
Chosen Ciphertext Secure Keyed-Homomorphic

Public-Key Encryption ∗

Keita Emura† Goichiro Hanaoka‡ Koji Nuida§ Go Ohtake¶

Takahiro Matsuda∥ Shota Yamada∗∗

June 14, 2013

Abstract

In homomorphic encryption schemes, anyone can perform homomorphic operations, and therefore,
it is difficult to manage when, where and by whom they are performed. In addition, the property that
anyone can “freely” perform the operation inevitably means that ciphertexts are malleable, and it is
well-known that adaptive chosen ciphertext (CCA) security and the homomorphic property can never
be achieved simultaneously. In this paper, we show that CCA security and the homomorphic property
can be simultaneously handled in situations that the user(s) who can perform homomorphic operations
on encrypted data should be controlled/limited, and propose a new concept of homomorphic public-key
encryption, which we call keyed-homomorphic public-key encryption (KH-PKE). By introducing a secret
key for homomorphic operations, we can control who is allowed to perform the homomorphic operation.
To construct KH-PKE schemes, we introduce a new concept, a homomorphic transitional universal hash
family, and present a number of KH-PKE schemes through hash proof systems. We also present a
practical construction of KH-PKE from the DDH assumption. For ℓ-bit security, our DDH-based scheme
yields only ℓ-bit longer ciphertext size than that of the Cramer-Shoup PKE scheme.

Keywords : homomorphic public key encryption, CCA2 security, hash proof system

1 Introduction

1.1 Background and Motivation

In homomorphic encryption schemes, homomorphic operations can be performed on encrypted plaintexts
without decrypting the corresponding ciphertexts. Owing to this attractive property, several homomorphic
public key encryption (PKE) schemes have been proposed [13, 18, 27]. Furthermore, fully homomorphic
encryption (FHE) that allows a homomorphic operation with respect to any circuit, has recently been pro-
posed by Gentry [17]. This has had a resounding impact not only in the cryptographic research community,
but also in the business community. One of the reasons for such a big impact is that FHE is suitable for

∗An extended abstract appears in the 16th International Conference on Practice and Theory in Public Key Cryptography
(PKC 2013) [14]. We have found some bug in the scheme appeared in the proceeding version, and have corrected it in this
version.

†National Institute of Information and Communications Technology (NICT), Japan. k-emura@nict.go.jp
‡National Institute of Advanced Industrial Science and Technology (AIST), Japan. hanaoka-goichiro@aist.go.jp
§National Institute of Advanced Industrial Science and Technology (AIST), Japan. k.nuida@aist.go.jp
¶Japan Broadcasting Corporation, Japan. ohtake.g-fw@nhk.or.jp
∥National Institute of Advanced Industrial Science and Technology (AIST), Japan. The 5th author was supported by a

JSPS Fellowship for Young Scientists. t-matsuda@aist.go.jp
∗∗The University of Tokyo, Japan. The 6th author is supported by a JSPS Fellowship for Young Scientists.

yamada@it.k.u-tokyo.ac.jp

1

ensuring security in cloud environments (e.g., encrypted data stored in a database can be updated without
any decryption procedure).

Improvement in the security of homomorphic encryption will lead to wider deployment of cloud-type
applications, whereas the property that anyone can “freely” perform homomorphic operations inevitably
means that ciphertexts are malleable. Therefore, it is well-known that adaptive chosen ciphertext (CCA2)
security and the homomorphic property can never be achieved simultaneously. In other words, security is
sacrificed in exchange for the homomorphic property. Although several previous works (e.g., [1, 6, 19, 28, 29])
have attempted to construct homomorphic PKE schemes that offer security close to CCA2 security while
retaining the homomorphic property, these schemes only guarantee security at limited levels. Note that
not all functionalities of conventional homomorphic encryption are indispensable for real-world applications,
and therefore there is the possibility of realizing a desirable security level by appropriately selecting the
functionalities of conventional homomorphic encryption.

Here, we point out that the underlying cause of the incompatibility of CCA2 security and the homomor-
phic property, lies in the setting that any user can use the homomorphic property, and it is worth discussing
whether the free availability of homomorphic operations is an indispensable functionality in real-world appli-
cations. For example, consider the situation where some data encrypted by a homomorphic PKE scheme is
stored in a public database (e.g., public cloud computing environment) and it is modified by homomorphic
operations. If anyone can perform a homomorphic operation, then it is hard to reduce the risk of unexpected
changes to the encrypted data in the database in which resources are dynamically allocated. Even in a closed
environment (e.g., private cloud computing environment), we cannot rule out the possibility of unexpected
changes to a user’s data by any user who is authorized to access the database. Of course, it is possible to
protect such unexpected modification of encrypted data by setting access permissions of each user appropri-
ately. However, in cloud environments, security of outsourced data storages may not be assured. Therefore,
such access control functionality should be included in encrypted data itself.

From the above consideration, we see that the property that anyone can perform homomorphic operations
not only inhibits the realization of CCA2 security, but also introduces the problem of unexpected modification
of encrypted data.

1.2 Our Contribution

In this paper, we show that CCA2 security and the homomorphic property can be simultaneously handled
in situations that the user(s) who can perform homomorphic operations should be controlled. Specifically,
we propose a new concept of homomorphic PKE, which we call keyed-homomorphic public-key encryption
(KH-PKE), that has the following properties: (1) in addition to a conventional public/decryption key pair
(pk, skd), another secret key for the homomorphic operation (denoted by skh) is introduced, (2) homomorphic
operations cannot be performed without using skh, and (3) ciphertexts cannot be decrypted using only skh.
Interestingly, KH-PKE implies conventional homomorphic PKE, since the latter can be implemented by
publishing skh of KH-PKE.

To construct KH-PKE schemes, we introduce a new concept, a homomorphic transitional universal hash
family, which can be constructed from any diverse group system [11], and present a number of KH-PKE
schemes through hash proof systems (HPSs) [11].

Our Scenarios : Here we introduce situations that the user(s) who can perform homomorphic operations
should be controlled/limited. For example, in the situation where encrypted data is stored in a public
database, an owner of the data gives skh to the database manager, who updates the encrypted data after
authentication of users. No outsider can modify the encrypted data in the public database without having
skh. As another example, by considering skh, a counter can take over the role of aggregating an audience
survey, voting, and so on. An advantage of separating ballot-counting and ballot-aggregation is that it is
possible to reduce the aggregation costs of the counter and to collect the ballot results for individual areas,
groups, and communities. We can also consider an application of KH-PKE to prevent illegal distribution of
data. A content creator gives skh to a digital content provider and the provider embeds some data (e.g., a

2

water mark) for protecting the content against illegal copying, a certification for ownership of the content,
and/or a distribution route.

Naive Construction and its Limitations : One might think that the functionality and the security of
KH-PKE can be achieved by using the following double encryption methodology: A ciphertext of an “inner”
CCA1 secure homomorphic PKE scheme is encrypted by an “outer” CCA2 secure PKE scheme, and the
decryption key of the CCA2 secure PKE scheme is used as skh.

However, this naive construction is not secure in the sense of our security definition. Taking into account
the exposure of the homomorphic operation key skh, an adversary can request skh to be exposed in our
security definition. The adversary is allowed to use the decryption oracle “even after the challenge phase”,
just before the adversary requests skh. However, no such decryption query is allowed in the CCA1 security
of the underlying “inner” scheme, and therefore it seems hard to avoid this problem.

Even if we turn a blind eye to the above problem, it is obvious that efficiency of the naive construction
is roughly equal to the total costs of the building block PKE schemes. On the other hand, the efficiency
of our KH-PKE instantiations is very close to the corresponding (non-keyed-homomorphic) PKE schemes
based on HPSs. In particular, the efficiency of our decisional Diffie-Hellman (DDH)-based KH-PKE scheme
is comparably efficient as the Cramer-Shoup PKE (CS) scheme [9], where for ℓ-bit security, our scheme yields
only ℓ-bit longer ciphertext size than that of the CS PKE scheme. Whereas the naive construction yields
5ℓ-bit longer ciphertext size even if we choose the Kurosawa-Desmedt PKE scheme [25] and the Cramer-
Shoup lite PKE scheme [9] that seems the most efficient combination under the DDH assumption. We give
the comparison in Section 5.

To sum up, our construction is superior than the naive construction from both security and efficiency
perspectives.

Our Methodology : As a well-known result, CCA2-secure PKE can be constructed via a HPS [11]
which has two projective hash families as its internal structure: A universal2 projective hash and a smooth
projective hash. Also it is known that a weaker property of universal2, that is called universal1 property, was
shown to be useful for achieving CCA1-secure PKE [24], and universal1 property (and smooth property also)
does not contradict the homomorphic property. That is, our aim seems to be achieved if we can establish a
switching mechanism from universal2 to universal1. Moreover, we can simulate the decryption oracle even
after the challenge phase and after revealing skh since the simulator knows all secret keys in the security
proof.

In this paper, we show such a mechanism (which we call homomorphic transitional universal hash family)
can be obtained from any diverse group system [11], and then we propose a generic construction of KH-PKE
based on a homomorphic transitional universal HPS. Moreover, as an implication result, KH-PKE is implied
by CPA-secure homomorphic PKE (with cyclic ciphertext space) which implies diverse group systems [21].

We give a formal security definition of KH-PKE which we call KH-CCA security. Note that our generic
construction presented in this paper satisfies a relatively weaker version of KH-CCA security. We will give
a KH-CCA secure construction in the full version of this paper.

