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A Capacity-Achieving Simple Decoder
for Bias-Based Traitor Tracing Schemes

Jan-Jaap Oosterwijk, Boris Škorić, Jeroen Doumen

Abstract—We investigate alternative suspicion functions for
bias-based traitor tracing schemes, and present a practical
construction of a simple decoder that attains capacity in the
limit of large coalition size c.

We derive optimal suspicion functions in both the Restricted-
Digit Model and the Combined-Digit Model. These functions
depend on information that is usually not available to the tracer
– the attack strategy or the tallies of the symbols received by the
colluders. We discuss how such results can be used in realistic
contexts.

We study several combinations of coalition attack strategy
versus suspicion function optimized against some attack (another
attack or the same). In many of these combinations the usual
codelength scaling ` ∝ c2 changes to a lower power of c, e.g.
c3/2. We find that the interleaving strategy is an especially pow-
erful attack. The suspicion function tailored against interleaving
is the key ingredient of the capacity-achieving construction.

Index Terms—Collusion resistance, traitor tracing.

I. INTRODUCTION

A. Collusion attacks on watermarking

FORENSIC watermarking is a means for tracing the origin
and distribution of digital content. Before distribution, the

content is modified by embedding an imperceptible watermark,
which plays the role of a personalized serial number. Once
an unauthorized copy of the content is found, the identities of
those users who participated in its creation can be determined.
A tracing algorithm outputs a list of suspicious users.

The most powerful attacks against watermarking are col-
lusion attacks, in which multiple attackers (the ‘coalition’)
combine their differently watermarked versions of the same
content; the observed differences point to the locations of the
hidden marks.

In the past two decades several types of collusion-resistant
codes have been developed. The most popular type in the
recent literature is the class of bias-based codes. These were
introduced by G. Tardos in 2003. The original paper [2] was
followed by a flurry of activity, e.g. improved analyses [3]–
[8], code modifications [9]–[11], decoder modifications [12]–
[14] and various generalizations [15]–[18]. The advantage of
bias-based versus deterministic codes is that they can achieve
the asymptotically optimal relationship ` ∝ c2 between the
sufficient code length ` and the coalition size c.
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Two kinds of tracing algorithm can be distinguished: (i) sim-
ple decoders, which assign a level of suspicion to single users
and (ii) joint decoders [12]–[14], which look at sets of users.
Joint decoders employ a simple decoder as a bootstrapping
step.

Tardos’ scheme worked with a binary code and a simple
decoder. Its ‘suspicion function’ for computing a level of
suspicion for single users was improved [16] and the scheme
was generalized to q-ary alphabets. However, it turns out [19]
that the suspicion function yields sub-optimal fingerprinting
rates, i.e. rather far below the fingerprinting capacity [20], [21]
and far below the best achieved dynamic code rate [22].

Alternative suspicion functions for the binary case were
introduced [13], where an Expectation Maximization (EM)
algorithm was used. A candidate coalition is selected, which
(if the guess is sufficiently good) makes it possible to estimate
the employed attack strategy; a suspicion function is then used
which is optimized against that strategy. This leads to a new
ranking of users, giving a new candidate coalition, and the
whole process is repeated until it converges.

B. Contributions
This paper is an extended version of earlier work on optimal

suspicion functions [1].
• We generalize the work of Charpentier et al. [13] to q-

ary alphabets. Using functional derivation methods we
obtain suspicion functions that for large c maximize the
expected score for the coalition, allowing the tracer to
distinguish best between them and the innocent users.
We present results for the Combined-Digit Model and
the Restricted-Digit Model.

• We consider a set of often-considered attack strategies.
We substitute these attacks into the generic formulas and
obtain closed-form expressions for the optimal suspicion
functions associated with these attacks.

• We tabulate the performance for each combination of
attack and suspicion function. For some cases we prove
theorems analytically and for all binary cases we have
numerical results. Naturally, in case of a match the suffi-
cient code length ` is small; for all considered strategies
but the interleaving attack we even find ` ∝ c3/2. For the
interleaving attack and its matching suspicion function we
find an asymptotic fingerprinting rate (q − 1)/(2c2 ln q),
which is exactly the q-ary asymptotic fingerprinting ca-
pacity.
In non-matching cases the results differ widely. In some
cases, as expected, the mismatched defense fails com-
pletely, while in others the code length remains ` ∝ c2
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(often with a smaller coefficient than with the Tardos
suspicion function), and in many cases we find ` ∝ c3/2
even for a mismatch.

• The suspicion function tailored against the interleaving
attack is very special. When this suspicion function is
adopted as the basis of a simple decoder, the minimax
game for the asymptotic code rate (attack strategy versus
bias distribution function) has a saddle point when the
interleaving attack is used and the distribution function
is the Dirichlet distribution with concentration parameter
1/2. In the saddle point the asymptotic rate equals the
asymptotic capacity. The saddle point is the same point
that was found by Huang and Moulin[21] for the mutual
information minimax game. Thus, we have identified a
simple decoder that asymptotically achieves capacity.

In Sections III-A and XI we comment on possible ways to ex-
ploit our results for the construction of improved decoders by
using several suspicion functions in parallel, and/or deploying
a tally-dependent suspicion to strengthen the EM algorithm,
and/or to validate candidate coalitions in general.

II. PRELIMINARIES

A. General notation

We denote random variables by capital letters and their
realizations in lower case. We write vectors in boldface. We
define [`] = {1, . . . , `}. The q-ary alphabet is A, which is
sometimes set to A = {0, . . . , q − 1}.

We use multi-index notation, e.g. pκ =
∏
α∈A p

κ
α, pm =∏

α∈A p
mα
α , and

(
c
m

)
= c!/

∏
α∈Amα!.

We define the norm of a vector as |p| =
∑
α∈A |pα|.

For probability mass/density functions we use abbreviated
notation of the form fy|p = fY |P (y|p) when it does not cause
ambiguity.

In conditional expectation values we sometimes use the
abbreviation EM |p[· · · ] = EM [· · · |P = p]. An E without
subscripts is an expectation over all probabilistic degrees of
freedom. We use δx,y to denote the Kronecker delta function,
which is 1 when x = y and 0 when x 6= y.

The notation ∂A
∂px
||p|=1 is defined as follows. First the

derivative ∂A/∂px is taken without taking the constraint∑
α pα = 1 into account. After differentiation the constraint

is enforced.
We will use the shorthand notation ak := (p0 + · · ·+pk−1)

and aB =
∑
β∈B pβ .

B. Bias-based tracing; simple decoder

The content contains ` abstract ‘locations’ into which a
q-ary symbol can be embedded. For each location i ∈ [`]
independently, the tracer draws a bias vector P i = (Pi,α)α∈A
from a distribution fP . The biases satisfy Pi,α ≥ 0 and
|P i| = 1. A symmetric Dirichlet distribution was taken [16],
with concentration parameter κ > 0,

fp = pκ−1Γ(qκ)/[Γ(κ)]q. (1)

For q = 2 it is customary to set κ = 1
2 , turning (1) into the

arcsine distribution for the component p1. However, in that

case the support has to be reduced to p1 ∈ [δ, 1−δ], with cutoff
parameter δ > 0, in order to avoid statistical problems due
to extremely unlikely events. The probability density function
then becomes

fp1 =
1

2 arcsin(1− 2δ)

1√
p1(1− p1)

. (2)

As the cutoff parameter is typically chosen so small that it
vanishes, we will neglect it in our analysis. The number of
users is n. For each i ∈ [`] and each j ∈ [n], the tracer
draws a random symbol Xi,j ∈ A according to the categorical
distribution with parameter P i, i.e. P[Xi,j = α|P i = pi] =
pi,α independent of j. The symbol Xi,j is embedded into the
content of user j in location i.

The coalition of attackers is denoted as C ⊂ [n], with
|C| = c. In some attack models, e.g. the Combined-Digit
Model (Section II-C), they are allowed to do signal processing
attacks such as introducing noise and fusing symbols. In the
Restricted-Digit Model (RDM) they are only allowed to select
one colluder’s symbol (denoted as yi) in location i. In the
simple decoder approach, the tracer determines a score Sj
for each user j by adding independently computed sub-scores
Si,j for each location i; these are based on pi, Xi,j and the
colluders’ output in location i. If the score exceeds a threshold,
user j is accused.

Tardos [2] introduced a (simple decoder) score system for
the RDM at q = 2 that was later [16] symmetrized and gener-
alized to q > 2. The sub-scores for each location are computed
using a ‘suspicion function’ g as Si,j = g(xi,j , yi,pi) with

g(x, y,p) =


√

(1− py)/py if x = y

−
√
py/(1− py) if x 6= y.

(3)

It has the special property that the Si,j of innocent users has
expectation 0 and variance 1.

Given the symmetries present in the code generation and
accusation algorithm, it is usually assumed that the attackers
apply a strategy that acts at every location independently.
Furthermore, we assume that the colluders take equal risks.
In such an attack model, the colluders’ decision in location
i depends only on the tallies Mi,α = |{j ∈ C|Xi,j = α}|
(with α ∈ A). The tallies satisfy |M i| = c, and they are
multinomial-distributed, with density fm|p =

(
c
m

)
pm. The

attack strategy may be probabilistic.

C. Combined-Digit Model (CDM)

The CDM [17] allows colluders to mix symbols and to
introduce noise (see Figure 1). In each location, the symbols
that are mixed are assumed to have equal power. The set
of symbols that the colluders choose to mix is denoted as
Ψ ⊆ A with mα > 0 for each α ∈ Ψ. The attack
strategy is parametrized by a set of probabilities fψ|m. The
tracer has a detector that outputs a set Φ ⊆ A of observed
symbols. The joint effects of the noise and the mixing lead
to probability distributions fΦ|Ψ, where it is possible that the
noise introduces symbols in Φ that are absent in Ψ. Simple-
decoder score systems were introduced in [17], [18].
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P
code generation−−−−−−−−−−→

fM|P
M

colluder mix−−−−−−−−→
fΨ|M

Ψ
tracer detection−−−−−−−−−−→

fΦ|Ψ
Φ

Fig. 1. A schematic depiction of the CDM.

The CDM reduces to the RDM when the noise strength
is sent to zero and the detector unerringly observes Φ = Ψ,
forcing the colluders to output a single symbol, Ψ = {Y }. For
the RDM, a strategy is parametrized by a set of probabilities
fy|m.

D. Performance; moments of the scores

The performance of bias-based tracing schemes can for a
large part be characterized by looking merely at the first and
second moment of the innocent and guilty scores. (This holds
especially at large c, where the large code length induces an
almost-Gaussian shape of the score probability distributions.)

