}∗ → {0, 1}n be the scheme obtained via the hash-

then-sign paradigm such that s̃ign
R
(sk,m) = sign(sk,R(m)). It is well known that for an adversary

B making qsign signing and qR random oracle queries, there exists an adversary C making qsign signing
queries such that

Advuf-cma
S̃S[R]

(BR) ≤
(qsign + qR)

2

2n
+Advuf-cma

SS (C) , (2)

where Advuf-cma
S̃S[R]

(BR) and Advuf-cma
SS (C) denote the respective advantages in the standard uf-cma

game for security of signature schemes (with and without a random oracle, respectively). This in

particular means that S̃S is secure for qsign and qR as large as Θ(2n/2), provided SS is secure for qsign
signing queries. However, let us now replace R by H2[P] for an arbitrary construction H = H[P].
Then, for all adversaries A making qP queries to P and qsign signing queries, we can combine the
concrete version of the MRH composition theorem proven in [37] and (2) to infer that there exists an
adversary C and a distinguisher D such that

Advuf-cma
S̃S[H2[P]]

(AP) ≤ Θ

(
(qsign · qP)

2

2n

)
+Advuf-cma

SS (C) +Advindiff
H2[P],R,S(D) ,

where C makes qsign signing queries . Note that even if the term Advindiff
H2[P],R,S(D) is really small, this

new bound can only ensure security for the resulting signature scheme as long as qsign · qP = Θ(2n/2),
i.e., if qsign = qP , we only get security up to Θ(2n/4) queries, a remarkable loss with respect to the
security bound in the random oracle model.

We note that of course this does not mean that H2[P] for a concrete H and P is unsuitable
for a certain application, such as hash-then-sign. In fact, H2[P] may well be optimally collision
resistant. However, our result shows that a sufficiently strong security level cannot be inferred from any

indifferentiability statement via the composition theorem, taking us back to a direct ad-hoc analysis
and completely loosing the one main advantage of having indifferentiability in the first place.

3.4 Indifferentiability Upper Bound for a Second Iterate

Our negative results do not rule out positive results completely: there could be indifferentiability
upper bounds, though for simulators that make around O(q2) queries. Ideally, we would like upper
bounds that match closely the lower bounds given in prior sections. We do so for the special case of
H2[g](M) = g(g(M)) for g : {0, 1}n → {0, 1}n being a RO. We have the following theorem.

Theorem 3.3 Let q1, q2 ≥ 0 and N = 2n. Let g : {0, 1}n → {0, 1}n and R : {0, 1}n → {0, 1}n be
uniform random functions. Then there exists a simulator S such that

Advindiff
G[g],R,S(D) ≤

2((4q1 + 3)q2 + 2q1)
2

N
+

2((4q1 + 3)q2 + 2q1)(q1 + q2)

(N − 2q2 − 2q1)

for any adversary D making at most q1 queries to its left oracle and at most q2 queries to its right
oracle. Moreover, for each query answer that it computes, S makes at most 3q1+1 queries to RO and
runs in time O(q1). �

14

procedure OnRightQuery(x):

x0 ← x

For i = 0 to q1
If g[xi] 6= ⊥ then

y ← G
−i[g[xi]]

If y = ⊥ then Abort

FillInRungs(x, y)

Ret y

SetTable(G, xi,RO(xi))

xi+1 ← G[xi]

MakeLadder(x)

Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y

SetTable(g, x0, x1)

For i = 1 to 2q1 + 1

SetTable(G, xi−1,RO(xi−1))

xi+1 ← G[xi−1]

SetTable(g, xi, xi+1)

subroutine MakeLadder(x)

s−q1 ←$ {0, 1}n

For i = −q1 to q1 − 1

SetTable(G, si,RO(si))

si+1 ← G[si]

FillInRungs(x, s0)

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret

T[x] = y

T
−1[y] = x

Figure 5: Simulator S used in the proof of Theorem 3.3.

We note that the security bound of Theorem 3.3 is approximately (q1q2)
2/N , implying that Theorem 3.3

guarantees security up to q1q2 ≈ 2n/2. For example, G[g] would be indifferentiable to an attacker mak-

ing o(2
1
3
n) left oracle queries and o(2

1
6
n) right oracle queries, or O(1) left oracle queries and o(2n/2)

right oracle queries, or, oppositely, o(2n/2) left oracle queries O(1) right oracle queries, and so on. If
all that is known is the attacker’s total number of queries, then all one can say is that security is
guaranteed up to ≈ 2n/4 queries.

Proof sketch. The simulator S referred to in Theorem 3.3 is implemented by the procedure
OnRightQuery(·) shown in Figure 5. Here we give some intuition about S —what it does and why—
along with a brief overview of the full proof, which appears in Appendix D.

We use the notation RO(x)→ y to indicate that the left oracle (in the ideal world) returns y when
queried at x. Consider an attacker D that starts by making a sequence of two queries RO(t−2)→ t−1,
RO(t−1)→ t0 for a randomly chosen t−2 ∈ {0, 1}

n, and then queries the simulator at t0. At this point
the simulator has no knowledge of any of the adversary’s queries—it has no “outside data”—and so
a näıve simulator might answer a random value, which we denote as s0. In this case, if D queries
t−2 to the simulator, the simulator is stuck: it can see for itself that RO2(t−2) = t0 (it knows both
t−2 and t0, at this point), so to be consistent it knows that it must answer a value s−2 such that
RO2(s−2) = s0 (indeed, the identity RO = g2 implies RO2(g) = g(RO2)), but finding such a value s−2

is computationally infeasible for the simulator, given that s0 is random.
Considering that the above attack can be generalized by having D build a long chain t−ℓ, . . . , t0

such that ti+1 = RO(ti) before querying S at t0 and then at t−ℓ, we conclude that the simulator should
prepare a chain of RO queries of length4 q1, the number of RO-queries available to D. More precisely,
when the simulator receives its first query t0 it chooses a random value s−q1 , computes si+1 = ROi(si)
for −q1 ≤ i < 0, and sets g(t0) = s0. Later, if D queries the simulator at any point t−i, 0 ≤ i ≤ q1, the
simulator can notice that ROi(t−i) = t0 (by iterating RO(·) on t−i until it sees t0), and then answer
s−i. (Note in passing that while the adversary D only has q1 RO-queries to make, the simulator does
not know for which points the adversary has prepared a long chain. Hence by querying the simulator
at ≈ q2 random points among which is inserted the endpoint t0 of some RO-chain of length ≈ q1, the
adversary can force the simulator to make ≈ q1q2 queries, to prepare a chain for each point. This is
the intuition behind Theorem 3.2.)

4One could argue that a chain of length only q1/2 is necessary, given that the adversary must also check the parallel
chain to complete its attack; however, such fiddling is not worth the cost of complications in the proof.

15

Note that once the simulator determines g(t0) = s0 this also determines, for example, that
g(s0) = g2(t0) = RO(t0); thus the value t1 := g(s0) is fixed; likewise the value s1 := g(t1) is fixed
because s1 = g2(s0) = RO(s0), and so on. Thus if the adversary subsequently computes, for exam-
ple, t10 := RO10(t0) on its own and then queries t10 to the simulator, the simulator should notice
that t10 = RO10(t0) and answer RO10(s0). The simulator can simplify its life in this regard if, right
after setting g(t0) = s0, it precomputes the values t1, . . . , tq1+1 and s1, . . . , sq1 where ti := ROi(t0),
si := ROi(s0), setting g(ti) = si and g(si) = ti+1 in the process (see Figure 6). Then, subsequently, it
will “automatically” know that g(t10) = s10 without having to “notice” that t10 = RO10(t0).

We call the sequence of values t0, s0, t1, . . . , sq1 , tq1+1 a g-chain, since g(ti) = si and g(si) = ti+1.
We note such a chain is just long enough that D cannot compute the endpoint tq1+1 “on its own”
(using only RO queries), having only queried the simulator at s0, and at no further points along the
chain5. Moreover, each time D queries S at a point in such a chain, S extends the chain to always
keep the furthest point of the chain at least (q1 + 1) RO queries away from the last input queried by
D, thus keeping the g-chain’s endpoint permanently unknown to D.

Altogether, three possible scenarios can play out when our simulator S answers a query x: (a) if S
finds that it has already chosen a value for g(x), it returns this value, and possibly extends the g-chain
containing the query; (b) otherwise, (for this case picture x as t−i above, for some 1 ≤ i ≤ ℓ), if S finds
that g(ROi(x)) is defined for some 1 ≤ i ≤ q1, it answers y := RO−i(g(ROi(x))) if it can compute this
value from the previous queries it has made to RO, and aborts otherwise if it cannot; moreover, if it
does not abort, then using its newly defined input-output pair g(x) = y it precomputes a g-chain of
length 2q1+1 starting at x (this chain will actually “rear-end” a pre-existing g-chain, with no damage,
since g(ROi(x)) is already defined); (c) if neither (a) nor (b) occur, the simulator computes a chain
s−q1 , . . . , s−1, s0, . . . , sq1 where s−q1 is chosen randomly and where s−q1+i = ROi(s−q1) for i ≥ 1, then
computes6 the chain t0, . . . , tq1+1 where ti = ROi(x), and finally sets7 g(ti) = si, g(si) = ti+1 for
0 ≤ i ≤ q1, before returning s0 (= g(t0)).

We call the query structure resulting from scenario (c) above a ladder ; see Figure 6 (A). When
the adversary queries a point t−i to the simulator, where ROi(t−i) = t0, the simulator “fills in” the
values g(t−j) = s−j and g(s−j) = t−j+1 for −i ≤ −j < 0 (Figure 6 (B)), corresponding to scenario (b)
above. Note that if the adversary queries a point s−j to the simulator before querying any point t−k

with k ≥ j, the simulator will abort, being unable to invert RO beyond the leftmost point t−i such
that the adversary has queried t−i to the simulator (Figure 6 (C)). However, this latter event happens
with low probability given that the adversary must guess the value s−j out of thin air: indeed, the
adversary’s only way of discovering s−j is to query S at t−i for some i ≥ j (this is formally argued in
the proof). Finally, a case not depicted in Figure 6 occurs when the adversary queries a point ti with
i > 0 or si with i ≥ 0. This corresponds to scenario (a): the simulator will return the predetermined
value of g, after “extending” the ladder such that the ladder’s furthest point is at a distance of at least
(q1 + 1) RO calls from the last point queried by D. A full specification of our simulator is given in
Figure 5.

The above outlines the simulator S. As for the indifferentiability proof itself, we use a sequence of
games, where each game presents the adversary with a two-oracle environment. In the first game, the
environment is equivalent to the pair (RO,S); in the last, to the pair (G[g], g) for a random g. For each
pair of adjacent games Gi, Gi+1, the adversary D’s distinguishing advantage Pr[D

Gi⇒1]−Pr[DGi+1⇒1]
is upper bounded, where DGi notates D run in the two-oracle environment of game Gi. Summing these

5This does not preclude D from knowing beforehand the value of some si’s with i > 0, since it could make these RO
queries before querying the simulator at s0, but this costs D the same number of RO queries as computing these values
afterward.

6In fact, the values t0, . . . , tq1+1 are already computed during step (b), given that step (b) is unsuccessful.
7Note one could also set g(s−1) = t0, but this changes little.

16

b b b b b bb b b b b bb b

b bb b b bb b b b b b b b b b b b b b b b b b

b bb b b bb b b b

(A)

t−ℓ · · · · · · · · · t−1 t0 t1 t2 · · · · · · · · · tq1 tq1+1

s−q1 s−q1+1 · · · · · · · · · s−1 s0 s1 s2 · · · · · · sq1−1 sq1

b b b b b bb b b b b bb b

b bb b b bb b b b b b b b b b b b b b b b b b

b bb b b bb b b b

(B)

t−ℓ · · · · · · t−i · · · t0 t1 t2 · · · · · · · · · tq1 tq1+1

s−q1 s−q1+1 · · · · · · s−i · · · s0 s1 s2 · · · · · · sq1−1 sq1

b b b b b bb b b b b bb b

b bb b b bb b b b b b b b b b b b b b b b b b

b bb b b bb b b b

(C)

t−ℓ · · · · · · t−i · · · t0 t1 t2 · · · · · · · · ·

?

tq1 tq1+1

s−q1 · · · s−j · · · s−i · · · s0 s1 s2 · · · · · · sq1−1 sq1

Figure 6: Illustration of the simulator for Theorem 3.3. Horizontal arrows show queries to RO, while
upward and downard diagonal arrows show g-queries defined by the simulator. Dashed arrows show
RO queries known only to the attacker. The last point queried by the attacker and answered by the
simulator is circled. Bold black arrows indicate the internal path followed by the simulator to answer
the attacker’s last query. Top (A): The simulator builds a ladder after being queried at t0. Middle (B):
The simulator “fills in” values of g(·) after being queried at t−i. Bottom (C): The simulator aborts
after being queried at s−j.

17

upper bounds gives the final indifferentiability bound. Our proof uses 23 games in all.

4 HMAC as a General-purpose Keyed Hash Function

HMAC [5] uses a hash function to build a keyed hash function, i.e. one that takes both a key and
message as input. Fix some hash function8 H : {0, 1}∗ → {0, 1}n. HMAC assumes this function H
is built by iterating an underlying compression function with a message block size of d ≥ n bits. We
define the following functions:

FK(M) = H((ρ(K)⊕ ipad) ‖M)

GK(M) = H((ρ(K)⊕ opad) ‖M)
where ρ(K) =

{
H(K) if |K| > d

K otherwise.

The two constants used are ipad = 0x36d/8 and opad = 0x5cd/8. These constants are given in hex-
adecimal, translating to binary gives 0x36 = 0011 01102 and 0x5c = 0101 11002. Recall that we have
defined the ⊕ operator so that, if |K| < d, it first silently pads out the shorter string by sufficiently
many zeros before computing the bitwise xor. It will also be convenient to define xpad = ipad⊕ opad.
The function HMAC : {0, 1}∗ × {0, 1}∗ → {0, 1}n is defined by

HMAC(K,M) = GK(FK(M)) = (GK ◦ FK)(M) .

We sometimes write HMACd[P], HMACd, or HMAC[P] instead of HMAC when we want to make the
reliance on the block size and/or an underlying ideal primitive explicit.

Some applications of HMAC. The HMAC construction was originally suggested for use as a
PRF or MAC — settings in which K is a secret value generated by a trusted party. And while
HMAC is still used as such, it has also come to be used (or suggested for use) in settings where K
is public [25, 29, 32] or a non-uniform secret [36]. There also exist settings whose theoretical security
models allow adversarially generated keys [38].

• HKDF. The HKDF scheme builds from HMAC a general key derivation function [32]. It is cur-
rently in the process of being standardized [31]. The construction follows an extract-then-expand
approach. In the extract phase, compute Y = HMAC(sa,msk) using a public, application-
dependent salt sa and a secret source of entropy msk. It is strongly recommended [31] that sa
be a uniformly selected n-bit string. In the expand phase, a key K = HMAC(Y, da) is derived
using application-specific context information da. IPSec key exchange similarly utilizes HMAC
with public information as key [25,29].

• TLS. The TLS protocol uses HMAC as a key-derivation function. One derives a key as
HMAC(pms, da) where da consists of public nonces and public session-dependent information
and pms is either a 48 byte string consisting of a version number and 46 random bytes (when
using RSA key transport) or a Diffie-Hellman value (when using Diffie-Hellman key exchange)
of length specified by the group size. The value pms is therefore secret but not necessarily a
secret, uniform bit string from an adversary’s perspective.

• PKCS#5. The PKCS#5 standard uses HMAC for password-based key derivation. A derived
key for some password pw and salt sa is defined by K =

⊕ℓ
i=1HMACℓ(pw, sa). In practice,

passwords are chosen by users in all kinds of ways, and typically have relatively little entropy.

8RFC 2104 defines HMAC over strings of bytes, but we chose to use bits to provide more general positive results —
all our negative results lift to a setting in which only byte strings are used. Note also that for simplicity we assumed H
with domain {0, 1}∗. In practice hash functions often do have some maximal length (e.g., 264), and in this case HMAC
must be restricted to smaller lengths.

18

• Hedged cryptography. Ristenpart and Yilek [38] suggest a general way of using HMAC to
modify cryptographic routines so as to hedge against randomness failures. For example, let
E(pk,M ; R) denote encrypting message M under public-key pk and using randomness R. They
suggest to modify encryption to instead proceed via E(pk,M ; HMAC(R,pk ‖M)). (Here we
show only the case that |R| = n.) This merges two prior suggestions due to Bellare et al. [4] and
Yilek [42]. One of the security goals targeted is chosen-distribution attack (CDA) security [4],
which requires no partial information about high min-entropy messages is leaked even in the
presence of adversarially-specified randomness R.