Instantiations : According to our methodology, we present a number of KH-PKE schemes from various
major cryptographic assumptions such as the DDH assumption, the decisional composite residuosity (DCR)
assumption, the decisional linear (DLIN) assumption, the decisional bilinear Diffie-Hellman (DBDH) as-
sumption, and the decisional quadratic residuosity (DQR) assumption. This means that it is not difficult to
extend all existing HPS to have the homomorphic transitional property, and thus a homomorphic transitional
HPS is not a significantly stronger primitive in practice, compared to an ordinary HPS.

In this paper, we present a practical DDH-based KH-PKE scheme. Other KH-PKE schemes based on
the DCR assumption and the DQR assumption from the Cramer-Shoup HPSs [11], based on the DLIN
assumption from the Shacham HPS [30], and based on the DBDH assumption from the Galindo-Villar
HPS [15], and an identity-based analogue of KH-PKE, called keyed-homomorphic identity-based encryption

3

(KH-IBE) and its concrete construction from the Gentry IBE scheme [16] will be given in the full version of
this paper.

1.3 Related Work

Several previous works have attempted to construct homomorphic PKE schemes that provide security close
to CCA2 security, while retaining the homomorphic property. Canetti et al. [6] considered the notion of
replayable CCA (RCCA), which leaves a room for an adversary who is given two ciphertexts (C,C ′), to gain
information on whether C ′ was derived from C. (Modified RCCA notions have also been proposed [19, 28].)
In the RCCA security game, the decryption oracle given to an adversary is restricted in such a way that the
challenge ciphertext and ciphertexts derived from the challenge ciphertext cannot be queried to the oracle.
Similarly, in benignly-malleable (gCCA) security [1, 31], ciphertexts related to the challenge one cannot be
input to the decryption oracle. Therefore, RCCA and gCCA are strictly weaker notions than CCA2, and
may not be sufficient if the encryption scheme is used as a building block for higher level protocols/systems.

In [29], Prabhakaran and Rosulek proposed homomorphic CCA (HCCA) security, where only the expected
operation, and no other operations, can be performed for any ciphertext. (Targeted malleability, which is
a similar concept to HCCA, was considered in [4].) In addition, they also showed that CCA2, gCCA, and
RCCA are special cases of HCCA. Note that HCCA does not handle the homomorphic property and CCA2
security simultaneously, since anyone can perform the homomorphic operation. Chase et al. [8] showed that
controlled-malleable non-interactive zero-knowledge can be used as a general tool for achieving RCCA and
HCCA security.

Embedding a ciphertext of homomorphic PKE into that of CCA2-secure PKE, was considered in [26, 3].
Note that their embedding encryption methods are nothing more than protecting a ciphertext of homomor-
phic PKE by that of CCA2 PKE, and therefore no homomorphic operation can be performed on embedded
ciphertexts. Meanwhile, in our KH-PKE, even after performing the homomorphic operation, a ciphertext is
still valid.

Barbosa and Farshim [2] proposed delegatable homomorphic encryption (DHE). The difference between
KH-PKE and DHE is that in DHE a trusted authority (TA) issues a token to control the capability to evaluate
circuits f over encrypted data M to untrusted evaluators. Furthermore, their security definitions of DHE
(input/output privacy (TA-IND-CPA) and evaluation security (IND-EVAL2)) do not allow an adversary to
access the decryption oracle and the evaluation oracle (the oracle for homomorphic operation) simultaneously.
We note that although Barbosa and Farshim defined verifiability (VRF-CCA2), where no homomorphic
operation can be performed without issuing a corresponding token, KH-CCA security for KH-PKE defined
in this paper guarantees a similar level of security, since if there exists an adversary that can perform the
homomorphic operation without using skh, then the adversary can break the KH-CCA security.

2 Preliminaries

In this section, we review the basic notations and definitions related to HPSs (mostly following [11] but
slightly customized for our convenience).

Throughout this paper, PPT denotes probabilistic polynomial time. If n is a natural number, then
[n] = {1, . . . , n}. If D is a probabilistic distribution (over some set), then [D] denotes its support, i.e.
[D] = {x|Prx′←D[x′ = x] > 0}. Let X = {Xℓ}ℓ≥0 and Y = {Yℓ}ℓ≥0 be sequences of random variables
Xℓ and Yℓ, respectively, defined over a same finite set. As usual, we say that X and Y are statistically
(resp. computationally) indistinguishable if |Pr[A(Xℓ) = 1] − Pr[A(Yℓ) = 1]| is negligible in ℓ for any
computationally unbounded (resp. PPT) algorithm A. Furthermore, we say that X and Y are ϵ-close if the
statistical distance of Xℓ and Yℓ is at most ϵ = ϵ(ℓ).

Projective Hash Families : Let X, Π, K, and S be finite, non-empty sets, and L be a proper subset
of X (i.e., L ⊂ X and L ̸= X). Furthermore, let H = {Hk : X → Π}k∈K be a collection of hash functions

4

indexed by k ∈ K, and α : K → S be a function. We say that H = (H,K,X,L,Π, S, α) is a projective hash
family for (X,L) if for all k ∈ K, the action of Hk on the subset L is uniquely determined by α(k) ∈ S.

Let H = (H,K,X,L,Π, S, α) be a projective hash family, and let ϵ ≥ 0. We recall the following properties
of a projective hash family: We say that H is ϵ-universal1 if for all s ∈ S, x ∈ X \ L, and π ∈ Π, it holds
that

Pr
k

$←K

[Hk(x) = π ∧ α(k) = s] ≤ ϵ · Pr
k

$←K

[α(k) = s].

We say that H is ϵ-universal2 if for all s ∈ S, x, x∗ ∈ X \ L with x∗ ̸= x, and π, π∗ ∈ Π, it holds that

Pr
k

$←K

[Hk(x) = π ∧Hk(x
∗) = π∗ ∧ α(k) = s] ≤ ϵ · Pr

k
$←K

[Hk(x
∗) = π∗ ∧ α(k) = s].

We say that H = (H,K,X,L,Π, S, α) is ϵ-smooth if the following two distributions are ϵ-close:

{k $← K; x
$← X \ L : (α(k), x,Hk(x)) } and {k

$← K; x
$← X \ L; π

$← Π : (α(k), x, π) }.

If a projective hash family is ϵ-universal1 (resp. -universal2, -smooth) for a negligible ϵ, then we simply
call the projective hash family universal1 (resp. universal2, smooth).

Subset Membership Problems : A subset membership problem M specifies a collection of probabilistic
distribution {Iℓ}ℓ≥0 (indexed by a security parameter ℓ) over instance descriptions. An instance description
Λ[X,L,W,R] ∈ [Iℓ] specifies non-empty sets X, W , and L, a binary relation R defined over X ×W , where
X, W , and L are non-empty sets such that L ⊂ X, and an x ∈ X is in the subset L if and only if there
exists a “witness” ω ∈W such that (x,w) ∈ R. (If X, L, W , and R are clear from the context, we will just
write Λ to indicate an instance description.)

We require that a subset membership problem M provides the following algorithms: (1) the instance
sampling algorithm takes as input 1ℓ, and returns Λ[X,L,W,R] ∈ [Iℓ] chosen according to Iℓ, and (2) the
subset sampling algorithm takes as input 1ℓ and an instance Λ[X,L,W,R] ∈ [Iℓ], and returns x ∈ L and a
witness ω ∈ W for x. We say that a subset membership problem M = {Iℓ}ℓ≥0 is hard if the following two
distributions are computationally indistinguishable:

{Λ← Iℓ;x
$← L : (Λ, x)} and {Λ← Iℓ;x

$← X \ L : (Λ, x)}.

Hash Proof System (HPS) : Informally, a HPS is a special kind of (designated-verifier) non-interactive
zero-knowledge proof system for a subset membership problem M = {Iℓ}ℓ>0. A HPS has, as its internal
structure, a family of hash functions with the special projective property, and this projective hash family is
associated with each instance of the subset membership problems. Although HPS does not treat for all NP
languages, HPS leads to an efficient CCA2-secure PKE construction.

As in [11], we will occasionally introduce an arbitrary finite set E to extend the sets X and L in an
instance Λ[X,L,W,R] ∈ [Iℓ] of M into X×E and L×E. If E is not required (e.g., for a smooth HPS in our
construction), then we omit E from the following algorithms. A HPS P = (HPS.param,HPS.priv,HPS.pub),
for M associates each instance Λ = Λ[X,L,W,R] of M with a projective hash family H = (H,K,X×E,L×
E,Π, S, α), provides the following three efficient algorithms:

1. The index sampling algorithm HPS.param takes an instance Λ as input, and returns k ∈ K and s ∈ S
such that α(k) = s.

2. The private evaluation algorithm HPS.priv takes Λ ∈ [Iℓ], k ∈ K and (x, e) ∈ X × E as input, and
returns π = Hk(x, e) ∈ Π.

5

3. The public evaluation algorithm HPS.pub takes Λ ∈ [Iℓ], s ∈ S, x ∈ L, e ∈ E, and a witness ω for x as
input, and returns π = Hk(x, e) ∈ Π.

We say that P is ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) if for all ℓ > 0 and for all Λ[X,L,W,R] ∈ [Iℓ],
H is an ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) projective hash family.

Note that the homomorphic property of the underlying smooth projective hash family is required in
our construction, where for all k ∈ K, and x1, x2 ∈ X, we have Hk(x1) + Hk(x2) = Hk(x1 + x2) ∈ Π
holds. Then, we call this smooth projective hash family homomorphic smooth projective hash family, and
also call a smooth HPS homomorphic smooth HPS if the underlying smooth projective hash family has the
homomorphic property.