For an innocent user j, we define the mean and variance as

µ̃inn := E[Si,j ] (4)

σ̃2
inn := Var[Si,j ] = E[(Si,j − µ̃inn)2] = E[S2

i,j ]− µ̃2
inn, (5)

where the index i ∈ [`] is arbitrary. The expectation E is taken
over the random variables P i, Xi,j , and Yi (in the CDM Ψi

and Φi instead of Yi). We call a suspicion function centered
if it yields µ̃inn = 0 and normalized if σ̃2

inn = 1. For the
coalition we define Si,C :=

∑
j∈C Si,j . The moments are

µ̃C := E[Si,C ] (6)

σ̃2
C := Var[Si,C ] = E[(Si,C − µ̃C)2] = E[S2

i,C ]− µ̃2
C (7)

again with arbitrary index i. If the Gaussian approxima-
tion holds, then the sufficient code length is proportional to
(µ̃C/σ̃inn)−2c2 [8]. We will use the fraction µ̃C/σ̃inn as a
performance indicator.

III. OPTIMAL SUSPICION FUNCTIONS

We consider suspicion functions h other than the function
g given in (3). We derive suspicion functions that maximize
the performance indicator µ̃C/σ̃inn, in the CDM as well
as the RDM. Without loss of generality, we will consider
only suspicion functions that are centered (µ̃inn = 0) and
normalized (σ̃inn = 1). We use the standard approach of
Lagrange functionals; we use constraint multipliers λ1, λ2 ∈ R
to enforce the constraints µ̃inn = 0 and σ̃inn = 1. We define
the functional

L(h, λ1, λ2) = µ̃C − λ1µ̃inn − 1
2λ2(σ̃2

inn − 1), (8)

where µ̃inn, σ̃inn and µ̃C depend on the function h as specified
in (4-6). The optimal h is found by solving the set of equations
δL/δh = 0, ∂L/∂λ1 = 0 and ∂L/∂λ2 = 0. The solution
depends on the arguments of h: in the CDM the sub-score of
user j in location i is typically a function of Xi,j , Φi and P i;
in the RDM a function of Xi,j , Yi and P i.

A. Optimal Suspicion Functions in the Combined-Digit Model

We present a number of lemmas leading up to the main
theorem of this section, which shows the solution obtained by
the Lagrangian approach. The conditional probabilities that
appear in the lemmas are related as follows:
fψ|p =

∑
m fψ|mfm|p and fφ|p =

∑
ψ fφ|ψfψ|p. The

numbers fφ|ψ are fixed parameters of the CDM independent
of the strategy.

Lemma 1. An optimal suspicion function of the form
h(x,φ,ψ,p) does not depend on φ. An optimal suspicion
function of the form h(x,φ,ψ,m,p) depends neither on φ
nor ψ.

Proof sketch: The set ψ contains more information about the
attackers than the set φ. Likewise, the tallies m contain more
information than ψ.

We will give the full proof after Theorem 1.
To determine the optimal suspicion functions of the increas-

ingly general forms h(x,φ,p), h(x,φ,ψ,p), and
h(x,φ,ψ,m,p), it suffices to study the forms hΦ(x,φ,p),
hΨ(x,ψ,p), and hM (x,m,p), respectively.

Lemma 2. Let h be of the form hΦ(x,φ,p) and define

TΦ(x,φ,p) :=
EM |p[Mxfφ|M ]

cpxfφ|p
=

1

c

∂ ln fφ|p

∂px

∣∣∣∣
|p|=1

+1. (9)

Then µ̃C = c · E[TΦh] and E[TΦ] = 1.

Proof: We write (6) as

µ̃C = EPEM |PEΦ|M
∑

x∈A
Mxh(x,Φ,P ) (10)

= EPEM |PEΦ|P
fΦ|M

fΦ|P
EX|P

MX

PX
h(X,Φ,P ) (11)

= EPEΦ|PEX|P
[EM |P [MXfΦ|M ]

PXfΦ|P
h(X,Φ,P )

]
(12)

= c E[T · h]. (13)

Furthermore, EX|p[mX/pX ] = c and fφ|p = EM |p[fφ|M ],
so

EX|p[T ] = EX|p
[EM |p[MXfφ|M ]

cpXfφ|p

]
= 1. (14)

To be able to take the partial derivative ∂ ln fφ|p
∂px

, the com-
ponents p0, . . . , pq−1 are assumed to be functionally inde-
pendent. In particular, we do not assume |p| = 1 during
differentiation. Since fm|p = 1

|p|c
(
c
m

)
pm, we find

fφ|p = EM |p[fφ|M ] =
1

|p|c
∑
m

(
c

m

)
pmfφ|m. (15)

∂ ln fφ|p

∂px
=

1
px

∑
m

(
c
m

)
pmmxfφ|m∑

m

(
c
m

)
pmfφ|m

− c

|p|
(16)

=
EM |p[Mxfφ|M ]

pxfφ|p
− c

|p|
. (17)

So 1
c

∂ ln fφ|p
∂px

∣∣∣
|p|=1

+ 1 = TΦ(x,φ,p).
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When the colluders output is known the optimal suspicion
function is derived as follows:

Lemma 3. Let h be of the form hΨ(x,ψ,p) and define

TΨ(x,ψ,p) :=
EM |p[Mxfψ|M ]

cpxfψ|p
=

1

c

∂ ln fψ|p

∂px

∣∣∣∣
|p|=1

+ 1.

(18)
Then µ̃C = c · E[TΨh] and E[TΨ] = 1.

Proof: We write (6) as

µ̃C = EPEM |PEΨ|M
∑

x∈A
Mxh(x,Ψ,P ). (19)

Note the similarity between (19) and (10). The proof proceeds
analogously with Ψ instead of Φ.

When even the tallies of the coalition symbols are known
the optimal suspicion function is derived as follows:

Lemma 4. Let h be of the form hM (x,m,p) and define

TM (x,m,p) :=
mx

cpx
=

1

c

∂ ln fm|p

∂px

∣∣∣∣
|p|=1

+ 1. (20)

Then µ̃C = c · E[TMh], E[TM ] = 1, and Var[TM ] = q−1
c .

Proof: We write (6) as

µ̃C = EPEM |P
∑

x∈A
Mxh(x,M ,P ) (21)

= EPEM |PEX|P
[
MX

PX
h(X,M ,P )

]
= c E[T · h].

(22)

Furthermore, EM |p[Mx] = cpx, so

E[T ] = EPEM |PEX|P
[
MX

cPX

]
= EPEX|P [1] = 1. (23)

Also

Var[T ] = EPEX|PEM |P
(
MX

cPX
− 1

)2

(24)

= EPEX|PVarM |P

[
MX

cPX

]
= EPEX|P

[
cPX(1− PX)

c2P 2
X

]
(25)

= 1
cEP

∑
x∈A

(1− Px) = (q − 1)/c. (26)

Also, ∂ ln fm|p
∂px

= mx
px
− c
|p| and thus 1

c

∂ ln fm|p
∂px

∣∣∣
|p|=1

+ 1 =

TM (x,m,p).

Theorem 1. In each of the cases above, the centered and
normalized suspicion function that maximizes µ̃C is

h = (T − E[T ]) /
√

Var[T ] (27)

and the expected coalition score is µ̃C = c ·
√

Var[T ].

Proof: Define the Lagrangian

L(h, λ1, λ2) := c E[Th]− λ1E[h]− 1
2λ2(E[h2]− 1) (28)

with the two Lagrange multipliers λ1 and λ2 enforcing that
the function is centered and normalized respectively. Let h be
such that δLδh = 0. Then D(cT−λ1−λ2h) = 0 (where D is the
product of the probability densities of the random variables),
i.e. h = cT−λ1

λ2
. The first constraint, µ̃inn = 0, implies that

λ1 = c E[T ] and the second constraint, σ̃2
inn = 1, implies that

λ22 = E(cT − λ1)2 = c2Var[T ].
From the previous lemmas, we conclude that

µ̃C = c E[Th] = c E[T − E[T ]]/
√

Var[T]

= c Var[T]/
√

Var[T] = c
√

Var[T]. (29)

Now that we have seen the proof technique for Theorem 1,
we can state the full proof of Lemma 1:
Proof of Lemma 1: To determine the optimal suspicion
function of the form h(x,ψ,p) in the proof of Theorem 1
we defined the Lagrangian

L(h, λ1, λ2) := c E[Th]− λ1E[h]− 1
2λ2(E[h2]− 1). (30)

where E[. . .] = EPEΨ|PEX|P [. . .]. The Euler-Lagrange equa-
tion was D(cT − λ1 − λ2h) = 0 with D = fpfψ|pfx|p.

Instead, to determine the optimal suspicion function of the
form h(x,φ,ψ,p), we would define the same Lagrangian,
but now with E[. . .] = EPEΨ|PEΦ|ΨEX|P [. . .]. We obtain
the same Euler-Lagrange equation but now with
D = fpfψ|pfφ|ψfx|p.

In both cases, we draw the same conclusion: that cT −λ1−
λ2h = 0. We therefore find that the optimal suspicion function
of the form h(x,φ,ψ,p) is the one we found in Lemma 3 of
the form h(x,ψ,p).

Likewise, the optimal suspicion function of the form
h(x,φ,ψ,m,p) is the one we found in Lemma 4 of the form
h(x,m,p).

Our suspicion functions have a close relation with Neyman-
Pearson scores, as shown in the following proposition.

Proposition 5. In all three cases TΦ(x,φ,p), TΨ(x,ψ,p)
and TM (x,m,p) for the function T it holds that

T (x,�,p) ∝ P[j∈C|x,�,p]

P[j /∈C|x,�,p]
, (31)

and thus T is a Neyman-Pearson score.

Proof: The Neyman-Pearson score for testing a hypothesis
H given evidence e is given by the likelihood ratio P[H =
True|e]/P[H = False|e]. Our hypothesis is H = (j ∈ C) for
a user j ∈ [n], and we consider the evidence e = (x,φ,p)
available in one location. (The proof for all the other cases is
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analogous.) Then the Neyman-Pearson score is

P[j∈C|x,φ,p]

P[j /∈C|x,φ,p]
=

P[j∈C, x,φ,p]

P[j /∈C, x,φ,p]
(32)

=
P[j∈C]fpfx|pfφ|x,p,j∈C

P[j /∈C]fpfx|pfφ|p
(33)

∝
fφ|x,p,j∈C

fφ|p
(34)

=
1

fφ|p

∑
m:mx≥1

(
c− 1

m− ex

)
pm−exfφ|m

(35)

=
1

fφ|p

∑
m

mx

cpx

(
c

m

)
pmfφ|m (36)

=
1

fφ|p
EM |p

[
Mx

cpx
fφ|M

]
. (37)

Here ex is a length q vector containing a 1 in position x and
zero elsewhere. The a priori probability P[j∈C] is a constant.
It is equal for all users if the tracer has no prior knowledge
about the coalition.

Several things are worth noting about these results.