Common to the examples above is that security proofs of HMAC when used with uniform secret
keys [3, 5] do not (directly) apply. In some cases, standard model proofs have nevertheless been
given. Particularly, positive results about HMAC’s security as a randomness extractor [15,17,23,32],
which are applicable to its use in HKDF, IPsec, and TLS. But in other cases it seems unlikely that
standard model analyses are possible. The security of TLS key transport is one example, as discussed
in [35]. Another example is when using lower entropy secrets with HKDF, as discussed in [32]. The
same situation faces PKCS#5 because passwords are often short. In these two settings, the results
of [15,17,23,32] are inapplicable because they require sources with high (computational) min-entropy.
Finally, security proofs for the hedged encryption construction seems to fundamentally rely on the
“programmability” of ROs [4, 38].

Prior work has therefore turned to assuming HMAC is a keyed RO to achieve positive results. A
variant of TLS key exchange is analyzed under this assumption by Morissey et al. [35]. Krawczyk
analyzes HKDF as a randomness extractor under this assumption [32]. Ristenpart and Yilek analyze
the security of the hedged encryption construction under this assumption [38]. Validating this as-
sumption as used in these works would require proving indifferentiability of HMAC from a keyed RO
for distinguisher’s that query arbitrary keys.

Using indifferentiability. Our focus is these last analyses in the keyed ROM. We want to
understand if the positive results carry over to a setting in which the structure of HMAC is taken
into account. Namely, when one uses HMAC[P] for some underlying ideal primitive P (e.g., an
ideal compression function). This is important because security proofs taking into account HMAC’s
structure would rule out subtle, exploitable interactions between HMAC’s design and its use in these
applications.

Indifferentiability provides a mechanism for this kind of analysis: should HMAC[P] be indiffer-
entiable from a keyed RO R with good bounds, then the MRH composition theorem [33] could be
applied to theorems from [32, 35, 38] to give corollaries that security holds when using HMAC[P].9

To simultaneously cover all the settings of [32, 35, 38], indifferentiability would have to hold even for
adversaries that can query arbitrary keys and messages.

In the following sections, we will therefore analyze the security of HMAC in the sense of being
indifferentiable from a keyed RO. As we will see, the story is more involved than one might expect.

4.1 Weak Key Pairs in HMAC

Towards understanding the indifferentiability of HMAC, we start by observing that the way HMAC
handles keys gives rise to two worrisome classes of weak key pairs.

• Colliding key pairs: We say that keys K 6= K ′ collide if

ρ(K) ‖ 0d−|ρ(K)| = ρ(K ′) ‖ 0d−|ρ(K ′)| .

9Technically, this would only apply to a slightly weaker security model for [38] that does not allow hash-dependent
randomness, message distributions. See [37] for a discussion.

19

For any message M and colliding keys K,K ′ it holds that HMAC(K,M) = HMAC(K ′,M).

Colliding keys exist because of HMAC’s ambiguous encoding of different-length keys. Examples of
colliding keys include any K,K ′ for which |K| < d and K ′ = K ‖ 0s where 1 ≤ s ≤ d − |K|. Or any
K,K ′ such that |K| > d and K ′ = H(K). As long as H is collision-resistant, two keys of the same
length can never collide.

Colliding keys enable a simple attack against indifferentiability: query Func on (K,M) and (K ′,M)
for K,K ′ colliding and see if the outputs are equal. Colliding key pairs may also have implications for
other settings. We discuss this all more in the next section.

The second form of weak key pair we term ambiguous:

• Ambiguous key pairs: A pair of keys K 6= K ′ is ambiguous if

ρ(K)⊕ ipad = ρ(K ′)⊕ opad .

For any X, both FK(X) = GK ′(X) and GK(X) = FK ′(X) when K,K ′ are ambiguous.

An example such pair isK,K ′ of length d bits for whichK⊕K ′ = xpad. For any keyK, there exists one
key K ′ that is easily computable and for which K,K ′ are ambiguous: set K ′ = ρ(K)⊕ xpad. Finding
a third key K ′′ that is also ambiguous with K is intractable should H be collision resistant. The
easily-computable K ′ will not necessarily have the same length as K. In fact, there exist ambiguous
key pairs of the same length k only when k ∈ {d − 1, d}. For a fixed length shorter than d − 1, no
ambiguous key pairs exist due to the fact that the second least significant bit of xpad is 1. For a
fixed length longer than d bits, if n < d − 1 then no ambiguous key pairs exist and if n ≥ d− 1 then
producing ambiguous key pairs would require finding K,K ′ such that H(K)⊕H(K ′) equals the first
n bits of xpad. This is intractable for any reasonable hash function H.

Unlike colliding key pairs, ambiguous key pairs, at first glance, may not seem to be problematic
for security. But in fact they give rise to a chain-shift-like property for HMAC that, as with H2, can
lead to insecurities in some settings. We explore this in Section 4.3.

Summary. We uncover two types of weak key pairs in HMAC. We will discuss further in Section 4.2
how colliding keys trivially rule out indifferentiability. Colliding key pairs are avoided by, for exam-
ple, using fixed-length keys. However, even here, we have ambiguous key pairs. We will show in
Section 4.3 how HMAC when ambiguous key pairs are allowed cannot be proven indifferentiability
with good concrete security. The underlying structural issue is similar to that of second iterate con-
structions. We leave as an open question showing a weak upper bound for the indifferentiability of
HMAC with ambiguous key pairs, but suspect that the techniques from the proof of Theorem 3.3
might be applicable.

Finally, and fortuitously, most applications of HMAC appear to avoid both kinds of weak key pairs.
As we will show in Section 4.4, we can prove indifferentiability holds with standard, good bounds for
some cases in which weak key pairs are avoided. For example, the common case of using keys of a
fixed length less than d− 1 provides security. A summary of all these results is given in Figure 7.

4.2 Colliding Key Pairs and the Indifferentiability of HMAC

Colliding key pairs give rise to a simple attack against the indifferentiability of HMAC. We have the
following theorem:

Theorem 4.1 Let HMAC[H[P]] be the HMAC construction for an arbitrary underlying hash func-
tion H[P] and let R be a keyed RO. Then there exists an adversary A making two queries and running

20

Key space includes Indifferentiable? Queries Section

Colliding key pairs No 2 §4.2

Ambiguous key pairs / no colliding key pairs At most weakly O(2n/4) §4.3

Only keys K of fixed length |K| < d− 1 Yes O(2n/2) §4.4

Figure 7: Summary of indifferentiability of HMAC from a keyed RO for various restrictions on the

key space. The “Queries” column indicates the number of queries used by an attacker to gain good

advantage against any simulator.

in a small constant amount of time such that for any simulator S it holds that

Advindiff
HMAC[H[P]],R,S(A) ≥ 1−

1

2n
. �

Proof: Distinguisher A first picks two keys K 6= K ′ that collide and picks an arbitrary message M .
It then queries its Func oracle on (K,M) and (K ′,M) to retrieve two values Y, Y ′. If Y = Y ′ then it
returns 1 (guessing that it is in game RealHMAC[H[P]],R) and returns 0 otherwise (guessing that it is in
game IdealR,S). The advantage of A is equal to 1− 2−n regardless of the simulator S, which is never
invoked.

Colliding key pairs endanger security of any application of HMAC that uses variable-length keys.
The formal security of several applications is ruled out when colliding key pairs are allowed. For
PKCS#5, consider the slight simplification of using HMAC(pw, sa) to derive a key from a password
pw and salt sa. Then if the set of passwords from which pw was drawn includes colliding key pairs
(which is allowed by, e.g., the password-based key derivation function security definition given by [9]),
then the search space of a dictionary attack will be reduced. For hedged cryptography, if one extends
the security notion of [4] to allow the adversary to pick variable lengths of randomness, then there
exists a simple adversary that violates the chosen-distribution attack security of the HMAC-based
constructions from [38].

That said, we are unaware of any exploitable security vulnerabilities in practice due to colliding
key pairs. The PKCS#5 example above would require having passwords in the set that are encoded to
binary strings that end in zero bytes. HMAC as actually used in HKDF, TLS, and hedged cryptography
all use fixed-length keys.

Related-key attacks. We digress for a moment to consider the setting of related-key attacks
(RKAs) against HMAC as a PRF (i.e., using uniformly selected, secret keys). Recall that RKA-PRF
security [6] asks that no attacker can distinguish between two oracles to which it can make adaptive
queries. The first oracle allows the attacker to query a related key function φ from some allowed set
Φ and a message M . It returns HMAC(φ(K),M) for a randomly chosen key K. The second oracle
has the same interface but returns ρ(φ(K),M) where ρ is a family of random functions.

Colliding keys give rise to an RKA against HMAC for any Φ that includes both the identity function
and a function φ for which the keys K,φ(K) collide. The adversary queries the identity function and
a message M and in a second query φ and the same message M . If the returned values are the same
it guesses that it is interacting with HMAC and otherwise it guesses it is interacting with ρ. The
adversary achieves advantage 1− 2−n.

21

4.3 Ambiguous Key Pairs and the Indifferentiability of HMAC

We now turn to ambiguous key pairs and show that these also lead to lower bounds on the indifferen-
tiability of HMAC. Recall that with H2, problems arose because outputs of H2 on some message were
valid intermediate values used in computing H2 on some other message. HMAC is the same due to
ambiguous key pairs. Let M be some message and K,K ′ be an ambiguous key pair. Then, we have
that ρ(K ′) = ρ(K)⊕ xpad and so FK(M) = GK ′(M). Thus,

HMAC(K ′, FK(M)) = GK ′(HMAC(K,M))

This property does not appear immediately exploitable in attacks against, for example, the HMAC
applications mentioned above. We will thus follow the same path as we did with H2 to highlight
how this structural property affects the ability to show that HMAC is indifferentiable from a RO —
even when colliding key pairs do not arise. The result will be our ruling out strong indifferentiability
bounds when ambiguous key pairs arise, and thus limiting the scope of applicability of composition-
based proofs of security for applications of HMAC. As with H2, we will also detail HMAC applications
in which ambiguous key pairs can be exploited by attackers. As before, these revolve around hash
chains.

Keyed hash chains. We lift our notions of hash chains from Section 3 to the setting of keyed
hash functions. Let H : {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed hash function. A hash chain Y =
(K,Y0, . . . , Yℓ) is a key K, a message Y0, and a sequence of ℓ values Yi = H(K,Yi−1) for 1 ≤ i ≤ ℓ.
So a keyed hash chain Y = (K,Y0, . . . , Yℓ) for HMAC has Yi = HMAC(K,Yi−1) for 1 ≤ i ≤ ℓ. We
refer to Y0 as the start of the keyed hash chain and to Yℓ as the end. Two keyed hash chains Y, Y ′ are
non-overlapping if Yi 6= Y ′

j for all 0 ≤ i ≤ j ≤ ℓ.
Let HMAC[P](K,M) be HMAC using as underlying hash function a random oracle P : {0, 1}∗ ×

{0, 1}∗ → {0, 1}n and extend the definitions of ρ, FK , GK to use P in the natural way. Given the start
and end of a chain Y = (K,Y0, . . . , Yℓ), it is easy for an adversary to compute the start and end of a new
chain Y ′ = (K ′, Y ′

0 , . . . , Y
′
ℓ). To do so, the adversary chooses K ′ so that ρ(K ′) = ρ(K)⊕xpad and then

computes Y ′
0 ← FK(M) and Y ′

ℓ ← FK(Y0). By the choice of K ′ it holds that both FK(X) = GK ′(X)
and GK(X) = FK ′(X) for all X. Thus Y0, Y

′
ℓ are valid start and end points for a chain because

(GK ′ ◦ FK ′)ℓ(Y ′
0) = GK ′(FK ′(· · ·FK ′(Y ′

0) · · ·))

= GK ′(FK ′(· · ·FK ′(FK(M)) · · ·))

= FK(GK(· · ·GK(FK(M)) · · ·))

= FK

(
(GK ◦ FK)ℓ(K,M)

)

= FK(Yℓ)

= Y ′
ℓ

We refer to the equivalence above as the chain-shift property of HMAC. A diagram of the two HMAC
chains involved appears in Figure 8. Finally, we note that with overwhelming probability (over the
coins of P) Y and Y ′ will not overlap.

To capture the gap between HMAC and a RO in a formal way, we extend the CHAINH[P],n,ℓ game
from Section 3 to work for keyed chains; see Figure 9. The only change is that a randomly chosen
challenge key of k bits is generated by the game and the adversary now outputs not only an attempted
start and end point of a chain, but a chosen key as well. We define advantage as

Advchain
H[P],k,n,ℓ(A) = Pr

[
CHAINA

H[P],k,n,ℓ⇒ true
]
.

We compare the CHAIN security of HMAC[P] to the CHAIN security of a keyed RO R. Tech-

22

FK GKY0 YℓY1 · · · Yℓ−1GKY ′
0 FK Y ′

ℓ−1 FK Y ′
ℓ

HMACℓ(K,Y0)

HMACℓ(K ′, Y ′
0)

Figure 8: Diagram of two hash chains (K,Y) = (Y0, . . . , Yℓ) and (K ′, Y ′) = (Y ′
0 , . . . , Y

′
ℓ) for HMAC

where ρ(K ′) = ρ(K)⊕ xpad.

main CHAINH[P],k,n,ℓ:

i← 0 ; K←$ {0, 1}k

Y0←$ {0, 1}n ; For i = 1 to ℓ do Yi ← H [P](K,Yi−1)

(K′, Y ∗
0 , Y ∗

ℓ)←$APrim(K,Y0, Yℓ)

Y ′
0 ← Y ∗

0 ; For i = 1 to ℓ do Y ′
i ← H [P](K′, Y ′

i−1)

Y ← {Y0, . . . , Yℓ}

Y ′ ← {Y ′
0 , . . . , Y

′
ℓ }

If (Y ′
ℓ = Y ∗

ℓ) ∧ ((Y ∩ Y ′) = ∅) then Ret true

Ret false

procedure Prim(M):

i← i+ 1

If i ≥ ℓ · Cost(H,n) then Ret ⊥

Ret P (M)

Figure 9: A keyed version of the chain-making game.

nically, we look at the the achieved security of CHAINHMAC[P],k,n,ℓ to that of CHAINH[R],k,n,ℓ where
H[R](K,M) = R(K,M) implements a keyed RO. Security in the latter case follows in the same
manner that CHAIN security was established for a (non-keyed) RO, as per Claim 3.1. Namely,

Advchain
H[R],k,n,ℓ(A) ≤

(3ℓ)2

2n

for all adversaries A. On the other hand, an adversary B exploiting the chain-shift property of HMAC
achieves

Advchain
HMAC[P],k,n,ℓ(B) ≥ 1−

ℓ2

2n
.

The adversary B lets K ′ = ρ(K)⊕ xpad and picks Y ′
0 = FK(Y0) and Y ′

ℓ = FK(Yℓ). As with H2, we see
a gap between the CHAIN security achieved by the ideal object (a keyed RO) and HMAC.

Note that B may output a K ′ that is of different length than K. But the attack extends to a setting
requiring |K| = |K ′| for some, but not all, choices of the parameter k. In particular, the adversary B
can always find a suitable K ′ with |K ′| = k for k ∈ {d− 1, d}.

Mutual proofs of work with keys. We similarly lift mutual proofs of work to the setting of
keyed chains. Referring to Figure 10, we modify the protocol to allow both parties to choose a key
and a message as challenge for the other party. Likewise, the security game POWH[P],n,ℓ1 is modified
as shown in the right hand side of Figure 10 to give game POWH[P],k,n,ℓ1. An adversary can use the
chain-shift-like property of HMAC to mount a successful attack against POWHMAC[P],k,n,ℓ1 for any
ℓ1 > 1 and for P a RO. Consider the following adversary A. When it first receives a nonce K2,X2,
it chooses K1 such that ρ(K1) = ρ(K2) ⊕ xpad and lets X1 ← FK2(X2). Later when it receives
Y1 = HMACℓ1 [P](K1,X1) it computes its response as Y2 ← FK1(Y1), sets ℓ2 = ℓ1 + 1, and returns
ℓ2, Y2.

23

P1 P2

K2←$ {0, 1}k ; X2←$ {0, 1}n K2, X2
- K1←$ {0, 1}k ; X1←$ {0, 1}n

K1, X1
�

Y1 ← Hℓ1(K1, X1) ℓ1, Y1
- Y2 ← Hℓ2(K2, X2)

ℓ2, Y2
�

Ŷ1 ← {H
i(K1, X1) | 0 ≤ i ≤ ℓ1} Ŷ1 ← {H

i(K1, X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i(K2, X2) | 0 ≤ i ≤ ℓ2} Ŷ2 ← {H

i(K2, X2) | 0 ≤ i ≤ ℓ2}

Y ′
2 ← Hℓ2(K2, X2) Y ′

1 ← Hℓ1(K1, X1)

Ret (Y ′
2 = Y2) ∧ (Ŷ1 ∩ Ŷ2 = ∅) Ret (Y ′

1 = Y1) ∧ (Ŷ1 ∩ Ŷ2 = ∅)

main POWH[P],n,ℓ1 :

K2←$ {0, 1}k

X2←$ {0, 1}n

(K1, X1)←$APrim(K2, X2)

Y1 ← Hℓ1 [P](K1, X1)

(ℓ2, Y2)←$APrim(ℓ1, Y1)

Ŷ1 ← {H
i[P](K1, X1) | 0 ≤ i ≤ ℓ1}

Ŷ2 ← {H
i[P](K2, X2) | 0 ≤ i ≤ ℓ2}

Y ′
2 ← Hℓ2 [P](K2, X2)

If q ≥ ℓ2 ·Cost(H,n) then

Ret false

Ret (Y ′
2 = Y2 ∧ Ŷ1 ∩ Ŷ2 = ∅)

subroutine Prim(u)

q ← q + 1 ; Ret P (u)

Figure 10: Example protocol (left) and adversarial P2 security game (right) for mutual proofs of
work with keyed hash functions.