Diverse Group System and Derived Projective Hash Family : Here, we recall the definition of
diverse group systems introduced in [11], which were used to construct projective hash families. Let X,
L, and Π be abelian groups, where L is a proper subgroup of X, and Hom(X,Π) be the group of all
homomorphisms ϕ : X → Π. Let H be a subgroup of Hom(X,Π). Then G = (H, X, L,Π) is called a group
system. In addition, we say that G is diverse if for all x ∈ X \ L, there exists ϕ ∈ H such that ϕ(L) = ⟨0⟩,
but ϕ(x) ̸= 0.

We recall the projective hash familyH = (H,K,X,L,Π, S, α) derived from a diverse group systemG ([11,
Definition 2]): Let g1, . . . , gd ∈ L be a set of generators of L (i.e., for all x ∈ L, there exist ω1, . . . , ωd ∈ Z
such that x =

∑d
i=1 ωigi). Set S = Πd, and define α : K → S by α(k) = (ϕ(g1), . . . , ϕ(gd)), where

ϕ = Hk. Note that H is a projective hash family because Hk(x) for x ∈ L is determined by α(k) such that

Hk(x) = ϕ(
∑d

i=1 ωigi) =
∑d

i=1 ωiϕ(gi). The following was shown by Cramer and Shoup [11, Theorem 2].

Lemma 2.1. The projective hash family H derived from a diverse group system G as above is 1/p̃-universal1,
where p̃ is the smallest prime dividing |X/L|.

3 Definition of KH-PKE

In this section, we give the formal definitions of the syntax and the security requirements of KH-PKE.

3.1 Syntax of KH-PKE

Definition 3.1 (Syntax of KH-PKE for homomorphic operation ⊙). LetM be a message space. We require
that for all M1,M2 ∈ M, it holds that M1 ⊙M2 ∈ M. A KH-PKE scheme KH-PKE = (KeyGen,Enc,Dec,
Eval) for homomorphic operation ⊙ consists of the following four algorithms:

KeyGen: This algorithm takes a security parameter 1ℓ (ℓ ∈ N) as input, and returns a public key pk, a
decryption key skd, and a homomorphic operation key skh.

Enc: This algorithm takes pk, and a message M ∈M as input, and returns a ciphertext C.

Dec: This algorithm takes skd and C as input, and returns M or ⊥.

Eval: This algorithm takes skh, two ciphertexts C1 and C2 as input, and outputs a ciphertext C or ⊥.

Note that the above definition for the evaluation algorithm Eval does not say anything about the homo-
morphic property, and its functionality is defined as a correctness requirement below. Let pk be a public key
generated by the KeyGen algorithm, and Cpk,M be the set of all ciphertexts of M ∈M under the public key
pk, i.e., Cpk,M = {C|∃r ∈ {0, 1}∗ s.t. C = Enc(pk,M ; r)}.

Definition 3.2 (Correctness). A KH-PKE scheme for homomorphic operation ⊙ is said to be correct if
for all (pk, skd, skh) ← KeyGen(1ℓ), the following two conditions are satisfied: (1) For all M ∈ M, and all
C ∈ Cpk,M , it holds that Dec(skd, C) = M . (2) For all M1,M2 ∈ M, all C1 ∈ Cpk,M1 , and all C2 ∈ Cpk,M2 ,
it holds that Eval(skh, C1, C2) ∈ Cpk,M1⊙M2 .

6

We call the Eval algorithm commutative if an operation⊙ is commutative, the distribution of Eval(skh, C1, C2)
and that of Eval(skh, C2, C1) are identical. We instantiate DDH/DLIN/DBDH-based KH-PKEs with multi-
plicative homomorphic operations (⊙ := ×), a DCR-based KH-PKE with additive homomorphic operations
(⊙ := +), and a DQR-based KH-PKE with XOR homomorphic operations (⊙ := ⊕). Thus, our concrete
instantiations are all commutative schemes.

Next, we define the security notion for KH-PKE, which we call indistinguishability of message under
adaptive chosen ciphertext attacks (KH-CCA).

Definition 3.3 (KH-CCA). A KH-PKE scheme is said to be KH-CCA secure if for any PPT adversary A,
the advantage

AdvKH-CCA
KH-PKE,A(ℓ) =

∣∣Pr[(pk, skd, skh)← KeyGen(1ℓ);

(M∗0 ,M
∗
1 , State)← AO(find, pk); β

$← {0, 1};

C∗ ← Enc(pk,M∗β); β′ ← AO(guess, State, C∗); β = β′]− 1

2

∣∣
is negligible in ℓ, where O consists of the three oracles Eval(skh, ·, ·), RevHK, and Dec(skd, ·) defined as
follows. Let D be a list which is set as D = {C∗} right after the challenge stage (D is set as ∅ in the find
stage).

• The evaluation oracle Eval(skh, ·, ·): If RevHK has already been queried before, then this oracle is not
available. Otherwise, this oracle responds to a query (C1, C2) with the result of C ← Eval(skh, C1, C2).
In addition, if C ̸= ⊥ and either C1 ∈ D or C2 ∈ D, then the oracle updates the list by D ← D ∪ {C}.

• The homomorphic key reveal oracle RevHK: Upon a request, this oracle responds with skh. (This oracle
is available only once.)

• The decryption oracle Dec(skd, ·): This oracle is not available if A has queried to RevHK and A has
obtained the challenge ciphertext C∗. Otherwise, this oracle responds to a query C with the result of
Dec(skd, ·) if C ̸∈ D or returns ⊥ otherwise.

Here, let us remark on the definition of KH-CCA security. Throughout this paper, an adversary who has
skh is called an insider, whereas an adversary who does not have skh is called an outsider.

In case A does not query the RevHK oracle (i.e., A is an outsider), A is allowed to adaptively issue
decryption queries and evaluation queries of any ciphertexts. In particular, in order to capture the mal-
leability in the presence of the homomorphic operation, the Eval oracle allows the challenge ciphertext C∗ as
input. To avoid an unachievable security definition, the Dec oracle immediately answers ⊥ for “unallowable
ciphertexts” that are the results of a homomorphic operation for C∗ and any ciphertext of an adversary’s
choice. Such unallowable ciphertexts are maintained by the list D.

The situation that the Dec oracle does not answer for ciphertexts that are derived from the challenge
ciphertext C∗ might seem somewhat analogous to the definition of RCCA security [6]. However, there is
a critical difference between KH-CCA and RCCA: In the RCCA security game, the Dec oracle does not
answer if a ciphertext C satisfies Dec(skd, C) ∈ {M∗0 ,M∗1 }. That is, the functionality of the Dec oracle is
restricted regardless of the adversary’s strategy. On the other hand, in the KH-CCA security game, in case
an adversary selects the strategy that it does not submit C∗ to the Eval oracle, the restriction on the Dec
oracle is exactly the same as the CCA2 security for ordinary PKE scheme, and it is one of the adversary’s
possible strategies whether it submits C∗ to the Eval oracle, and thus the adversary has more flexibility than
in the RCCA game.

If an outsider A becomes an insider after A obtains the challenge ciphertext C∗, then A is not allowed
to issue a decryption query after obtaining skh via the RevHK oracle. In other words, A is allowed to issue a
decryption query until right before obtaining skh, even if C∗ is given to A. This restriction is again to avoid
a triviality. (If A obtains skh, A can freely perform homomorphic operations over the challenge ciphertexts,
and we cannot meaningfully define the “unallowable set” of ciphertexts.)

7

Note that we can show that any KH-CCA secure PKE scheme satisfies CCA1 (thus CPA also) security
against an adversary who is given (pk, skh) in the setup phase. Showing this implication is possible mainly
due to the RevHK oracle that returns skh to an adversary, and the Dec oracle in the KH-CCA game. Here, we
explain how the implication of KH-CCA security to CCA1 security is proved. Let A be a CCA1 adversary.
Using A as a building block, we can construct a reduction algorithm B that attacks KH-CCA security, as
follows: First, B is firstly given pk. Then B asks the RevHK oracle to obtain skh, and runs A with input
(pk, skh). Wnen A sends a ciphertext C as a decryption query, B forwards C as B’s decryption query. After
A submits (M∗0 ,M

∗
1) as A’s challenge, B submits (M∗0 ,M

∗
1) as B’s challenge. Given the challenge ciphertext

C∗, B runs A with input C∗. When A terminates with output a guess bit, B uses what A outputs as its
guess for the challenge bit, and terminates. It is easy to see that B perfectly simulates the CCA1 game
for A. Therefore, B’s KH-CCA advantage equals A’s CCA1 advantage. This implies that if the scheme is
KH-CCA secure, then the scheme is CCA1 secure as well.

A Weaker Variant of KH-CCA Security : Here, we relax the KH-CCA definition as follows. In the
evaluation oracle Eval(skh, ·, ·), if RevHK has already been queried before, then this oracle is not available.
Otherwise, this oracle responds to a query (C1, C2) with the result of C ← Eval(skh, C1, C2) if C1 ̸∈ D
and C2 ̸∈ D, or returns ⊥ otherwise. Since no C∗-related ciphertext is input into Eval, D = {C∗} is never
updated under this definition.

Definition 3.4 (Weak KH-CCA). A KH-PKE scheme is said to be weak KH-CCA secure if for any PPT ad-
versary A, the advantage AdvKH-wCCA

KH-PKE,A (ℓ) is negligible in ℓ, where AdvKH-wCCA
KH-PKE,A (ℓ) is the same as AdvKH-CCA

KH-PKE,A(ℓ),
except the Eval oracle is replaced in the above restricted definition.

Note that we can also show that any weak KH-CCA secure PKE scheme satisfies CCA1 (thus CPA also)
security against an adversary who is given (pk, skh) in the setup phase.

4 Generic Construction via Homomorphic Transitional Universal
HPS

In this section, we give a generic construction of KH-PKE from an enhanced variant of universal HPS,
which we call homomorphic transitional universal HPS. A homomorphic transitional universal HPS has, as
its internal structure, a family of hash functions which we call transitional universal projective hash family.