(i) In the proof of Theorem 1 it is not necessary to specify
the bias distribution. Though µ̃C is a functional of both
h and fP , the optimization of h does not depend on fP .

(ii) In all three cases the result for h depends on information
that the tracer usually does not have. (The strategy
fψ|m in Lemmas 2 and 3; the tallies m in Lemma
4). When a function hΦ, for some guessed strategy, is
used to compute scores, there is no guarantee that the
attackers are actually adhering to that guessed strategy.
Such ‘mismatched’ situations will be discussed (for the
RDM) in the remainder of this paper.

(iii) We can think of two ways in which the m-dependent
result of Lemma 4, h(x,m,p) = (mxcpx − 1)

√
c
q−1 , can

be used in practice. First, it could be employed in the EM
algorithm [13]. The EM procedure estimates a strategy
based on the symbols received by the candidate coali-
tion, and then uses this estimate to adapt the suspicion
function. Our h function could be used to directly assign
scores to all users, skipping the strategy estimation
step. This would speed up each iteration of the EM
algorithm and avoid the statistical inaccuracies in the
estimation. (Of course, inaccuracies due to a wrongly
guessed coalition remain, and may even increase.)
Secondly, this h function can be used as a consistency
check in the following way. Suppose that, by some
means, a candidate coalition Ĉ has been tentatively
identified. Then one computes a score (mxcpx − 1)

√
c
q−1

for all users, where the tally mx is based on Ĉ and the
user’s symbol x. If Ĉ equals the actual coalition, one
should see a huge score difference between innocent
users and the colluders. Exploration of these ideas is
left for future work.

(iv) The expression ∂ ln f/∂px in all three cases has the form
of a Fisher score, being the derivative of the logarithm of
a conditional probability with respect to the conditioning
variable. We suspect that this form is no coincidence.
However, the intuitive meaning of the associated ‘game’
(guessing p from y) is not immediately obvious. Asymp-
totically m tends to cp. We hypothesize that the game
‘guess p from y’ is asymptotically equivalent to ‘guess
m from y’. The latter is a known formulation of the
tracing problem.

(v) Our result in Proposition 5 is different from the Neyman-
Pearson score in [14], where the whole sequence
(Yi)i∈[`] was considered.

B. Optimal Suspicion Functions in the Restricted-Digit Model

The Restricted-Digit Model is a special case of the
Combined-Digit Model.

Corollary 6. Let h be of the form hY (x, y,p) and define

TY (x, y,p) :=
EM |p[Mxfy|M ]

cpxfy|p
=

1

c

∂ ln fy|p

∂px

∣∣∣∣
|p|=1

+ 1.

(38)
Then µ̃C = c · E[TY h] and E[TY ] = 1.

Proof: The optimal h function in the RDM case follows
straightforwardly from Lemma 2 and Theorem 1 by taking the
limit of zero noise and perfect detection of all mixed symbols,
leading to Φ = Ψ = {Y }, with Y ∈ A.

In the RDM, Lemma 4 and Theorem 1 hold without change.
Note that the Marking Assumption is not invoked to obtain
Corollary 6. Hence Corollary 6 is valid in a more general
setting, as long as the colluders produce a single symbol which
is unerringly detected by the tracer.

Note also that (38) with q = 2 matches the expression given
by Charpentier et al. [13] (which only considered the binary
case).

C. Strongly Centered and Normalized Suspicion Functions

In (8) we required our optimal score functions to be centered
and normalized. The normalization was done without loss
of generality, since scores can be rescaled arbitrarily. The
symmetric Tardos suspicion function was chosen to satisfy
stronger properties: it is both centered and normalized, no
matter what the pirate symbol y or the bias vector p are (and
no matter what the attack strategy or the bias distribution is
for that matter). These properties are captured in the following
definition.

We call a suspicion function h(x, y,p) strongly centered if
EX|p[h(X, y,p)] = 0 and strongly normalized if
EX|p[h2(X, y,p)] = 1.

We show that even when the score function does not
match the pirate strategy, the optimal score functions derived
in the previous section remain centered but not necessarily
normalized.
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Lemma 7. Each optimal suspicion function (see Theorem 1)
is strongly centered. So is the symmetric Tardos function.

Proof: This follows directly from (14).

If we wanted to find optimal suspicion functions that
are both strongly centered and strongly normalized, like the
symmetric Tardos suspicion function, in (8) we should require
EX|p[h(X, y,p)] = 0 and VarX|p[h(X, y,p)] = 1. Since our
optimal suspicion functions already turned out to be strongly
centered, in Theorem 1 only the normalizing constant changes:

Corollary 8. The strongly centered and strongly normalized
suspicion function that maximizes µ̃C is

h =
(
T − EX|p[T ]

)
/
√

VarX|p[T ] (39)

and the expected coalition score is µ̃C = c ·
√

VarX|p[T ].

Proof: Define the Lagrangian

L(h, λ1, λ2) :=c EX|p [T (X, y,p)h(X, y,p)] +

− λ1EX|p[h(X, y,p)]+

− 1
2λ2(EX|p[h2(X, y,p)]− 1) (40)

with the two Lagrange multipliers λ1 and λ2 enforcing that
the function is centered and normalized respectively. Let h be
such that δL(h,λ1,λ2)

δh(x,y,p) = 0. Then

fx|p(cT (x, y,p)− λ1 − λ2h(x, y,p) = 0, (41)

i.e. h(x, y,p) = cT (x,y,p)−λ1

λ2
. The first constraint

that h(x, y,p) is strongly centered implies that λ1 =
c EX|p[T (X, y,p)] and the second constraint that h(x, y,p)
is strongly normalized implies that

λ22 = EX|p(cT (X, y,p)− λ1)2 = c2VarX|p[T (X, y,p)].
(42)

D. Building a Traitor Tracing Scheme

Now that we have described our new optimal suspicion
function, there is one caveat left to address. As noted before,
when a suspicion function h, for some guessed strategy, is used
to compute scores, there is no guarantee that the attackers are
actually adhering to that guessed strategy. In particular, this
means that we no longer have the property σ̃2

inn = 1 which
the Tardos suspicion function enjoys.

As a result, we can not simply plug our suspicion function
into the Tardos traitor tracing scheme, since such a scheme
typically accuses a user when he exceeds a fixed threshold.
Traditionally, the use of a fixed threshold is possible since
the scaling of the scores is taken care of by the property
σ̃2
inn = 1. Thus, ideally, we would like to have a normalized

suspicion function. This can be achieved by scaling all scores
(i.e. scaling the function h) by a factor σ̃inn. Unfortunately,
we have no way of knowing σ̃inn when the exact collusion
strategy is unknown. However, in practice, when the number

of colluders is not too large compared to the number of users,
we can estimate σ̃inn by the observed σ̃ of the complete
population. If we scale all scores by a factor σ̃ by replacing
them with Sj/σ̃ for every user j, the scheme will perform
well against any collusion strategy.

IV. DEFENDING AGAINST COMMON COLLUSION
STRATEGIES

From this point onward, we consider only the RDM. For a
number of often-studied strategies we compute the optimal
suspicion function. We investigate the situation where the
actual attack is indeed the one for which the h-function was
designed (a “match”), as well as mismatches. We will call the
“optimal suspicion function against strategy A” the A-defense.
The following sections will focus on defenses against five
often-considered strategies. In short, these strategies can be
described as follows:

1) Interleaving attack (Section V): The interleaving attack
randomly selects an attacker and outputs his symbol.

2) All-high (all-1) attack (Section VI): The all-high attack is
special as it breaks the symbol symmetry. It assumes that
the alphabet can be ordered in some meaningful way,
and outputs the largest received symbol. In the binary
case q = 2 this attack is known as the all-1 attack, as it
will output a 1 if the coalition has received one.

3) Random-symbol (coin-flip) attack (Section VII): The
random-symbol attack randomly selects a received sym-
bol, irrespective of the tally vector m, and outputs it.
In the binary case q = 2 this attack is known as the
coin-flip attack.

4) Majority voting attack (Section VIII): The majority
voting attack outputs the symbol that was received
most often by the coalition. In case multiple symbols
are received equally often, a random symbol is chosen
among them.

5) Minority voting attack (Section IX): The minority voting
attack outputs the symbol that was received least often
(but at least once) by the coalition. When multiple
symbols are received equally often, a random symbol
is chosen among them.

A detailed description of each attack will be given at the
start of its section. We also dedicate a section (Section X)
to analyzing the performance of the traditional symmetrized
Tardos suspicion function against these attacks.

V. INTERLEAVING DEFENSE

A. Optimal defense

The interleaving attack fy|m = my/c randomly selects an
attacker and outputs his symbol.

Proposition 9. Against the interleaving attack, the quantity T
is given by T (x, y,p) = 1 + 1

c (δx,y/py − 1), and the optimal
suspicion function is

h(x, y,p) =
1√
q − 1

(
δx,y
py
− 1

)
. (43)
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Proof: We find

fy|p =
1

c|p|c
∑
m

(
c

m

)
pmmy =

py
c|p|c

∂|p|c

∂py
=
py
|p|
. (44)

Thus
∂ ln fy|p

∂px

∣∣∣∣
|p|=1

=
δx,y
py
− 1, (45)

so T (x, y,p) = 1 + 1
c (δx,y/py − 1). Also,

Var[T ] = E(T − 1)2 (46)

= 1
c2EPEY |PEX|P

[
(δX,Y /pY − 1)

2
]

(47)

=
1

c2
EPEY |P

PY (1− PY
PY

)2

+
∑
x 6=Y

Px

 (48)

=
1

c2
EPEY |P

[
1− PY
PY

]
(49)

=
1

c2
EP [q − 1] =

q − 1

c2
. (50)

The performance of the interleaving defense against the
interleaving attack is given in the following lemma.

Proposition 10. When the interleaving attack is used against
the interleaving defense, then µ̃C =

√
q − 1, achieving capac-

ity for any fP .

Proof: From Theorem 1 we know that µ̃C = c·
√

Var[T ]. Com-
bining this with (50) yields µ̃C =

√
q − 1, which corresponds

to the capacity [20].

When x = y, the h is positive and increasing in py (rare
events raise more suspicion). When x 6= y, it is negative and
constant, in contrast to (3). The h is independent of c.

Lemma 11. If the tracer uses the interleaving defense, then,
no matter what attack is used,

µ̃C =
c√
q − 1

(
−1 + EPEY |P [T (Y, Y,P )]

)
(51)

and
σ̃2
inn =

1

q − 1

(
−1 + EPEY |P

[
1

PY

])
. (52)

where T belongs to the attack.

