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Abstract. In this paper, we report that we have solved the shortest vector problem (SVP) over
a 128-dimensional lattice, which is currently the highest dimension of the SVP that has ever been
solved. The security of lattice-based cryptography is based on the hardness of solving the SVP in
lattices. In 2010 Micciancio et al. proposed a Gauss Sieve algorithm for heuristically solving the SVP
using list L of Gauss-reduced vectors. Milde et al. proposed a parallel implementation method for
the Gauss Sieve algorithm. However, the efficiency of more than 10 threads in their implementation
decreases due to a large number of non-Gauss-reduced vectors appearing in the distributed list of
each thread. In this paper, we propose a more practical parallelized Gauss Sieve algorithm. Our
algorithm deploys an additional Gauss-reduced list V of sample vectors assigned to each thread, and
all vectors in list L remain Gauss-reduced by mutually reducing them using all sample vectors in V .
Therefore, our algorithm enables the Gauss Sieve algorithm to run without excessive overhead even
in a large-scale parallel computation of more than 1,000 threads. Moreover, for speed-up, we use the
bi-directional rotation structure of an ideal lattice that makes the generation of additional vectors
in the list with almost no additional overhead. Finally, we have succeeded in solving the SVP over a
128-dimensional ideal lattice generated by cyclotomic polynomial x128 + 1 using about 30,000 CPU
hours.

Keywords: shortest vector problem, lattice-based cryptography, ideal lattice, Gauss Sieve algo-
rithm, parallel algorithm

1 Introduction

Lattice-based cryptography has been considered a powerful primitive for constructing useful cryptographic
protocols. The security of lattice-based cryptography is based on the hardness of solving the shortest vector
problem (SVP), which involves searching for the shortest non-zero vectors in lattices. Ajtai has proved that
the worst case complexity of solving the SVP is NP-hard under randomized reductions [1]. The α-SVP [15]
is an approximation problem of the SVP, which searches for elements with the size of the shortest vector
multiplied by a small approximation factor α. Many cryptographic primitives have been built on lattices
due to their security against quantum computers and their novel functionalities: Ajtai-Dwork scheme [2],
NTRU [12], fully-homomorphic cryptosystems [10], and multi-linear maps [9].

There are several approaches for solving the SVP and the α-SVP. The fastest deterministic algorithm
is the Voronoi cell algorithm [16], which runs in exponential time 2O(n) and space 2O(n) for n-dimensional
lattices. The sieving algorithms, which are explained in the next subsection, are probabilistic algorithms
that require exponential time 2O(n) and space 2O(n) [3, 19, 6, 5]. The enumeration algorithms are exhaustive

search algorithms that need time 2O(n2) of exponent n2, but only the polynomial size of space [27, 28, 8],
and thus they are suitable for parallelization using multicore CPUs and GPUs. Moreover, the lattice
basis reduction such as LLL or BKZ is a polynomial-time approximation algorithm [14, 26]. The family of
reduction algorithms is used not only for solving the α-SVP but also for pre-computing before running the
other algorithms for solving the SVP.
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1.1 Sieving Algorithms and Ideal Lattices

In 2001 Ajtai et al. proposed the first sieve algorithm for solving the SVP [3]. The sieving algorithm
consists of a list L of vectors in the lattice and a reduction algorithm that outputs a shorter vector from
two input vectors. List L manages the vectors reduced by the reduction algorithm. The number of vectors
in L increases but the norm of several vectors L is shrunk by the reduction algorithm, and eventually the
shortest non-zero vector can be found in list L.

There are many variants of the sieving algorithm [19, 6, 5] that try to improve the computational costs
of the algorithm. In 2009 Micciancio et al. proposed a practical sieving algorithm, called the Gauss Sieve
algorithm [17]. The theoretical upper bound of the computation time of the Gauss Sieve algorithm is not
yet proved; however, the Gauss Sieve algorithm is faster than any other sieve algorithm in practice, because
it deploys a list L of pair-wisely Gauss-reduced vectors that can gradually reduce the norm of vectors in
the list. The time complexity of the Gauss sieve is asymptotically estimated to be 20.41n for n-dimensional
lattices [17]. In 2011 Milde et al. considered a parallelization variant of the Gauss Sieve algorithm. The
distributed list Li(i = 1, 2, ..., t) of L = ∪iLi with a queue Qi(i = 1, 2, ..., t) is assigned to each thread,
where Li is connected to adjacent list Li+1 and the Gauss-reduced vectors are transferred from list Li

to Li+1 using queue Qi for t ∈ N, where we set Lt+1 = L1. However, several vectors in the whole list
L = ∪iLi are no longer Gauss-reduced without exact synchronization of queues Qi for all threads, and
thus the efficiency decreases as the number of threads increases. From the experiment in Milde et al.,
once the number of threads increases to more than ten, the speed-up factor does not exceed around five.
Therefore, it is difficult to apply to large-scale parallel computation.

In order to realize efficient construction of lattice-based cryptography, ideal lattices are often used. Using
ideal lattices, many cryptographic primitives work faster and require less storage [12, 9]. One of the open
problems is whether the computational problems related to the ideal lattices are easier to solve compared
with those of random lattices [21]. First, Micciancio et al. mentioned the possibility of speeding up the
sieving algorithm for ideal lattices [17]. In ideal lattices, several vectors of similar norms have a rotation
structure, and thus it is possible to compute the set of vectors in the reduction algorithm derived from
the sieve algorithm without a large overhead. Schneider et al. proposed the Ideal Gauss Sieve algorithm,
which uses the rotation structure of the Anti-cyclic lattice generated by polynomial xn + 1 where n is a
power of two [24]. Then their proposed algorithm enables the Gauss Sieve algorithm to run about 25 times
faster on 60-dimensional ideal lattices.

1.2 Our Contribution

In this paper, we improve the Gauss Sieve algorithm as follows:

– Efficient parallelization
We propose a parallelized Gauss Sieve algorithm using an additional list V generated by the multisam-
pling technique of vectors in the lattice. Our algorithm mutually reduces the vectors in both L and V ,
so that all vectors in both list V and L remain pair-wisely Gauss-reduced. Using this technique, the
reduction algorithm can be easily parallelized. Additionally, even if the number of threads increases,
our algorithm keeps the vector set pairwise-reduced and efficiency is maintained. Therefore, our al-
gorithm enables the Gauss Sieve algorithm to run without excessive overhead even in a large-scale
parallel computation of more than 1,000 threads.