4.1 Homomorphic Transitional Universal Projective Hash Families

Informally, a projective hash family H = (H,K,X,L,Π, S, α) is said to be a transitional universal projective
hash family if an index k ∈ K for specifying a hash function from the family can be divided into two
components as (k′, k̂), and even if k̂ is exposed, it still yields the universal1 property.

Definition 4.1 (Homomorphic Transitional (ϵ, ϵ′)-Universal Projective Hash Families). Let H = (H,K,X×
E,L×E,Π, S, α) be an ϵ-universal2 hash family. We say that H is (ϵ, ϵ′)-transitional if (1) The function index

space K can be divided into two subspaces K1 and K2 such that K = K1×K2 (say
−→
k := (k′, k̂) ∈ K1×K2),

and (2) Considering the probability space defined by choosing k′ ∈ K1 at random. Then for all s ∈ S,

x ∈ X \ L, k̂ ∈ K2 and π ∈ Π, it holds that Pr
k′ $←K1

[Hk′,k̂(x, e) = π ∧ α(k′, k̂) = s] ≤ ϵ′ · Pr
k′ $←K1

[α(k′, k̂) =

s]. Especially, if ϵ and ϵ′ are negligible, then H is called a transitional universal projective hash family.

Moreover, if for all (k′, k̂) ∈ K1 ×K2 and for all (x1, e1), (x2, e2) ∈ X × E, Hk′,k̂(x1 + x2, e1 + e2) can be

efficiently computed given k̂, (x1, e1,Hk′,k̂(x1, e1)) and (x2, e2,Hk′,k̂(x2, e2)), then H is called a homomorphic
transitional universal projective hash family.

Next, we show that the projective hash family [10, §7.43 Theorem 3] based on a diverse group system,
satisfies the homomorphic transitional universal property as it is.

8

The Cramer-Shoup (CS) Projective Hash Family [10] : LetH = (H,K,X,L,Π, S, α) be a universal1
projective hash family derived from a diverse group system G = (H, X, L,Π) (see the last paragraph of

Section 2), and E be an abelian group. Then the CS projective hash family Ĥ = (Ĥ, K̂ = Kn+1, X×E,L×
E, Π̂, Ŝ = Sn+1, α̂) is constructed as follows: Let Γ : X × E → {0, . . . , p̃ − 1}n be an injective function,
where p̃ is the smallest prime dividing |X/L|, and n is sufficiently large enough for Γ to be injective. For
−→
k = (k′, k1, . . . , kn) ∈ Kn+1, x ∈ X, and e ∈ E, Ĥ is defined as:

Ĥk′,k̂(x, e) := Hk′(x) +

n∑
i=1

γiHki(x), and α̂(k′, k̂) = (α(k′), α(k1), . . . , α(kn)),

where (γ1, . . . , γn) = Γ(x, e). Cramer and Shoup showed that the CS projective hash family Ĥ is (1/p̃)-
universal2. Note that since Hk = ϕ ∈ Hom(X,Π), the basic projective hash family H derived from the
diverse group system satisfies the homomorphic property, namely for all k ∈ K, and x1, x2 ∈ X, we have
Hk(x1) +Hk(x2) = Hk(x1 + x2) ∈ Π. Next, we show that it is in fact a homomorphic transitional universal
projective hash family.

Lemma 4.1. If an index
−→
k ∈ Kn+1 is divided into k′ ∈ K and k̂ = (k1, . . . , kn) ∈ Kn, then the CS

projective hash family Ĥ is a homomorphic transitional (1/p̃, 1/p̃)-universal projective hash family.

Proof: For
−→
k ∈ Kn+1, fix (k1, . . . , kn) ∈ Kn, and consider the probability space is defined by choosing k′ ∈

K at random. Then, Ĥ still provides the (1/p̃)-universal1 property, because the projective hash family H is a

(1/p̃)-universal1 and the output of Ĥ is “masked” by the output of H. Furthermore, for all (x1, e1), (x2, e2) ∈
X ×E, Hk′,k̂(x1 + x2, e1 + e2) can be efficiently computed given k̂ = (k1, . . . , kn), (x1, e1,Hk′,k̂(x1, e1)) and

(x2, e2, Hk′,k̂(x2, e2)) such that (1) compute
∑n

i=1 γ
(1)
i Hki(x1) and

∑n
i=1 γ

(2)
i Hki(x2), where (γ

(b)
1 , . . . , γ

(b)
n) =

Γ(xb, eb) for b = 1, 2, and (2) compute Ĥk′,k̂(x1 + x2, e1 + e2) ←
(
Ĥk′,k̂(x1, e1) −

∑n
i=1 γ

(1)
i Hki(x1)

)
+(

Ĥk′,k̂(x2, e2)−
∑n

i=1 γ
(2)
i Hki(x2)

)
+
∑n

i=1 γiHki(x1 + x2), where (γ1, . . . , γn) = Γ(x1 + x2, e1 + e2).
Finally we define the notion of homomorphic transitional universal HPS.

Definition 4.2 (Homomorphic Transitional Universal HPS). Let M = {Iℓ}ℓ≥0 be a subset membership
problem. We say that a HPS P for M is homomorphic transitional (ϵ, ϵ′)-universal if for all ℓ > 0 and
for all Λ = Λ[X,L,W,R] ∈ [Iℓ], the projective hash family H that P associates with Λ is homomorphic
transitional (ϵ, ϵ′)-universal.

4.2 Generic Construction of KH-PKE

Here, we give the proposed construction of a KH-PKE scheme based on a homomorphic transitional universal
HPS given in the previous subsection, a homomorphic smooth projective HPS, and a universal2 projective
HPS. We note that all of the projective hash families used in our construction can be constructed from a
diverse group system [11]. Therefore, our proposed construction is fairly generic.

We set E = Π (Π is an abelian group, for which we use additive notation) and Γ : X × Π → Πn is an
injective function, where n is a natural number which is sufficiently large so that Γ is injective. Moreover, let
Γ′ : X×E×Ĥ → {0, . . . , p̃−1}n also be an injective function defined by the same manner. Let M = {Iℓ}ℓ≥0
be a subset membership problem which specifies an instance description Λ = Λ[X,L,W,R] ∈ [Iℓ]. We will

use the following three kinds of projective hash families H, Ĥ and H̃ and corresponding HPS (for M). Using
these building blocks, we construct a KH-PKE scheme as in Figure 1.

• H = (H,K,X,L,Π, S, α) is a homomorphic smooth and projective hash family. Let P = (HPS.param,
HPS.priv,HPS.pub) be a homomorphic smooth projective HPS for M which associates the instance Λ
with H.

9

KeyGen(1ℓ) :
Pick Λ = Λ[X,L,W,R]← [Iℓ].

(k, s)← HPS.param(1ℓ,Λ)

(
−→
k , ŝ)← ĤPS.param(1ℓ,Λ)

Parse
−→
k ∈ K̂ = K ×Kn as (k′, k̂)

s.t. k′ ∈ K and

k̂ := (k1, . . . , kn) ∈ Kn

(k̃, s̃)← H̃PS.param(1ℓ,Λ)
pk ← (s, ŝ, s̃)

skd ← (k, (k′, k̂), k̃); skh ← (k̂, k̃)
Return (pk, skd, skh)

Dec(skd, C) :

Parse skd as (k, (k′, k̂), k̃)
Parse C as (x, e, π̂, π̃)

π̂′ ← ĤPS.priv(1ℓ,Λ, (k′, k̂), (x, e))

π̃′ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂′))
If π̂ ̸= π̂′ or π̃ ̸= π̃′ then return ⊥
π ← HPS.priv(1ℓ,Λ, k, x)
Return M ← e− π

Enc(pk,M) :

Choose x
$← L and its witness ω ∈W

π ← HPS.pub(1ℓ,Λ, s, x, ω); e←M + π

π̂ ← ĤPS.pub(1ℓ,Λ, ŝ, (x, e), ω)

π̃ ← H̃PS.pub(1ℓ,Λ, s̃, (x, e, π̂), ω)
Return C ← (x, e, π̂, π̃).

Eval(skh, C1, C2) :

Parse skh as (k̂, k̃) where k̂ = (k1, . . . , kn)
Parse Cb as (xb, eb, π̂b, π̃b) for b = 1, 2

π̃′
b ← H̃PS.priv(1ℓ,Λ, k̃, (xb, eb, π̂b)) for b = 1, 2

If π̃1 ̸= π̃′
1 or π̃2 ̸= π̃′

2 then return ⊥
For b = 1, 2 Do:

(γ
(b)
1 , . . . , γ

(b)
n)← Γ(xb, eb)

Hki(xb)← HPS.priv(1ℓ,Λ, ki, xb) for all i ∈ [n]

π̂′
b ← π̂b −

∑
i∈[n] γ

(b)
i Hki(xb)

End For
x← x1 + x2; e← e1 + e2
(γ1, . . . , γn)← Γ(x, e)

Hki(x)← HPS.priv(1ℓ,Λ, ki, x) for all i ∈ [n]
π̂ ← π̂′

1 + π̂′
2 +

∑
i∈[n] γiHki(x)

π̃ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂))
Return C ← (x, e, π̂, π̃)

Figure 1: The proposed KH-PKE construction from HPS.

• Ĥ = (Ĥ, K̂ = K ×Kn, X ×Π, L×Π, Π̂, Ŝ = Sn+1, α̂) is the CS (homomorphic transitional universal)

projective hash family that we showed in the previous subsection (with the index space K̂ is divided

into K1 = K and K2 = Kn). Let P̂ = (ĤPS.param, ĤPS.priv, ĤPS.pub) be a homomorphic transitional

universal HPS for M which associates Λ with Ĥ.