Proof: Using the interleaving defense from (43), we find

µ̃C = E[T ·h] =
c√
q − 1

(
E
[
T (X,Y,P )

δX,Y
PY

]
− 1

)
. (53)

Also

h2(x, y,p) =
1

q − 1

(
δx,y
py

(
1

py
− 2

)
+ 1

)
, (54)

so σ̃2
inn = E[h2] (55)

=
1

q − 1

(
1 + EPEY |P

[
1

PY
− 2

])
. (56)

We can explicitly calculate the performance against the all-
high attack (which is formalized in Proposition 19):

Proposition 12. If the tracer uses the interleaving defense,
but the coalition uses the all-high attack, then

µ̃C =
c√
q − 1

q−2∑
y=0

EP
[
Ac−1y+1

]
, and (57)

σ̃2
inn =

1

q − 1

(
−1 +

q−1∑
y=0

EP
[
Acy+1 −Acy

Py

])
. (58)

Proof: Using Lemma 11 with (114), we find

EPEY |P [T (Y, Y,P )] =

q−1∑
y=0

EP
[
Ac−1y+1

]
=

q−2∑
y=0

EP
[
Ac−1y+1

]
+1.

(59)
and, with (119),

EPEY |P
[

1

PY

]
=

q−1∑
y=0

EP
[
Acy+1 −Acy

Py

]
. (60)

If the Dirichlet distribution is used µ̃C will scale as c1−κ

for large coalitions:

Proposition 13. Let fP be the symmetric Dirichlet distribu-
tion with cutoff δ = 0. If the tracer uses the interleaving
defense, but the colluders use the all-high attack, then

µ̃C =
Γ(qκ)

Γ([q − 1]κ)

c1−κ√
q − 1

[1 +O(1/c)]. (61)

Proof: Lemma 11 gives
µ̃C = c√

q−1 (EPEY |P [T (Y, Y,P )] − 1). Next, using Propo-
sition 19 we get µ̃C = c√

q−1 [−1 +
∑q−1
y=0 EPAc−1y ] which

can be simplified to µ̃C = c√
q−1

∑q−2
y=0 EPAc−1y . The easiest

way to evaluate the expectation is by using the marginal
distribution of Ay , which is given by M(ay) = ayκ−1y (1 −
ay)[q−y]κ−1/B(yκ, [q − y]κ). (See derivation at the end of
this proof.) This yields

µ̃C =
c√
q − 1

q−2∑
y=0

B([q − 1− y]κ, [y + 1]κ+ c− 1)

B([q − 1− y]κ, [y + 1]κ)
(62)

=
c√
q − 1

q−1∑
b=1

Γ(qκ)Γ(c− 1 + bκ)

Γ(bκ)Γ(c− 1 + qκ)
. (63)

Next we use the property Γ(x + α)/Γ(x + β) = xα−β [1 +
O(1/x)] which holds if x� 1, a, b� x, and a, b independent
of x. (See e.g. Lemma 7 in [7].) This gives

µ̃C =
c√
q − 1

q−1∑
b=1

Γ(qκ)

Γ(bκ)
c(b−q)κ[1 +O

(
1

c

)
]. (64)

The dominant term is b = q − 1, yielding (61). The smaller b
values in the sum are terms of relative order 1/c or smaller.
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Finally we derive the marginal distribution M(ay). We
compute M(ay) = EP δ(ay −

∑y−1
α=0 Pα),

M(ay) =

∫ 1

0

dqp δ(1− |p|) pκ−1

B(κ1q)
δ(ay −

y−1∑
α=0

pα), (65)

where 1q is a vector consisting of q ones and B is the general-
ized Beta function. We do the following change of integration
variables: for α < y we write pα = aytα and for α ≥ y
we write pα = (1 − ay)sα. This gives δ(ay −

∑y−1
α=0 pα) =

a−1y δ(1 − |t|) and δ(1 − |p|) = (1 − ay)−1δ(1 − |s|). Fur-
thermore, dqp pκ−1 = dytdq−ys ayκy (1− ay)[q−y]κtκ−1sκ−1.
Substitution into (65) gives

M(ay) =
ayκ−1y (1− ay)[q−y]κ−1

B(κ1q)
[

∫ 1

0

dytδ(1− |t|)tκ−1]

· [
∫ 1

0

dq−ysδ(1− |s|)sκ−1] (66)

=
ayκ−1y (1− ay)[q−y]κ−1

B(κ1q)
B(κ1y)B(κ1q−y). (67)

Simplification of the Beta functions gives the density M(ay)
as listed earlier in this proof.

We now investigate the binary case q = 2. We can then
rephrase Proposition 12 as

Corollary 14. Let q = 2. If the tracer uses the interleaving
defense, but the coalition uses the all-1 attack, then µ̃C =

c EP
[
P c−10

]
and σ̃2

inn = −1 + EP
[
P c−10 +

1−P c0
P1

]
.

Proof: A1 = P0 and A2 = P0 + P1 = 1.

In the binary case, we obtain explicit results for the coin-flip
attack (as formalized in Proposition 29) against the interleav-
ing defense:

Proposition 15. Let q = 2. If the tracer uses the interleaving
defense, but the coalition uses the coin-flip attack, then

µ̃C = 1
2c EP

[
P c−10 + P c−11

]
and (68)

σ̃2
inn = −1 + EP

[
1 + P c0 − P c1

2P0
+

1 + P c1 − P c0
2P1

]
. (69)

Proof: Using Lemma 11 with (163), we find

EPEY |P [T (Y, Y,P )] = 1
2

∑
y∈A

EP [1 + P c−1y ] (70)

= 1 + 1
2EP [P c−10 + P c−11 ]. (71)

and, with (167),

EPEY |P
[

1

PY

]
= 1

2

∑
y∈A

EP
1 + P cy − P c1−y

Py
. (72)

Note the similarity between the coin-flip attack and the all-1
attack. For the Dirichlet distribution, this can be analytically
shown:

Proposition 16. Let q = 2 and fP be the symmetric Dirichlet
distribution with parameter κ = 1

2 without cutoff. If the tracer
uses the interleaving defense and the coalition uses either the
all-1 or the coin-flip attack, then

µ̃C = c ·B(κ, κ+ c− 1)/B(κ, κ) and (73)

σ̃2
inn = −1 +

c

1− κ
Γ(2κ)

Γ(κ)

Γ(c+ κ− 1)

Γ(c+ 2κ− 1)
+

1− 2κ

1− κ
. (74)

For large c these behave as µ̃C ∝ c1−κ and σ̃2
inn ∝ c1−κ.

Proof: In the case of the coin-flip attack we have

µ̃C = 1
2cEP [P c−10 + P c−11 ] = cEP [P c−10 ] (75)

= cB(κ, κ+ c− 1)/B(κ, κ) (76)

since fP is symbol-symmetric.
Also, fy|p = 1

2 + 1
2p
c
y − 1

2 (1− py)c. When the interleaving
suspicion function is used, (52) tells us that σ̃2

inn = −1 +
E[1/PY ]. We have

E
[

1

PY

]
=

∑
y∈{0,1}

EP
[
fy|P

Py

]
(77)

=
1

2

∑
y∈{0,1}

EP
[

1

Py
+ P c−1y − (1− Py)c

Py

]
(78)

= EP
[

1

Py
+ P c−1y − (1− Py)c

Py

]
(79)

=
B(κ−1, κ) +B(c+κ−1, κ)−B(κ−1, c+κ)

B(κ, κ)
.

(80)

In the third line we used the fact that fP is symbol-symmetric.
Re-expressing the Beta functions in terms of Gamma func-
tions, followed by some simplification, yields

E
[

1

PY

]
=

c

1− κ
Γ(2κ)

Γ(κ)

Γ(c+ κ− 1)

Γ(c+ 2κ− 1)
+

1− 2κ

1− κ
. (81)

Due to the symbol symmetry of fP , the derivations for the
all-1 attack are the same.

B. Saddle point analysis for the Interleaving score function

In this section we will show that the best attack against the
interleaving defense is the interleaving attack. In particular,
this means that using the interleaving defense attains capacity
against any attack. We do this in two steps: first we will show
the existence of a saddlepoint in the attack vs. distribution
space, and then we will argue that for a fixed distribution this
saddle point attains the minimum vaue of the performance
indicator - in other words, that there is no better attack.

In the first step we do a saddlepoint analysis of the per-
formance indicator µ̃C/σ̃inn, in the following setting. We fix
the employed suspicion function h to be the ‘Interleaving
defense’ as specified in Proposition 9. The tracer has to tune
the bias distribution fp and at the same time the coalition has
to find the best possible attack fy|m against the combination
fp, h. This simultaneous counter-acting optimization leads to
a saddle point solution for µ̃C/σ̃inn which is a minimum as a
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function of the attack strategy and a maximum as a function
of fp. A similar analysis was done by Huang and Moulin [21]
in the context of the q-ary fingerprinting capacity, abstracting
away the exact suspicion function to be employed. They found
the saddlepoint at (attack = interleaving, fp = Dirichlet with
κ = 1

2 ), consistent with the asymptotic (c→∞) fingerprinting
capacity (q − 1)/(2c2 ln q) known earlier [20].

We use the Lagrangian approach, with functional L given by

L =
µ̃2
C

σ̃2
inn

+
∑
m

λm(
∑
y∈Q

fy|m−1)+Λ(

∫
dqp δ(|p|−1)fp−1).

(82)
Here the λm and Λ are constraint multipliers: λm multiplies
the constraint that, for every m, fy|m is a probability mass
function for y, and Λ multiplies the constraint that fp is a
probability density function.

Proposition 17. Let the tracer use the interleaving defense.
When the interleaving attack strategy is used, and the bias
distribution is the Dirichlet distribution with κ = 1

2 , a
saddlepoint occurs. Also, the asymptotic fingerprinting rate
in the saddlepoint is equal to the asymptotic fingerprinting
capacity q−1

2c2 ln q .

Proof: The proof consists of two parts: (i) showing that
we have a stationary point in the (fy|m, fp)-space which
corresponds to capacity; (ii) showing that the stationary point
is a maximum as a function of fp and a minimum as a function
of fy|m.
Part 1. For the interleaving defense we have from Lemma 11
and Corollary 6 that

µ̃C
√
q − 1 =

∑
y∈Q

EP

[
∂fy|P

∂Py

∣∣∣∣
|P |=1

]
(83)

= −c+
∑
y∈Q

∑
m

(
c

m

)
fy|mmyEP

[
Pm

Py

]
, (84)

and

σ̃2
inn(q − 1) = −1 +

∑
y∈Q

EP
[
fy|P

Py

]
(85)

= −1 +
∑
y∈Q

∑
m

(
c

m

)
fy|mEP

[
Pm

Py

]
. (86)

The functional derivatives of µ̃C and σ̃2
inn are

√
q − 1

δµ̃C
δfy|m

=

(
c

m

)
myEP

[
Pm

Py

]
; (87)

√
q − 1

δµ̃C
δfp

= δ(|p| − 1)
∑
y∈Q

∂fy|p

∂py

∣∣∣∣
|p|=1

; (88)

(q − 1)
δσ̃2

inn

δfy|m
=

(
c

m

)
EP
[
Pm

Py

]
; (89)

(q − 1)
δσ̃2

inn

δfp
= δ(|p| − 1)

∑
y∈Q

fy|p

py
. (90)

With these ingredients, the stationarity equations become

0 =
δL

δfy|m
= λm +

2µ̃C
σ̃2
inn

δµ̃C
δfy|m

− µ̃2
C

σ̃4
inn

δσ̃2
inn

δfy|m
(91)

= λm +
2µ̃C
σ̃2
inn

(
c

m

)
EP
[
Pm

Py

] [
my√
q−1

− µ̃C
2σ̃2

inn(q−1)

]
;

(92)

0 =
δL

δfp
= Λ +

2µ̃C
σ̃2
inn

δµ̃C
δfp
− µ̃2

C
σ̃4
inn

δσ̃2
inn

δfp
(93)

= Λ +
2µ̃C

σ̃2
inn

√
q−1

∑
y∈Q

∂fy|p

∂py

∣∣∣∣
|p|=1

− µ̃2
C

σ̃4
inn(q−1)

∑
y∈Q

fy|p

py
.