By the chain-shift property of HMAC, we get that

Y2 = FK1

(
(GK1 ◦ FK1)

ℓ1(X1)
)

= FK1

(
(GK1 ◦ FK1)

ℓ1(FK2(X2))
)

= FK1(GK1(· · ·FK1(FK2(X2)) · · ·))

= GK2(FK2(· · ·GK2(FK2(X2)) · · ·))

= HMACℓ1+1[P](K2,X2) .

The two chains will be non-overlapping with probability close to one and A makes at most two P -
applications, in turn ensuring that q < 2ℓ2 when ℓ1 > 1.

Direct indifferentiability lower bounds. All the above suggests that HMAC is not indif-
ferentiable from a keyed RO because of ambiguous key pairs and regardless of the strength of the
primitive underlying HMAC. As before, this requires careful interpretation, in the same sense as dis-
cussed for H2 in Section 3. We therefore provide a direct indifferentiability adversary. It relies on the
quantity p′(H,w, ℓ) that represents the probability of certain collisions associated to the queries the
distinguisher makes. The quantity depends on the particulars of the construction H[P] and is defined
as

p′(H,w, ℓ) = Pr [{H(ipad ‖ U1), . . . ,H(ipad ‖ Uw−1)} ∩ {y0, y1, . . . , yℓ} 6= ∅] ,

for U1, . . . , Uw−1 being w − 1 independent n-bit strings, and y0, y1, . . . , yℓ are out of a chain of n-bit
values x0, y0, . . . , xℓ, yℓ where x0 is chosen at random, and yi = H(ipad ‖ xi) for i = 0, . . . , ℓ and
xi = H(opad ‖ yi−1) for i = 1, . . . , ℓ. We show in Appendix A that, for typical H constructions,
p′(H,w, ℓ) ≤ 2(w − 1)(ℓ+ 2)/2n + 2(ℓ+ 1)2/2n.

Theorem 4.2 [Attack against HMAC] Let H[P] be an arbitrary hash construction with n-bit
outputs, calling a random primitive P , and let R : {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed random
oracle. For all integer parameters w, ℓ ≥ 1, there exists an adversary D̃w,ℓ making 2ℓ Func-queries and

24

(w + 1) · Cost(H,n+ d) Prim-queries such that for all simulators S,

Advindiff
HMAC[H[P]],R,S(D̃w,ℓ) ≥ 1− p′(H,w, ℓ) −

5ℓ2

2n+1
−

qSℓ

2n
−

qS
2n
−

qS
w · ℓ

−
1

w
,

where qS is the overall number of R queries by S when replying to D̃w,ℓ’s Prim queries.

The proof is given in Appendix C. The interpretation of the theorem is analogous to that of Theorem 3.2.

4.4 Indifferentiability Upper Bound for HMAC with Restricted Keys

We have seen that HMAC’s construction gives rise to two kinds of weak key pairs that can be abused
to show that HMAC is not indifferentiable from a keyed RO (with good bounds). But weak key pairs
are serendipitously avoided in most applications. For example, the recommended usage of HKDF [32]
specifies keys of a fixed length less than d− 1. Neither kind of weak key pairs exist within this subset
of the key space, and here we will provide positive results about the indifferentiability of HMAC when
restricted to such key spaces. For the other applications mentioned at the beginning of Section 4,
our positive results should also be applicable with appropriate restrictions: PKCS#5 for passwords
sufficiently restricted, hedged cryptography with certain lengths of randomness, and TLS for particular
premaster secret sizes.

Our positive results will focus primarily on the case mentioned above. That is, we restrict attention
to keys K for which |K| = k and k is a fixed integer less than d − 1. In fact, we prove a positive
indifferentiability bound for a slightly more general key space, described next.

Restricted key spaces for HMAC. We first provide some definitions regarding restricted key
spaces for HMAC. We here focus on the case where all keys are of length d or less. Let K ⊆ {0, 1}≤d

be a set of keys. We say K is allowed if there exists a function GetKey : {0, 1}d → {0, 1}∗ such that

GetKey(K ⊕ ipad) = K and GetKey(K ⊕ opad) = K .

The function GetKey implies the existence of a predicate IsOuter : {0, 1}d → {0, 1} such that for any
K ∈ K,

IsOuter(K ⊕ ipad) = 0 and IsOuter(K ⊕ opad) = 1 .

The predicate IsOuter can determine which pad was used with a key, while the function GetKey can
invert xor’ing by ipad or opad. For any allowed K it must be thatK⊕ipad 6= K ′⊕opad for allK,K ′ ∈ K.
We let K-restricted HMAC be the function HMAC : K×{0, 1}∗ → {0, 1}n that is undefined for K /∈ K
and for K ∈ K is defined equivalently to HMAC : {0, 1}∗ ×{0, 1}∗ → {0, 1}n. In our proofs below, we
assume that indifferentiability adversaries do not query keys K /∈ K to the Func oracle.

One example of an allowed K is all keys K of length equal to d with second least significant bit
equal to 0. For this class, IsOuter(X) = 1 iff the second least significant bit of X is 0. (Recall that the
second least significant bit of ipad is 1 and of opad is 0.) Another example is exactly the set of widest
consequence: the set of all keys of a fixed length that is less than d− 1.

HMAC using a RO. We start with the simpler case, proving that K-restricted HMAC is indifferen-
tiable from a keyed RO when the underlying hash function is modeled as a RO.

Theorem 4.3 Fix d, n > 0. Let P : {0, 1}∗ → {0, 1}n be a RO, and consider K-restricted HMACd[P]
for an allowed key set K. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1}n be a keyed RO. Then there exists a
simulator S such that for any distinguisher A whose total query cost is σ it holds that

Advindiff
HMACd[P],R,S(A) ≤

2σ2

2n

25

S makes at most q2 queries and runs in time O(q2 log q2) where q2 is the number of Prim queries made
by A. �

The use of O(·) just hides small constants. Combining Theorem 4.3 with the indifferentiability
composition theorem allows us to conclude security for HMACd[H] for underlying hash function H
that is, itself, indifferentiable from a RO. For example, should H be one of the proven-indifferentiable
SHA-3 candidates.

Proof of Theorem 4.3: (Sketch) Fix an allowed key set K. The simulator S imitates a RO
P : {0, 1}∗ → {0, 1}n in a way that is consistent with the keyed RO R, to which the simulator has
oracle access. The simulator works as shown below.

algorithm SR(U):

Parse U as X ‖ Y with |X| = d

If IsOuter(X) = 0 then

V ←$ {0, 1}n

F[V]← (GetKey(X), Y)

Ret V

If IsOuter(X) = 1 and F[Y] 6= ⊥ then

Z ←R(F[Y])

Ret Z

Ret R←$ {0, 1}n

In words, the simulator identifies whether a query is associated with an “inner” application or an
“outer” application. In the first case it chooses a random response, and records in a table the input
associated to the response. If an “outer” application, it looks up in the table whether there is an
“inner” input associated with the query. If so, it responds with the keyed RO’s output for the key
and message associated with that “inner” query. Otherwise, the simulator outputs a random point.

That keys queried to the construction are in an allowed set means that there is no ambiguity in the
IsOuter predicate. Because of this, intuitively, the simulator can only fail in two ways. First, a collision
amongst the choices of V across two different queries occur. Second, a query to the simulator with
IsOuter(X) = 1 ends up producing a value V such that V was previously queried to the simulator that
was an “outer” query. In either case, the distinguisher can abuse the events to successfully distinguish.
Informally, in either the RealHMACd[P] or game IdealR,S the probability of a collision occurring is at
most (q1 + q2)

2/2n and the probability of the second kind of failure is at most q22/2
n.

HMAC using MD-based hash functions. The above result does not extend to cover HMAC built
from hash functions which are not indifferentiable from a RO. This includes, for example, the SHA
family of hash functions and others that use the Merkle-Damg̊ard transform. We therefore treat this
special case, investigating HMACd[SMD[f]] where f : {0, 1}n × {0, 1}d → {0, 1}n is a random oracle.

Theorem 4.4 Fix d, n > 0 with d ≥ n. Let f : {0, 1}n × {0, 1}d → {0, 1}n be a RO and consider
K-restricted HMACd[SMD[f]] for an allowed key set K. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1}n be a
keyed RO. Then there exists a simulator S such that for any distinguisher A whose total query cost
is σ ≤ 2n−2 it holds that

Advindiff
HMACd[SMD[f]],S(A) <

13σ2

2n

S makes at most q2 queries where q2 is the number of Prim queries made by A and S runs in time
O(σ2 log σ2). �

26

We note that the restriction to σ ≤ 2n−2 in the theorem statement is just a technicality to make the
bound simpler and likewise the use of O(·) hides just small constants.

Unlike our positive results about H2, the bounds provided by Theorems 4.3 and 4.4 match, up
to small constants, results for other now-standard indifferentiable constructions (c.f., [14]). First, the
advantage bounds both hold up to the birthday bound, namely σ ≈ 2n/2. Second, the simulators
are efficient and, specifically, make at most one query per invocation. All this enables use of the
indifferentiability composition theorem in a way that yields strong, standard concrete security bounds.

For the proof of Theorem 4.4, we simplify the treatment in two ways. First, let π be the minimal
padding length of SMD. For SHA-256, for example, π = 65. When d ≥ n + π, the outer application
of SMD[f] of HMACd[SMD[f]] will always consist of exactly two f applications. Otherwise, the
outer application of SMD[f] could consist of some larger fixed number of f applications. We will for
simplicity focus on the case of two calls; it is easy to extend to the more general case.

Second, we will replace the padding of SMD with adversarially-controlled message bits. For any
K ∈ K, any X ∈ ({0, 1}d)+, and any P ∈ {0, 1}d−n define the functions

F[f](K,X,P) =
(
f(IV,K ⊕ opad) , MD[f]((K ⊕ ipad) ‖X) ‖ P

)

fF[f](K,X,P) = f
(
F[f](K,X,P)

)

Here the last bits of X replaces the padding in the first SMD application while P replaces the padding
used in the second SMD application. Theorem 4.4 is implied by the proof below, in which we establish
the indifferentiability of fF[f]. In the proof, the total query cost σ of an attacker is equal to the sum
of the costs (as defined in Section 2) of each query to Func plus the number of Prim queries.

Proof of Theorem 4.4: Let g : {0, 1}n × {0, 1}d → {0, 1}n be a RO and let gF[f, g](K,X,P) =
g
(
F[f](K,X,P)

)
. Our proof proceeds in two steps. First, Lemma 4.5 below shows that we can restrict

attention to showing indifferentiability for the construction gF[f, g]. This step fundamentally relies
upon the fact that keys queried by A are within an allowed set, which in turn enables us to show
domain separation between “internal” uses of f within F[f] and the external application of f in fF[f].
Second, Lemma 4.6 shows that F[f](K,X,P) is preimage-aware. This step relies upon the fact that
we can apply GetKey to extract K from K ⊕ ipad and from K ⊕ opad. To conclude we combine the
two lemmas with [19, Th. 4.1], which asserts that the composition of a PrA function and a RO is
indifferentiable from a RO.

Lemma 4.5 Let f, g : {0, 1}n × {0, 1}d → {0, 1}n be random oracles. Let SB be a simulator and A
be a distinguisher making at most q1 Func queries, q2 Prim queries, and whose total query cost is σ.
Then there exists a simulator SA and adversary B such that

Advindiff
f F[f],SA

(A) ≤ Advindiff
gF[f,g],SB

(B) +
10σ2

2n

SA makes the same number of queries as SB and works in the same time as SB plus O(q2). Adversary
B runs in time that of A plus O(q1 + q2), makes the same number of queries as A, and has the same
total query cost. �

Proof: Let SB be an arbitrary simulator for gFf,g. It can be queried on chaining variable, message
block pairs (V,M) on either an f interface or g interface. We use the notation (0, V,M) to signal a
query to the f interface and (1, V,M) to signify a query to the g interface. We likewise extend the
Prim interface to accept a label for f queries or g queries.

Let A be an indifferentiability adversary against fF.

27

SR
A (V,M)

If T[V] = 1 then Ret SR
B (1, V,M)

V ′ ← SR
B (0, IV,M)

If (V = IV ∧ IsOuter(M) = 1) then

T[V ′]← 1

Ret V ′

BFunc,Prim

b′←$AFunca,Prima

Ret b′

procedure Funca(K,X,P):

Ret Y ← Func(K,X, P)

procedure Prima(V,M):

If T[V] = 1 then Ret Prim(1, V,M)

V ′ ← Prim(0, IV,M)

If (V = IV ∧ IsOuter(M) = 1) then

T[V ′]← 1

Ret V ′

Figure 11: Simulator SA and adversary B used in proof of Lemma 4.5.

We construct a simulator SA and an adversary B as shown in Figure 11. These keep track of the
responses V ′ to f -queries on IV,M with IsOuter(M) = 1 using a table T. A subsequent query made
with chaining variable that equals any such response is treated as a g-query. In this way, SA and B
“route” queries to either an f or g interface in an appropriate way.

By construction IdealAR,SA
and IdealBR,SB

are equivalent.

We now use a sequence of games to argue bound the difference between Pr[RealAf F[f] ⇒ 1] and

Pr[RealBgF[f,g] ⇒ 1]. See Figure 12. Game GA
0 implements exactly RealAf F[f] — the extra book-keeping

code in Prima does not affect its behavior. The procedure Rx is used to implement the RO f ; the
variable 0 is used as a label. Game G1 includes the boxed pseudocode, which changes G0 in that now
random choices of chaining variables V are restricted so as to not collide with any chaining variable
so-far seen in the game (including IV). Recall that σ is the maximum number of blocks of message
bits queried by A, and this is thus the total number of Rx invocations. Over the course of the game
|V| ≤ 2σ and so a standard birthday bound argument combined with the discussion above justifies
that

Pr
[
RealAf F[f] ⇒ 1

]
= Pr

[
GA

0 ⇒ 1
]
≤ Pr

[
GA

1 ⇒ 1
]
+

(2σ)2

2n
.

The next game G2 is equivalent to G1, except that we label random choices in R by either 0 or 1.
These labels are added as entries to the table, but lines 31 and 32 ensure an entry already made for a
domain point with a different labeling is used by a subsequent call. Thus,

Pr
[
GA

2 ⇒ 1
]
= Pr

[
GA

1 ⇒ 1
]
.

Game G3 is the same as G2 but with the boxed statement removed. By the fundamental lemma of
game-playing [10] we have that

Pr
[
GA

2 ⇒ 1
]
≤ Pr

[
GA

3 ⇒ 1
]
+ Pr

[
GA

3 sets bad
]
.

We now argue that only a call to R on line 21 has non-zero probability of setting bad. We then bound
the probability of line 21 causing bad to be set. For the first step, we find it helpful to cast the state
of the game’s random choices as a graph G = (V, E) whose nodes are n-bit strings and whose edges
are d-bit strings. When a new entry V ′ = R[x, V,X] is chosen, add both V, V ′ to V if they are not
already present in the graph, and add the edge (V, V ′) with label X. We additionally color V ′ by x.
Should V ′ later be returned by R(x, V,X) and R[1−x, V,X] 6= ⊥, then we recolor V ′ to x. Because of

28

main G0 G1 :

b′←$AFunca,Prima

Ret b′

procedure Funca(K,X,P):

Vi ← MD[R(0, ·, ·)](K ⊕ ipad ‖X)

Vo ← R(0, IV,K ⊕ opad)

Ret Y ← R(0, Vo, Vi ‖ P)

procedure Prima(V,M):

If T[V] = 1 then Ret R(0, V,M)

V ′ ← R(0, V,M)

If (V = IV ∧ IsOuter(M) = 1) then

T[V ′]← 1

Ret V ′

subroutine R(x, V,M)

V ∪← V ; V ′←$ {0, 1}n \ V

If R[x, V,M] 6= ⊥ then

V ′ ← R[x, V,M]

V ∪← V ′

Ret R[x, V,M]← V ′

main G2 G3:

00 b′←$AFunca,Prima

01 Ret b′

procedure Funca(K,X,P):

10 Vi ← MD[R(0, ·, ·)](K ⊕ ipad ‖X)

11 Vo ← R(0, IV,K ⊕ opad)

12 Ret Y ← R(1, Vo, Vi ‖ P)

procedure Prima(V,M):

20 If T[V] = 1 then Ret R(1, V,M)

21 V ′ ← R(0, V,M)

22 If (V = IV ∧ IsOuter(M) = 1) then

23 T[V ′]← 1

24 Ret V ′

subroutine R(x, V,M)

30 V ∪← V ; V ′←$ {0, 1}n\V

31 If R[1− x, V,M] 6= ⊥ then

32 bad← true ; x← 1− x

33 If R[x, V,M] 6= ⊥ then

34 V ′ ← R[x, V,M]

35 V ∪← V ′

36 Ret R[x, V,M]← V ′

main G4 G5:

b′←$AFunca,Prima

Ret b′

procedure Funca(K,X,P):

Vi ← MD[R(0, ·, ·)](K ⊕ ipad ‖X)

Vo ← R(0, IV,K ⊕ opad)

X ← Vo

Ret Y ← R(1, Vo, Vi ‖ P)

procedure Prima(V,M):

If T[V] = 1 then Ret R(1, V,M)

If V ∈ X then bad← true

V ′ ← R(0, V,M)

If (V = IV ∧ IsOuter(M) = 1) then

T[V ′]← 1

Ret V ′

subroutine R(x, V,M)

V ∪← V ; V ′←$ {0, 1}n ; \V

If R[x, V,M] 6= ⊥ then

V ′ ← R[x, V,M]

V ∪← V ′

Ret R[x, V,M]← V ′

Figure 12: Games used in the proof of Lemma 4.5.

the game’s restrictions on the choice of V ′, we have that G is throughout the game a forest. The root
of one tree is IV and all others are rooted at adversarially-chosen values V (corresponding to queries
to Prima).