• H̃ = (H̃, K̃,X × Π, L × Π, Π̃, S̃, α̃) is a universal2 projective hash family. Let P̃ = (H̃PS.param,

H̃PS.priv, H̃PS.pub) be a universal2 HPS for M which associates Λ with H̃. Note that Γ′ is used as

its internal injective function. So we denote H̃PS.pub(1ℓ,Λ, s̃, (x, e, π̂), ω) or H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂)),

where π̂ ← ĤPS.pub(1ℓ,Λ, ŝ, (x, e), ω).

Roughly, the homomorphic smooth projective hash family H is used to hide a plaintext in a ciphertext.
Moreover the universal2 projective property of Ĥ and H̃ is used to detect the invalidity of ciphertexts, which
leads to resistance against ciphertext modification, and thus is contradictory to the homomorphic property
that inherently involves such modification. By using the homomorphic transitional property of Ĥ, Ĥ can be
“transitioned” into a universal1 projective hash family with the homomorphic property.

One might think that in the contraction, H̃ is redundant, and thus is not necessary. However, this is not
true. Namely, if H̃ is removed, then the adversary can extract meaningful information from the Eval oracle
by submitting an invalid ciphertexts, and therefore, the resulting scheme becomes insecure. In other words,
with the help of H̃, the Eval oracle can distinguish invalid ciphertexts from valid ones, and consequently, the
above attack is prevented.

To see the correctness for the Eval algorithm, suppose that Eval receives correctly generated ciphertexts
C1 = (x1, e1, π̂1, π̃1) and C2 = (x2, e2, π̂2, π̃2) of plaintexts M1 and M2, respectively. Let M = M1 +
M2. Then, by recalling the homomorphic and transitional properties, the following holds: π̂′b = π̂b −∑n

i=1 γ
(b)
i Hki(xb) = Hk′(xb) for b = 1, 2, e1 + e2 = (M1 + M2) + (Hk(x1) + Hk(x2)) = (M1 + M2) +

Hk(x1 + x2) = (M1 +M2) +Hk(x), π̂ = π̂′1 + π̂′2 +
∑n

i=1 γiHki(x) = Hk′(x1) +Hk′(x2) +
∑n

i=1 γiHki(x) =

Hk′(x1 + x2) +
∑n

i=1 γiHki(x) = Hk′(x) +
∑n

i=1 γiHki(x) = Ĥk′,k̂(x, e), which means that C = (x, e, π̂, π̃) is

10

a valid ciphertext of M := M1 +M2.
Since all of the projective hash families used in our construction can be constructed from a diverse group

system, from the result of [21] (where CPA-secure homomorphic PKE (with cyclic ciphertext space) implies
diverse group systems), the following corollary is given.

Corollary 4.1. Weak KH-CCA secure KH-PKE is implied by CPA-secure homomorphic PKE with cyclic
ciphertext space.

Theorem 4.1. Our construction is weak KH-CCA-secure if M is a hard subset membership problem, P is
a homomorphic smooth projective HPS for M, P̂ is a homomorphic transitional universal HPS for M, and
P̃ is a universal2 HPS for M.

We give the proof of Theorem 4.1 as follows.

Proof. Let A be an adversary who breaks weak KH-CCA security. To later calculate the concrete advantage
of A, let ϵ(ℓ), ϵ̂(ℓ), and ϵ̃(ℓ) be negligible functions such that P be ϵ(ℓ)-smooth, and P̂ be homomorphic

transitional (ϵ̂(ℓ), ϵ̂(ℓ))-universal, and P̃ be ϵ̃(ℓ)-universal2.

Game 0: The same as the weak KH-CCA simulation. We describe how this game simulates the weak
KH-CCA experiment for A. First, this game takes as input 1ℓ along with Λ[X,L,W,R] ∈ [Iℓ] and x∗ ∈ L.
This game runs (pk, skd, skh) ← KeyGen(1ℓ) as usual using the given value of Λ, where pk = (s, ŝ, s̃),

skd = (k,
−→
k , k̃) = (k, (k′, k̂), k̃), and skh = (k̂, k̃). This game sends pk to A.

In find stage, this game answers for each query as follows: For a decryption query C, this game runs
Dec(skd, C) as usual using skd, and returns the result of the decryption algorithm. For an evaluation
query (C1, C2), this game runs Eval(skh, C1, C2) as usual using skh, and returns the result of the evaluation

algorithm. For the reveal homomorphic key query, this game returns skh = (k̂, k̃).

In the challenge phase, A sends (M∗0 ,M
∗
1). This game chooses β

$← {0, 1}, and computes π∗ ← Hk(x
∗)

using the public evaluation algorithm, e∗ = π∗ + M∗β , and π̂∗ ← Ĥk′,k̂(x
∗, e∗) and π̃∗ ← H̃k̃(x

∗, e∗, π̂∗)

using the public evaluation algorithm, and sends C∗ = (x∗, e∗, π̂∗, π̃∗) to A. In addition, this game sets a
ciphertext dictionary D such that D = {C∗}.

In guess stage, this game answers for each query as follows: For a decryption query C, if C ∈ D, then
return ⊥. Otherwise, this game runs Dec(skd, C) as usual using skd, and returns the result of the decryption
algorithm. For an evaluation query (C1, C2), if either C1 ∈ D or C2 ∈ D, then return ⊥. Otherwise, this
game runs Eval(skh, C1, C2) as usual using skh, and returns the result of the evaluation algorithm. For the

reveal homomorphic key query, this game returns skh = (k̂, k̃). Finally, A outputs a guessing bit β′. This

game outputs 1 if β = β′, and 0 otherwise. We denote T
(i)
ℓ as the event that Game i outputs 1.

Game 1: Recall that in Game 0, the evaluation oracle rejects a query (x, e, π̂, π̃) if H̃k̃(x, e, π̂) ̸= π̃. In this
game, in addition to these rules, we make the evaluation oracle rejects a query that contains a ciphertext
(x, e, π̂, π̃) satisfying (x, e, π̂) = (x∗, e∗, π̂∗) but π̃ ̸= π̃∗. Due to the projective property of H̃, π̃ is uniquely

determined by k̃ and its input (x, e, π̂). Thus, a ciphertext (x∗, e∗, π̂∗, π̃ ̸= π̃∗) is obviously invalid.

Again, recall that in Game 0, the decryption oracle rejects a query (x, e, π̂, π̃) if either Ĥk′,k̂(x, e) ̸= π̂

or H̃k̃(x, e, π̂) ̸= π̃. Here, the decryption oracle also rejects a query that contains a ciphertext (x, e, π̂, π̃)

satisfying (x, e) = (x∗, e∗) but (π̂, π̃) ̸= (π̂∗, π̃∗). Again, due to the projective property of Ĥ and H̃, a

ciphertext (x∗, e∗, π̂∗, π̃ ̸= π̃∗) and (x∗, e∗, π̂ ̸= π̂∗, π̃∗) are obviously invalid. Therefore, Pr[T
(1)
ℓ] = Pr[T

(0)
ℓ]

holds.

Game 2: Recall that in Game 1, the challenge ciphertext is computed by using the public evaluation
algorithm. In this game, the challenge ciphertext is computed by using the private evaluation algorithm.

Since this change is purely conceptual, Pr[T
(2)
ℓ] = Pr[T

(1)
ℓ] holds. Moreover, we get

∣∣Pr[T (2)
ℓ] − 1

2

∣∣ ≥
AdvKH-wCCA

KH-PKE,A (ℓ) since the simulation of the weak KH-CCA game for the adversary A is perfect.

11

Game 3: Recall that in Game 2, x∗ ∈ L. Here, x∗ is chosen from X\L. Let an algorithm be a simulator that
takes as input 1ℓ along with Λ[X,L,W,R] ∈ [Iℓ] and x∗ ∈ X. The algorithm simulates the weak KH-CCA
game as in the previous game. Since the difference between Game 2 and Game 3 is whether x∗ ∈ L or

x∗ ∈ X \ L and the simulation is efficient, |Pr[T (3)
ℓ] − Pr[T

(2)
ℓ]| is equal to the advantage AdvDist(ℓ) of the

simulator as a distinguisher for the subset membership problem, which is negligible by the assumption.

Game 4: In addition to the previous rejection rules, in this game we make the decryption/evaluation oracle
rejects a query that contains a ciphertext (x, e, π̂, π̃) satisfying x ̸∈ L. Let F4 be the event that either (1) the

decryption oracle rejects a query (x, e, π̂, π̃) with x ̸∈ L, but either Ĥk′,k̂(x, e) = π̂ or H̃k̃(x, e, π̂) = π̃ holds, or

(2) the evaluation oracle rejects a query ((x1, e1, π̂1, π̃1), (x2, e2, π̂2, π̃2)) either “x1 ̸∈ L and H̃k̃(x1, e1, π̂1) =

π̃1” or “x2 ̸∈ L and H̃k̃(x2, e2, π̂2) = π̃2” hold.

In the find phase, α̂(k′, k̂) = ŝ and α̃(k̃) = s̃ are fixed. Then, the probability that Ĥk′,k̂(x, e) = π̂ is

at most ϵ̂(ℓ), since Ĥ is a ϵ̂-universal2 (or ϵ̂-universal1 projective, if A has been an insider via the RevHK

oracle) hash family, and the probability that H̃k̃(x, e, π̂) = π̃ is at most ϵ̃(ℓ), since H̃ is a ϵ̃-universal2 hash

family. In the challenge phase, π̂∗ = Ĥk′,k̂(x
∗, e∗) and π̃∗ = H̃k̃(x

∗, e∗, π̂∗) are fixed. After this, in the guess

stage, the probability that Ĥk′,k̂(x, e) = π̂ is at most ϵ̂(ℓ), since Ĥ is a ϵ̂-universal2. Note that if A has been

an insider, then A does not issue the decryption query. In addition, the probability that H̃k̃(x, e, π̂) = π̃ is

at most ϵ̃(ℓ), since H̃ is a ϵ̃-universal2. To sum up, we get Pr[F4] ≤ Qdec(ℓ)ϵ̂(ℓ) + (Qdec(ℓ) + 2Qeval(ℓ))ϵ̃(ℓ).
The term 2Qeval(ℓ) is derived from the fact that an evaluation query contains two ciphertexts.