(94)

Equation (92) has to hold for all symbols y. This means
that the expression EP

[
Pm

Py

] [
my√
q−1 −

µ̃C
2σ̃2

inn(q−1)

]
has to be

independent of y. This is a very complicated requirement on
fp and the attack; in general there is no easy way of solving
it. However, if we take the Dirichlet distribution for fp, with
parameter κ, then

EP
[
Pm

Py

]
=
B(κ1q +m)

B(κ1q)

κq + c− 1

my − (1− κ)
(95)

and it becomes possible to satisfy the independence require-
ment by demanding

µ̃C = 2σ̃2
inn(1− κ)

√
q − 1. (96)

With this special relation between µ̃C and σ̃2
inn, (94) becomes

∀p : 0 = Λ+4(1−κ)
∑
y∈Q

∂fy|p

∂py

∣∣∣∣
|p|=1

−4(1−κ)2
∑
y∈Q

fy|p

py
.

(97)
We have to find strategy parameters fy|m that give rise to a
function fy|p that satisfies (97). We happen to know from (44)
that the interleaving attack satisfies∑

y∈Q

∂fy|p

∂py

∣∣∣∣
|p|=1

= q − 1 and
∑
y∈Q

fy|p

py
= q. (98)

Thus (97) is satisfied if we take the interleaving attack and
Λ = 4(1− κ)2q − 4(1− κ)(q − 1).

Next, we know that σ̃2
inn = 1 in case of a match since our

suspicion function is normalized, and Proposition 9 tells us
that µ̃C =

√
q − 1 for the interleaving match. The relationship

(96) can only hold if κ = 1/2.
Thus, we have a stationary point in which the interleaving

attack is used and

µ̃C =
√
q − 1;

σ̃2
inn = 1;

κ = 1
2 ;

Λ = −(q − 2);

λm = − 1
2

(
c

m

)
B(κ1q +m)

B(κ1q)

(q
2

+ c− 1
)
.

(99)

We have a match with µ̃2
C/σ̃

2
inn = q − 1, which corresponds

to asymptotic capacity as described in Proposition 10.
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Part 2. We take an arbitrary point in (fy|m, fp)-space and
consider the infinitesimal steps{

f̂y|m = fy|m + ∆ym

f̂p = fp + β(p)
(100)

with
∑
y ∆ym = 0 and

∫
dqp δ(|p| − 1)β(p) = 0. In the new

point we write

ˆ̃µC = µ̃(0) + µ̃(1) + µ̃(2) ; ˆ̃σ2
inn = σ̃2

(0) + σ̃2
(1) + σ̃2

(2) (101)

where µ̃(0) = µ̃C and σ̃2
(0) = σ̃2

inn refer to values in the original
point (fy|m, fp), and we have defined

µ̃(1)

√
q − 1 =

∑
y∈Q

∑
m

∫
dqp δ(|p| − 1)

(
c

m

)
pm

py

·my

[
fp∆ym + β(p)fy|m

]
; (102)

σ̃2
(1)(q − 1) =

∑
y∈Q

∑
m

∫
dqp δ(|p| − 1)

(
c

m

)
pm

py

·
[
fp∆ym + β(p)fy|m

]
; (103)

µ̃(2)

√
q − 1 =

∑
y∈Q

∑
m

∫
dqp δ(|p| − 1)

(
c

m

)
pm

py

·myβ(p)∆ym; (104)

σ̃2
(2)(q − 1) =

∑
y∈Q

∑
m

∫
dqp δ(|p| − 1)

(
c

m

)
pm

py

· β(p)∆ym. (105)

The subscript indicates the order of the small step. The
maximum order is 2, since the expressions for µ̃C and σ̃2

inn

are linear in both fp and fy|m. We investigate the fraction
ˆ̃µ2
C/

ˆ̃σ2
inn.

ˆ̃µ2
C

ˆ̃σ2
inn

=

[
µ̃(0) + µ̃(1) + µ̃(2)

]2
σ̃2
(0) + σ̃2

(1) + σ̃2
(2)

(106)

=
µ̃2
(0)

σ̃2
(0)

·
1 + 2

µ̃(1)

µ̃(0)
+ 2

µ̃(2)

µ̃(0)
+

[µ̃(1)]
2

µ̃2
(0)

+ · · ·

1 +
σ̃2
(1)

σ̃2
(0)

+
σ̃2
(2)

σ̃2
(0)

(107)

=
µ̃2
(0)

σ̃2
(0)

·

[
1 + 2

µ̃(1)

µ̃(0)
+ 2

µ̃(2)

µ̃(0)
+

[
µ̃(1)

]2[
µ̃(0)

]2 + · · ·

]
·

·

1−
σ̃2
(1)

σ̃2
(0)

−
σ̃2
(2)

σ̃2
(0)

+

[
σ̃2
(1)

]2
[
σ̃2
(0)

]2 + · · ·

 (108)

where the dots stand for higher order terms. In the last line
we did a Taylor expansion of the denominator. By collecting
equal order terms in (108) we obtain the first and second order
components

[
µ̃2
C

σ̃2
inn

]
(1)

=
µ̃2
(0)

σ̃2
(0)

·

[
2
µ̃(1)

µ̃(0)
−
σ̃2
(1)

σ̃2
(0)

]
(109)

and[
µ̃2
C

σ̃2
inn

]
(2)

=
µ̃2
(0)

σ̃2
(0)

[
2
µ̃(2)

µ̃(0)
+

[
µ̃(1)

]2[
µ̃(0)

]2 − σ̃2
(2)

σ̃2
(0)

+

+

[
σ̃2
(1)

]2
[
σ̃2
(0)

]2 − 2
µ̃(1)

µ̃(0)

σ̃2
(1)

σ̃2
(0)

 (110)

=
µ̃2
(0)

σ̃2
(0)

[
2
µ̃(2)

µ̃(0)
−
σ̃2
(2)

σ̃2
(0)

]
+
µ̃2
(0)

σ̃2
(0)

[
µ̃(1)

µ̃(0)
−
σ̃2
(1)

σ̃2
(0)

]2
.

(111)

We take the stationary point as our starting point and first
make a step in the fp-direction only, i.e. ∆ym = 0.

The fact that ∆ym = 0 yields µ̃(2) = 0 and σ̃2
(2) = 0 from

(104) and (105). Furthermore, in (102) and (103) note that the
sum over y yields a constant as in (98), and then integrating
β gives zero. So µ̃(1) = 0 and σ̃2

(1) = 0 as well. Thus we
conclude that from the stationary point, changing only fp does
not change the performance indicator µ̃2

C/σ̃
2
inn. Note that this

is consistent with Proposition 10.
Secondly we fix fp to be the Dirichlet distribution with

κ = 1
2 and vary the attack slightly from interleaving. Now

β = 0, which yields µ̃(2) = 0 and σ̃2
(2) = 0. Equation (111)

with β = 0 then reduces to a square, which is non-negative.
Thus the performance indicator is minimized when the inter-
leaving attack is used, and the found stationary point is indeed
a saddlepoint.

This saddlepoint leads to a global minimum:

Theorem 2. Assume the tracer uses the interleaving defense
and the Dirichlet distribution with κ = 1

2 . Then the interleav-
ing attack minimizes the performance indicator µ̃C

σ̃inn
.

Proof: From Proposition 17 we know that the interleaving
attack is a local minimum in this setting. Also, when the
distribution is fixed as the Dirichlet distribution with κ = 1

2 ,
the proof of Proposition 17 states that the second derivative
(111) is non-negative for any strategy, as β(p) = 0 implies
that µ̃(2) = σ̃(2) = 0. Since µ̃C

σ̃inn
is a rational function of

∆ym, we can conclude that the interleaving attack is a global
minimum for this setting.

C. Relation to the Tardos suspicion function
The interleaving defense is closely related to the Tardos

suspicion function:

Proposition 18. The symmetric Tardos function is the strongly
normalized optimal suspicion function against the interleaving
attack.

Proof: We know from (49) that VarX|p[T ] =
1−py
c2py

. So by
Theorem 8, the strongly normalized optimal suspicion function
against the interleaving attack is

h(x, y,p) =

√
py

1− py

(
δx,y
py
− 1

)
, (112)



OOSTERWIJK, ŠKORIĆ, DOUMEN : A CAPACITY-ACHIEVING SIMPLE DECODER FOR BIAS-BASED TRAITOR TRACING SCHEMES 11

which equals the the symmetric Tardos function (3).

D. Interleaving Defense Numerics

To verify our analytic results and their practical applica-
bility, we ran simulations for the binary case and the arcsine
distribution (without cut-off), which is equal to the Dirichlet
distribution with κ = 1

2 . We simulated the five described
attacks (interleaving, all-1, coin-flip, majority voting, and
minority voting) against the interleaving defense. We stress
that these five attacks are by no means exhaustive.

We ran simulations for 1 ≤ c ≤ 200 to obtain the µ̃C and the
σ̃inn in these five cases as depicted in Fig.2. We then analyzed
this data to obtain the leading-order term in c. The results can
be found in Table I. Since for mismatches the innocent score
is no longer normalized (σ̃inn 6= 1), we present the results for
µ̃C/σ̃inn to make a fair comparison.

As predicted by Theorem 2, the interleaving defense attains
capacity (µ̃ = 1) against the interleaving attack. We also
observe that the majority voting attack has a constant µ̃. For
the other three attacks, µ̃C/σ̃inn seems to grow as c1/4. We
were able to prove this for the all-1 and coin-flip attacks in
Proposition 16.

TABLE I
Numerical trends for the performance indicator µ̃C/σ̃inn of the interleaving

defense in the binary case q = 2 for large c.

interleaving attack 1.0

all-1 attack 0.61c0.23

coin-flip attack 0.61c0.23

majority voting attack 1.2

minority voting attack 0.75c0.25
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Fig. 2. Interleaving defense against various attacks in the binary case.