– Speed-up technique using structure of ideal lattice
We find a new condition of the ideal lattice that is suitable for speed-up of the Gauss Sieve algorithm,
namely a “Trinomial lattice” generated by the irreducible trinomial xn + xk + 1 for 1 < k < n. A
rotation operation on Trinomial lattice requires no greater computational cost than the Anti-cyclic
lattice. Additionally, we propose speed-up techniques that use a bi-directional rotation structure of an
ideal lattice, called “Inverse rotation” and “Updating vectors”. Using Inverse rotation, the reversely
rotated short vectors can be generated at the same cost as the rotation of vectors. Moreover, the
Updating vectors technique can convert the vectors in the list to shorter ones with a non-negligible
probability in the Trinomial lattice. Using these techniques, Gauss Sieve algorithm can solve a wider
range of SVPs on the ideal lattice several times faster than on random lattices.
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With the result of our proposed algorithm, we succeeded in solving the SVP on a 128-dimensional ideal
lattice generated by the cyclotomic polynomial x128+1 using about 30,000 CPU hours. In our experiment,
we used 84 instances which have 16 cores and each instance runs the 32 threads, namely the number of
total threads is 2,688. At this time, the SVP over 126-dimensional random lattice is the largest dimension
that has been solved in the SVP Challenge by Chen et al. [25]. Our results will contribute to estimating
the key length used in lattice-based cryptography.

2 Definitions and Problems

In this section, we provide a short overview of the definition of the SVP on the lattice. We then explain
the concept of Gauss-reduced and pairwise-reduced for a set of vectors on the lattice used for the Gauss
Sieve algorithm.

Let B = {b1, . . . ,bn} be a set of n linearly independent vectors in Rm. The lattice generated by B is
the set L(B) = L(b1, . . . ,bn) = {

∑
1≤i≤n xibi, xi ∈ Z} of all integer linear combinations of the vectors in

B. The set B is called basis of the lattice L(B). In the following, we denote by L(B) the lattice of basis B
as the matrix representation B = (b1, . . . ,bn) ∈ Rm×n. If n = m, the lattice L(B) is called full-rank. In
this paper, for the sake of simplicity, we will consider only full-rank lattices and assume that all the basis
vectors bi(i = 1, 2, ..., n) have only integer entries.

The Euclidean norm of vector v = (v0, . . . , vn−1) ∈ L(B) is denoted by ||v|| =
∑

0≤i<n v
2
i . The norm

of the shortest and second non-zero vectors in L(B) is denoted by λ1(L(B)) and λ2(L(B)), respectively.
The inner product of two vectors a = (a0, . . . , an−1),b = (b0, . . . , bn−1) ∈ L(B) is defined by ⟨a,b⟩ =∑

0≤i<n aibi. For x ∈ R, ⌊x⌉ denotes the nearest integer to x, namely ⌊x+ 1/2⌋.
We define the shortest vector problem (SVP) on a lattice as follow.

Definition 1 (Shortest vector problem on a lattice) Given a lattice L(B), find the shortest non-
zero vector of the length λ1(L(B)) in L(B).

From the Gaussian heuristic, the length of the shortest vector in lattice L(B) is estimated to be

λ1(L(B)) = (1/
√
π)Γ (n2 + 1)

1
n · det(L(B))

1
n , where Γ (x) is the gamma-function [23].

Let g(x) ∈ Z[x] be a monic polynomial of degree n, and let I be an ideal of ring Z[x]/(g(x)). All
elements of ideal I are represented by polynomials v(x) =

∑
0≤i<n vix

i in Z[x]/(g(x)). We identify v(x)
with vectors v = (v0, . . . , vn−1) ∈ Zn. The ideal I is an additive subgroup of Z[x]/(g(x)), and the set
{v = (v0, . . . , vn−1) ∈ Zn|v(x) =

∑
0≤i<n vix

i ∈ I} becomes a lattice. This is called the ideal lattice

generated by g(x), and its basis B consists of the rotation vectors xiv(x) ∈ Z[x]/(g(x)) for i = 0, 1, ..., n−1.
The cyclotomic polynomials such as g(x) = xn + 1 for n = 2h with some positive integer h are often used
for generating the ideal lattice in cryptography.

2.1 Gauss-reduced and Pairwise-reduced

We define Gauss-reduced and pairwise-reduced for a set of vectors on lattice L(B). We then explain an
algorithm for determining and reducing two given vectors of lattice L(B).

First, the definition of Gauss-reduced is as follows.

Definition 2 (Gauss-reduced) If two different vectors a,b ∈ L(B) satisfy ||a ± b|| ≥ max(||a||, ||b||),
then a,b are called Gauss-reduced.

Micciancio et al. showed an algorithm to convert two vectors a,b in L(B) to be Gauss-reduced [17].
The conversion algorithm uses the Reduce algorithm (Alg.1), which outputs vectors a′ for two vectors a,b
in L(B). The reduced vector a′ is a linear combination of a and b that has a shorter norm than max(a,b),
or otherwise a′ = a. From this, we can determine whether two vectors a,b in L(B) are Gauss-reduced.
Indeed we can easily prove the following lemma.

Lemma 1. Let a,b be two vectors in L(B). We set a′ =Reduce(a,b) and b′ =Reduce(b,a). If both a = a′

and b = b′ hold, then a,b are Gauss-reduced.
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Algorithm 1 Reduce [17]

INPUT: Vectors p1,p2 in lattice L(B)
OUTPUT: Vector p1 in lattice L(B)
1: if |2 · ⟨p1,p2⟩| > ⟨p2,p2⟩ then
2: p1 ← p1 −

⌊
⟨p1,p2⟩
⟨p2,p2⟩

⌉
· p2

3: return p1

Algorithm 2 Gauss Sieve (GS) [17]

INPUT: Lattice basis B = {b1, . . . ,bn}, α, β > 0 ∈ R
OUTPUT: A shortest vector in L(B)
1: L← {}, S ← {},K ← 0
2: while K < α|L|+ β do
3: if S ̸= {} then
4: Pop from Stack S to v
5: else
6: Generate a new vector v using Klein’s randomized rounding algorithm [13]
7: (v′, L, S)← Gauss Reduce(v, L, S) /* Alg.3 */
8: if ||v|| = 0 then
9: K ← K + 1
10: else
11: L← L ∪ {v′}
12: return a shortest vector in L(B)

If two vectors a,b are not Gauss-reduced, then a ̸= a′ or b ̸= b′ holds by Lemma 1. Recall that
the reduced vector a′ ←Reduce(a,b) has the property ||a′|| ≤ ||a||. After performing both Reduce(a,b)
and Reduce(b,a) we know that the resulting vectors (a′,b′) are either Gauss-reduced, or a′ (or b′) is
strictly shorter than a (or b), respectively. If we repeatedly run the Reduce algorithm for a = a′ and
b = b′, then we expect the resulting vectors (a′,b′) to become Gauss-reduced. From our experiments in
the 100-dimensional lattices, we can obtain the Gauss-reduced vectors after 10 iterations.

If a,b are linearly dependent, the output of Reduce(a,b) is always the zero vector, i.e., ||a′|| = 0, which
is called a “collision”. The collision is used as the condition for terminating the Gauss Sieve algorithm.

Definition 3 (Pairwise-reduced) Let A be a set of d vectors in L(B). If any pair of two vectors (ai,aj)
in A for i, j = 1, . . . , d, i ̸= j is Gauss-reduced, then the A is called pairwise-reduced.