We now argue by case analysis that the probability of recoloring is zero for any call to R but one made
on line 21. Recall that we disallow pointless queries, meaning the adversary never queries Funca or
Prima twice on the same values.

• Line 10: A recoloring here means that at the time of the query a path IV, V1, V2, . . . , Vk for some
number k exists in G with edge (IV, V1) labeled by X = K ⊕ ipad for the queried K and the color
of node Vk was 1. But the only such paths that can exist in G must have (IV, V1) labeled by an
X with IsOuter(X) = 1. But this contradicts that K ∈ K.

• Line 11: No paths of length one rooted at IV can exist in G with the second node colored 1.

• Line 12: A recoloring here means that at the time of the query a path IV, V1, V2 exists in G with
edge (IV, V1) labeled by X = K ⊕ opad for the queried K and V3 is colored 0. If the path was
formed due to a Funca query, then this must mean that X = K ′⊕ ipad for some other K ′ and this
contradicts that K,K ′ ∈ K. If the path was formed due to Prima queries, then the check on line
22 means that the IsOuter(X) = 0, but this contradicts that K ∈ K.

• Line 20: A recoloring here means that at the time of the query a path IV, V1, V2 exists in G with
edge (IV, V1) labeled by X with IsOuter(X) = 1 (by the check on line 22) and V3 colored by 0.

29

But the only way such a path can exist is due to execution of line 10 with X = K ⊕ ipad for the
value K of this prior query. This contradicts that K ∈ K.

The flag bad in G3 can only be set due to a query on line 21, and so game G4 makes this explicit by
moving the setting of bad to Prima. Also, we make the setting of bad more liberal by only tracking
chaining variable values. These changes have no effect on the values returned to the adversary. We
have that

Pr
[
GA

3 ⇒ 1
]
= Pr

[
GA

4 ⇒ 1
]

and Pr
[
GA

3 sets bad
]
≤ Pr

[
GA

4 sets bad
]
.

We now bound the setting of bad in G4. The flag is set due to a query (V,M) to Prima such that: (1)
V ∈ X , meaning V = Vo for the latter chosen in Funca as the result of Vo ← R0(IV,K ⊕ opad); and
(2) T[V] 6= 1, meaning that no previous query to Prima was made on IV,M ′ with IsOuter(M ′) = 1.
But together, (1) and (2) imply that the value V ∈ X has not yet been returned to the adversary at
the time of the query. This means that the adversary has no knowledge of the coins underlying the
choice of V and can narrow it down only by the fact that V is not equal to any other chaining variable
returned. Thus, the probability that the adversary can query V is at most 1/(2n − |V|) where |V| is
the size of V at the time of the query. Taking a union bound over all queries to Prima and using the
facts that |V| ≤ 2σ and |X | ≤ q1 we have that

Pr
[
GA

4 sets bad
]
≤

q1q2
2n − 2σ

≤
2σ2

2n

and where we have additionally used our restriction that σ ≤ 2n−2.

Finally, game G5 relaxes the restrictions on selection of chaining variables. A birthday-bound argument
establishes that

Pr
[
GA

4 ⇒ 1
]
≤ Pr

[
GA

5 ⇒ 1
]
+

(2σ)2

2n
.

Combining the above equations gives the bound claimed in the lemma.

The next lemma shows that F[f] is preimage-aware [19]. See Section 2 for the formal definition of
preimage-awareness.

Lemma 4.6 Let f be a random oracle f : {0, 1}n×{0, 1}d → {0, 1}n. Then there exists an extractor
E such that for any adversary A making qe extraction queries, at most q f -queries, and outputs a
message of total length at most dℓ. Then it holds that

Advpra
F[f],E(A) ≤

qeℓ(q + ℓ)

2n
+

(q + ℓ)2

2n
+

q

2n
.

E runs in time at most O(q). �

We just sketch the proof, which is straightforward. Recall that

F[f](K,X,P) = f(IV,K ⊕ ipad) ‖ MD[f]((K ⊕ opad) ‖X) ‖ P

We observe that it is trivial to extract P . For K, one can investigate queries of the form f(IV,M) for
IsOuter(X) = 1 and determine K via GetKey(M). Remaining is extracting X, but this follows from
the preimage awareness of MD[f], which is implied by combining [19, Th. B.1] and [19, Th. 3.2].

30

Acknowledgments

The authors thank Hugo Krawczyk for providing significant feedback and suggestions, in particular
encouraging the authors to include positive results for the indifferentiability of HMAC; Niels Ferguson
for in-depth discussions regarding the security of H2; and the anonymous reviewers for their helpful
suggestions. Dodis was supported in part by NSF grants CNS-1065134, CNS-1065288, CNS-1017471,
CNS-0831299. Ristenpart was supported in part by NSF grant CNS-1065134. Steinberger is supported
by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61061130540, 61073174, and by NSF grant
0994380. Tessaro was supported in part by NSF grants CCF-0915675, CCF-1018064, and DARPA
contracts FA8750-11-C-0096, FA8750-11-2-0225.

References

[1] Elena Andreeva, Bart Mennink, and Bart Preneel. On the indifferentiability of the Grøstl hash
function. In Juan A. Garay and Roberto De Prisco, editors, SCN 10: 7th International Conference

on Security in Communication Networks, volume 6280 of Lecture Notes in Computer Science,
pages 88–105. Springer, September 2010. (Cited on pages 3 and 6.)

[2] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-
preserving iterated hashing: ROX. In Kaoru Kurosawa, editor, Advances in Cryptology – ASI-

ACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 130–146. Springer,
December 2007. (Cited on page 8.)

[3] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes

in Computer Science, pages 602–619. Springer, August 2006. (Cited on pages 5, 6, and 19.)

[4] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham, and
Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In Mitsuru
Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in

Computer Science, pages 232–249. Springer, December 2009. (Cited on pages 5, 19, and 21.)

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authenti-
cation. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, August 1996. (Cited on pages 3, 5, 6, 18,
and 19.)

[6] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, Advances in Cryptology – EURO-

CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491–506. Springer, May
2003. (Cited on page 21.)

[7] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain extension and
the EMD transform. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology – ASI-

ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314. Springer,
December 2006. (Cited on pages 3, 6, and 8.)

[8] Mihir Bellare and Thomas Ristenpart. Hash functions in the dedicated-key setting: Design choices
and MPP transforms. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki,

31

editors, ICALP 2007: 34th International Colloquium on Automata, Languages and Programming,
volume 4596 of Lecture Notes in Computer Science, pages 399–410. Springer, July 2007. (Cited
on pages 7 and 8.)

[9] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. Multi-instance security and its applica-
tion to password-based cryptography. In Advances in Cryptology – CRYPTO ‘12, Lecture Notes
in Computer Science. Springer, 2012. (Cited on pages 5 and 21.)

[10] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EURO-

CRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer,
May / June 2006. (Cited on pages 7 and 28.)

[11] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In Marc Joye,
editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 1–18. Springer, April 2003. (Cited on page 8.)

[12] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability of
the sponge construction. In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, April 2008. (Cited
on pages 3 and 6.)

[13] Donghoon Chang and Mridul Nandi. Improved indifferentiability security analysis of chopMD
hash function. In Kaisa Nyberg, editor, Fast Software Encryption – FSE 2008, volume 5086 of
Lecture Notes in Computer Science, pages 429–443. Springer, February 2008. (Cited on pages 3
and 6.)

[14] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damg̊ard
revisited: How to construct a hash function. In Victor Shoup, editor, Advances in Cryptology

– CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 430–448. Springer,
August 2005. (Cited on pages 3, 6, 8, and 27.)

[15] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational ex-
tractors and pseudorandomness. In Ronald Cramer, editor, Theory of Cryptography – TCC ’12,
volume 7194 of Lecture Notes in Computer Science, pages 383–403. Springer, 2012. (Cited on
page 19.)

[16] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, Advances in

Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, August 1990. (Cited on page 10.)

[17] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Randomness
extraction and key derivation using the CBC, cascade and HMAC modes. In Matthew Franklin,
editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture Notes in Computer

Science, pages 494–510. Springer, August 2004. (Cited on pages 6 and 19.)

[18] Yevgeniy Dodis, Leonid Reyzin, Ronald L. Rivest, and Emily Shen. Indifferentiability of
permutation-based compression functions and tree-based modes of operation, with applications to
MD6. In Orr Dunkelman, editor, Fast Software Encryption – FSE 2009, volume 5665 of Lecture
Notes in Computer Science, pages 104–121. Springer, February 2009. (Cited on pages 3 and 6.)

32

[19] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard for
practical applications. In Antoine Joux, editor, Advances in Cryptology – EUROCRYPT 2009,
volume 5479 of Lecture Notes in Computer Science, pages 371–388. Springer, April 2009. (Cited
on pages 3, 6, 8, 27, and 30.)

[20] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer

Science, pages 139–147. Springer, August 1993. (Cited on pages 4 and 11.)

[21] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer

Science, pages 37–54. Springer, August 2005. (Cited on pages 4 and 11.)

[22] Niels Ferguson and Bruce Schneier. Practical cryptography. Wiley, 2003. (Cited on pages 3
and 6.)

[23] Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. HMAC is a randomness extrac-
tor and applications to TLS. In Masayuki Abe and Virgil Gligor, editors, ASIACCS 08: 3rd

Conference on Computer and Communications Security, pages 21–32. ACM Press, March 2008.
(Cited on pages 6 and 19.)

[24] J. Franks, P. Hallam-Baker, J. Hostetler, P. Leach, A. Luotonen, E. Sink, and L. Stewart. An
Extension to HTTP: Digest Access Authentication. RFC 2069 (Proposed Standard), January
1997. Obsoleted by RFC 2617. (Cited on page 3.)

[25] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE). IETF RFC 2409 (Proposed
Standard), 1998. (Cited on page 18.)

[26] Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the Merkle-Damg̊ard scheme
with a permutation. In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer, December 2007.
(Cited on pages 3, 6, and 8.)

[27] Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure against connec-
tion depletion attacks. In ISOC Network and Distributed System Security Symposium – NDSS’99.
The Internet Society, February 1999. (Cited on pages 4 and 11.)

[28] Ghassan Karame and Srdjan Capkun. Low-cost client puzzles based on modular exponentia-
tion. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, ESORICS 2010:

15th European Symposium on Research in Computer Security, volume 6345 of Lecture Notes in

Computer Science, pages 679–697. Springer, 2010. (Cited on pages 4 and 11.)

[29] Charlie Kaufman. The Internet Key Exchange (IKEv2) Protocol. IETF RFC 4306 (Proposed
Standard), 2005. (Cited on page 18.)

[30] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication.
RFC 2104, February 1997. (Cited on page 5.)

[31] H. Krawczyk and P. Eronen. Hmac-based extract-and-expand key derivation function (hkdf).
RFC 5869 (Proposed Standard), January 2010. (Cited on pages 5 and 18.)

33

[32] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal Rabin,
editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer

Science, pages 631–648. Springer, August 2010. (Cited on pages 5, 6, 18, 19, and 25.)

[33] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility re-
sults on reductions, and applications to the random oracle methodology. In Moni Naor, editor,
TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer

Science, pages 21–39. Springer, February 2004. (Cited on pages 3, 4, 5, 10, and 19.)

[34] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances in

Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, August 1990. (Cited on page 10.)

[35] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security analysis of the TLS
handshake protocol. In Josef Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 55–73. Springer, December 2008. (Cited
on page 19.)

[36] PKCS #5: Password-based cryptography standard (rfc 2898). RSA Data Security, Inc., Septem-
ber 2000. Version 2.0. (Cited on pages 5, 8, and 18.)

[37] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limi-
tations of the indifferentiability framework. In Kenneth G. Paterson, editor, Advances in Cryp-

tology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 487–506.
Springer, May 2011. (Cited on pages 3, 10, 14, and 19.)

[38] Thomas Ristenpart and Scott Yilek. When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In Network and Distributed Systems Security –

NDSS ’10. ISOC, 2010. (Cited on pages 5, 18, 19, and 21.)

[39] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and Juan Manuel González
Nieto. Stronger difficulty notions for client puzzles and denial-of-service-resistant protocols. In
Aggelos Kiayias, editor, Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in

Computer Science, pages 284–301. Springer, February 2011. (Cited on pages 4 and 11.)

[40] Gene Tsudik. Message authentication with one-way hash functions. In Proceedings IEEE INFO-

COM’92, volume 3, pages 2055–2059. IEEE, 1992. (Cited on page 3.)

[41] XiaoFeng Wang and Michael K. Reiter. Defending against denial-of-service attacks with puzzle
auction. In IEEE Symposium on Security and Privacy, pages 78–92, 2003. (Cited on pages 4
and 11.)

[42] Scott Yilek. Resettable public-key encryption: How to encrypt on a virtual machine. In Josef
Pieprzyk, editor, Topics in Cryptology – CT-RSA 2010, volume 5985 of Lecture Notes in Computer

Science, pages 41–56. Springer, March 2010. (Cited on page 19.)

A Internal Collision Probabilities

We briefly discuss computing the probabilities p(H,w, ℓ) and p′(H,w, ℓ) for the case where H[P] =
P = R.

34

adversary DFunc,Prim
w,ℓ :

u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi ← Func(xi−1)
u[j]← xℓ
For i = 1 to w do

v[i]←$ H[Prim](u[i])
y0←$ H[Prim](x0)
For i = 1 to ℓ do

yi←$ Func(yi−1)
Ret (yℓ = v[j]) ∧ (xℓ /∈ {y0, y1, . . . , yℓ})
∧(∀i 6= j : v[i] /∈ {y0, y1, . . . , yℓ}).

adversary D̃Func,Prim
w,l :

u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi ← Func(0d, xi−1)
u[j]← xℓ
For i = 1 to w do

v[i]←$ H[Prim](ipad ‖ u[j])
y0←$ H[Prim](ipad ‖ x0)
For i = 1 to ℓ do

yi←$ Func(opad⊕ ipad, yi−1)
Ret (yℓ = v[j]) ∧(∀i 6= j : v[i] /∈
{y0, y1, . . . , yℓ}).

Figure 13: Left: Adversary Dw,ℓ used in the proof of Theorem 3.2. Right: Adversary D̃w,ℓ used in the
proof of Theorem 4.2. The notation H[Prim](x) indicates the evaluation of the hash construction H
on input x in which P queries are replied by the corresponding Prim queries.

To compute p(H,w, ℓ) for H2 = H2[P], let z0 be a randomly chosen n-bit string, and define zi such
that zi = R(zi−1) for all i = 1, . . . , 2ℓ + 1. Note that in particular z0, z1, . . . , z2ℓ, z2ℓ+1 correspond to
the values x0, y0, . . . , xℓ, yℓ in the definition of p(H,w, ℓ). We first upper bound the probability of the
event bad1 that there is a collision among the z values, which is

Pr [bad] ≤
2ℓ+1∑

i=0

Pr [zi ∈ {z0, z1, . . . , zi−1} | |{z0, z1, . . . , zi−1}| = i]

=
2ℓ+1∑

i=0

i

2n
≤

(2ℓ+ 1)(2ℓ + 2)

2 · 2n
≤

2 · (ℓ+ 1)2

2n
.

Conditioned on bad, we have xℓ /∈ {y0, y1, . . . , yℓ}. Moreover, let bad2 be the event that for some
i ∈ [1 .. w − 1] we get R(Ui) ∈ {y0, y1, . . . , yℓ}. Then,

Pr
[
bad2 | bad1

]
≤

∑

i 6=j

Pr
[
Ui ∈ {x0, x1, . . . xℓ} | bad1

]

+
∑

i 6=j

Pr
[
R(Ui) ∈ {y0, y1, . . . , yℓ} | Ui /∈ {x0, x1, . . . , xℓ} ∧ bad1

]

=
2(w − 1) · (ℓ+ 2)

2n
.