VI. ALL-HIGH DEFENSE

A. Optimal defense

The all-high attack

fy|m =

{
1 if my > 0 and my+1 = · · · = mq−1 = 0

0 else
(113)

outputs the highest symbol among those received by the
coalition.

Note that this is the only attack we consider that breaks
symbol symmetry and assumes an ordering of the alphabet.
This is a special case of the so-called preferred-sequence
attack, in which the colluders have a predetermined ranking
of the symbols. The results below generalize to the preferred-
sequence attack. Recall our shorthand notation ak := (p0 +
· · ·+ pk−1) and aB =

∑
β∈B pβ .

Proposition 19. Against the all-high attack, the optimal sus-
picion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(ac−1y+1 − ac−1y )/(acy+1 − acy) if x < y

ac−1y+1/(a
c
y+1 − acy) if x = y

0 if x > y.
(114)

In case of a match, it holds that

µ̃C =c

√√√√−1 + EP

[
q−1∑
y=0

A2c−1
y+1 − 2AcyA

c−1
y+1 +A2c−1

y

Acy+1 −Acy

]
.

(115)

Proof: We find

fy|p = EM |p[fy|M ] (116)
= P[My > 0,My+1 = · · · = Mq−1 = 0] (117)
= P[My+1 = · · · = Mq−1 = 0] (118)
− P[My = · · · = Mq−1 = 0]

=
acy+1

|p|c
−

acy
|p|c

. (119)

So

T =
1

c

∂ ln(|p|cfy|p)

∂px

∣∣∣∣
|p|=1

(120)

=



ac−1y+1 − ac−1y

acy+1 − acy
if x < y

ac−1y+1

acy+1 − acy
if x = y

0 if x > y.

(121)

Also,

E[T 2] = EPEY |PEX|P [T 2(X,Y,P )] (122)

= EPEY |P
[
PY T

2(Y, Y,P ) +AY T
2(0, Y,P )

]
(123)

= EP
q−1∑
y=0

[
Py

A
2(c−1)
y+1

Acy+1 −Acy
+Ay

(
Ac−1y+1 −Ac−1y

)2
Acy+1 −Acy

]
(124)

= EP
q−1∑
y=0

A2c−1
y+1 − 2AcyA

c−1
y+1 +A2c−1

y

Acy+1 −Acy
. (125)

We obtain (115) using µ̃C = c
√

Var[T ] = c
√
E[T 2]− 1.

When x = y, the h is positive. When x > y, it is negative
and constant. When x < y, it might be negative or it might not.
For instance, for c = 2, we find (ay+1 − ay)/(a2y+1 − a2y) =
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1/(ay+1 +ay) = 1/(py + 2ay), in which case h is negative if
and only if py > 1−2ay . In particular it is negative if ay ≥ 1

2 .
Also, h is the same for all x < y.

We now analyze the behaviour of µ̃C when the symmetric
Dirichlet distribution is employed. Before we can state our
result, we will need the following Lemma:

Lemma 20. Let fP be the symmetric Dirichlet distri-
bution without cutoff. The joint distribution for the pair
(Ay+1, Ay/Ay+1) is then given by

J(ay+1,
ay
ay+1

) =
a
−1+(y+1)κ
y+1 (1− ay+1)−1+(q−y−1)κ

B([y + 1]κ, [q − y − 1]κ)
×

(ay/ay+1)−1+yκ(1− ay/ay+1)−1+κ

B(yκ, κ)
.

Proof: We first derive the joint distribution J(ay, ay+1) for
Ay and Ay+1:

J(ay, ay+1) = EP

[
δ

[
Ay −

y−1∑
i=0

Pi

]
δ

[
Ay+1 −

y∑
i=0

Pi

]]
(126)

∝
∫
|p|=1

dq−1p pκ−1δ

[
ay −

y−1∑
i=0

pi

]
δ

[
ay+1 −

y∑
i=0

pi

]
(127)

=

∫
dqp pκ−1δ

[
ay −

y−1∑
i=0

pi

]
δ

[
ay+1 −

y∑
i=0

pi

]
δ(1− |p|)

(128)

=

∫
dqp pκ−1δ

[
ay−

y−1∑
i=0

pi

]
δ

ay+1 +

q−1∑
i=y+1

pi − 1

δ(1− |p|).
(129)

Here δ(x) is the Dirac delta function. We perform the follow-
ing change of variables: for i < y we define pi = aysi; for
i > y we define pi = (1 − ay+1)ti. This yields dqp pκ−1=
dys dpydq−y−1t pκ−1y ayκy s

κ−1(1− ay+1)[q−y−1]κtκ−1 and

δ(ay −
∑y−1
i=0 pi) = a−1y δ(1− |s|), (130)

δ

ay+1 +

q−1∑
i=y+1

pi − 1

 = (1− ay+1)−1δ(1− |t|), (131)

δ(1− |p|) = δ [1− py − ay|s| − (1− ay+1)|t| ] . (132)

The expression (129) becomes

J(ay, ay+1) =

∫
dys dpy dq−y−1t pκ−1y ayκ−1y sκ−1×

(1−ay+1)[q−y−1]κ−1tκ−1δ(1−|s|) δ(1−|t|) δ [py+ay−ay+1]
(133)

∝ ayκ−1y (1− ay+1)[q−y−1]κ−1(ay+1 − ay)κ−1.
(134)

Finally we do a last change of variables from ay to z =
ay/ay+1. This gives day day+1 = ay+1 day+1 dz, and (134)
becomes

J(ay+1, z) ∝ a[y+1]κ−1
y+1 (1−ay+1)[q−y−1]κ−1zyκ−1(1−z)κ−1.

(135)

Inserting the normalization constants yields the result of the
lemma.

Given this joint distribution, we can now derive our main
result for the all-high attack when the symmetric Dirichlet
distribution is used.

Proposition 21. Let fP be the symmetric Dirichlet distribu-
tion without cutoff. If the attack is the all-high attack and the
defense matches it, then, for large c,

µ̃C = c
1−κ
2

√
κΓ(qκ)ζ(1 + κ)

Γ([q − 1]κ)

[
1 +O(c−min(1,κ))

]
, (136)

where ζ is the Riemann zeta function.

Proof: We write (115) as

µ̃2
C
c2

=−1+

q−1∑
y=0

EP
[
Ac−1y+1

1−2(Ay/Ay+1)c+(Ay/Ay+1)2c−1

1− (Ay/Ay+1)c

]
.

(137)
The fraction can be expanded as

1

1− (Ay/Ay+1)c
=

∞∑
t=0

(Ay/Ay+1)tc. (138)

Then we evaluate the expectation using the joint distribution
J(ay+1,

ay
ay+1

) from Lemma 20. This yields

µ̃2
C
c2

=− 1 +

q−1∑
y=0

B([y + 1]κ+ c− 1, [q − y − 1]κ)

B([y + 1]κ, [q − y − 1]κ)
×[

1−
∞∑
t=1

B(yκ+ tc, κ)

B(yκ, κ)
+

∞∑
t=2

B(yκ+ tc− 1, κ)

B(yκ, κ)

]
(139)

noting that 1/B(yκ, κ) vanishes for y = 0. Further simplifi-
cation gives

µ̃2
C
c2

=
κΓ(qκ)

Γ(qκ+ c− 1)

[
q−2∑
y=0

Γ([y + 1]κ+ c− 1)

([y + 2]κ+ c− 1)Γ([y + 1]κ)

+

q−1∑
y=1

Γ([y + 1]κ+ c− 1)

Γ(yκ)

∞∑
t=2

Γ(yκ+ tc− 1)

Γ([y + 1]κ+ tc)

]
.

(140)

Finally we use the identity Γ(c + a)/Γ(c + b) = ca−b[1 +
O(c−1)] to investigate the asymptotics. In the first summation
over y the dominant term occurs at y = q − 2, thus the
summation can be simplified to c−κ−1[1 + O(c−min(1,κ))]·
κΓ(qκ)/Γ([q− 1]κ). Similarly, in the second summation over
y the dominant term occurs at y = q − 1 and thus this
summation reduces to c−κ−1[1 + O(c−min(1,κ))][ζ(1 + κ) −
1]κΓ(qκ)/Γ([q− 1]κ), where ζ is the Riemann zeta function.
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B. All-1 defense

The binary all-high attack is known as the all-1 attack. It
has f1|m = 1 whenever m1 > 0 and f1|m = 0 when m1 = 0.

Corollary 22. Against the all-1 attack, the optimal suspicion
function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =


(1− pc−10 )/(1− pc0) if (x, y) = (0, 1)

1/(1− pc0) if (x, y) = (1, 1)

1/p0 if (x, y) = (0, 0)

0 if (x, y) = (1, 0).
(141)

In case of a match it holds that

µ̃C = c

√
EP [P c−10 (1− P0)/(1− P c0 )]. (142)

Proof: T follows directly from Proposition 19. Furthermore,
(115) gives

Var[T ] = −1 + EP
[
P c−10 +

1− 2P c0 + P 2c−1
0

1− P c0

]
(143)

= EP
[
P c−10 +

P 2c−1
0 − P c0
1− P c0

]
= EP

[
P c0 (1− P0)

P0(1− P c0 )

]
.

(144)

When x < y, the h is positive for any c, in contrast to the
q-ary case.

Corollary 23. Let fP be the symmetric Dirichlet distribution
with κ = 1

2 and cutoff δ = 0. Against the all-1 attack, the
optimal suspicion function attains µ̃C ∝ c1/4 for large c.

Before we investigate the behaviour of the all-high defense
against an interleaving attack, we first prove a general lemma
about the interleaving attack.

Lemma 24. If the tracer uses a strongly centered score
function and the coalition uses the interleaving attack, then

µ̃C =
∑
y∈A

EP [Py h(y, y,P )]. (145)

Proof: For the interleaving attack, cT =
δx,y
py

+ c− 1, so

µ̃C = cE[T · h] (146)

= EPEY |PEX|P
[(

δX,Y
PY

+ c− 1

)
h(X,Y,P )

]
(147)

= EPEY |PEX|P
[
δX,Y
PY

h(X,Y,P )

]
(148)

= EPEY |P [h(Y, Y,P )]. (149)

where (149) holds since E[h] = 0.

The performance of the all-high defense against the inter-
leaving attack can be analyzed as follows:

Proposition 25. If the tracer uses the all-high defense but the
coalition uses the interleaving attack, then

µ̃C =
1√

Var[T ]
EP

[
q−1∑
y=1

PyA
c−1
y+1

Acy+1 −Acy

]
(150)

where T belongs to the all-high defense.