In general, if we append a vector b ∈ L(B) to a pairwise-reduced set A, then A ∪ {b} is not always
pairwise-reduced. If any pair of two vectors (ai,b) for a1, ...,ad ∈ A is Gauss-reduced, then the union
A ∪ {b} becomes pairwise-reduced from the definition. Obviously we can prove the following lemma that
shows that the union of two pairwise-reduced sets of vectors becomes pairwise-reduced by checking whether
the pair of two vectors from A and B are Gauss-reduced.

Lemma 2 (Combining Lemma). Let A = {a1, . . . ,ar} and B = {b1, . . . ,bm} be sets of vectors in
L(B). Assume that both A and B are pairwise-reduced. If any pair of two vectors (ai,bj) in A,B for
1 ≤ i ≤ r, 1 ≤ j ≤ m is Gauss-reduced, then the union A ∪B is pairwise-reduced.

This lemma is used for constructing our proposed parallel algorithm for the Gauss Sieve algorithm.

3 Gauss Sieve Algorithm

In this section, we briefly explain the Gauss Sieve algorithm [17], its parallel implementation [18], and the
Ideal Gauss Sieve algorithm [24].
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Algorithm 3 Gauss Reduce [17]

INPUT: Vector v on lattice L(B), list L, stack S
OUTPUT: Updated vector v, updated list L, updated stack S
1: reduce flag ← true
2: while reduce flag = true do
3: reduce flag ← false
4: for ℓ ∈ L do
5: v′ ← Reduce(v, ℓ) /* Alg.1 */
6: if v′ ̸= v then
7: reduce flag ← true
8: v← v′

9: while ℓ ∈ L do
10: ℓ′ ← Reduce(ℓ,v) /* Alg.1 */
11: if ℓ′ ̸= ℓ then
12: S ← S ∪ {ℓ′}
13: L← L\{ℓ}
14: return (v, L, S)

3.1 Gauss Sieve [17]

The Gauss Sieve (GS) algorithm was proposed by Micciancio et al. in 2009 [17] and it was implemented
as gsieve library by Voulgaris [30]. This algorithm is shown in Alg.2 and Alg.3. We prepare two auxiliary
lists L and S, where L and S are defined by a set of vectors and a stack of vectors, respectively. L and S
are initially assigned as empty. In the beginning of the GS algorithm, a new vector v is randomly sampled
using Klein’s randomized rounding algorithm [13].

The GS algorithm runs a subroutine, Gauss Reduce, which updates v, L, S by the steps in the following
two parts. The first part (steps 4 to 8) runs the Reduce algorithm using a list L for updating v′ =
Reduce(v, ℓi) for all vectors ℓi ∈ L. Once the v′ is not equal to v, this vector v′ is moved to stack S. The
reason is that if v is reduced using ℓi ∈ L, then v′ and ℓj , (i > j) are not always Gauss-reduced. If the v
is not changed by Reduce(v, ℓi) for all ℓi ∈ L, the steps in the second part (steps 9 to 13) are performed.
The second part runs the Reduce algorithm using a list L that makes the list pairwise-reduced. If ℓ′i ̸= ℓi
holds for ℓ′i = Reduce(ℓi,v), then the vector ℓ′i is moved to stack S and deleted from L. By the above
steps, all pairs (v, ℓi) are always Gauss-reduced, where ℓi ∈ L. Therefore, L∪ v becomes pairwise-reduced
by Lemma 2. Then L is updated by L ∪ v and the iteration is continued (step 2 in Alg.2). If the stack is
not empty, v is popped from the stack S, otherwise, v is newly sampled at step 4 in Alg.2.

The termination condition of the GS algorithm is determined by the number of collisions of the zero
vector (||a′|| = 0) that appears in L. The variable K in Alg.2 is the total number of collisions. When the
value of K exceeds the threshold condition α|L|+ β, then the GS algorithm is terminated. In the gsieve
library [30], α = 1/10, and β = 200 are chosen as the threshold values. The theoretical upper bound of the
complexity of the GS algorithm is not yet proved; however, in practice, the GS algorithm is faster than
any other sieving algorithms. According to Micciancio et al. [17], the complexity of the GS algorithm is
asymptotically estimated as time 20.52n and space 20.21n.

The GS algorithm cannot be easily parallelized for the following reason. If the list is L = {ℓ1, ℓ2, ...}
in the first part (steps 4 to 8) in the Gauss Reduce algorithm (Alg.3), then the algorithm runs v′ ←
Reduce(v, ℓ1), v

′′ ← Reduce(v′, ℓ2),... in this iteration. Hence, the first part must be executed sequentially
step by step. In contrast, it is easy to parallelize the second part (steps 9 to 13) of reducing the vectors
ℓ1, ..., ℓt by Reduce(ℓi,v) for fixed v. Therefore, at most, only half of the Gauss Reduce algorithm appearing
in the GS algorithm can be parallelized. We show the flow of the GS algorithm in Figure 1(a).

3.2 Parallel implementation of the Gauss Sieve algorithm [18]

In 2011, Milde et al. proposed parallel implementation of the Gauss Sieve algorithm [18]. This method
tries to extend the single Gauss Sieve algorithm into a parallel variant.
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(b) Parallel implementation [18]
Fig. 1. Flows of the Gauss Sieve algorithm (left) and the parallel implementation (right) of the Gauss Sieve
algorithm

Let t be the number of threads in this method. Each thread has an instance that consists of list Li,
stack Si, and queue Qi, where L = ∪iLi, S = ∪iSi, i = 1, 2, ..., t, and Qi is used as a buffer for the
next thread. The individual instances are connected together in a ring fashion. Each instance deals with
a sample vector v in the distributed list Li independently just as in the original Gauss Sieve algorithm.
First, an instance runs Reduce(v, ℓi), where ℓi ∈ Li. Second, the instance runs Reduce(ℓi,v) inversely.
After that, if it is not changed by the above reduction steps, the vector v is sent to the buffer Qi+1 of the
next instance. Otherwise, v is moved to the distributed stack Si in its own instance. If a vector v passed
through all instances, the vector v is added to the distributed list Li. If Qi is empty, the instance generates
a new sample vector. We show the flow of this parallel implementation of the Gauss Sieve algorithm in
Figure 1(b).

In this method, each instance runs the Reduce algorithm in parallel. However, this method cannot
ensure that the whole list L = L1 ∪ · · · ∪ Lt remains pairwise-reduced. This is because when a vector is
added to a distributed list, another instance may add extraneous vectors. Therefore, the number of non-
Gauss-reduced pairs increases as the number of threads increases, and thus the overall performance of this
parallel algorithm can not be accelerated for a large number of threads. In the experiment by Milde et al.
[18], once the number of threads increases to more than ten, the speed-up factor does not exceed around
five.

3.3 Ideal Gauss Sieve algorithm [24]

Schneider et al. proposed an Ideal Gauss Sieve algorithm [24] that uses the structure of an ideal lattice
to improve the processing speed of the Gauss Sieve algorithm. The following ideal lattices support the
rotation operation without additional cost and are suitable for speed-up1.

– Prime cyclotomic lattice
If n+1 is prime, an ideal lattice generated by the cyclotomic polynomial g(x) = xn+xn−1+ · · ·+x+1
is called a Prime cyclotomic lattice. In this type, the rotation of vector v is rot(v) = (−vn−1, v0 −
vn−1, . . . , vn−2 − vn−1).