Therefore, p(R, w, ℓ) ≤ Pr [bad1] + Pr
[
bad2 | bad1

]
≤ 2(w−1)·(ℓ+2)

2n + 2·(ℓ+1)2

2n .

It is not hard to see that the same upper bound can be computed for p′, where the z-values are the
intermediate values with respect to R and HMAC[R].

B Proof of Theorem 3.2

A formal description of the adversary Dw,ℓ sketched above is provided in Figure 13.

35

procedure main: // G

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi←$ RO(xi−1)
u[j]← xℓ
v←$ BRO(u) ; phase← 2 ; y0 ← B

RO(x0)
For i = 1 to ℓ do

yi←$ RO(yi−1)
Ret (yℓ = v[j]) ∧ (xℓ /∈ {y0, y1, . . . , yℓ})

∧ (∀i 6= j : v[i] /∈ {y0, y1, . . . , yℓ})

procedure RO(x): // G, G0 - G2, G5

If R[x] = ⊥ then
R[x]←$ {0, 1}n

Ret R[x]

procedure main: // G0

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi←$ RO(xi−1)
u[j]← xℓ
v←$ BRO(u) ; phase← 2
y0 ← B

RO(x0)
Ret (FC(j) 6= ∅)

subroutine FC(i) // G0 −G7

P ← ∅
For all (y′0, y1,

′ . . . , y′ℓ) do
If (phase = 2) ∧ (y′ℓ = v[i])
∧ (∀k ∈ [1 .. ℓ] : R[y′k−1] = y′k)
∧ (∀i′ 6= i : v[i′] /∈ {y′0, y

′
1, . . . , y

′
ℓ})

∧ (xℓ /∈ {y′0, y
′
1, . . . , y

′
ℓ}) then

P ∪←{(y0, y1, . . . , yℓ)}
Ret P

Figure 14: Games G and G0. Note that the adversary B keeps a state across its first and second
invocations.

As the first step, note that by the chain-shift property of H2[P], the condition (yℓ = v[j]) is always
satisfied in the real-world experiment. Consequently,

Pr
[
Real

Dw,ℓ

H2[P]
⇒ 1

]
≥ 1− p(H,w, ℓ) .

The remainder of this proof consists of upper bounding the probability Pr
[
Ideal

Dw,ℓ

RO,S[RO] ⇒ 1
]
under

the constraint that the simulator makes qS queries. To this end, it is convenient to introduce a security
game – which we refer to as G and is described in Figure 14– involving a (stateful) adversary B and a
random oracle RO. The adversary B is given a vector u of w n-bit strings. n− 1 of these are chosen
uniformly at random and independently. The remaining one, placed in a randomly chosen component
j ∈ [1 .. w], is the output xℓ of a chain of ℓ random-oracle invocations starting at a randomly chosen
initial n-bit string x0. The adversary is asked to output a vector v of w distinct n-bit values, to which
it commits. At this point, x0 is revealed to B (and hence, indirectly, also j), which now needs to
output a value y0 such that the output yℓ of an chain of RO invocations starting at y0 equals v[j], and
such that xℓ, as well as v[i] for i 6= j, is not part of this chain.

The following lemma establishes the rather direct relation between the task of building a simulator
for H2[P] and providing a good adversary B for the game G.

Lemma B.1 For all simulators S making qS queries, there exists an adversary B making q′ = qS + ℓ
queries such that

Pr
[
Ideal

Dw,ℓ

R,S ⇒ 1
]
= Pr

[
GB ⇒ 1

]
.

36

Moreover, whenever B outputs y0, then it has issued all RO queries to compute the chain y0, y1, . . . , yℓ
starting in y0.

Proof of of Lemma B.1: The adversary B, upon receiving the vector u, runs an execution of
the simulator S, feeding it with Prim queries u[1], . . . ,u[m], and obtaining replies v[1], . . . ,v[m]. It
outputs v to conclude the first phase of G. In particular, RO queries by the simulator are replied
directly by the oracle in the game G. Then, upon receiving x0, B continues the execution of the
simulator (recall that B is sateful), asking Prim queries to S in order to compute y0 = H[P](x0).
It continues by making all RO queries to evaluate the chain y0, y1, . . . , yℓ such that yi = RO(yi−1).
Finally, B outputs y0. It is not hard to verify that the probability that B wins the game is exactly

Pr
[
Ideal

Dw,ℓ

R,S ⇒ 1
]
.

In the following, we focus on showing an upper bound on Pr
[
GB ⇒ 1

]
for a q′-query adversary

B which, without loss of generality, outputs a value y0 such that it has asked all RO queries defining
a chain (y0, y1, . . . , yℓ) starting in y0. As a first step, we consider the game G0, depicted in Figure 14,
which is similar to G, but possibly slightly easier to win. In G0, we introduce a sub-routine, called
FC, which on input i returns the sets of tuples (y′0, y

′
1, . . . , y

′
ℓ) such that, with respect to RO queries

asked so far, define a chain such that y′ℓ = v[i] and y′i = RO(y′i−1) for i = 1, . . . , ℓ, and xℓ and v[i] for
i 6= j is not part of this chain. In particular, if v has not been defined yet (i.e., phase = 1), then FC

always returns the empty set. We also modify the winning condition so that it returns true as long
as there is a chain (y′0, y

′
1, . . . , y

′
ℓ) ∈ FC(j) (i.e., it does not need to be the one starting at the value y0

output by B). Then, clearly

Pr
[
GB ⇒ true

]
≤ Pr

[
G0

B ⇒ true
]
,

as B winning in G implies B winning G0 because of the fact that B has asked all queries corresponding
to the chain starting at the output string y0.

We continue with Game G1 (cf. Figure 15) which is equivalent to G0. The (merely syntactical)
difference is that it starts by first choosing all components of u uniformly at random. It then compute
the chain x0, x1, . . . only up to xℓ−1, and then sets R[xℓ−1] to equal u[j] if it is undefined, whereas
otherwise it overwrites u[j] as u[j] ← R[xℓ−1], and sets the flag bad. In both cases, xℓ equals u[j].
The next Game G2 (also in Figure 15) is then obtained from G1 by modifying the latter case so that
the value u[j] is not overwritten. Clearly, G1 and G2 are equivalent until bad. With Adv(GB

1 ,G
B
2) =

Pr
[
GB

1 ⇒ true
]
− Pr

[
GB

2 ⇒ true
]
, by the fundamental lemma of game playing we obtain

Adv(GB
1 ,G

B
2) ≤ Pr

[
GB

1 sets bad
]
≤

ℓ−2∑

i=0

(i+ 1) · 2−n ≤
ℓ2

2n+1
,

as conditioned on x0, . . . , xi being distinct, each output RO(xi) for i ∈ [0 .. ℓ−2] is in {x0, . . . , xi} with
probability (i+ 1)/2n.

Note that in G2, the input u to B is random and independent of everything else, as long as
B does not query xℓ−1 to RO. We first transition from G2 into new games G3 and G4 (also on
Figure 15). In G3, the game sets bad if the query RO(xℓ−1) is made before B commits to v. Clearly,
Adv(GB

2 ,G
B
3) = 0. Additionally, G4 is modified so that the value R[xℓ−1] is set to equal u[j] only after

B has output v. Hence, G3 and G4 are equivalent until bad, and

Adv(GB
3 ,G

B
4) ≤ Pr

[
GB

4 sets bad
]
.

37

procedure main: // G1 , G2

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ− 1 do

xi←$ RO(xi−1)
If R[xℓ−1] = ⊥ then

R[xℓ−1]← u[j]
Else

bad← true ; u[j]← R[xℓ−1]

xℓ ← u[j]
v←$ BRO(u) ; phase← 2
y0 ← B

RO(x0)
Ret (FC(j) 6= ∅)

procedure main: // G3 , G4

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ− 1 do

xi←$ RO(xi−1)

If R[xℓ−1] = ⊥ then R[xℓ−1]← u[j]

xℓ ← u[j]
v←$ BRO(u) ; phase← 2
If R[xℓ−1] = ⊥ then R[xℓ−1]← u[j]
y0 ← B

RO(x0)
Ret (FC(j) 6= ∅)

subroutine RO(x): // G3, G4

If R[x] = ⊥ then
If (x = xℓ−1) ∧ (phase = 1) then

bad← true

R[x]←$ {0, 1}n

Ret R[x]

Figure 15: Pseudocode descriptions of Games G1 - G4.

We postpone an analysis of Pr
[
GB

4 sets bad
]
to a later point in the proof, and now continue with

the main sequence of games.
The next game, Game G5 (cf. Figure 16), simply rearranges the contents of Game G4 for better

readability, but is otherwise fully equivalent. In particular, we have now postponed the computation of
the values x1, . . . , xℓ to after B outputs v, which clearly does not affect the game. Then, we transition
to a game G6 which takes into account (via a second procedure FC′) which chains have been created
before the adversary outputs v, and after this, sets the condition bad as soon as some new R[·] entry
is defined such that FC′(j) = ∅ but FC(j) 6= ∅ for the chosen j. Finally, G7 is the same as G6, but
the winning condition checks for (y′0, y

′
1, . . . , y

′
ℓ) ∈ FC′(j). Clearly, G6 and G7 are equivalent until bad,

and thus
Adv(GB

6 ,G
B
7) ≤ Pr

[
GB

7 sets bad
]
.

Finally, combining all transitions, we obtain

Pr
[
GB ⇒ true

]
≤

ℓ2

2n+1
+Pr

[
GB

4 sets bad
]
+ Pr

[
GB

7 sets bad
]
+ Pr

[
GB

7 ⇒ true
]
.

To conclude the proof, we now turn to upper bounding the three probabilities on the RHS.

Upper bounding Pr
[
GB

4 sets bad
]
. By inspection, it is not hard to verify that the probability that

bad is set in G4 equals the probability that B wins the following game G′
4:

38

procedure main: // G5, G6

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

v←$ BRO(u) ; phase← 2
x0←$ {0, 1}n ; j←$ [1 .. w] ; xℓ ← u[j]
For i = 1 to ℓ− 1 do

xi←$ RO(xi−1)
If R[xℓ−1] = ⊥ then R[xℓ−1]← u[j]

If (FC(j) 6= ∅) ∧ (FC′(j) = ∅) then bad← true

xℓ ← u[j]
y0 ← B

RO(x0)
Ret (FC(j) 6= ∅)

procedure main: // G7

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

v←$ BRO(u) ; phase← 2
x0←$ {0, 1}n ; j←$ [1 .. w] ; xℓ ← u[j]
For i = 1 to ℓ− 1 do

xi←$ RO(xi−1)
If R[xℓ−1] = ⊥ then R[xℓ−1]← u[j]
If (FC(j) 6= ∅) ∧ (FC′(j) = ∅) then bad← true

y0 ← B
RO(x0)

Ret (FC′(j) 6= ∅)

subroutine FC′(i): // G6 −G7

P ← ∅
For all (y′0, y1,

′ . . . , y′ℓ) do
If (phase = 2) ∧ (y′ℓ = v[i])
∧ (∀k ∈ [1 .. ℓ] : R′[y′k−1] = y′k)
∧ (∀i′ 6= i : v[i′] /∈ {y′0, y

′
1, . . . , y

′
ℓ})

∧ (xℓ /∈ {y′0, y
′
1, . . . , y

′
ℓ}) then

P ∪←{(y0, y1, . . . , yℓ)}
Ret P

procedure RO(x): // G6 - G7

If R[x] = ⊥ then
R[x]←$ {0, 1}n

If phase = 1 then R′[x]← R[x]
If (phase = 2) ∧ (FC(j) 6= ∅) ∧ (FC′(j) = ∅)

then
bad← true

Ret R[x]

Figure 16: Pseudocode descriptions of Games G5 - G7.

procedure main: // G′
4

Q← ∅ ; u[1], . . . ,u[w]←$ {0, 1}n

v←$ BRO(u)
x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ− 1 do

If R[xi−1] = ⊥ then R[xi−1]←$ {0, 1}n

xi ← R[xi−1]
Ret xℓ−1 ∈ Q

procedure RO(x): // G′
4

Q ∪←{x}
If R[x] = ⊥ then

R[x]←$ {0, 1}n

Ret R[x]

This is because first, we can focus on phase 1, and second, we can postpone the generation of the
values x0, x1, . . . , xℓ−1 to after the execution of the adversary B. To upper bound the probability, let
badi be the event that of {x0, x1, . . . , xi} ∩Q 6= ∅. Then,

Pr
[
GB

4 sets bad
]
= Pr

[
G′

4
B
⇒ true

]

≤ Pr [badℓ−1]

≤ Pr [bad0] +

ℓ−1∑

i=1

Pr
[
badi | badi−1

]
≤

ℓ · q′

2n
,

since Pr [bad0] = q′/2n, and conditioned on badi−1 not having occurred, we have two cases when xi−1

39

is defined: (i) R[xi−1] = ⊥. Here, xi = RO(xi−1) = R[xi−1] is chosen uniformly, and hence it collides
with one of the values in Q with probability at most q′/2n. (ii) R[xi−1] 6= ⊥. But then, this means that
xi−1 = xj for j < i− 1, as xj /∈ Q by badi−1. In turn, it must also be that R[xi−1] = R[xj] = xj+1 /∈ Q
as badi−1 holds, and thus the probability of provoking badi is 0.

Upper bounding Pr
[
GB

7 sets bad
]
. We seek for an upper bound on the probability that a RO

query x in the second phase of the game G7 provokes FC(j) 6= ∅ when FC′(j) = ∅. First, note that
it can never be that setting R[xℓ−1] to u[j] provokes FC(j) to become non-empty: Every new chain
(y′0, y

′
1, . . . , y

′
ℓ) being defined thanks to R[xℓ−1] being set to u[j] = xℓ contains xℓ, and hence is not

returned by FC(j). Therefore, a new chain (y′0, y
′
1, . . . , y

′
q) must be defined when R[x] is set to a fresh

random value, for some string x.
Let Z be the set of strings z0 ∈ {0, 1}

n such that there exists z1, . . . , zℓ′ with ℓ′ < ℓ, zℓ′ = v[j], and
R′[zi−1] = zi for all i = 1, . . . , ℓ′. Then, note that as long as no random choice of R[x] in phase 2 hits
one element of Z, the set FC(j) remains empty. The probability that one such values hits Z is clearly
at most (q′ · |Z|)/2n. Since |Z| ≤ q′, then this means

Pr
[
GB

7 sets bad
]
≤ q′ · 2−n .

Upper bounding Pr
[
GB

7 ⇒ true
]
. Assume that B indeed outputs a vector v with w distinct

components after making at most q′ queries. Note that any two chains (y′0, y
′
1, . . . , y

′
ℓ) ∈ FC′(i′) and

(y′′0 , y
′′
1 , . . . , y

′′
ℓ) ∈ FC′(i′′) are disjoint. As each chain is built by means of asking ℓ RO-queries, this

means that there are at most ⌊ qSℓ ⌋ indices j for which FC′(j) is not empty. Hence,

Pr
[
GB

7 ⇒ true
]
≤

1

w

q′

ℓ
,

as the choice of j is independent of the behavior of the adversary B so far.

C Proof of Theorem 4.2

Let H = H[P] be the hash function with n-bit output, and let HMAC[H] be the corresponding
instantiation of HMAC usingH. A description of the adversary D̃w,ℓ is given in Figure 13, on the right.
The attacker first chooses a random n-bit string x0, and then builds a chain of values of (x0, x1, . . . , xℓ)
so that xi = Func(0d, xi−1) for all i ∈ [1 .. ℓ]. It then chooses a random index j ∈ [1 .. w], and sets
u[j]← xℓ, whereas u[i] is set to a random value for all i 6= j. The next step has D̃w,ℓ asking all necessary
Prim queries to evaluate H on input ipad ‖ u[i] for all i ∈ [1 .. w], obtaining outputs v[1], . . . ,v[w].
Subsequently, D̃w,ℓ also makes all Prim queries needed to evaluate H on input ipad‖x0, and we refer to

resulting output n-bit string as y0. Finally, D̃w,ℓ computes y1, . . . , yℓ, where yi = Func(opad⊕ipad, yi−1)
for all i ∈ [1 .. ℓ], and outputs 1 if and only if yℓ = v[j] (it outputs 0 otherwise).

Let us start by observing that in the real-world experiment Real
D̃w,ℓ

HMAC[H], by the chain-shift prop-

erty of HMAC, we will always have yℓ = v[j]. Therefore, the probability that the attacker D̃w,ℓ

outputs 0 is bounded by the probability that there exists i 6= j such that v[i] ∈ {y0, y1, . . . , yℓ}. The
probability that this happens is, by definition, exactly p′(H,w, ℓ), and thus

Pr

[
Real

D̃w,ℓ

HMAC[H] ⇒ 1

]
= 1− p′(H,w, ℓ) .