Proof: Applying Lemma 24 we obtain

µ̃C =
1√

Var[T ]

−1 + EP

∑
y∈A

PyA
c−1
y+1

Acy+1 −Acy

 (151)

=
1√

Var[T ]
EP

[
q−1∑
y=1

PyA
c−1
y+1

Acy+1 −Acy

]
. (152)

In the binary case this reduces to

Proposition 26. For q = 2, if the tracer uses the all-1 defense,
but the coalition uses the interleaving attack, then

µ̃C =
1√

Var[T ]
EP

[
P1

∞∑
k=0

P kc0

]
. (153)

Proof: Applying Lemma 24 we obtain

µ̃C =
1√

Var[T ]

(
−1 + EP

[
1 +

P1

1− P c0

])
. (154)

The scaling behaviour for large c is

Lemma 27. Let q = 2 and fP be the symmetric Dirichlet
distribution with parameter κ = 1

2 without cutoff. If the tracer
uses the all-1 defense, but the coalition uses the interleaving
attack, then

µ̃C =
Γ(κ+ 1)

B(κ, κ)
√

Var[T ]

∞∑
t=0

Γ(tc+ κ)

Γ(tc+ 2κ+ 1)
. (155)

For large c, this scales as c(κ+1)/2.

C. All-1 Defense Numerics

We ran simulations for the binary case and the arcsine
distribution (without cut-off) with the same parameters as
described in Section V-D. The table looks very similar to that
of the interleaving defense. As expected, the all-1 defense
performs better against the all-1 attack, but worse against
the other four attacks. However, it retains the same scaling
behaviour.

We again stress that these five attacks are by no means
exhaustive.
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TABLE II
Numerical trends for the performance indicator µ̃C/σ̃inn of the all-1

defense in the binary case q = 2 for large c.

interleaving attack 0.71

all-1 attack 0.86c0.25

coin-flip attack 0.44c0.23

majority voting attack 0.84

minority voting attack 0.54c0.25
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Fig. 3. All-1 defense against various attacks in the binary case.

VII. RANDOM-SYMBOL DEFENSE

A. Optimal defense

The random-symbol attack selects one of the received
symbols uniformly at random. Tallies are disregarded, but a
symbol can only be chosen if its tally is nonzero. The attack
is parametrized by fy|m = (1− δmy,0)/|{α ∈ A : mα > 0}|.

Proposition 28. For the random-symbol attack we find

|p|cfy|p =
acA − acA\{y}

q
+

∑
B(A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

. (156)

The optimal suspicion function is h = (T −1)/
√

Var[T ], with

T (x, y,p) =
1

c

∂ ln(|p|cfy|p)

∂px

∣∣∣∣
|p|=1

= (157)

1

fy|p

1

q
+

∑
B(A: y∈B

ac−1B
|B|(|B|+ 1)

 if x = y

1

fy|p

1− (1− py)c−1

q
+
∑
B(A
x,y∈B

ac−1B − ac−1B\{y}
|B|(|B|+ 1)

 if x 6= y

(158)

Proof: For the random-symbol attack, the probability fy|m that
the symbol y is produced, is 0 if my = 0. It is 1

q if for all
α ∈ A, mα > 0. It is 1

q−1 if my > 0 and there is exactly one
symbol α1 ∈ A for which mα1 = 0. It is 1

q−2 if my > 0 and
there are exactly two distinct symbols α1, α2 ∈ A for which
mα1

= mα2
= 0, etc. This can be written in additive form

using indicator functions:

fy|m = 1
q1{my>0}

+
(

1
q−1 −

1
q

)
1{my>0}1{∃α1:mα1=0}

+
(

1
q−2 −

1
q−1

)
1{my>0}1{∃α1:mα1

=0}1{∃α2 6=α1:mα2
=0}

+ · · ·+
(
1− 1

2

)
1{my>0}

· 1{∃α1:mα1
=0} · · ·1{∃αq−1 6=α1,...αq−2:mαq−1

=0}. (159)

Note that

P[My > 0] = P[My ≥ 0]− P[My = 0] =
AcA −AcA\{y}

|p|c
(160)

and for each proper subset B ( A with y ∈ B, it holds that

P[∀β ∈ B,Mβ > 0] =
(
AcB −AcB\{y}

)
/|p|c. (161)

Since fy|p = EM |p[fy|M ], and for all sets V,W , it holds that
1V1W = 1V∩W , and E[1V ] = P[V], we find

|p|cfy|p =
acA − acA\{y}

q
(162)

+
∑

B(A: y∈B

(
1

|B|
− 1

|B|+ 1

)(
acB − acB\{y}

)
.

which simplifies to equation (156).

B. Coin-flip defense

The binary random-symbol attack is known as the coin-flip
attack, and is parametrized as fy|m = 1

2 (1− δmy,0 + δmy,c).

Proposition 29. Against the coin-flip attack, the optimal
suspicion function is h = (T − 1)/

√
Var[T ], with

T (x, y,p) =

{
(1 + pc−1y )/(1 + pcy − pc1−y) if x = y

(1− pc−11−y)/(1 + pcy − pc1−y) if x 6= y.
(163)

Proof: Since

fy|m = 1
2 (1− δmy,0 + δmy,c). (164)

fy|p = EM |p[fy|M ] (165)

=
1

2|p|c
c∑

my=0

(
c

my

)
pmyy p

c−my
1−y (1− δmy,0 + δmy,c) (166)

=
1

2|p|c
[(py + p1−y)c − pc1−y + pcy]. (167)

Thus
∂(|p|cfy|p)

∂px
= 1

2c[(py + p1−y)c−1 − (1− δx,y)pc−11−y

+ δx,yp
c−1
y ] (168)

So

T =
1− (1− δx,y)pc−11−y + δx,yp

c−1
y

1− pc1−y + pcy
. (169)
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When x = y, the h is positive. When x 6= y, it is negative,
since −pc−11−y < pc−1y , so pc−11−y(p1−y − 1) < pcy , and thus
1− pc−11−y < 1 + pcy − pc1−y .

The interleaving attack against the coin-flip defense behaves
as follows in the binary case:

Lemma 30. For q = 2, if the tracer uses the coin-flip defense,
but the coalition uses the interleaving attack, then

µ̃C=
1√

Var[T ]

[
−1+EP

[
P0(1 + P0)c−1

1 + P c0 − P c1
+
P1(1 + P1)c−1

1 + P c1 − P c0

]]
.

(170)

Proof: This follows directly from Lemma 24 with (163).

C. Coin-flip Defense Numerics

We ran simulations for the binary case and the arcsine distri-
bution (without cut-off) with the same parameters as described
in Section V-D. The results look quite different to those of
the interleaving defense. As expected, the coin-flip defense
performs better against the coin-flip attack. However, against
a majority voting attack this defense fails, as no information
on the coalition is gained. There is still a small advantage left
against an interleaving attack. However, it retains the same
scaling behaviour against the minority voting and all-1 attacks.

We note that the all-1 and coin-flip attacks numerically
perform the same against this defense. We could only prove
this fact analytically for the interleaving defense.

We again stress that these five attacks are by no means
exhaustive.

TABLE III
Numerical trends for the performance indicator µ̃C/σ̃inn of the coin-flip

defense in the binary case q = 2 for large c.

interleaving attack 5.1c−0.71

all-1 attack 0.72c0.25

coin-flip attack 0.72c0.25

majority voting attack 0.0

minority voting attack 1.1c0.25
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Fig. 4. Coin-flip defense against various attacks in the binary case.

VIII. MAJORITY VOTING DEFENSE

A. Optimal defense

The majority voting attack outputs the symbol with the
highest tally. In case of a tie, a uniform choice is made from
the winners. For the binary case, this can be expressed as:

fy|m =


1 if my >

1
2c

1
2 if my = 1

2c

0 if my <
1
2c.

(171)

Lemma 31. Let q = 2. For the majority voting attack, we find

fy|p|p|c =

c∑
my=(c+1)/2

(
c

my

)
pmyy p

c−my
1−y (172)

if c is odd and

fy|p|p|c =
1

2

(
c

c/2

)
(pyp1−y)c/2+

c∑
my=(c+2)/2

(
c

my

)
pmyy p

c−my
1−y

(173)
if c is even.

Proof: If c is odd, then

fy|p = EM |p
[
fy|M

]
=

1

|p|c
c∑

my=bc/2c+1

(
c

my

)
pmyy p

c−my
1y .

(174)
If instead c is even, the expression receives an additional term
1
2

(
c
c/2

)
(pyp1−y)c/2.

B. Majority Voting Defense Numerics

We ran simulations for the binary case and the arcsine
distribution (without cut-off) with the same parameters as
described in Section V-D. At first glance, the results look
even more promising than those from the interleaving defense.
Except against the interleaving attack, the performance of the
majority voting defense grows as c0.25 against the other 4
considered attacks. However, capacity is not achieved against
the interleaving attack.

We note again that the all-1 and coin-flip attacks numer-
ically perform the same against this defense. However, we
were unable to show this analytically as we could for the
interleaving defense.

We again stress that these five attacks are by no means
exhaustive.

TABLE IV
Numerical trends for the performance indicator µ̃C/σ̃inn of the majority

voting defense in the binary case q = 2 for large c.

interleaving attack 0.91

all-1 attack 0.66c0.22

coin-flip attack 0.66c0.22

majority voting attack 0.77c0.25

minority voting attack 0.90c0.23
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Fig. 5. Majority voting defense against various attacks in the binary case.

IX. MINORITY VOTING DEFENSE

A. Optimal defense

The minority voting attack outputs the symbol with the
lowest nonzero tally. In case of a tie, a uniform choice is made
from the winners. For the binary case, this can be expressed
as:

fy|m =


1 if 0 < my <

1
2c or my = c

1
2 if my = 1

2c

0 if my = 0 or 1
2c < my < c.

(175)

Lemma 32. Let q = 2. For the minority voting attack, we find

fy|p|p|c = pcy +

(c−1)/2∑
my=1

(
c

my

)
pmyy p

c−my
1−y (176)

if c is odd and

fy|p|p|c =
1

2

(
c

c/2

)
(pyp1−y)c/2+

+ pcy +

(c−2)/2∑
my=1

(
c

my

)
pmyy p

c−my
1−y (177)

if c is even.

Proof: If c is odd, then

fy|p= EM |p
[
fy|M

]
=

1

|p|c

pcy +

dc/2e−1∑
my=1

(
c

my

)
pmyy p

c−my
1y

.
(178)

If instead c is even, the expression receives an additional term
1
2

(
c
c/2

)
(pyp1−y)c/2.

B. Minority Voting Defense Numerics

We ran simulations for the binary case and the arcsine
distribution (without cut-off) with the same parameters as
described in Section V-D. The performance against the (tar-
geted) minority voting attack is excellent, and in fact the
best when one considers each attack against the matching
defense. However, against the other four considered attacks the
performance is poor: the minority voting defense fails against

the interleaving and majority voting attacks, and only attains
a small advantage against the all-1 and coin-flip attacks.