– Anti-cyclic lattice
If n is a power of two, an ideal lattice generated by the cyclotomic polynomial g(x) = xn + 1 is called
an Anti-cyclic lattice. In this type, the rotation of vector v is rot(v) = (−vn−1, v0, . . . , vn−2).

1 Schneider et al. also discussed another type of ideal lattice, called the Cyclic Lattice. However, this type is
generated by a non-cyclotomic polynomial. Because we focus here on the ideal lattice generated by a cyclotomic
polynomial for the Ideal Lattice Challenge, we do not deal with the Cyclic Lattice in this paper.
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The rotation maps of the above ideal lattices can generate new vectors that have a similar norm virtually
for free. Therefore, we can implement the Gauss Sieve algorithm using the list L with the rotated vectors
roti(v) for i = 1, 2, ..., n−1 in addition to v with a small overhead. The algorithm enables the Gauss Sieve
algorithm to run about 25 times faster on 60-dimensional ideal lattices [24].

4 Proposed Parallel Gauss Sieve Algorithm

In this section, we propose the parallelized algorithm derived from the Gauss Sieve algorithm. We design
our algorithm so that keeps the list L remains pairwise-reduced as with the Gauss Sieve algorithm, even
though this algorithm works in parallel.

4.1 Overview

Let t be the number of threads used in our algorithm. Our algorithm prepares the auxiliary list V of r
vectors in L(B), where each thread treats at most s = ⌊r/t⌋ sample vectors for the list V . We also use the
same list L and stack S in the Gauss Sieve algorithm, and the vectors in list L remain pairwise-reduced
during our algorithm by controlling with list V . Each thread has list V , list L, and stack S, where we
write V = {v1, . . . ,vr} and L = {ℓ1, . . . , ℓm}. After each iteration of the loop in our algorithm we pop
vectors from the stack S to the list V . If the size of V is smaller than r, we generate new sample vectors
by the Multisampling techniques. We explain how to construct the proposed threads in the following.
There are three different reduction steps in our algorithm, namely Reduction sample vectors using
list vectors, Reduction sample vectors using sample vectors, and Reduction list vectors using
sample vectors. Our algorithm requires to use Alg.1 at most max(rm, r2) times in each step, in other
words, at most max(⌊rm/t⌋, ⌊r2/t⌋) times in each thread.

In the Reduction sample vectors using list vectors, let s = ⌊r/t⌋ be the number of sample
vectors treated by a thread, where r is the size of list V . Each thread has the distributed list Vi =
{v(i−1)s+1, . . . ,vis} and list L, where V = ∪iVi and i = 1, 2, ..., t. Each thread i independently deals with
list L and the sample vectors Vi, and runs v′

k = Reduce(vk, ℓj), where vk ∈ Vi, ℓj ∈ L, identical to a
Gauss Sieve algorithm. If v′

k ̸= vk holds, then the thread i moves the reduced vector v′
k into the stack S,

otherwise, the thread i moves this vector v′
k into new list V ′. At the end of this part, any vector v in list

V ′ satisfies v = Reduce(v, ℓ) for all vectors ℓ in list L. We show the flow of this part in Figure 2.
In the Reduction sample vectors using sample vectors, each thread has list V ′, which consists of

r′ vectors on a lattice. Let s′ = ⌊r′/t⌋ be the number of sample vectors treated by a thread. Each thread i
deals with only a sample list V ′ and runs v′

k = Reduce(vk,vj), where vk ∈ {v(i−1)s′+1, . . . ,vis′},vj ∈ V ′

with k ̸= j. If v′
k ̸= vk holds, then the thread imoves the reduced vectors v′

k into the stack S, otherwise, the
thread i moves the vectors v′

k into new list V ′′. At the end of this part, list V ′′ becomes pairwise-reduced
and we have the relationship V ′′ ⊂ V ′ ⊂ V .

In the Reduction list vectors using sample vectors, let s̄ = ⌊m/t⌋ be the number of list vectors
treated by a thread, where m is the size of list L. Each thread has list Li = {ℓ(i−1)s̄+1, . . . , ℓis̄} and
V ′′, where L = ∪iLi, and i = 1, 2, ..., t. From our assumption, L is pairwise-reduced before processing
this part. Each thread i deals with a distributed list Li and a list V ′′ and runs ℓ′k = Reduce(ℓk,vj),
where ℓk ∈ Li,vj ∈ V ′′. If ℓ′k ̸= ℓk holds, then the thread i moves the reduced vector ℓ′k into the stack
S, otherwise, the thread i moves the vectors ℓk into new list L′. At the end of this part, any vector ℓk
in the new list L′ satisfies ℓk = Reduce(ℓk,vj) for all vectors vj in list V ′′. Here both L′ and V ′′ are
pairwise-reduced due to relationship L′ ⊂ L and V ′′ ⊂ V ′, respectively.

After the above three reduction steps, our algorithm merges list L′ and list V ′′ to create the new list
L = L′ ∪ V ′′. Note that ℓ = Reduce(ℓ,v) and v = Reduce(v, ℓ) hold for any vector ℓ ∈ L′ and v ∈ V ′′.
Therefore, any pair of two vectors (ℓ,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and thus the union
L = L′ ∪ V ′′ becomes pairwise-reduced by Lemma 2.

We show the algorithm derived from the proposed parallelized Gauss Sieve Algorithm in Alg.4. The
inputs of this algorithm are a lattice on basis B, the number of samplings r ∈ N, and termination conditions
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Algorithm 4 Proposed Parallel Gauss Sieve

INPUT: Lattice basis B, the number of sample vectors r ∈ N, α, β ∈ R
OUTPUT: A shortest vector v in L(B)
1: L← {}, V ← {}, S ← {},K ← 0

/* Steps from 2 to 9 are described in 4.2 Multisampling of vectors */
2: while K < α|L|+ β do
3: if |S| ≠ 0 then
4: t← min(r, |S|)
5: for j = 1, . . . , t do
6: Pop from Stack S to vj

7: if |S| < r then
8: for j = |S|+ 1, . . . , r do
9: Generate a new vector vj using Klein’s randomized rounding algorithm [13]
10: V ← {v1, ...,vr}, V ′ ← {}, V ′′ ← {}, L′ ← {}
11: L = {ℓ1, ..., ℓm}

/* Steps from 12 to 22 are described in 4.3 Reduction sample vectors using*/
12: for i = 1, . . . , r do
13: wi ← vi

14: for j = 1, . . . ,m do
15: wi ← Reduce(wi, ℓj) /* This step can be ran in parallel */
16: if ||wi|| = 0 then
17: K ++
18: else if wi ̸= vi then
19: S ← S ∪ {wi}
20: else
21: V ′ ← V ′ ∪ {wi}
22: V ′ = {v1, ...,vr′}

/* Steps from 23 to 34 are described in 4.4 Reduction sample vectors using sample vectors */
23: for i = 1, . . . , r′ do
24: wi ← vi