From the fact that Game 3 and Game 4 are identical if the event F4 does not occur, we get
∣∣Pr[T (4)

ℓ]−
Pr[T

(3)
ℓ]
∣∣ ≤ Pr[F4] ≤ Qdec(ℓ)ϵ̂(ℓ) + (Qdec(ℓ) + 2Qeval(ℓ))ϵ̃(ℓ).

Game 5: Due to the previous game hopping, it is guaranteed that no information of secret keys is revealed
from an invalid ciphertext (x, e, π̂, π̃) where x ̸∈ L. Therefore, the smooth property can be used in this game.

So, this game chooses π∗
$← Π (instead of computing π∗ = Hk(x

∗)) and computes e∗ = π∗ + M∗β . Since

H is an ϵ(ℓ)-smooth projective hash family and β is hidden by π∗, we get
∣∣Pr[T (5)

ℓ] − Pr[T
(4)
ℓ]
∣∣ ≤ ϵ(ℓ) and

Pr[T
(5)
ℓ] = 1

2 .

By combining the inequalities, we getAdvKH-wCCA
KH-PKE,A (ℓ) ≤ AdvDist(ℓ)+Qdec(ℓ)ϵ̂(ℓ)+(Qdec(ℓ)+2Qeval(ℓ))ϵ̃(ℓ)+

ϵ(ℓ), which is negligible.

5 Practical Weak KH-PKE Construction from DDH

In this section, we present an efficient DDH-based KH-PKE construction. This scheme is not a mere
combination of the generic construction of KH-PKE in Section 4 and the transitional HPS from DDH (which
will appear in the full version), but introduces additional techniques for enhancing efficiency. Remarkably,
efficiency of our scheme is only slightly lower than the Cramer-Shoup encryption in spite of its complicated
functionality. In particular, ciphertext length of our scheme is only ℓ-bit larger than that of the Cramer-
Shoup scheme, where ℓ is the security parameter. For example, for 128-bit security, ciphertext overhead of
our scheme is 896-bit while that of the Cramer-Shoup scheme is 768-bit (assuming that these schemes are
implemented over elliptic curves).

5.1 Techniques for Improving Efficiency

Before going into the concrete construction of our DDH-based KH-PKE scheme, we briefly explain two
additional techniques for enhancing efficiency which are not mentioned in the previous sections. Both these
techniques employ target collision resistant (TCR) hash functions [10], and can also be applicable to other
various (standard) PKE schemes.

12

KeyGen(1ℓ) :

hk1
$← HK1; hk2

$← HK2

g0, g1
$← G

k0, k1, k
′
0, k

′
1, k̂1,0, k̂1,1, k̃0, k̃1, k̃1,0, k̃1,1

$← Zp

s← gk0
0 gk1

1 ; s′ ← g
k′
0

0 g
k′
1

1

ŝ← g
k̂1,0

0 g
k̂1,1

1 ; s̃← gk̃0
0 gk̃1

1

s̃1 ← g
k̃1,0

0 g
k̃1,1

1

pk ← (hk1, hk2, f, g0, g1, s, s
′, ŝ, s̃, s̃1)

skd ← ((k0, k1), (k
′
0, k

′
1, k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1))

skh ← ((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1))
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x0, x1, e, π̂, τ)
γ ← TCR1(hk1, x0, x1, e)

π̂′ ← x
k′
0+γk̂1,0

0 x
k′
1+γk̂1,1

1

γ′ ← TCR2(hk2, x0, x1, e, π̂
′)

π̃′ ← x
k̃0+γ′k̃1,0

0 x
k̃1+γ′k̃1,1

1

If either π̂ ̸= π̂′ or τ ̸= f(π̃′)
then return ⊥
π ← xk0

0 xk1
1

Return M ← e/π

Enc(pk,M) :

ω
$← Zp; x0 ← gω0 ; x1 ← gω1

π ← sω; e←M · π
γ ← TCR1(hk1, x0, x1, e)
π̂ ← (s′ · ŝ γ)ω

γ′ ← TCR2(hk2, x0, x1, e, π̂)

π̃ ← (s̃ · s̃ γ′

1)ω

τ ← f(π̃)
Return C ← (x0, x1, e, π̂, τ)

Eval(skh, C1, C2) :
Parse Cb as (xb,0, xb,1, eb, π̂b, τb) for b = 1, 2
γ′
b ← TCR2(hk2, xb,0, xb,1, eb, π̂b) for b = 1, 2

π̃′
b ← x

k̃0+γ′
bk̃1,0

b,0 x
k̃1+γ′

bk̃1,1

b,1 for b = 1, 2

If τ1 ̸= f(π̃′
1) or τ2 ̸= f(π̃′

2)
then return ⊥
γb ← TCR1(hk1, xb,0, xb,1, eb) for b = 1, 2

π̂′
b ← π̂b/(x

γbk̂1,0

b,0 x
γbk̂1,1

b,1) for b = 1, 2

x0 ← x1,0x2,0; x1 ← x1,1x2,1

e← e1e2; γ ← TCR1(x0, x1, e)

π̂ ← π̂′
1π̂

′
2x

γk̂1,0

0 x
γk̂1,1

1

γ′ ← TCR2(hk2, x0, x1, e, π̂)

π̃ ← x
k̃0+γ′k̃1,0

0 x
k̃1+γ′k̃1,1

1

τ ← f(π̃)
Return C ← (x0, x1, e, π̂, τ)

Figure 2: Our DDH-based KH-PKE Scheme.

The first technique is just the same as the popular method for transforming hash-free variant of the
Cramer-Shoup scheme into the TCR-based one (i.e., the standard Cramer-Shoup scheme). Due to it, the
size of the public key is significantly reduced.

The second technique is to compress the redundant part of the ciphertext by using a TCR hash function1.
Interestingly, our security proof still works even if one of ciphertext components (specifically, a component for
validity checking upon the homomorphic operation) is hashed to be a smaller value. It is a bit surprising that
this technique can be also applied to the original Cramer-Shoup scheme, but to the best of our knowledge,
it has never explicitly been stated in the literatures. When applying our technique to the Cramer-Shoup
scheme, ciphertext length of the resulting scheme becomes the same as that of the Kurosawa-Desmedt (KD)
scheme [25] which is the best known DDH-based PKE scheme. We should also note that this technique is
not applicable to other similar schemes such as the Cash-Kiltz-Shoup [7], Hanaoka-Kurosawa [20], and Kiltz
schemes [23]. This fact is primarily due to the structure of HPS-based constructions, and thus, it is difficult
to apply the above technique to PKE schemes from other methodology, e.g. [5, 20, 22].

5.2 Practical KH-PKE from DDH

Here, we give a description of our KH-PKE instantiation (using our technique of reducing the ciphertext
size). First, we define the DDH assumption as follows.

Definition 5.1 (The Decisional Diffie-Hellman (DDH) Assumption). Let G be a group with prime order
p. We say that the DDH assumption holds in G if the advantage AdvDDH

G,A (ℓ) := |Pr[A(g0, g1, gr0, gr1) =

0] − Pr[A(g0, g1, gr0, gr
′

1) = 0]| is negligible for any PPT algorithm A, where g0 and g1 are randomly chosen
from G, and r and r′ are randomly chosen from Zp.

1In the scheme, we use a smooth hash function f as this purpose. Since a TCR hash function is smooth, here, we regard f
as a TCR hash function.

13

Definition 5.2 (Target Collision Resistance (TCR) Hash Function). Let TCR : HK×HM→ Zp be a hash
function where HK be a key space and HM be a message space. We say that TCR is target collision resistance

if the advantage AdvTCRA (ℓ) := Pr[M
$← HM; hk

$← HK; M ′ ← A(hk,M) : M ̸= M ′ ∧ TCR(hk,M) =
TCR(hk,M ′)] is negligible for any PPT algorithm A.

Definition 5.3 (Smooth Hash Function). Let f : X → Y be a hash function. We say that f is smooth if
the probability Smthf := max

y∈Y
Pr

x
$←X

[f(x) = y] is negligible.

Note that a TCR hash function is smooth. In addition to this, both key derivation function (KDF) and
one-way function (OWF) are also smooth.

Our DDH-Based KH-PKE Scheme : Let TCR1 : HK1 × G3 → Zp and TCR2 : HK2 × G4 → Zp

be TCR hash functions, and f : G → Y be a smooth hash function. If f is a TCR hash function, then
Y = {0, 1}log p/2. We give our DDH-based KH-PKE scheme in Figure 2. Here, we explain the usage of skh =

((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1)). π̂′1 = π̂1/(x
γ1k̂1,0

1,0 x
γ1k̂1,1

1,1) = x
k′
0

1,0x
k′
1

1,1 and π̂′2 = π̂2/(x
γ2k̂1,0

2,0 x
γ2k̂1,1

2,1) = x
k′
0

2,0x
k′
1

2,1

hold using (k̂1,0, k̂1,1). So, π̂ ← π̂′1π̂
′
2x

γk̂1,0

0 x
γk̂1,1

1 = x
k′
0+γk̂1,0

0 x
k′
1+γk̂1,1

1 holds. Therefore, the Eval algorithm

works. The other keys (k̃0, k̃1, k̃1,0, k̃1,1) (and f) are used for computing π̃′1 (resp. π̃′2) to check the validity
of C1 (resp. C2).