We again see that the all-1 and coin-flip attacks numerically
perform the same against this defense. However, we were
unable to prove this as we could for the interleaving defense.

We again stress that these five attacks are by no means
exhaustive.

TABLE V
Numerical trends for the performance indicator µ̃C/σ̃inn of the minority

voting defense in the binary case q = 2 for large c.

interleaving attack −0.08

all-1 attack 3.2c−0.51

coin-flip attack 3.2c−0.51

majority voting attack −1.9c−0.52

minority voting attack 1.4c0.25
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Fig. 6. Minority voting defense against various attacks in the binary case.

X. TARDOS SUSPICION FUNCTION

We end by analyzing the performance of the traditional
symmetric Tardos suspicion function.

Lemma 33. If the tracer uses the symmetric Tardos suspicion
function, then

µ̃C = c EPEY |P

[
PY

(√
1− PY
PY

−
√

PY
1− PY

)
T (Y, Y,P )

−
√

PY
1− PY

]
. (179)

Proof: See (3). Since, for fixed y, h(x, y,p) is the same for
all x 6= y, we find

µ̃C = c · E[T · h] (180)

= c EPEY |P

[
PY

√
1− PY
PY

T (Y, Y,P ) (181)

−
√

PY
1− PY

∑
x 6=Y

PxT (X,Y,P )


= c EPEY |P

[
PY

(√
1− PY
PY

−
√

PY
1− PY

)
T (Y, Y,P )

(182)
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−
√

PY
1− PY

]

Against the interleaving attack, the symmetric Tardos sus-
picion function does not perform well for large q:

Proposition 34. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the interleaving
attack, then µ̃C =

∑
y∈A EP [

√
Py(1− Py)]. When fP is a

symmetric Dirichlet distribution with concentration parameter
κ = 1

q and no cutoff is used,

µ̃C =


2
π for q = 2

1
2 (q − 2) tan(πq ) for q > 2

π
2 as q →∞

(183)

Proof: When q = 2 and p1 follows the arcsine distribution on
[δ, 1− δ] with probability density function (2) then

µ̃C = 2 · EP
√
P1(1− P1) =

1− 2δ

arcsin(1− 2δ)
. (184)

For δ = 0 we find µ̃C = 2
π .

Since the marginal distribution of the symmetric Dirichlet
distribution is the Beta distribution with parameters κ and (q−
1)κ, we find:

µ̃C =

q∑
y=1

EP
√
Py(1− Py) (185)

=

q∑
y=1

1

B(κ, (q − 1)κ)

∫ 1

0

p
κ+

1
2−1

y (1− py)(q−1)κ+
1
2−1dpy

(186)

= q
B(κ+ 1

2 , (q − 1)κ+ 1
2 )

B(κ, (q − 1)κ)
(187)

= q
Γ(κ+ 1

2 )Γ[(q − 1)κ+ 1
2 ]Γ(κq)

Γ(qκ+ 1)Γ(κ)Γ[(q − 1)κ]
(188)

=
1

κ
·

Γ(κ+ 1
2 )Γ[(q − 1)κ+ 1

2 ]

Γ(κ)Γ[(q − 1)κ]
. (189)

Now we set κ = 1
q . Using Euler’s reflection formula

Γ(z)Γ(1− z) = π
sin(πz) , we find

µ̃C = q ·
sin(πq )

π
· Γ( 1

q + 1
2 )Γ[1− 1

q + 1
2 ] (190)

= q ·
sin(πq )

π
· ( 1
q −

1
2 ) · Γ( 1

q −
1
2 )Γ[1− 1

q + 1
2 ] (191)

= (1− q
2 ) ·

sin(πq )

sin[( 1
q −

1
2 )π]

= 1
2 (q − 2) tan(πq ). (192)

We see that µ̃C is only a slowly increasing function of q
approaching the constant value π/2, which is far from the
optimal code rate.

Proposition 35. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the all-high attack,
then

µ̃C = c

q−1∑
y=0

EP

[
Py

(√
1− Py
Py

−

√
Py

1− Py

)
Ac−1y+1 (193)

−

√
Py

1− Py
(Acy+1 −Acy)

]
.

Proof: This follows directly from Lemma 33 with (114) and
(119).

Proposition 36. If the tracer uses the symmetric Tardos
suspicion function and the coalition uses the random-symbol
attack, then

µ̃C = c

q−1∑
y=0

EP

[

Py

[√
1− Py
Py

−

√
Py

1− Py

]1

q
+
∑

B⊂A: y∈B

ac−1B
|B|(|B|+ 1)


−

√
Py

1− Py

1− (1− Py)c

q
+
∑

B⊂A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

 .
(194)

Proof: This follows directly from Lemma 33 with (156) and
(158).

It is already known that in the binary case the Tardos defense
has a constant µ̃C :

Proposition 37. [16] Let q = 2 and fP be the symmetric
Dirichlet distribution with parameter κ = 1

2 without cutoff. If
the tracer uses the symmetric Tardos defense, then µ̃C = 2

π ,
no matter what attack the coalition uses.

XI. DISCUSSION

We have investigated the optimization of the performance
indicator µ̃C/σ̃inn for bias-based traitor tracing in the simple-
decoder setting. A straightforward Lagrangian approach yields
a simple expression (Theorem 1) for the optimal suspicion
function in a wide variety of contexts, e.g. CDM and RDM,
binary and q-ary. The result is a Neyman-Pearson score for
the hypothesis j ∈ C based on single-location information. It
also has the form of a Fisher score, though without a fully
understood interpretation.

The h function we obtain with the Lagrangian method
depends either on the collusion strategy or on the coalition’s
symbol tallies m. These quantities are usually unknown to the
tracer. Our optimization approach does not allow for deriving
suspicion functions that are based purely on data known to the
tracer.

In Section III-A we speculated on the use of the m-
dependent suspicion function in the EM algorithm or as a
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TABLE VI
Numerical trends for the performance indicator µ̃C/σ̃inn in the binary case q = 2 for large c.

interleaving attack all-1 attack coin-flip attack majority voting attack minority voting attack

Tardos defense 2/π 2/π 2/π 2/π 2/π

interleaving defense 1.0 0.61c0.23 0.61c0.23 1.2 0.75c0.25

all-1 defense 0.71 0.86c0.25 0.44c0.23 0.84 0.54c0.25

coin-flip defense 5.1c−0.71 0.72c0.25 0.72c0.25 0.0 1.1c0.25

majority voting defense 0.91 0.66c0.22 0.66c0.22 0.77c0.25 0.90c0.23

minority voting defense −0.08 3.2c−0.51 3.2c−0.51 −1.9c−0.52 1.4c0.25
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Fig. 7. Performance of optimal suspicion functions against the corresponding
attack in the binary case.

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

�
Μ� C

�
Σ� in

n

� c

interleaving

majority vote

all-1

Tardos

coin-flip

minority vote

Fig. 8. Interleaving attack against various defenses in the binary case.

consistency check for candidate coalitions. Further exploration
is left for future work.

For several binary and q-ary attacks in the RDM we have
derived the optimal suspicion function. We have investigated
the performance indicator µ̃C/σ̃inn in many combinations of
suspicion function and attack strategy. In some cases analytic
results are obtained. Notably, the matching case of the q-
ary interleaving attack gives µ̃C/σ̃inn = µ̃C =

√
q − 1,

asymptotically (c → ∞) yielding a code rate precisely equal
to the channel capacity [20].

For q = 2 the numerical results for the performance
indicator µ̃C/σ̃inn are summarized in Table VI. We observe
that the interleaving defense, all-1 defense and majority voting
defense outperform the Tardos suspicion function for all the
considered attacks. In many cases even a positive power of
c occurs instead of a constant value: µ̃C/σ̃inn ∝ c0 changes
to c1/4. This is a huge reduction as it leads to a codelength
of ` ∝ c3/2. Figure 7 depicts the performance of the optimal

defenses against the correspending attacks. This figure shows
that the interleaving attack is particularly strong, as it is the
only one with a constant value of µ̃C . The other attacks all
seem to scale as c1/4, with minority voting being the attack
easiest to defend against. Figure 8 shows the performance of
the interleaving defense against the five considered attacks.

Another intriguing pattern from the numerical data is the
similarity of the all-1 and coin-flip attacks. Except against the
all-1 defense, they have the exact same numerical results. Even
though for the all-1 attack against the coin-flip defense σ̃inn 6=
1, the normalized µ̃C/σ̃inn values are again the same. We have
proven this against the interleaving defense in Proposition 16.
This similarity can be explained by realizing that after the
collusion attack is performed, the tracer can flip all symbols in
the locations where the coalition produced a 0. This transforms
the coin-flip attack into the all-1 attack, with the caveat that the
coalition then never can receive the 0 vector. Naturally, this
does NOT apply to the all-1 defense, as this score function is
not symbol-symmetric.

It is dangerous to draw general conclusions from the table,
however, since not all possible attacks are listed.

Proposition 17 and Theorem 2 on the other hand represent
a very important general large-c result: the point (interleaving
attack, Dirichlet bias distribution with κ = 1/2) is a saddle-
point of the µ̃C/σ̃inn minimax game when the interleaving
defense is used. With the interleaving defense as the simple
decoder, the attackers cannot mount a stronger attack than the
interleaving attack, and even then they cannot push the rate
below the capacity.

With perfect hindsight, this result should not surprise us
too much. It was shown by Huang and Moulin [21] that,
in the large-c limit, the joint-decoder capacity and simple-
decoder capacity coincide. Thus, asymptotically, an optimal
simple decoder should automatically achieve capacity.

We now might simply decide to completely switch to the
interleaving defense and abandon all other simple decoders.
However, the results of Sections IV–X suggest that the other
defenses can be used advantageously in a practical decoder
scheme at non-asymptotic c. We envisage a decoder that runs
the interleaving defense and a small battery of our h functions
in parallel (one for every known ‘basic’ strategy, e.g. the ones
discussed in this paper). Whenever the colluders use one of
the basic strategies, the associated h function will quickly
distinguish them from the innocent users; for other strategies,
the interleaving defense does the job. The challenge is to
combine the different score systems into an effective decoder.
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Here it has to be borne in mind that both the computational
load and the total false positive probability grow with the
number of incorporated h functions.

Future work will focus on (a) investigating which (if any)
cutoff to use in a practical traitor tracing scheme, as we expect
its scaling behaviour to change; (b) more accurate estimations
of σinn in a practical traitor tracing scheme; (c) efficiency of
the interleaving defense at small c, i.e. the non-asymptotic
regime where µ̃C/σ̃inn is no longer the right performance
indicator; (d) simulations using multiple suspicion functions
in parallel; (e) iterative joint decoders employing the m-
dependent suspicion functions.
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