25: for j = 1, . . . , r′ do
26: if i ̸= j then
27: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
28: if ||wi|| = 0 then
29: K ++
30: else if wi ̸= vi then
31: S ← S ∪ {wi}
32: else
33: V ′′ ← V ′′ ∪ {wi}
34: V ′′ = {v1, ...,vr′′}

/* Steps from 35 to 45 are described in 4.5 Reduction list vectors using sample vectors*/
35: for i = 1, . . . ,m do
36: wi ← ℓi
37: for j = 1, . . . , r′′ do
38: wi ← Reduce(wi,vj) /* This step can be ran in parallel */
39: if ||wi|| = 0 then
40: K ++
41: else if wi ̸= ℓi then
42: S ← S ∪ {wi}
43: else
44: L′ ← L′ ∪ {wi}
45: L′ = {ℓ1, ..., ℓm′}
46: L← L′ ∪ V ′′

47: return a shortest vector in L(B)
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Fig. 2. Flow of theReduction sample vectors using list vectors in the proposed parallel Gauss Sieve algorithm.
Each task in different threads is indicated by color (e.g. blue, green, orange).

α, β. Here r is determined by the experimental scale, for example, the number of CPU cores or the available
memory (we discuss the most suitable value based on an experiment described in section 5). In the following,
we explain the details of the proposed algorithm.

4.2 Multisampling of vectors (Steps 3 to 9 in Alg.4)

We sample r vectors in lattice L(B) and construct a list V = (v1, . . . ,vr) at the beginning of the iteration
from step 3 to 9 in Alg.4. Sample vector vi is samples in two ways, (i.e., popping from stack S or newly
generating just as in the case the Gauss Sieve algorithm). If |S| ≥ r, all vectors vi are popped from the
stack S, where 1 ≤ i ≤ r. If 0 < |S| < r, we pop |S| vectors from the stack S and generate (r−|S|) vectors
using Klein’s sampling algorithm. If S is empty, all vectors vi are newly generated using Klein’s sampling
algorithm.

4.3 Reduction of sample vectors using list vectors (Steps 12 to 22 in Alg.4)

In this part, by reducing the sample vectors in V using all vectors in list L we will construct the list V ′, which
consists of vectors vi ∈ V that satisfy Reduce(vi, ℓj) = vi for all ℓj ∈ L. Here denote V = {v1, . . . ,vr} and
L = {ℓ1, . . . , ℓm}. At the beginning of this part we assign wi ← vi at Step 13 in Alg.4. For i = 1, 2, ..., r,
this part runs Reduce(wi, ℓj) from j = 1 to m for the fixed first input wi and updates wi using its output
repeatedly. After running Reduce(wi, ℓj) for ℓj ∈ L, if wi is changed (i.e., wi ̸= Reduce(wi, ℓj) for some
ℓj), this vector wi is moved to stack S, otherwise, wi(= vi) is moved to the distributed list V ′. This part
runs the Reduce algorithm in the following order.

w1 ← Reduce(w1, ℓ1)
w1 ← Reduce(w1, ℓ2)

...
w1 ← Reduce(w1, ℓm)

...

wi ← Reduce(wi, ℓ1)
wi ← Reduce(wi, ℓ2)

...
wi ← Reduce(wi, ℓm)

...

...
wr ← Reduce(wr, ℓ1)
wr ← Reduce(wr, ℓ2)

...
wr ← Reduce(wr, ℓm)
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At the end of this part, we re-index the vectors in V ′ form 1 to r′ in no particular order, and rename the
vectors in list V ′ from {w1, ...,wr′} to {v1, ...,vr′} at Step 22 in Alg.4. Recall that any vector vi in list V ′

satisfies vi =Reduce(vi, ℓj) for all vectors ℓj in list L. We have the relationship V ′ ⊆ V and |V ′| = r′ ≤ r.

This part can be simply parallelized without heavy overhead. Let t be the number of threads and s
be the number of sample vectors treated by a thread, where s = ⌊r/t⌋. While a thread i(1 ≤ i ≤ t)
computes Reduce(wi, ℓ1) to Reduce(wi, ℓm), another thread j(j ̸= i) can compute Reduce(wj , ℓ1) to
Reduce(wj , ℓm), because the vectors ℓk in list L are not changed in this part. Therefore, the inner loop
(from step 14 to 21) can be fully parallelized and the degree of parallelization is at most r, if we set s = 1.
If s > 1, the thread i has Vi = {v(i−1)s+1, . . . ,vis} and list L, where V = ∪iVi. And then the thread i
runs Reduce(w(i−1)s+1, ℓ1) to Reduce(wis, ℓm) sequentially in the following order.

Thread 1

w1 ← Reduce(w1, ℓ1)
w1 ← Reduce(w1, ℓ2)

...
w1 ← Reduce(w1, ℓm)

...
w′

s ← Reduce(ws, ℓ1)
w′

s ← Reduce(ws, ℓ2)
...

w′
s ← Reduce(ws, ℓm)

Thread 2

ws+1 ← Reduce(ws+1, ℓ1)
ws+1 ← Reduce(ws+1, ℓ2)

...
ws+1 ← Reduce(ws+1, ℓm)

...
w2s ← Reduce(w2s, ℓ1)
w2s ← Reduce(w2s, ℓ2)

...
w2s ← Reduce(w2s, ℓm)

· · ·

Thread t

ws(t−1)+1 ← Reduce(ws(t−1)+1, ℓ1)
ws(t−1)+1 ← Reduce(ws(t−1)+1, ℓ2)

...
ws(t−1)+1 ← Reduce(ws(t−1)+1, ℓm)

...
wst ← Reduce(wst, ℓ1)
wst ← Reduce(wst, ℓ2)

...
wst ← Reduce(wst, ℓm)

4.4 Reduction of sample vectors using sample vectors (Step 23 to 34 in Alg.4)

In this part we try to convert the list V ′ = {v1, . . . ,vr′} to be a pairwise-reduced list V ′′. We reduce
sample vectors vi ∈ V ′ using all vectors in V ′ \ {vi} and construct list V ′′, which consists of vectors
vi that satisfy Reduce(vi,vj) = vi for all vj ∈ V ′′ with i ̸= j. At the beginning of this part we assign
wi ← vi at Step 24 in Alg.4. For i = 1, 2, ..., r′, this part runs Reduce(wi,vj) from j = 1 to m without
j = i for the fixed first input wi and updates wi using its output repeatedly. During all reductions, just
after wi is reduced even once, this vector wi is moved to stack S as in the first reduction part. If wi is
not reduced (wi = Reduce(wi,vj)), this vector wi(= vi) is moved to list V ′′. This part runs the Reduce
algorithm in the following order.

w1 ← Reduce(w1,v2)
w1 ← Reduce(w1,v3)

...
w1 ← Reduce(w1,vr′)

...

wi ← Reduce(wi,v1)
wi ← Reduce(wi,v2)

...
wi ← Reduce(wi,vr′)

...