The remainder of this proof analyzes the ideal world experiment Ideal
D̃w,ℓ

R,S . As a first step, we proceed

40

procedure main: // G̃

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi←$ RO1(xi−1)
u[j]← xℓ
v←$ BRO1,RO2(u)
phase← 2
y0 ← B

RO1,RO2(x0)
For i = 1 to ℓ

yi←$ RO2(yi−1)
Ret (yℓ = v[j])∧(∀i 6= j : v[i] /∈
{y0, y1, . . . , yℓ}).

procedure main: // G̃0

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ do

xi←$ RO1(xi−1)
u[j]← xℓ
v←$ BRO1,RO2(u)
phase← 2
y0 ← B

RO1,RO2(x0)
Ret (FC(j) 6= ∅)

procedure ROi(x): // G̃, G̃0 - G̃2, G̃5

If Ri[x] = ⊥ then
Ri[x]←$ {0, 1}n

Ret Ri[x]

subroutine FC(i) // G̃0 − G̃7

P ← ∅
For all (y′0, y1,

′ . . . , y′ℓ) do
If (phase = 2) ∧ (y′ℓ = v[i])
∧(∀i 6= j : v[i] /∈ {y0, y1, . . . , yℓ})
∧ (∀k ∈ [1 .. ℓ] : R2[y

′
k−1] = y′k) then

P ∪←{(y′0, y
′
1, . . . , y

′
ℓ)}

Ret P

procedure main: // G̃1 , G̃2

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ− 1 do

xi←$ RO1(xi−1)
If R1[xℓ−1] = ⊥ then

R1[xℓ−1]← u[j]
Else

bad← true ; u[j]← R1[xℓ−1]

xℓ ← u[j]
v←$ BRO1,RO2(u)
phase← 2
y0 ← B

RO1,RO2(x0)
Ret (FC(j) 6= ∅)

procedure main: // G̃3 , G̃4

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

x0←$ {0, 1}n ; j←$ [1 .. w]
For i = 1 to ℓ− 1 do

xi←$ RO1(xi−1)

If R1[xℓ−1] = ⊥ then R1[xℓ−1]← u[j]

xℓ ← u[j]
v←$ BRO1,RO2(u)
phase← 2
If R1[xℓ−1] = ⊥ then R1[xℓ−1]← u[j]
y0 ← B

RO1,RO2(x0)
Ret (FC(j) 6= ∅)

subroutine ROi(x): // G̃3, G̃4

If Ri[x] = ⊥ then
If (i = 1) ∧ (x = xℓ−1) ∧ (phase = 1)

then
bad← true

Ri[x]←$ {0, 1}n

Ret Ri[x]

Figure 17: Games G̃ and G̃1 - G̃4. Note that the adversary B keeps a state across its first and second
invocations.

41

by showing a reduction to a new game, denote G̃, which we define in Figure 17. This is essentially
a version of Game G considered earlier in Figure 14, but using two independent random oracles RO1

and RO2 instead.

Lemma C.1 For all simulators S making qS queries, there exists an adversary B making q′ = qS + ℓ
queries such that

Pr

[
Ideal

D̃w,ℓ

R,S ⇒ 1

]
= Pr

[
G̃

B
⇒ 1

]
.

Moreover, whenever B outputs y0, then it has already issued all RO2 queries to compute the chain
y0, y1, . . . , yℓ.

Proof of of Lemma C.1: The adversary B internally simulates the simulator S. Simulator random
oracle queries of the form (ipad, x) are answered as RO1(x), queries of the form (opad, x) are answered
as RO2(x), whereas B internally simulates answers to all other types of RO queries. Then, when
receiving the vector u, the adversary B makes Prim queries to S to evaluate H(ipad‖u[i]) for all i, and
outputting the results v[1], . . . ,v[w] of these evaluations as a vector. Then, upon receiving x0, B asks
Prim queries to S to evaluate H on input ipad ‖x0, and once the result y0 is computed, first makes all
RO2 queries to evaluate the chain of length ℓ starting at y0 of length ℓ, and then outputs y0. Clearly,

the probability that B outputs 1 is the same as the probability that D̃w,ℓ outputs 1 in Ideal
D̃w,ℓ

R,S , since

Func queries needed to compute the two chains give independent outputs due to 0d 6= ipad⊕ opad.

The rest of the proof is similar to the one of Theorem 3.2. Specifically we now focus on upper

bounding Pr
[
G̃

B
⇒ 1

]
for the adversary B built from S as in the lemma statement making q′ queries.

As a first step, we consider the game G̃0, depicted in Figure 17, which is similar to G̃, but is potentially
easier to win. Concretely, in G̃0, we introduce a sub-routine, called FC, which on input i returns the sets
of tuples (y′0, y

′
1, . . . , y

′
ℓ) such that, with respect to RO2 queries asked so far, define a chain such that

y′ℓ = v[i] and y′i = RO2(y
′
i−1) for i = 1, . . . , ℓ, and v[i] for i 6= j is not part of this chain. In particular,

if v has not been defined yet (i.e., phase = 1), then FC always returns the empty set. We also modify
the winning condition so that it returns true as long as there is a chain (y′0, y

′
1, . . . , y

′
ℓ) ∈ FC(j) (i.e., it

does not need to be the one starting at the value y0 output by B). Then, clearly

Pr
[
G̃B ⇒ true

]
≤ Pr

[
G̃

B

0 ⇒ true
]
,

as B winning in G̃ implies B winning G̃0 because of the fact that B has asked all queries corresponding to
the chain starting at y0. We continue with Game G̃1, which is equivalent to G0. The only modification
is purely syntactical: The game starts by first choosing all components of u uniformly at random.
It then compute the chain x0, x1, . . . only up to xℓ−1, and then sets R1[xℓ−1] to equal u[j] if it is
undefined, whereas otherwise it overwrites u[j] as u[j] ← R1[xℓ−1], and sets the flag bad. In both
cases, xℓ equals u[j]. The next game, Game G̃2, is derived from G1 by modifying the latter case so
that the value u[j] is not overwritten. Clearly, G̃1 and G̃2 are equivalent until bad, and therefore

Adv(G̃B
1 , G̃

B
2) ≤ Pr

[
G̃B

1 sets bad
]
≤

∑ℓ−2
i=0(i + 1) · 2−n ≤ ℓ2

2n+1 , as conditioned on x0, . . . , xi being

distinct, each output RO1(xi) for i ∈ [0 .. ℓ− 2] is in {x0, . . . , xi} with probability (i+ 1)/2n.
Note that in G̃2, the input u to B is random and independent of everything else, as long as B does

not query xℓ−1 to RO1. We transition from G̃2 into new games G̃3 and G̃4. In G̃3, the game sets bad
if the query RO1(xℓ−1) is made before B commits to v. Clearly, Adv(G̃B

2 , G̃
B
3) = 0. Additionally, G̃4

is modified so that the value R1[xℓ−1] is set to equal u[j] only after B has output v. Hence, G̃3 and

42

procedure main: // G̃5, G̃6

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

v←$ BRO1,RO2(u)
phase← 2
x0←$ {0, 1}n ; j←$ [1 .. w] ; xℓ ← u[j]
For i = 1 to ℓ− 1 do

xi←$ RO1(xi−1)
If R1[xℓ−1] = ⊥ then R1[xℓ−1]← u[j]

If (FC(j) 6= ∅) ∧ (FC′(j) = ∅) then bad← true

xℓ ← u[j]
y0 ← B

RO1,RO2(x0)
Ret (FC(j) 6= ∅)

procedure main: // G̃7

phase← 1
u[1], . . . ,u[w]←$ {0, 1}n

v←$ BRO1,RO2(u)
phase← 2
x0←$ {0, 1}n ; j←$ [1 .. w] ; xℓ ← u[j]
For i = 1 to ℓ− 1 do

xi←$ RO1(xi−1)
If R[xℓ−1] = ⊥ then R1[xℓ−1]← u[j]
If (FC(j) 6= ∅) ∧ (FC′(j) = ∅) then bad← true

y0 ← B
RO1,RO2(x0)

Ret (FC′(j) 6= ∅)

subroutine FC′(i): // G̃6 − G̃7

P ← ∅
For all (y′0, y1,

′ . . . , y′ℓ) do
If (phase = 2) ∧ (y′ℓ = v[i])
∧ (∀k ∈ [1 .. ℓ] : R′2[y

′
k−1] = y′k)

∧ (∀i′ 6= i : v[i′] /∈ {y′0, y
′
1, . . . , y

′
ℓ}) then

P ∪←{(y0, y1, . . . , yℓ)}
Ret P

procedure RO2(x): // G̃6 - G̃7

If R2[x] = ⊥ then
R2[x]←$ {0, 1}n

If phase = 1 then R′2[x]← R[x]
If (phase = 2) ∧ (FC(j) 6= ∅) ∧ (FC′(j) = ∅)

then
bad← true

Ret R[x]

Figure 18: Descriptions of Games G̃5 - G̃7.

G̃4 are equivalent until bad, and Adv(G̃B
3 , G̃

B
4) ≤ Pr

[
G̃B

4 sets bad
]
. We will prove an upper bound

on this probability below, but for now continue with the main sequence of games.
The next game, Game G̃5, simply rearranges the contents of Game G̃4 for better readability, but

is otherwise fully equivalent. In particular, we postpone the computation of the values x1, . . . , xℓ
to after B outputs v, which clearly does not affect the game. Then, we transition to a game G̃6

which takes into account (via a second procedure FC′) those chains that have been created before the
adversary outputs v, and after this, sets the condition bad as soon as some new R2[·] entry is defined
such that FC′(j) = ∅ but FC(j) 6= ∅ for the chosen j. Finally, G̃7 is the same as G̃6, but the winning
condition checks for (y′0, y

′
1, . . . , y

′
ℓ) ∈ FC′(j). Clearly, G̃6 and G̃7 are equivalent until bad, and thus

Adv(G̃B
6 , G̃

B
7) ≤ Pr

[
G̃B

7 sets bad
]
. Finally, combining all transitions, we obtain

Pr
[
G̃

B
⇒ true

]
≤

ℓ2

2n+1
+ Pr

[
G̃

B

4 sets bad
]
+ Pr

[
G̃

B

7 sets bad
]
+ Pr

[
G̃

B

7 ⇒ true
]
.

To conclude the proof, we need to upper bound the three probabilities on the RHS. This is very similar
to the proof of Theorem 3.2, and is omitted.

43

D Proof of Theorem 3.3

The simulator S that we use is given by the procedure OnRightQuery(·) in game G0 of Figure 19. The
simulator maintains four tables: g, g−1, G and G−1. These tables, as well as other arrays in subsequent
games, are assumed to have their entries initialized to ⊥ at the start of the game. We note these tables
can be interpreted as four seperate directed graphs of vertex set {0, 1}n, or as a single directed graph
of vertex set {0, 1}n with edges of four different colors.

We use sans-serif variable names such as bad, fresh and KnownToSim for boolean values. All boolean
values are implicitly initialized to false. Notation such as gProxy[x].fresh (see e.g. game G11) indicates
that each entry in the table gProxy holds a bit-value fresh besides the n-bit value gProxy[x] itself.
We emphasize that fresh is not an attribute of the value gProxy[x], but just an additional bit of data
stored at the x-th entry of the table gProxy[]. Such bits are also assumed to be initialized to false at
the start of the game.

It will be convenient to view the internal randomness of each game (to be distinguished from A’s
randomness) as a tape divided into n-bits blocks. Thus, the instruction x←$ {0, 1}n should be viewed
as setting x equal to the next unread block of the random tape.

The boolean value bad is called a flag. Once set to true, bad is never reset to false. We recall the
standard fact that if two games Gi,Gi+1 differ only for instructions that occur after the flag bad is set
to true (see for example games G2, G3) then

|Pr[AGi ⇒ 1]− Pr[AGi+1 ⇒ 1]| ≤ Pr[AGj sets bad← true].

for either j = i or j = i+1, where all the probabilities are computed both over A’s coins and over the
random coins used in each game.

The query history of an adversary A after its i-th query has been answered is the sequence Qi =
(Qj)

i
j=1, where each Qj is a tuple in {0, 1}n × {0, 1}n × {l, r}. For example, if Qj = (xj , yj, l), this

indicates A’s j-th query was xj{0, 1}
n, asked to its left oracle, and that it received the value yj ∈ {0, 1}

n

in response. Also, A’s query sequence Q∗
i of first i queries is

(
(xj , ∗j)

)i
j=1

if Qi =
(
(xj , yj , ∗j)

)i
j=1

.
Namely, the query sequence records which queries were asked, without the answers.

We note that the game G0 (Figure 19) is equivalent to the oracle pair (RO,S) and that game
G23 is equivalent to the oracle pair (G[g], g) for a random g. As written, the simulator given by
OnRightQuery(·) in game G0 makes more than 3q1 + 1 calls to RO, however many of these are
redundant, and could be eliminated by having the simulator check its table G before calling RO. It
is not difficult to see that once redundant calls are eliminated the simulator never makes more than
3q1 + 1 calls to RO per query it answers.

We proceed to upper boundA’s distinguising advantage ∆(Gi,Gi+1) := |Pr[A
Gi⇒1]−Pr[AGi+1⇒1]|

between games Gi,Gi+1 for 0 ≤ i < 21.

(G0 → G1; Figure 19.) Game G1 implements the RO via lazy sampling, taking place in the
subroutine ROsub. Moreover, all random sampling is done via the subroutine Random(), and the
“simulator” (which is still, roughly speaking, the procedure OnRightQuery(), though such a distinction
will progressively become harder to make) make its queries to ROsub() via the subroutine SimROsub().
In particular, this means that G−1 is set only for queries made by the simulator, in accordance with
game G0. All in all the changes from game G0 to G1 are syntactical, and so ∆(G0,G1) = 0.

Note: Since after game G1 the simulator no longer “queries” any external oracle, from now on we
take the term query to exclusively mean “adversarial query”: a query to either OnLeftQuery(·) or
OnRightQuery(·), made by A.

44

(G1 → G2; Figures 19 & 20.) Game G2 adds a number of “bells and whistles” that have no effect
except to result in many unused calls to Random(). Moreover, G2 maintains a set X containing all
values queried by the adversary, as well as all values sampled in Random(). The number of calls to
Random() per query is normalized via the variable NumCallsToRandom, which forces Random() to be
called exactly twice for every left oracle query and 4q1 +3 times for every right oracle query. (Indeed,
it is possible to check for G2—as well as for all other games—that Random() is called at most twice
per left oracle query and at most 4q1+3 times per right oracle query. The latter maximum is achieved
in game G11.) Besides wasting a portion of the random tape these changes have no effect, and so
∆(G1,G2) = 0.

Note: For the remaining games, it will be convenient to view the randomness used in BuildXprime()
as coming from a second, independent random tape; that is, we dedicate a “primary” random tape for
the subroutine Random(), and use a “secondary” random tape for sampling done by BuildXprime().
For every right oracle query there is an associated sequence of 4q1 +3 blocks used for that call on the
primary random tape; we call such a sequence a chunk (of the primary random tape). We note that
chunks are not necessarily contiguous on the primary random tape, given the presence of left oracle
queries and that, moreover, there placement only becomes known at runtime, as the adversary makes
queries.

(G2 → G3; Figure 20.) Since games G2 and G3 are identical up to bad ← true, it suffices to
upper bound the probability of the latter event. Since X ∪ X ′ has size (4q1 + 3)q2 + 2q1, and since
Random() is called 4q1 + 3 times per query to OnRightQuery() which is itself called (at most) q2
times by the adversary, the chance bad ← true is triggered by one of the calls to OnRightQuery() is
at most ((4q1 + 3)q2 + 2q1)(4q1 + 3)q2/N . Likewise, the chance of triggering bad ← true by a call
to OnLeftQuery() is at most ((4q1 + 3)q2 + 2q1)2q1/N , since at most q1 such calls are made, each
giving rise to 2 calls to Random(). Adding these two bounds, we the chance of bad← true is at most
((4q1 + 3)q2 + 2q1)

2/N . Thus ∆(G2,G3) ≤ ((4q1 + 3)q2 + 2q1)
2/N .

(G3 → G4; Figures 20 & 21.) Game G4 introduces a set Y that keeps track of values queried
by the adversary and returned to the adversary. (These are, essentially, all the values “known to the
adversary”.) This and other minor changes (such as the insertion of a new bad flag) do not affect the
execution, and thus ∆(G3,G4) = 0.

(G4 → G5; Figure 21.) We argue that the probability of bad← true in game G5 is upper bounded
by ((4q1 + 3)q2 + 2q1)(q1 + q2)/(N − 2q2 − 2q1). For this, we will show that when A makes its
(i + 1)-th query xi+1 to either of its oracles in game either G4 or G5 (but assuming the game has
not aborted yet), it has no knowledge of the values in the set X\Y , in the sense that, conditioned

on its query history Qi =
(
(xj , yj , ∗j)

)i
j=1

so far, the set X\Y is equidistributed over all sets of size

(4q1+3)qq2 +2qq1 −|Y | in the complement of Y , where qq1 is the number of left oracle queries and qq2
is the number of right oracle queries among the adversary’s first i queries, with randomness computed
with respect to all possible random tapes compatible with Qi. To argue this, let Xr,s denote the
value of the set X when game G5 is run with primary and secondary random tapes r, s on the query
sequence Q∗

i , assuming that r and s are compatible with Qi. Fix such tapes r, s (thus fixing Xr,s), and
let T be an arbitrary subset of {0, 1}n\Y of size (4q1+3)qq2 +2qq1−|Y | (where Y = {x1, . . . , yi}). Let
π : {0, 1}n → {0, 1}n be a permutation taking Xr,s\Y to T and fixing points in Y . Letting π(r), π(s)
denote the application blockwise of π to the random tapes r, s, it is easy to check thatXπ(r),π(s) = T∪Y ,
i.e.Xπ(r),π(s)\Y = T . It follows thatX\Y is equidistributed among all sets of size (4q1+3)qq2+2qq1−|Y |
in {0, 1}n\Y , conditioned on Qi. Thus, the probability that bad ← true at the i-th query is at most
((4q1 +3)qq2 +2qq1 − |Y |)/(N − |Y |) ≤ ((4q1 +3)q2) + 2q1)/(N − 2q2 − 2q1). Union bounding over all

45

q1 + q2 queries made by the adversary gives ∆(G4,G5) ≤ ((4q1 +3)q2 +2q1)(q1 + q2)/(N − 2q2− 2q1).