The following theorem can be proved in the same way as Theorem 1.

Theorem 5.1. The proposed DDH-based KH-PKE scheme is weak KH-CCA-secure if the DDH assumption
holds, TCR1 and TCR2 are TCR hash functions, and f is a smooth hash function.

We give the proof of Theorem 5.1 as follows.

Proof. We define the sequences of games as follows: Let Ti be the event that β′ = β in Game i.

Game 0: The same as the KH-CCA game.

Game 1: This game modifies the way to compute C∗ as follows: use skd such that π∗ ← x∗0
k0x∗1

k1 ,

π̂∗ ← x∗0
k′
0+γ∗k̂1.0x∗1

k′
1+γ∗k̂1,1 , and π̃∗ ← x∗0

k̃0+γ′∗k̃1,0x∗1
k̃1+γ′∗k̃1,1 . Since this change is purely conceptual,

Pr[T1] = Pr[T0] holds.

Game 2: In this game, the DDH tuple (g1, x
∗
0, x
∗
1) = (gt0, g

ω∗

0 , gω
∗

1) is replaced as a random tuple, where for

ω′
$← Zp \ {ω∗}, x∗1 ← gω

′

1 . From Lemma 5 of [12], we have |Pr[T2]−Pr[T1]| ≤ AdvDDH
G,A (ℓ) + 3/p, where p is

the order of the group G. To show this inequation, let (g0, g1, g
′
0, g
′
1) be a DDH instance, and we construct an

algorithm B that breaks the DDH problem. Choose k0, k1, k
′
0, k
′
1, k̂1,0, k̂1,1, k̃0, k̃1, k̃1,0, k̃1,1

$← Zp, hk1
$← HK1

and hk2
$← HK2, compute s ← gk0

0 gk1
1 , s′ ← g

k′
0

0 g
k′
1

1 , ŝ ← g
k̂1,0

0 g
k̂1,1

1 , s̃ ← gk̃0
0 gk̃1

1 , and s̃1 ← g
k̃1,0

0 g
k̃1,1

1 , and

set pk ← (hk1, hk2, f, g0, g1, s, s
′, ŝ, s̃, s̃1), skd ← ((k0, k1), (k

′
0, k
′
1, k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1)), and skh ←

((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1)). A is given pk. For a decryption query and an evaluation query (in both find
and guess stages), B answers as usual using skd and skh, respectively.

In the challenge phase, A sends (M∗0 ,M
∗
1). B chooses β

$← {0, 1}, sets x∗0 ← g′0 and x∗1 ← g′1, and

compute π∗ ← x∗0
k0x∗1

k1 , e∗ ← M∗β · π∗, γ∗ ← TCR1(hk1, x
∗
0, x
∗
1, e
∗), π̂∗ ← x∗0

k′
0+γ∗k̂1.0x∗1

k′
1+γ∗k̂1,1 , γ′

∗ ←
TCR2(hk2, x

∗
0, x
∗
1, e
∗, π̂∗), π̃∗ ← x∗0

k̃0+γ′∗k̃1,0x∗1
k̃1+γ′∗k̃1,1 and τ∗ ← f(π̃∗), and returns C∗ = (x∗0, x

∗
1, e
∗, π̂∗, τ∗)

to A. In addition, B sets a ciphertext dictionary D such that D = {C∗}. Finally, B outputs 1 if β = β′,
and 0 otherwise. Since Pr[T1] = Pr[logg0 g1 ̸= 0;B(g0, g1, gr0, gr1) = 1] and Pr[T2] = Pr[logg0 g1 ̸= 0; r′ ̸=
r logg g1;B(g0, g1, gr0, gr

′

1) = 1], |Pr[T2]− Pr[T1]| ≤ AdvDDH
G,B (ℓ) + 3/p holds.

Game 3: This game modifies the decryption and evaluation oracles, so that these reject all ciphertexts
such that (g1, x0, x1) is not a DDH tuple, as follows: let k ← k0 + tk1, k

′ ← k′0 + tk′1, k̂ ← k̂1,0 + tk̂1,1,

k̃ ← k̃0 + tk̃1, and k̃′ ← k̃1,0 + tk̃1,1. In a decryption query, for a ciphertext C = (x0, x1, e, π̂, τ), if C ∈ D,

14

return ⊥. Otherwise, compute γ ← TCR1(hk1, x0, x1, e), and check xt
0

?
= x1 and π̂

?
= xk′+γk̂

0 . If this is not

the case, return ⊥. Otherwise, compute γ′ ← TCR2(hk2, x0, x1, e, π̂), and check τ
?
= f(xk̃+γ′k̃′

0). If this is
not the case, return ⊥. If all equations hold, then compute π ← xk

0 and return e/π.
In an evaluation query, for ciphertexts C1 = (x0,1, x1,1, e1, π̂1, τ1) and C2 = (x0,2, x1,2, e2, π̂2, τ2), compute

γ′1 ← TCR2(hk2, x0,1, x1,1, e1, π̂1) and γ′2 ← TCR2(hk2, x0,2, x1,2, e2, π̂2), and check xt
0,1

?
= x1,1, x

t
0,2

?
= x1,2,

τ1
?
= f(x

k̃+γ′
1k̃

′

0,1), and τ2
?
= f(x

k̃+γ′
2k̃

′

0,2). If this is not the case, return ⊥. If all equations hold, then compute
C = (x0, x1, e, π̂, τ) as usual using skh.

Let R3 be the event that a ciphertext C is rejected in Game 3 but C is passed the original rejection
check. Then |Pr[T3]− Pr[T2]| ≤ Pr[R3] holds.

Game 4: Instead of computing e∗ ← M∗β · π∗, this game chooses r∗
$← Zp, and computes e∗ ← gr

∗

0 . Since
the challenge bit β is never used for computing the challenge ciphertext, the output of A is independent of β.
So, Pr[T4] = 1/2 holds. Next, we show that the modification on this game has no effect (i.e., Pr[T4] = Pr[T3]
and Pr[R4] = Pr[R3] hold, where the event R4 is defined as in R3) as follows. Let r∗ := logg0 e

∗, and r∗3
and r∗4 be r∗ in Game 3 and Game 4, respectively Due to the modification on Game 4, r∗4 is uniform over
Zp. Since det(M) = t(ω′ − ω∗) ̸= 0 due to the modification on Game 2 and from Lemma 5.1 (which will be
introduced in Appendix), where

(
k
r∗3

)
=

(
1 t
ω∗ tω′

)
︸ ︷︷ ︸

:=M

·
(

k0
k1

)
+

(
0

logg0 M
∗
β

)
,

r∗3 is also uniform over Zp. So, Pr[T4] = Pr[T3] and Pr[R4] = Pr[R3] hold.

Game 5: Again, this game modifies the decryption/evaluation oracle as follows: if A submits a ciphertext
C = (x0, x1, e, π̂, τ) such that (x0, x1, e) ̸= (x∗0, x

∗
1, e
∗) and γ = γ∗, then return ⊥. Let C5 be the event that

some ciphertext is rejected by this test in Game 5. Note that this collision test is executed before any other
rejection test. Then |Pr[R5] − Pr[R4]| ≤ Pr[C5] and Pr[C5] ≤ AdvTCR1(ℓ) + 1/p holds, where the event R5

is defined as in R4 and AdvTCR1(ℓ) is the advantage of TCR1.

Game 6: Let Qdec(ℓ) be the number of decryption queries and Qeval(ℓ) be the number of evaluation queries,
and Q := Qdec + 2Qeval. Let X6 be the event that A sends a ciphertext C = (x0, x1, e, π̂, τ) at least once,

where (g1, x0, x1) is not a DDH tuple and π̂ = xk′+γk̂
0 for γ ← TCR1(hk1, x0, x1, e). For 1 ≤ i ≤ Q, let X

(i)
6 be

the event thatA sends a ciphertext C = (x0, x1, e, π̂, τ) as the i-th query, where (g1, x0, x1) is not a DDH tuple

and π̂ = xk′+γk̂
0 for γ ← TCR1(hk1, x0, x1, e). Then, Pr[X6] ≤

∑Q
i=1 Pr[X

(i)
6] and |Pr[R6]−Pr[R5]| ≤ Pr[X6]

holds. Moreover, let X̂6

(i)
be the event that A sends a ciphertext C = (x0, x1, e, π̂, τ) as the i-th query,

where (g1, x0, x1) is not a DDH tuple and π̂
$← G. Since det(M) = ωω∗(γ − γ∗) ̸= 0 due to the modification

on Game 5 and from Lemma 5.1, where

(
logg0 π̂

∗

logg0 π̂

)
=

(
ω∗ tω∗γ∗

ω tωγ

)
︸ ︷︷ ︸

:=M

·
(

k′

k̂

)
,

logg0 π̂ is uniform over Zp. So, Pr[X
(i)
6] = Pr[X̂6

(i)
] holds.

Game 7: Again, this game modifies the decryption/evaluation oracle as follows: if A submits a ciphertext
C = (x0, x1, e, π̂, τ) such that (x0, x1, e, π̂) ̸= (x∗0, x

∗
1, e
∗, π̂∗) and γ′ = γ′

∗
, return ⊥. Let C7 be the event

that some ciphertext is rejected by this test in Game 7. Note that this collision test is executed before any
other rejection test. Then |Pr[R7]−Pr[R6]| ≤ Pr[C7] and Pr[C7] ≤ AdvTCR2(ℓ)+ 1/p holds, where the event
R7 is defined as in R5 and AdvTCR2(ℓ) is the advantage of TCR2.