...
wr′ ← Reduce(wr′ ,v1)
wr′ ← Reduce(wr′ ,v2)

...
wr′ ← Reduce(wr′ ,vr′−1)

At the end of this part, we re-index the vectors in V ′′ form 1 to r′′ in no particular order, and rename
the vectors in list V ′′ from {w1, ...,wr′′} to {v1, ...,vr′′} at Step 34 in Alg.4. Recall that list V ′′ becomes
pairwise-reduced because Reduce(vi,vj) = vi holds for all vectors vi,vj ∈ V ′′ with i ̸= j. We then have
relationship V ′′ ⊆ V ′ ⊆ V and |V ′′| = r′′ ≤ r′ ≤ r.

This part also can be parallelized in a similar way as the first part. Let t be the number of threads
and s′ be the number of sample vectors treated by a thread, where s′ = ⌊r′/t⌋. Each thread i deals with
only a sample list V ′ and runs wk ← Reduce(wk,vj), where (i − 1)s′ + 1 ≤ k ≤ is′,vj ∈ V ′ with k ̸= j.
When thread i computes wi ← Reduce(wi,vj), another thread h can compute wh ←Reduce(wh,vj) for
all vj ∈ V ′. More specifically, in this part, each thread runs the Reduce algorithm in the following order
in parallel.
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Thread 1

w1 ← Reduce(w1,v2)
w1 ← Reduce(w1,v3)

...
w1 ← Reduce(w1,vr′)

...
ws ← Reduce(ws,v2)
ws ← Reduce(ws,v3)

...
ws ← Reduce(ws,vr′)

Thread 2

ws′+1 ← Reduce(ws′+1,v1)
ws′+1 ← Reduce(ws′+1,v2)

...
ws′+1 ← Reduce(ws′+1,vr′)

...
w2s′ ← Reduce(w2s′ ,v1)
w2s′ ← Reduce(w2s′ ,v2)

...
w2s′ ← Reduce(w2s′ ,vr′)

· · ·

Thread t

ws′(t−1)+1 ← Reduce(ws′(t−1)+1,v1)
ws′(t−1)+1 ← Reduce(ws′(t−1)+1,v2)

...
ws′(t−1)+1 ← Reduce(ws′(t−1)+1,vr′−1)

...
ws′t ← Reduce(ws′t,v1)
ws′t ← Reduce(ws′t,v2)

...
ws′t ← Reduce(ws′t,vr′)

4.5 Reduction of list vectors using sample vectors (Step 35 to 45 in Alg.4)

In this part, by reducing the vectors ℓi in L using all sample vectors in V ′′ = {v1, . . . ,vr′′}, we will
construct the list L′, which consists of vectors ℓi ∈ L that satisfy Reduce(ℓi,vj) = ℓi for all vj ∈ V ′′.
At the beginning of this part we assign wi ← ℓi at Step 36 in Alg.4. For i = 1, 2, ...,m, this part runs
Reduce(wi,vj) from j = 1 to r′′ for the fixed first input wi and updates wi using its output repeatedly.
During all reduction steps, if wi is changed (i.e., wi ≠ Reduce(wi,vi) for some vi), this vector wi is
moved to stack S, otherwise, this vector wi(= ℓi) is moved to the distributed list L′. This part runs the
Reduce algorithm in the following order.

w1 ← Reduce(w1,v1)
w1 ← Reduce(w1,v2)

...
w1 ← Reduce(w1,vr′′)

...

wi ← Reduce(wi,v1)
wi ← Reduce(wi,v2)

...
wi ← Reduce(wi,vr′′)

...

...
wm ← Reduce(wm,v1)
wm ← Reduce(wm,v2)

...
wm ← Reduce(wm,vr′′)

At the end of this part, we re-index the vectors in L′ form 1 to m′ in no particular order, and rename
the vectors in list L′ from {w1, ...,wm′} to {ℓ1, ..., ℓm′} at Step 45 in Alg.4. Recall that any vector ℓi in
list L′ satisfies Reduce(ℓi,vj) = ℓi for all vectors vj in list V ′′. We then have relationships L′ ⊆ L and
|L′| = m′ ≤ m. After this part, our algorithm merges list L′ and list V ′′ to become the new list L = L′∪V ′′

at Step 46 in Alg.4.

This step can be simply parallelized without heavy overhead in a similar way as the first part, and
the degree of parallelization is at most r′′. Each thread of index i updates s̄ vectors in list Li (i.e.,
Li = {ℓ(i−1)s̄+1, . . . , ℓis̄}, where s̄ = ⌊m/r′′⌋). This part runs the Reduce algorithm in the following order
in parallel.

Thread 1

w1 ← Reduce(w1,v1)
w1 ← Reduce(w1,v2)

...
w1 ← Reduce(w1,vr′′)

...
ws̄ ← Reduce(ws̄,v1)
ws̄ ← Reduce(ws̄,v2)

...
ℓs̄ ← Reduce(ws̄,vr′′)

Thread 2

ws̄+1 ← Reduce(ws̄+1,v1)
ws̄+1 ← Reduce(ws̄+1,v2)

...
ws̄+1 ← Reduce(ws̄+1,vr′′)

...
w2s̄ ← Reduce(w2s̄,v1)
w2s̄ ← Reduce(w2s̄,v2)

...
w2s̄ ← Reduce(w2s̄,vr′′)

· · ·

Thread t

ws̄(t−1)+1 ← Reduce(ws̄(t−1)+1,v1)
ws̄(t−1)+1 ← Reduce(ws̄(t−1)+1,v2)

...
ws̄(t−1)+1 ← Reduce(ws̄(t−1)+1,vr′′)

...
ws̄t ← Reduce(ws̄t,v1)
ws̄t ← Reduce(ws̄t,v2)

...
ws̄t ← Reduce(ws̄t,vr′′)
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4.6 Properties of the proposed algorithm

In our algorithm, list L remains pairwise-reduced at any iteration for the following reasons. After the three
reduction steps, our algorithm merges list L′ and list V ′′ to become the new list L = L′ ∪ V ′′. Note that
ℓ = Reduce(ℓ,v) and v = Reduce(v, ℓ) hold for any vector ℓ in L′ and v ∈ V ′′ by the first and third
reduction part. And then, V ′′ is pair-wise reduced by the second part. Therefore, any pair of two vectors
(ℓ,v) in L′, V ′′ is Gauss-reduced by Lemma 1, and thus the union L = L′ ∪ V ′′ becomes pairwise-reduced
by Lemma 2.

Our algorithm is a natural extension of the Gauss Sieve algorithm. If only one vector is sampled (i.e.,
r = 1), all the pairs of (ℓj ,v1) and (v1, ℓj) are Gauss-reduced by the first and third reduction part, where
ℓj ∈ L. There is nothing to do in the second reduction part. Therefore, this algorithm is equal to the Gauss
Sieve algorithm when r = 1.

5 Implementation and Experimental Results

In this section, we explain the parallel implementations of the proposed parallel Gauss Sieve algorithm on
a multicore CPU, and we also present some algorithmic improvement in our experiment.