Note: If Abort does not occur in game G5, then the graphs G, G−1 and g can be shown to be fairly
structured. For example, it is easy to check that after each query is answered (subject to non-abortion)
the following three invariants are maintained in G5:

(1) No cycles or collisions (every vertex has indegree10 at most 1) occur in the directed graph defined
by G, or in the directed graphs defined by G−1 and g;

(2) As the graph G grows, no edge is ever added whose endpoint is already adjacent to another edge
of G ∪ G−1 ∪ g;

(3) G−1 is a reversed subgraph of G (every edge of G−1, reversed, becomes an edge of G).

To discuss further features of the graphs, we make some additional definitions. Let G be the restriction
of G to edges whose reversal is also in G (these are the edges “known to the simulator”). The edges in
G\G are called hidden. A ladder is configuration consisting of an ordered pair of two maximal paths
(s−q1 , . . . , s0, . . . , sm′) and (t−k, . . . , t0, . . . , tm) in G, such that: (i) the paths are vertex disjoint; (ii)
0 ≤ k ≤ q1, m ≥ q1+1 and m′ ∈ {m− 1,m}; (iii) (ti, si), −k ≤ i ≤ m′, and (si, ti+1), −k ≤ i ≤ m− 1,
are edges of g, and these are the only edges of g adjacent to a vertex in {s−q1 , . . . , sm′ , t−k, . . . , tm}.

The path (s−q1 , . . . , sm′) is called the ladder’s upper side and the path (t−k, . . . , tm) is called the
ladder’s lower side11 The vertex t−k is called the anchor of a ladder, and t0 is called the center. The
edges (ti, si), (si, ti+1), −k ≤ i < q1, are called the rungs of the ladder. A rung of the form (ti, si) is
upward ; a rung of the form (si, ti+1) is downward. The tip of a ladder is the last vertex on the unique
g-path starting at the anchor. (The tip is either tm or sm′ depending on whether m > m′ or m = m′.)
The tip precursor is the next-to-last vertex on this path.

A maximal path in G\G ending at a ladder’s anchor is called an anchored hidden chain. A maximal
path in G\G not adjacent to any edges in G ∪ g is called an isolated hidden chain. We make these
definitions only for games G5 and G6 (afterwards, we will update the definitions as well as the stated
properties). For games G5, G6 one can check that the following facts hold after each query is answered,
presuming the game is in a non-aborted state:

(4) Any two ladders are vertex- (and hence also edge-) disjoint;

(5) Every edge of G∪g is either in a ladder, in a hidden chain anchored to a ladder, or in an isolated
hidden chain; moreover (trivially) the endpoints of edges in G\G are in the set Y ;

(6) The set of vertices in a ladder that are in the set Y forms a connected component in G ∪ g that
contains the anchor of the ladder; moreover, this set does not contain any upper side vertices
non-adjacent to a rung, and does not contain the ladder’s tip.

Giving detailed proofs of (4), (5) and (6) for G5 and G6 is not difficult, but would take us afield.
We note that the (high-level) reason why Y never contains a ladder’s tip is that the simulator keeps
elongating each ladder such that every ladder’s tip is at least distance q1 + 1 in G ∪ g from any point
in the ladder that A has queried to the simulator, coupled with the fact that A has only q1 queries to
the RO.

10The outdegree is automatically at most 1, since these graphs represent functions.
11We note that since ladders are defined as an ordered pair of paths, there is no ambiguity as to which is the upper or

lower side; nonetheless, even if a ladder is only given as the subgraph in G ∪ g induced by the path vertices, one can tell
the upper from the lower side from the fact that the lower side contains the head of the g-path formed by the ladder’s
rungs.

46

We make a few more definitions. The length ℓ of the longest path in G ending at the center t0 of a
ladder is called the extension length of the ladder; we note the path of length ℓ ending at t0 is unique,
and that its head is either the ladder’s anchor or else the head of the (unique) hidden chain ending at
the ladder’s anchor. It is easy to check from (5), (6) and from the fact that the adversary makes at
most q1 queries that the extension length is at most q1. Finally, if (s−q1 , . . . , sq1) is the upper side of
a ladder of extension length ℓ, then we call the path (s−q1 , . . . , s−ℓ) the excess upper path.

As hinted above, since successive games keep tweaking the data structures, an unavoidable annoy-
ance is that some of the above definitions will become outdated (see, for example, the comment after
the transition G6 → G7). We have found no other way, unfortunately, but to update each time those
definitions that are still required for the discussion of subsequent games.

We also point out that games G5–G20 have the following well-behavedness property: except for the
abort event, the execution path taken during one query answer cycle does not depend on the internal
randomness; that is, knowing the state G±1 and g at the point when a query is asked is enough to
know which lines of code will be executed by the game in what order until it returns, assuming Abort
does not occur. This property will be useful for “randomness cut-and-paste” arguments used below.

(G5 → G6; Figures 21 & 22.) The unique change in game G6 is that the line “If y = ⊥ then
Abort” is removed from the procedure OnRightQuery(·). We argue that G−i[g[xi]] at the previous
line never returns ⊥, so that this change has no effect. Indeed, given property (5) above, the edge
(xi, g[xi]) must be either an upward or a downward rung of some ladder. If it is a downward rung and
G−i[g[xi]] = ⊥ then i > 0 and x = x0 must be an upper side vertex nonadjacent to any downward
rung, a contradiction to the fact that Y contains no such vertices and to the abortion condition added
in game G5. If (xi, g[xi]) is an upward rung, then G−i[g[xi]] 6= ⊥ follows from the fact that any ladder’s
extension length is at most q1. Thus ∆(G5,G6) = 0.

(G6 → G7; Figures 22 & 23.) In game G7, the call SetTable(G, x,ROsub) is moved from
SimROsub() to ROsub(), and SimROsub() is bypassed altogether in favor of ROsub(). The effect
of this change is that G−1 becomes the exact reverse graph of G, instead of being a subgraph of the
reversal of G. However, this enlargement of G−1 has no effect, since no lookups in G−1 (or its iteration)
in game G6 ever give value ⊥ (since the only use of G−1 occurs in OnRightQuery(), this was in fact
argued above). Thus ∆(G6,G7) = 0.

Definition update. Since G−1 is now the same as G, G = G and some definitions must be adjusted. In
particular, the lower side of a ladder (t−k, . . . , tm) is not required to be a maximal path in G, but only
to be “non-extendible at the end” in G (i.e., that tm have outdegree 0 in G). The definitions of upper
side, anchor, center, tip and tip precursor, upward and downward rungs are unaffected. We redefine
a anchored hidden chain to be a path in G ending at a ladder’s anchor, that is “non-extendible at
the start” (i.e., the path’s head has indegree 0), and that is nonadjacent to any edges of g except
at its endpoint (the ladder’s anchor). Isolated hidden chains are redefined as (maximal) connected
components of G not containing any vertex of a ladder or any vertex adjacent to an edge of g. Subject
to these changes, the above properties (1)–(6) still hold (though the second half of (5) is now void).

(G7 → G8; Figures 23 & 24.) In game G8 MakeLadder() “manually” erases the excess upper
path of the ladder being created. This has no effect because these entries of G and G−1 are never
subsequently read. Thus ∆(G7,G8) = 0.

Definition update. We allow the upper side of a ladder to be shortened. Specifically, the upper and
lower sides of a ladder are now paths (s−ℓ, . . . , sm′) and (t−k, . . . , tm) in G such that 0 ≤ k ≤ ℓ, such
that the upper side is a maximal path in G and tm has outdegree 0 in G, such that properties (i), (ii),

47

(iii) above for ladders still hold. Again, one can verify that items (1)–(6) still hold (from G8 all the
way to G16, in fact). We also deprecate the definitions of “center” and “extension length” without
updating them. (These will no longer be needed.)

(G8 → G9; Figures 24 & 25.) In game G9 the excess upper path of the ladder is “never created in
the first place”. Note this results in fewer calls to Random() from within MakeLadder(). In particular,
for example, the call to MakeLadder() has fewer chances of causing the game to abort. Nonetheless,
we argue that games G8 and G9 are indistinguishable. Note that if one cuts the first q1 − ℓ blocks
of (primary tape) randomness used by MakeLadder during a given query and pastes these at the end
the same chunk (for the i-th right oracle query, this is the i-th chunk), then, for this one query, and
assuming given states of G, G−1 and g at the start of the query, running G8 with the original chunk or
else running G9 with the new chunk produces the exact same result, in the sense that the probability
of abortion (computed only over the secondary random tape, and fixing the first) is equal in either
world, and that if the game doesn’t abort then the final values of the tables G, G−1, g as well as
of the set X are equal in either world at the end of that query (in particular, the blocks that were
cut-and-pasted become part of X in either case). From this it is easy to conclude, by induction over
the number of queries, that the two worlds are equidistributed. Thus ∆(G8,G9) = 0.

(G9 → G10; Figures 25 & 26.) The game G10 introduces a functionality whereby the value sampled
in ROsub() can be set externally. This functionality is only used by MakeLadder(), which is honestly
sampling the second argument to ROsub. Thus the change is syntactical, and ∆(G9,G10) = 0.

(G10 → G11; Figures 26 & 27.) Game G11 introduces a new array gProxy that is sampled in
Random(), and that is never used anywhere else. The sampling of gProxy in ROsub produces a
“translation effect” on the random tape, but one can argue this effect leaves the games equidistributed
by using a cut-and-paste argument as in the transition G8 → G9. (We note in passing that the cut-
and-paste argument is facilitated by the fact that we know at the outset of a right oracle query exactly
which primary random blocks of the current chunk will be assigned to gProxy; see the last comment
before the G5 → G6 transition.) Thus we have ∆(G10,G11) = 0.

(G11 → G12; Figures 27 & 28.) In game G12 the randomness “stored” in gProxy is accessed by
MakeLadder() instead of using calls to Random(). This requires some justifications. Note that, since
every value stored in gProxy is sampled by Random(), and hence is in X, then if one conditions only
on knowledge of G, G−1, g and on the fact that the currently queried value x did not cause Abort
(via collision with X\Y), and one reads a “fresh” (yet-unread) value from gProxy, then this value is
distributed randomly at uniform among all values that do not appear in G±1, g±1, and that are not
equal to x—moreover, note the same statement holds if one replaces “reading a fresh value in gProxy”
by “calling Random(), assuming Abort does not occur”. Moreover, the fresh value read from gProxy

is also stored in X, just like a value returned by Random(). The two methods of obtaining a random
value therefore only differ in that Random() can cause Abort, whereas reading a fresh value from
gProxy cannot. So conditioned on non-abortion and on a given state of G±1 and g at the point when a
query is issued, the answer to the query will be equidistributed in games G11 and G12; moreover, the
state of G±1 and g will also be equidistributed (allowing to pursue induction on the number of queries).
Thus, since Abort anyway occurs with equal probability at each query of each game, ∆(G11,G12) = 0.

Note: Game G12 already samples and uses all randomness “in the same order” as the final construction
G[g]. One consequence of this is that games G12 through G20 are indistinguishable in the following
strong sense: running these games with equal random tapes (primary and secondary) on the same
query sequence gives the same exact query answers (or Abort answer). Nonetheless, this must be

48

argued game by game.

(G12 → G13; Figures 28 & 29.) Game G13 removes the “freshness” and “definedness” checks on
gProxy from G12. On the one hand, because a ladder is only created once and ladders are vertex-
disjoint, all values G−ℓ[x] or Gi+1[x] used as indices in MakeLadder() are distinct, the same entry of
gProxy cannot be read by two distinct calls to MakeLadder (or twice during the same call). On the
other hand, note a fresh value gProxy[u] exists as long as a call of the form ROsub(u,⊥) has been
made before g[u] is defined, and before any call of the form ROsub(u, y), y 6= ⊥ has been made. For
the case of u = G−i[x], i ≥ 1, such calls have been while answering the adversary’s own queries to
the left oracle. For the case of u = Gi[x], i ≥ 0, such calls in the (necessarily completed) For loop
of OnRightQuery() (and possibly before while answering A’s left oracle queries). Hence the gProxy

values read by MakeLadder() are always defined and fresh. Thus, ∆(G12,G13) = 0.

(G13 → G14; Figures 29 & 30.) In G14 the line gProxy[gProxy[x]] ← z is added to the If-block
of ROsub(). Because we have argued above that MakeLadder() never reads a ⊥ value from gProxy,
it is sufficient to argue that gProxy[gProxy[x]] is always ⊥ right before gProxy[gProxy[x]] is set in
ROsub() in order to argue that the change in ROsub() has no effect. (In particular, note that it is
not our concern whether gProxy[gProxy[x]] is overwritten by the line gProxy[x]← g[x] during a later
call to ROsub() with argument gProxy[x]; we are concerned with gProxy[gProxy[x]] being read, and
influencing the execution, not with it being overwritten.) But since gProxy[x] has just been returned
by Random(), and since ROsub() is always called with a first argument that is in X (and since
Random() samples outside of X), it is clear that gProxy[gProxy[x]] is ⊥ right before being assigned
z. Hence the change to ROsub() has no effect and ∆(G13,G14) = 0.

(G14 → G15; Figures 30 & 31.) In game G15 the function ROsub() is rewritten, and takes (again)
a single argument. We argue the changes have no effect. More precisely, we argue by induction on
the number of calls to ROsub() that for the same query sequence Q∗

q2 and the same random coins
(primary and secondary), the contents of the arrays G, g and gProxy are the exact same after each call
to ROsub() in G14 and G15. (Obviously, thus, the sequence of query answers will also be the same.)
Moreover we also argue by induction on the number of calls to ROsub() that, for both games G14 and
G15, gProxy always contains g, in the sense that g[u] 6= ⊥ =⇒ gProxy[u] = g[u] for all u ∈ {0, 1}n,
with this invariant being true, in fact, after each line of execution (internal or external to ROsub(), in
either game). We note gProxy obviously contains g at the start of each game, when both arrays are
empty.

Assuming the latter claim by induction, the If-block containing the instruction gProxy[x] ← g[x]
obviously has no effect in G14, so we may ignore it12. We note that at the point when MakeLadder() is
called on a point x0, and assuming ℓ as defined in MakeLadder(), there is a maximal path (x−ℓ, . . . , x0, . . . , xq1+1)
existing in G such that g is defined at none of the xi’s, such that si := gProxy[xi] is defined for
−ℓ ≤ i ≤ q1, and such that gProxy[si] = xi+1 also for −ℓ ≤ i ≤ q1; the ladder’s upper side becomes
(s−ℓ, . . . , sq1) and gProxy is unchanged when MakeLadder() returns, so that gProxy, in particular,
contains all the values of g set by FillInRungs() at the end of the call to MakeLadder(). Moreover,
it is easy to check that future calls to FillInRungs() for the same ladder maintain the invariant that
g is a subtable of gProxy, given that any call to ROsub(x) or ROsub(x,⊥) at a point x such that

12An astute reader may note that this If-block is never used in the analysis of any transition, from the point in game
G11 where it appears. In fact, this If-block is superfluous, strictly speaking, but is kept for esthetical reasons. More
precisely, it is kept so that gProxy[u] and g[u] never contain different non-null values in games G11–G13; without the
If-block such inconsistencies could (and would) occur when a ladder is “extended” (via calls to FillInRungs() made from
within OnRightQuery()), but without effect, because not affecting entries of gProxy subsequently read by MakeLadder().
In G14, the If-block has no effect at all.

49

g[x] is already defined results in setting gProxy[g[x]] = gProxy[gProxy[x]] to the call’s value. Thus, g
remains throughout a subtable of gProxy.

Note that if G[x] is defined then calls to ROsub() with first argument x are obviously equivalent in
G14 and G15. It therefore suffices to consider the cases when G[x] is undefined.