15

Game 8: Let Qdec(ℓ) be the number of decryption queries and Qeval(ℓ) be the number of evaluation queries,
and Q := Qdec + 2Qeval. Let X6 be the event that A sends a ciphertext C = (x0, x1, e, π̂, τ) at least once,

where (g1, x0, x1) is not a DDH tuple and τ = f(xk̃+γ′k̃′

0) for γ′ ← TCR2(hk2, x0, x1, e, π̂
′). For 1 ≤ i ≤ Q,

let X
(i)
8 be the event that A sends a ciphertext C = (x0, x1, e, π̂, τ) as the i-th query, where (g1, x0, x1)

is not a DDH tuple and τ = f(xk̃+γ′k̃′

0) for γ′ ← TCR2(hk2, x0, x1, e, π̂
′). Then, Pr[X8] ≤

∑Q
i=1 Pr[X

(i)
8]

and |Pr[R8] − Pr[R7]| ≤ Pr[X8] holds. Moreover, let X̃8

(i)
be the event that A sends a ciphertext C =

(x0, x1, e, π̂, τ) as the i-th query, where (g1, x0, x1) is not a DDH tuple and τ = f(π̃) for π̃
$← G. From the

definition of f , Pr[X̃8

(i)
] ≤ Smthf holds. Moreover, since det(M) = ωω∗(γ′−γ′∗) ̸= 0 due to the modification

on Game 7 and from Lemma 5.1, where

(
logg0 π̃

∗

logg0 π̃

)
=

(
ω∗ tω∗γ′

∗

ω tωγ′

)
︸ ︷︷ ︸

:=M

·

(
k̃

k̃′

)
,

logg0 π̃ is uniform over Zp. So, Pr[X
(i)
8] = Pr[X̃8

(i)
] holds. That is, |Pr[R8]− Pr[R7]| ≤ Q · Smthf holds.

The remaining part is to estimate Pr[R8]. Let Qdec(ℓ) be the number of decryption queries and Qeval(ℓ)
be the number of evaluation queries. Then Pr[R8] ≤ (Qdec(ℓ)+2Qeval(ℓ))/p holds as follows. Let v̂ := logg0 π̂,

t̂ := k′0ω + k̂1,0ωγ + k′1ω
′t+ k̂1,1ω

′γt, ṽ := logg0 π̃, and t̃ := k̃0ω + k̃1,0ωγ
′ + k̃1ω

′t+ k̃1,1ω
′γ′t. The event R8

happens if and only if ω ̸= ω′ but v̂ = t̂ and ṽ = t̃ hold. Let k′ := k′0 + tk′1, k̂ := k̂1,0 + tk̂1,1, k̃ := k̃0 + tk̃1,

and k̃′ := k̃1,0 + tk̃1,1. We have

k′

k̂
v̂∗

t̂

k̃

k̃′

ṽ∗

t̃

=

1 t 0 0 0 0 0 0
0 0 1 t 0 0 0 0
ω∗ ω′

∗
t ω∗γ∗ ω′

∗
γ∗t 0 0 0 0

ω ω′t ωγ ω′γt 0 0 0 0
0 0 0 0 1 t 0 0
0 0 0 0 0 0 1 t
0 0 0 0 ω∗ ω′

∗
t ω∗γ′

∗
ω′
∗
γ′
∗
t

0 0 0 0 ω ω′t ωγ′ ω′γ′t

︸ ︷︷ ︸

:=M

·

k′0
k′1
k̂1,0
k̂1,1
k̃0
k̃1
k̃1,0
k̃1,1

Then, since det(M) = t4(γ∗ − γ)(γ′

∗ − γ′)(ω′ − ω)2(ω′
∗ − ω∗)2 ̸= 0 holds, the rows of M are linearly

independent. So, Pr[R8] ≤ (Qdec(ℓ)/p
2) + (2Qeval(ℓ)/p) ≤ (Qdec(ℓ) + 2Qeval(ℓ))/p hold.

Efficency Comparison : In Table 1, we give an efficiency comparison of our DDH-based KH-PKE scheme
with the CS PKE [9], the KD PKE [25], and the naive construction (See Section 1). We note that these three
schemes do not yield keyed-homomorphic property and/or (weak) KH-CCA security. As seen in Table 1, our
scheme is comparably efficient to the best known DDH-based (standard) PKE schemes, i.e. the CS and the
KD schemes, in terms of both ciphertext overhead and computational costs. Especially, ciphertext overhead
of our scheme is only ℓ-bit longer than that of the CS scheme for ℓ-bit security. It is somewhat surprising that
it is possible to realize KH property with only significantly small additional cost. Furthermore, comparing
with the naive construction (from KD and CS(-lite)) which appears to have KH property (but does not
satisfy weak KH-CCA security), we see that our scheme is more efficient. This means that our methodology
does not only yield KH property (and weak KH-CCA security) but also significantly high efficiency.

Acknolwdgement : We thank anonymous reviewers and the members of Shin-Akarui-Angou-Benkyou-
Kai for their helpful comments. This work was supported by JSPS KAKENHI Grant Number 24700009.

16

Table 1: Comparison among the Cramer-Shoup (CS) scheme, the Kurosawa-Desmedt (KD) scheme, the KD + CS-
lite (using the double encryption) scheme, and our DDH-based KH-PKE scheme, where |C| − |M | denotes ciphertext
overhead, |G| denotes the size of the underlying group element G, and exp denotes exponentiation. We count 1
multi-exp equals as 1.2 regular exp, and the size of MAC and the hashed value of TCR as 0.5|G|.

|C| − |M | Cost (Enc) Cost (Dec) KH property

CS [9] 3|G| 4.2 exp 2.4 exp No

KD [25] 2.5|G| 3.2 exp 1.2 exp No

KD+CS-lite Double Enc 5.5|G| 7.2 exp 3.6 exp No?

Our DDH-based KH-PKE 3.5|G| 5.4 exp 3.6 exp Yes

References

[1] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In EUROCRYPT,
pages 83–107, 2002.

[2] M. Barbosa and P. Farshim. Delegatable homomorphic encryption with applications to secure outsourc-
ing of computation. In CT-RSA, pages 296–312, 2012.

[3] D. Bernhard, V. Cortier, O. Pereira, B. Smyth, and B. Warinschi. Adapting Helios for provable ballot
privacy. In ESORICS, pages 335–354, 2011.

[4] D. Boneh, G. Segev, and B. Waters. Targeted malleability: homomorphic encryption for restricted
computations. In ITCS, pages 350–366, 2012.

[5] R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In
EUROCRYPT, pages 207–222, 2004.

[6] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In CRYPTO, pages
565–582, 2003.

[7] D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In EUROCRYPT,
pages 127–145, 2008.

[8] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications.
In EUROCRYPT, pages 281–300, 2012.

[9] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In CRYPTO, pages 13–25, 1998.

[10] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. Cryptology ePrint Archive, Report 2001/085, 2001. http://eprint.iacr.org/.

[11] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[12] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

[13] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[14] K. Emura, G. Hanaoka, G. Ohtake, T. Matsuda, and S. Yamada. Chosen ciphertext secure keyed-
homomorphic public-key encryption. In Public Key Cryptography, pages 32–50, 2013.

17

[15] D. Galindo and J. L. Villar. An instantiation of the Cramer-Shoup encryption paradigm using bilinear
map groups. Workshop on Mathematical Problems and Techniques in Cryptology, 2005.

[16] C. Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages 445–
464, 2006.

[17] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[18] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker keeping secret all
partial information. In STOC, pages 365–377, 1982.

[19] J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In
TCC, pages 152–170, 2004.

[20] G. Hanaoka and K. Kurosawa. Efficient chosen ciphertext secure public key encryption under the
computational Diffie-Hellman assumption. In ASIACRYPT, pages 308–325, 2008.

[21] B. Hemenway and R. Ostrovsky. On homomorphic encryption and chosen-ciphertext security. In Public
Key Cryptography, pages 52–65, 2012.

[22] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, pages 581–600, 2006.

[23] E. Kiltz. Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In PKC,
pages 282–297, 2007.

[24] E. Kiltz, K. Pietrzak, M. Stam, and M. Yung. A new randomness extraction paradigm for hybrid
encryption. In EUROCRYPT, pages 590–609, 2009.

[25] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO, pages
426–442, 2004.

[26] J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On CCA-secure somewhat homomorphic encryption.
In Selected Areas in Cryptography, pages 55–72, 2011.

[27] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[28] M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. In CRYPTO, pages 517–534,
2007.

[29] M. Prabhakaran and M. Rosulek. Homomorphic encryption with CCA security. In ICALP (2), pages
667–678, 2008.

[30] H. Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively
weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007. http://eprint.iacr.org/.

[31] V. Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report
2001/112, 2001. http://eprint.iacr.org/.

Appendix

In this Appendix, we introduce the following lemma [12, Lemma 9] which is used for the proof of Theorem 5.1.

Lemma 5.1 ([12]). Let k and n be integers with k ∈ [n], and let K be a finite field. Consider a probability

space with random variables α⃗ ∈ Kn×1, β⃗ := (β1, . . . , βk)
T , γ⃗ ∈ Kk×1, and M ∈ Kk×n, such that α⃗ is

uniformly distributed over Kn×1, β⃗ = Mα⃗+ γ⃗, and for i ∈ [k], the i-th rows of M and γ⃗ are determined by
β1, . . . , βi−1. Then Then conditioning on any fixed values of β1, . . . , βk−1) such that the resulting matrix M
has rank k, the value of βk is uniformly distributed over K in the resulting conditional probability space.

18