5.1 Implementation using Amazon EC2

We use the instance cc1.8xlarge in AmazonEC2 [4]. Our experimental environment is shown in Table 1.
Our implementation is based on the gsieve library, published by Voulgaris [30] and written in C++. We
assume the following properties from our preliminary experiment:

– all absolute values of entries of vectors are less than 216

– the computational cost of the inner product is dominant (Step 1 in Alg.1)

We optimize the code for the inner product (Step 1 in Alg.1) using the SIMD operation. Intel Xeon E5-
2670 and g++4.1.2 support SSE4.2, and we can use a 128-bit SSE register. Using the SSE, we can treat 8
elements in one SSE operation in parallel. This technique enables our program to run about 4 times faster.

In this experiment, we fixed the number of threads at 32 per an instance, i.e., at double the number
of CPU cores, because the instance supports hyper-threading technology. For examples, we can use 2,688
threads in total for 84 instances.

In our algorithm, the total number of sample vectors is chosen as r. In the following, we derive a suitable
value r from our experiment using one instance which solved the SVP of an 80-dimensional lattice from the
SVP Challenge [25]. Figure 3(a) shows that the running time of solving the 80-dimensional SVP becomes
relatively fast when the number of sample vectors r is in the range from about 4,000 to 10,000. Therefore,
we select r = 8192, i.e., one thread i treats s = 256 sample vectors in list Vi = (v256(i−1)+1, . . . ,v256i)
on a lattice in the Reduction sample vectors using list vectors part, where i = 1, 2, ..., 32. On the
other hand, Figure 3(b) shows the maximum size of the list L for solving the 80-dimensional SVP on the
same lattice. Interestingly, the size of the list L in our parallel Gauss Sieve algorithm does not grow, even
though the number of samples r increases.

Table 1. Experiment environment used in our experiment

Instance type cc1.8xlarge

CPU Intel Xeon E5-2670 2.6GHz ×2
Core 8 core ×2

Memory 64GB

OS Ubuntu12.10

Compiler g++ 4.1.2

Library OpenMP, OpenMPI, NTL5.5.2



Parallel Gauss Sieve Algorithm 13

010002000300040005000

0 10000 20000 30000 40000 50000Runningtim
e(seonds)

The number of samples r
(a) Running time

0100000200000300000400000500000

0 10000 20000 30000 40000 50000Maxlistsize
The number of samples r

(b) Maximum size of list L

Fig. 3. Results for solving the 80-dimensional SVP on a lattice. Fig (a) shows the running time using one instance
(32 threads). Fig (b) shows the maximum size of list L. The horizontal axis indicates the number of samples r.

5.2 Sampling Short Vectors(Step 8 in Alg.4)

In the gsieve library [30], Klein’s randomized rounding algorithm [13] is implemented. The details of the
algorithm are explained by Gentry et al. [11].

If we are able to sample shorter vectors at Step 9 in Alg.4, then the running time of the proposed Gauss
Sieve algorithm can be improved. However, it takes longer time to sample such shorter vectors on a lattice
in general. Therefore, we try to adjust the parameter which determines the tradeoff between the length of
the norm of sample vectors and the running time of our algorithm.

Indeed we adjust the parameter of the core subroutine, namely the SampleD algorithm described in
[11]. For the two inputs (u, c), SampleD chooses an integer x from the range [c − u · d, c + u · d], where
d = log(n) in the gsieve library. We determine a more suitable value of d instead of d = log(n). The
SampleD outputs x with probability ρu,c(x − c), otherwise repeats choosing x, where ρu,c(x) denoted a
Gaussian function on R that is defined by ρu,c(x) = exp(−π|x − c|2/u2) for any x ∈ R. Klein’s sampling
algorithm generates a new vector on a lattice that is a linear combination of the basis vector and the
coefficient vector x using the SampleD algorithm n times. Therefore, if the SampleD algorithm outputs
a smaller integer, Klein’s sampling algorithm outputs a shorter vector. However, the computational time
of the SampleD algorithm increases as the length of the output vector decreases. In our experiment, we
found the parameter d = log n/70 which is most suitable for speeding up of our algorithm. This technique
enables our program to run about two times faster.

5.3 Improvement of the Ideal Gauss Sieve

In this section, we show some techniques for accelerating the Ideal Gauss Sieve algorithm [24] by using the
bi-directional rotation structure of some cyclotomic polynomials.

Selecting Cyclotomic Polynomials In [24], there are three types of ideal lattices generated by specific
polynomials (including two cyclotomic polynomials), which are suitable for the rotate operation rot(v) of
a vector v. We define new types of an ideal lattice, which is called a Trinomial lattice. A Trinomial lattice
is generated by the trinomials in the cyclotomic polynomials. There are two conditions for a Trinomial
lattice, as follows:

– Condition 1
If n/2 is a power of three, where n is an even dimension of a lattice, an ideal lattice generated by a
cyclotomic polynomial g(x) = xn + xn/2 + 1 is called a Trinomial lattice. In this type, the rotation of
vector v is rot(v) = (−vn−1, v0, . . . , vn

2 −2, vn
2 −1 − vn−1, vn

2
, . . . , vn−2).

– Condition 2
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Table 2. Results of the SVP Challenge [25] and Ideal Lattice Challenge [20]. The 96 and 128-dimensional SVPs in
the Ideal Lattice Challenge are generated by cyclotomic polynomials x96 − x48 + 1 and x128 + 1, respectively. The
other SVPs are non-special type.

dimension CPU hours #instance #thread t #sample vectors r type

SVP Challenge
80 0.9 1 32 8,192 Random lattice
96 200 4 128 32,768 Random lattice

Ideal Lattice Challenge
80 0.9 1 32 8,192 Ideal lattice
96 8 1 32 8,192 Trinomial lattice
128 29,994 84 2,688 688,128 Anti-cyclic lattice

If the dimension n is the product of both a power of two and a power of three, an ideal lattice generated
by the cyclotomic polynomial g(x) = xn−xn/2+1 is called a Trinomial lattice. In this type, the rotation
of vector v is rot(v) = (−vn−1, v0, . . . , vn

2 −2, vn
2 −1 + vn−1, vn

2
, . . . , vn−2).

Gallot proved that the polynomials that satisfy the above conditions are cyclotomic polynomials (Theorem
3.1 in [7]). The rotate operation rot(v) using the Trinomial lattice requires no greater computational cost
than that using the Anti-cyclic lattice.

Inverse Rotation In [24], the rotation rot(v) of vector v is used for accelerating the Gauss Sieve
algorithm. In the same manner, we define the inverse rotation rot−1(v) of vector v. The inverse rotation
is defined by rot−1(v) = x−1v mod g(x), where v(x) is a polynomial representation of vector v. In
Trinomial lattice, x−1 is −xn−1±x

n
2 −1. The computational costs of rot(v) and rot−1(v) using the Prime

cyclotomic lattice, Anti-cyclic lattice and the Trinomial lattice are quite similar.