For calls ROsub(x, z) with z = ⊥ (and G[x] = ⊥) in game G14, these are obviously equivalent to
calling ROsub(x) in G15 if gProxy[x] is undefined; if y := gProxy[x] is defined then the calls are still
equivalent as long as gProxy[y] is undefined. However it is easy to check that the only calls for which
G[x] = ⊥ and gProxy[x], gProxy[y] are both defined are the calls made via MakeLadder(), for which
z 6= ⊥. This establishes that ROsub() has the same effect (on G, gProxy and g) in G14, G15 for all calls
to ROsub() made outside MakeLadder(). For the calls to ROsub(x)/ROsub(x, z) made from within
MakeLadder(), moreover, it is easy to see that gProxy[x], gProxy[y] = gProxy[gProxy[x]] are defined
beforehand, and that the result of such a call is just to set G[x] = z where z = gProxy[y]. Hence, all
calls to ROsub() are equivalent in either world, and ∆(G14,G15) = 0.

(G15 → G16; Figures 31 & 32.) G16 replaces the array g by gProxy; the only difference between
the two arrays in game G15 is that gProxy can be defined on more points than g (as established),
and this matters when g[xi] is tested for a value in OnRightQuery(). Game G16 circumvents this by
introducing boolean field KnownToSim, which is set to true if and only if the corresponding entry of
the “old” table g (in game G15) is set to a non-⊥ value. Moreover G16 introduces two new calls to
SetTable() in ROsub(), but since the array g−1 is not used these have no effect. Altogether, therefore,
∆(G15,G16) = 0.

(G16 → G17; Figures 32 & 33.) In game G17, G is replaced everywhere by g2 and G−1 is replaced
everywhere by g−2. Since it is straightforward to check that, in game G16, G[x] = g2[x] for all x
where G[x] 6= ⊥, and also G−1[x] = g−2[x] for all x where G−1[x] 6= ⊥, this change has no effect. Thus
∆(G16,G17) = 0.

(G17 → G18; Figures 33 & 34.) Game G18 replaces the call to MakeLadder(x) with simply
FillInRungs(x). Indeed it is easy to check that in game G17 the only part of MakeLadder() with any
effect is the call to FillInRungs(). Moreover calls to SetTable(g, ∗, ∗) are dropped in G18 since g−1 is
no longer used there. Thus the changes have no effect and ∆(G17,G18) = 0.

(G18 → G19; Figures 34 & 35.) In game G19 calls to FillInRungs() have been “folded back” into
the For loop of OnRightQuery(), to equivalent effect. Indeed it is just a matter of case checking to
see that that G19 produces the same result as G18, whether FillInRungs() is called inside or outside
of the For loop in G18. Thus ∆(G18,G19) = 0.

(G19 → G20; Figure 35.) In game G20 all Abort conditions are dropped. Arguing as in transitions
G2 → G3 and G4 → G5 (and using a union bound), one can show that probability of bad ← true in
G19 is at most ∆(G2,G3) + ∆(G4,G5). Thus ∆(G19,G20) ≤ ((4q1 + 3)q2 + 2q1)

2/N + ((4q1 + 3)q2 +
2q1)(q1 + q2)/(N − 2q2 − 2q1).

(G20 → G21; Figures 35 & 36.) Game G21 clears up clutter left over by the defunct Abort
conditions, and removes all references to KnownToSim, which was unused (because never tested for)
in games G19 and G20, and therefore superfluous. The changes have no import and ∆(G20,G21) = 0.

(G21 → G22; Figure 36.) Note that G21 always sets each (non-defined) entry of g to a lazy-sampled
value, never overwrites entries of g, and always returns g[x] to a query OnRightQuery(x) and g[g[x]]
to a query OnLeftQuery(x), like game G22. Thus, the equivalence of games G21 can be seen by using
early sampling for g, instead of lazy sampling, in which case both games are obviously equivalent.

50

Thus ∆(G21,G22) = 0.

Finally, summing the ∆-values of transitions G0 → G1 through G21 → G22, we find ∆(G2,G3) +
∆(G4,G5) +∆(G19,G20) = 2∆(G2,G3) + 2∆(G4,G5), which is the bound advertised by the theorem.

51

procedure OnLeftQuery(x): G0

Ret RO(x)

procedure OnRightQuery(x):

x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
If y = ⊥ then Abort
FillInRungs(x, y)
Ret y

SetTable(G, xi,RO(xi))
xi+1 ← G[xi]

MakeLadder(x)
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

SetTable(G, xi−1,RO(xi−1))
xi+1 ← G[xi−1]
SetTable(g, xi, xi+1)

subroutine MakeLadder(x)

s−q1 ←$ {0, 1}n

For i = −q1 to q1 − 1
SetTable(G, si,RO(si))
si+1 ← G[si]

FillInRungs(x, s0)

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

procedure OnLeftQuery(x): G1

Ret ROsub(x)

procedure OnRightQuery(x):

x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
If y = ⊥ then Abort
FillInRungs(x, y)
Ret y

xi+1 ← SimROsub(xi)
MakeLadder(x)
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← SimROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x)

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← SimROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
Ret G[x]← Random()

subroutine SimROsub(x)

SetTable(G, x,ROsub(x))
Ret G[x]

subroutine Random()

Ret ←$ {0, 1}n

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

Figure 19: The first two games used in the proof of Theorem 3.3. The adversary’s left and right
oracles are implemented by the procedures OnLeftQuery(·) and OnRightQuery(·). Game G0 is the
“Ideal World”, where the left oracle is implemented by a random oracle RO : {0, 1}n → {0, 1}n and
the right oracle is the simulator S, whose goal is to mimic a function g : {0, 1}n → {0, 1}n such that
RO = g2.

52

procedure OnLeftQuery(x): G2, G3

NumCallsToRandom← 0; MAX CALLS← 2
X ← X ∪ {x}
Finalization()
Ret ROsub(x)

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
If y = ⊥ then Abort
FillInRungs(x, y)
Break // (For loop)

xi+1 ← SimROsub(xi)
If i > q1

MakeLadder(x)
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← SimROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x)

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← SimROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x) G2, G3 (cont.)

If G[x] Ret G[x]
Ret G[x]← Random()

subroutine SimROsub(x)

SetTable(G, x,ROsub(x))
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′

bad← true

Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 20: Games G2 and G3 for the proof of Theorem 3.3. Game G3 includes the boxed statement,
game G2 does not.

53

procedure OnLeftQuery(x): G4, G5

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then

bad← true

Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then

bad← true

Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
If y = ⊥ then Abort
FillInRungs(x, y)
Break // (For loop)

xi+1 ← SimROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← SimROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G4, G5

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← SimROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
Ret G[x]← Random()

subroutine SimROsub(x)

SetTable(G, x,ROsub(x))
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 21: Games G4 and G5 for the proof of Theorem 3.3.

54

procedure OnLeftQuery(x): G6

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← SimROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G6 (cont.)

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
Ret G[x]← Random()

subroutine SimROsub(x)

SetTable(G, x,ROsub(x))
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 22: Game G6 for the proof of Theorem 3.3.

55

procedure OnLeftQuery(x): G7

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G7 (cont.)

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
G[x]← Random()
SetTable(G, x, G[x])
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 23: Game G7 for the proof of Theorem 3.3.

56

procedure OnLeftQuery(x): G8

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G8 (cont.)

s−q1 ← Random()
For i = −q1 to q1 − 1

si+1 ← ROsub(si)
ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
For i = −q1 to −ℓ

G−1[si]← ⊥
If i > ℓ then G[si]← ⊥

FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
G[x]← Random()
SetTable(G, x, G[x])
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 24: Game G8 for the proof of Theorem 3.3.

57

procedure OnLeftQuery(x): G9

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G9 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← Random()
For i = −ℓ to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
G[x]← Random()
SetTable(G, x, G[x])
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 25: Game G9 for the proof of Theorem 3.3.

58

procedure OnLeftQuery(x): G10

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x,⊥)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi,⊥)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G10 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← Random()
For i = −ℓ to q1 − 1

si+1 ← Random()
ROsub(si, si+1)

FillInRungs(x, s0)

subroutine ROsub(x, z)

If G[x] Ret G[x]
If z = ⊥ then z ← Random()
SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 26: Game G10 for the proof of Theorem 3.3.

59

procedure OnLeftQuery(x): G11

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x,⊥)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi,⊥)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine MakeLadder(x) G11 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← Random()
For i = −ℓ to q1 − 1

si+1 ← Random()
ROsub(si, si+1)

FillInRungs(x, s0)

subroutine ROsub(x, z)

If G[x] Ret G[x]
If z = ⊥

If g[x]
gProxy[x]← g[x]

If gProxy[x] = ⊥
gProxy[x]← Random()
gProxy[x].fresh← true

z ← Random()
SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

Figure 27: Game G11 for the proof of Theorem 3.3.

60

procedure OnLeftQuery(x): G12

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x,⊥)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi,⊥)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G12 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← GetFresh(gProxy, G−ℓ[x])
For i = −ℓ to q1 − 1

si+1 ← GetFresh(gProxy, Gi+1[x])
ROsub(si, si+1)

FillInRungs(x, s0)

subroutine ROsub(x, z)

If G[x] Ret G[x]
If z = ⊥

If g[x]
gProxy[x]← g[x]

If gProxy[x] = ⊥
gProxy[x]← Random()
gProxy[x].fresh← true

z ← Random()
SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

subroutine GetFresh(T, x)

If T[x] and T[x].fresh = true

T[x].fresh = false

Ret T[x]
Ret Random()

Figure 28: Game G12 for the proof of Theorem 3.3.

61

procedure OnLeftQuery(x): G13

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x,⊥)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi,⊥)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G13 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← gProxy[G−ℓ[x]]
For i = −ℓ to q1 − 1

si+1 ← gProxy[Gi+1[x]]
ROsub(si, si+1)

FillInRungs(x, s0)

subroutine ROsub(x, z)

If G[x] Ret G[x]
If z = ⊥

If g[x]
gProxy[x]← g[x]

If gProxy[x] = ⊥
gProxy[x]← Random()

z ← Random()
SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 29: Game G13 for the proof of Theorem 3.3.

62

procedure OnLeftQuery(x): G14

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x,⊥)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi,⊥)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G14 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← gProxy[G−ℓ[x]]
For i = −ℓ to q1 − 1

si+1 ← gProxy[Gi+1[x]]
ROsub(si, si+1)

FillInRungs(x, s0)

subroutine ROsub(x, z)

If G[x] Ret G[x]
If z = ⊥

If g[x]
gProxy[x]← g[x]

If gProxy[x] = ⊥
gProxy[x]← Random()

z ← Random()
gProxy[gProxy[x]]← z

SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 30: Game G14 for the proof of Theorem 3.3.

63

procedure OnLeftQuery(x): G15

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ then
y ← G−i[g[xi]]
FillInRungs(x, y)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x, y)

x0 ← x, x1 ← y
SetTable(g, x0, x1)
For i = 1 to 2q1 + 1

xi+1 ← ROsub(xi−1)
SetTable(g, xi, xi+1)

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G15 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← gProxy[G−ℓ[x]]
For i = −ℓ to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x, s0)

subroutine ROsub(x)

If G[x] Ret G[x]
If gProxy[x]

y ← gProxy[x]
else

y ← gProxy[x]← Random()
If gProxy[y]

z ← gProxy[y]
else

z ← gProxy[y]← Random()
SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 31: Game G15 for the proof of Theorem 3.3.

64

procedure OnLeftQuery(x): G16

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, G[x]}
Finalization()
Ret G[x]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ and g[xi].KnownToSim then
FillInRungs(x)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x)

x0 ← x
x1 ← g[x0]
g[x0].KnownToSim← true

For i = 1 to 2q1 + 1
xi+1 ← ROsub(xi−1)
g[xi].KnownToSim← true

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G16 (cont.)

ℓ← 0
While G(−ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← g[G−ℓ[x]]
For i = −ℓ to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x)

subroutine ROsub(x)

If G[x] Ret G[x]
If g[x]

y ← g[x]
else

y ← Random()
SetTable(g, x, y)

If g[y]
z ← g[y]

else
z ← Random()
SetTable(g, y, z)

SetTable(G, x, z)
Ret G[x]

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 32: Game G16 for the proof of Theorem 3.3.

65

procedure OnLeftQuery(x): G17

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, g[g[x]]}
Finalization()
Ret g[g[x]]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ and g[xi].KnownToSim then
FillInRungs(x)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

MakeLadder(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x)

x0 ← x
x1 ← g[x0]
g[x0].KnownToSim← true

For i = 1 to 2q1 + 1
xi+1 ← ROsub(xi−1)
g[xi].KnownToSim← true

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine MakeLadder(x) G17 (cont.)

ℓ← 0
While g(−2ℓ)[x] 6= ⊥

ℓ← ℓ+ 1
s−ℓ ← g[g−2ℓ[x]]
For i = −ℓ to q1 − 1

si+1 ← ROsub(si)
FillInRungs(x)

subroutine ROsub(x)

If g[x]
y ← g[x]

else
y ← Random()
SetTable(g, x, y)

If g[y]
z ← g[y]

else
z ← Random()
SetTable(g, y, z)

Ret z

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine SetTable(T, x, y)

If T[x] and T[x] 6= y then Ret
T[x] = y
T−1[y] = x

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 33: Game G17 for the proof of Theorem 3.3.

66

procedure OnLeftQuery(x): G18

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, g[g[x]]}
Finalization()
Ret g[g[x]]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y then Abort
X ← X ∪ {x}
x0 ← x
For i = 0 to q1

If g[xi] 6= ⊥ and g[xi].KnownToSim then
FillInRungs(x)
Break // (For loop)

xi+1 ← ROsub(xi)
If i > q1

FillInRungs(x)
Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine FillInRungs(x)

x0 ← x
x1 ← g[x0]
g[x0].KnownToSim← true

For i = 1 to 2q1 + 1
xi+1 ← ROsub(xi−1)
g[xi].KnownToSim← true

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine ROsub(x) G18

If g[x]
y ← g[x]

else
y ← g[x]← Random()

If g[y]
z ← g[y]

else
z ← g[y]← Random()

Ret z

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′ then Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 34: Game G18 for the proof of Theorem 3.3.

67

procedure OnLeftQuery(x): G19 G20

NumCallsToRandom← 0; MAX CALLS← 2
BuildXprime()
If x ∈ (X ∪X ′)\Y

bad← true

Abort
X ← X ∪ {x}
ROsub(x)
Y ← Y ∪ {x, g[g[x]]}
Finalization()
Ret g[g[x]]

procedure OnRightQuery(x):

NumCallsToRandom← 0; MAX CALLS← 4q1+3
BuildXprime()
If x ∈ (X ∪X ′)\Y

bad← true

Abort
X ← X ∪ {x}
x0 ← x
For i = 1 to 2q1 + 1

ROsub(xi−1)
xi ← g[xi−1]
g[xi−1].KnownToSim← true

g[xi].KnownToSim← true

Y ← Y ∪ {x, g[x]}
Finalization()
Ret g[x]

subroutine Finalization()

While NumCallsToRandom < MAX CALLS do
Random()

subroutine ROsub(x) G19 G20

If g[x]
y ← g[x]

else
y ← g[x]← Random()

If g[y]
z ← g[y]

else
z ← g[y]← Random()

Ret z

subroutine Random()

y←$ {0, 1}n

BuildXprime()
If y ∈ X ∪X ′

bad← true

Abort
X ← X ∪ {y}
NumCallsToRandom++
Ret y

subroutine BuildXprime()

X ′ ← ∅
While |X|+ |X ′| < (4q1 + 3)q2 + 2q1 do

z←$ {0, 1}n\(X ∪X ′)
X ′ ← X ′ ∪ {z}

Figure 35: Games G19 and G20 for the proof of Theorem 3.3.

68

procedure OnLeftQuery(x): G21

ROsub(x)
Ret g[g[x]]

procedure OnRightQuery(x):

x0 ← x
For i = 1 to 2q1 + 1

ROsub(xi−1)
xi ← g[xi−1]

Ret g[x]

subroutine ROsub(x)

If g[x] = ⊥
g[x]← Random()

y ← g[x]
If g[y] = ⊥

g[y]← Random()
z ← g[y]
Ret z

subroutine Random()

y←$ {0, 1}n

Ret y

procedure OnLeftQuery(x): G22

ROsub(x)
Ret g[g[x]]

procedure OnRightQuery(x):

If g[x] = ⊥
g[x]←$ {0, 1}n

Ret g[x]

subroutine ROsub(x)

If g[x] = ⊥
g[x]←$ {0, 1}n

y ← g[x]
If g[y] = ⊥

g[y]←$ {0, 1}n

Ret g[y]

Figure 36: Games G21 and G22 for the proof of Theorem 3.3.

69

	Introduction
	The Second Iterate Paradox
	HMAC with Arbitrary Keys
	Discussion
	Prior Work

	Preliminaries
	Second Iterates and their Security
	Hash chains using Second Iterates
	An Example (Vulnerable) Application: Mutual Proofs of Work
	An Indifferentiability Distinguisher for any Second Iterate
	Indifferentiability Upper Bound for a Second Iterate

	HMAC as a General-purpose Keyed Hash Function
	Weak Key Pairs in HMAC
	Colliding Key Pairs and the Indifferentiability of HMAC
	Ambiguous Key Pairs and the Indifferentiability of HMAC
	Indifferentiability Upper Bound for HMAC with Restricted Keys

	Internal Collision Probabilities
	Proof of Theorem 3.2
	Proof of Theorem 4.2
	Proof of Theorem 3.3