Updating Vectors In a Trinomial lattice, we can find shorter vectors using rotation and inverse rotation.
If v ∈ L(B), the difference of the Euclidean norm between vector v and rotated vector rot(v) (or inversely
rotated vector rot−1(v)) is represented as follows:

||rot(v)|| − ||v|| = (vn−1)
2 + 2vn

2 −1vn−1,

||rot−1(v)|| − ||v|| = (v0)
2 + 2vn

2
v0.

Therefore, the Euclidean norm of a(n) (inversely) rotated vector becomes shorter than that of the original
vector with a non-negligible probability.

In a Trinomial lattice, repeating the rotate operation increases the norm gradually. Therefore, the total
running time of our algorithm increases with too large number of the rotate operation. Then we derived
the most suitable number of the rotate operation from the experiment to solve a 72-dimensional SVP with
each number of rotations. In our experiment, it was found that the most suitable number was 6, and this
technique enables our parallel Gauss Sieve algorithm to run about 5.5 times faster.

5.4 Solving the Challenges

We have solved several problems in the SVP Challenge [25] and Ideal Lattice Challenge [20]. The problem
setting in these challenges has been published in [21]. We pre-computed the BKZ-reduced basis with a
block size of 30 using NTL library [29]. Because this precomputation requires much less time than the
Gauss Sieve algorithm, we do not include the timing in the following. In our experiment, we used the
instance cc1.8xlarge described in Table 1. We fix the number of threads at 32 per an instance. We show
the results of our experiments in Table 2.

In the SVP Challenge, we solved the 80- and 96-dimensional SVPs. Both of these problems are random
lattices given as filename “svpchallengedim80seed0.txt” and “svpchallengedim90seed0.txt” on the SVP
Challenge [25]. As we explained in section 5.1, our parallel algorithm solved the 80-dimensional SVP in
about one CPU hour using one instance which deploys 32 threads and 8,192 sample vectors. According to
the results of Schneider et al. [22], their program for the Gauss Sieve requires about 106 seconds ≈ 278 hours
using one thread for the same problem. Hence, our parallel algorithm enables the Gauss Sieve algorithm
to run about like 200 times faster. We also solved the 96-dimensional SVP using four instances of 128
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threads and 32,768 sample vectors. As a result, our parallel algorithm required about 200 CPU hours. This
96-dimensional SVP is the largest problem that has been solved to date by using a sieving algorithm on a
random lattice.

In the Ideal Lattice Challenge, we solved the 80-, 96- and 128-dimensional SVPs [20]. In this challenge,
a basis of n-dimensional ideal lattice is generated from one of cyclotomic polynomials of degree n. In our
experiment we chose the 80-dimensional lattice generated by cyclotomic polynomial g(x) = x80 + x78 −
x70 − x68 + x60 − x56 − x50 + x46 + x40 + x34 − x30 − x24 + x20 − x12 − x10 + x2 + 1 given as a filename
“ideallatticedim80index220seed0.txt”. The basis of 96-dimensional lattice was selected to be a Trinomial
lattice generated by g(x) = x96 − x48 + 1 given as filename “ideallatticedim96index288seed0.txt”, and
that of 128-dimensional SVP was selected to be an Anti-cyclic lattice generated by cyclotomic polynomial
g(x) = x128 + 1 given as filename “ideallatticedim128index256seed0.txt”. In our experiment of the 80-
dimensional ideal lattice our parallel algorithm required about one CPU hour using 32 threads and 8,192
sample vectors, which are the same time cost compared with our above experiment for a random lattice
in the SVP Challenge. Additionally, in our experiment of the 96-dimensional ideal lattice, our parallel
algorithm required about 8 CPU hours using 32 threads and 8,192 sample vectors. The proposed two
techniques (inverse rotation and updating vectors) enable us to speedup about 25 times faster than the
random lattice of the same dimension.

In our experiment of the 128-dimensional ideal lattice, our parallel algorithm require 29, 994 CPU hours
using 84 instances, where we can set that the number of total threads and sample vectors are t = 2, 688
and r = 688, 128, respectively. As a result, our parallel algorithm outputs a short vector:

(-613, -20, -146, -249, 237, 161, 290, 518, -204, -207, -39, 333, -97, 30, 53, 579,

93, -634, 297, 223, -201, 75, -98, -85, -68, 100, 21, -87, -442, -63, -211, 358, -143,

239, -39, 240, -9, -382, -38, -285, -10, 275, 108, 116, -288, -165, 509, 589, 445,

-137, -230, -131, -84, -26, -37, 442, -115, 267, 642, 168, -226, 361, 212, -193, 379,

59, 45, 215, -48, -12, 53, 48, 83, -156, 184, -103, 102, -427, -400, 363, -69, -142,

562, -145, -118, -51, -31, -96, 604, 260, -371, -361, -553, -292, -222, 74, -51, 179,

-162, -431, -24, 159, -180, 8, -85, 57, 264, 157, 4, -232, 272, -638, -58, 68, 3, 314,

-11, -395, -88, -129, -29, 219, -223, -186, 42, 73, 399, -146).

The Euclidean norm of this vector is 2,959 which is shorter than the heuristic bound (1.05/
√
π)Γ (n2 +1)

1
n ·

det(L(B))
1
n of the shortest vector in L(B) of n = 128.

According to the estimated complexity 20.52n [17] and the our implementation result of the 96-dimensional
SVP, if the time complexity of our algorithm is the same as the Gauss Sieve algorithm, solving the 128-
dimensional SVP over a lattice requires 200×20.52∆n ≈ 2.0×107 CPU hours using the parallel Gauss Sieve
algorithm. Therefore, we heuristically estimate that solving the 128-dimensional SVP over an Anti-cyclic
lattice is about 600 times faster than that over random lattices.

6 Conclusion

In this paper, we proposed a parallel Gauss Sieve algorithm, which can solve the shortest vector problem
(SVP) using a large number of threads. We implemented the proposed parallel Gauss Sieve algorithm by
the SIMD operation in AmazonEC2 which supports hyper-threading technology. Our experiment deploys
32 threads per instance cc1.8xlarge of 16 CPU cores. Then we tried to solve the SVP Challenge and the
Ideal Lattice Challenge from TU Darmstadt (http://www.latticechallenge.org/).

In the case of solving the SVP of 80 dimensions, the proposed parallel algorithm enables the Gauss
Sieve algorithm to run about 200 times faster than the previous implementation using a single thread
by Schneider et al. in the same lattice. Then we have solved the SVP Challenge of 96 dimensions by the
proposed parallel Gauss Sieve algorithm using 32 threads in 200 CPU hours. That is a new record for
solving the SVP using the sieving algorithms in the SVP Challenge.

We further considered some speed-up of the proposed parallel Gauss Sieve algorithm by the bi-
directional rotation property of ideal lattices. Then we successfully solved a 128-dimensional SVP on
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the ideal lattice generated by the cyclotomic polynomial x128 + 1, where this type of ideal lattice is of-
ten used for efficient implementation of lattice-based cryptography. Our experiment requires 29,994 CPU
hours by executing 2,688 threads over 84 instances in total. To the best of our knowledge, this is currently
the highest dimensions of solving the SVP in ideal lattices. We believe that our results will contribute to
estimating a secure key length for lattice-based cryptography.
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