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Abstract

In homomorphic encryption schemes, anyone can perform homomorphic operations, and therefore,
it is difficult to manage when, where and by whom they are performed. In addition, the property that
anyone can “freely” perform the operation inevitably means that ciphertexts are malleable, and it is
well-known that adaptive chosen ciphertext (CCA) security and the homomorphic property can never
be achieved simultaneously. In this paper, we show that CCA security and the homomorphic property
can be simultaneously handled in situations that the user(s) who can perform homomorphic operations
on encrypted data should be controlled/limited, and propose a new concept of homomorphic public-key
encryption, which we call keyed-homomorphic public-key encryption (KH-PKE). By introducing a secret
key for homomorphic operations, we can control who is allowed to perform the homomorphic operation.
To construct KH-PKE schemes, we introduce a new concept, transitional universal property, and present
a practical KH-PKE scheme from the DDH assumption. For ℓ-bit security, our DDH-based KH-PKE
scheme yields only ℓ-bit longer ciphertext size than that of the Cramer–Shoup PKE scheme. Finally,
we consider an identity-based analogue of KH-PKE, called keyed-homomorphic identity-based encryption
(KH-IBE) and give its concrete construction from the Gentry IBE scheme.

Keywords: homomorphic public key encryption, CCA2 security, hash proof system

1 Introduction

1.1 Background and Motivation

In homomorphic encryption schemes, homomorphic operations can be performed on encrypted plaintexts
without decrypting the corresponding ciphertexts. Owing to this attractive property, several homomorphic
public key encryption (PKE) schemes have been proposed [16, 22, 37]. Furthermore, fully homomorphic
encryption (FHE) that allows a homomorphic operation with respect to any circuit, has recently been pro-
posed by Gentry [21]. This has had a resounding impact not only in the cryptographic research community,
but also in the business community. One of the reasons for such a big impact is that FHE is suitable for
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ensuring security in cloud environments (e.g., encrypted data stored in a database can be updated without
any decryption procedure).

Improvement in the security of homomorphic encryption will lead to wider deployment of cloud-type
applications, whereas the property that anyone can “freely” perform homomorphic operations inevitably
means that ciphertexts are malleable. Therefore, it is well-known that adaptive chosen ciphertext (CCA2)
security and the homomorphic property can never be achieved simultaneously. In other words, security is
sacrificed in exchange for the homomorphic property. Although several previous works (e.g., [2, 9, 23, 39, 40])
have attempted to construct homomorphic PKE schemes that offer security close to CCA2 security while
retaining the homomorphic property, these schemes only guarantee security at limited levels. Note that
not all functionalities of conventional homomorphic encryption are indispensable for real-world applications,
and therefore there is the possibility of realizing a desirable security level by appropriately selecting the
functionalities of conventional homomorphic encryption.

Here, we point out that the underlying cause of the incompatibility of CCA2 security and the homomor-
phic property, lies in the setting that any user can use the homomorphic property, and it is worth discussing
whether the free availability of homomorphic operations is an indispensable functionality in real-world appli-
cations. For example, consider the situation where some data encrypted by a homomorphic PKE scheme is
stored in a public database (e.g., public cloud computing environment) and it is modified by homomorphic
operations. If anyone can perform a homomorphic operation, then it is hard to reduce the risk of unexpected
changes to the encrypted data in the database in which resources are dynamically allocated. Even in a closed
environment (e.g., private cloud computing environment), we cannot rule out the possibility of unexpected
changes to a user’s data by any user who is authorized to access the database. Of course, it is possible to
protect such unexpected modification of encrypted data by setting access permissions of each user appropri-
ately. However, in cloud environments, security of outsourced data storages may not be assured. Therefore,
such access control functionality should be included in encrypted data itself.

From the above consideration, we see that the property that anyone can perform homomorphic operations
not only inhibits the realization of CCA2 security, but also introduces the problem of unexpected modification
of encrypted data.

1.2 Our Contribution

In this paper, we show that CCA2 security and the homomorphic property can be simultaneously handled
in situations that the user(s) who can perform homomorphic operations should be controlled. Specifically,
we propose a new concept of homomorphic PKE, which we call keyed-homomorphic public-key encryption
(KH-PKE), that has the following properties: (1) in addition to a conventional public/decryption key pair
(pk, skd), another secret key for the homomorphic operation (denoted by skh) is introduced, (2) homomorphic
operations cannot be performed without using skh, and (3) ciphertexts cannot be decrypted using only skh.
Interestingly, KH-PKE implies conventional homomorphic PKE, since the latter can be implemented by
publishing skh of KH-PKE.

To construct KH-PKE schemes, we introduce a new concept, transitional universal property, which can
be obtained from any diverse group system [14], and present a number of KH-PKE schemes through hash
proof systems (HPSs) [14]. As concrete instantiations, we present practical KH-PKE schemes from the
DDH assumption and the decisional composite residuosity (DCR) assumption, respectively. We remark
that other KH-PKE schemes based on the decisional linear (DLIN) assumption and the decisional bilinear
Diffie-Hellman (DBDH) assumption can be constructed from the Shacham HPS [41] and the Galindo-Villar
HPS [18], respectively.

Moreover, we also consider an identity-based analogue of KH-PKE, called keyed-homomorphic identity-
based encryption (KH-IBE) and give its concrete construction from the Gentry IBE scheme [20].

Our Scenarios: Here we introduce situations that the user(s) who can perform homomorphic operations
should be controlled/limited. For example, in the situation where encrypted data is stored in a public
database, an owner of the data gives skh to the database manager, who updates the encrypted data after
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authentication of users. No outsider can modify the encrypted data in the public database without having
skh. As another example, by considering skh, a counter can take over the role of aggregating an audience
survey, voting, and so on. An advantage of separating ballot-counting and ballot-aggregation is that it is
possible to reduce the aggregation costs of the counter and to collect the ballot results for individual areas,
groups, and communities. We can also consider an application of KH-PKE to prevent illegal distribution of
data. A content creator gives skh to a digital content provider and the provider embeds some data (e.g., a
water mark) for protecting the content against illegal copying, a certification for ownership of the content,
and/or a distribution route.

Naive Construction and its Limitations: One might think that the functionality and the security of
KH-PKE can be achieved by using the following double encryption methodology: A ciphertext of an “inner”
CCA1 secure homomorphic PKE scheme is encrypted by an “outer” CCA2 secure PKE scheme, and the
decryption key of the CCA2 secure PKE scheme is used as skh. However, this naive construction is not
secure in the sense of our security definition. Taking into account the exposure of the homomorphic operation
key skh, an adversary can request skh to be exposed in our security definition. The adversary is allowed to
use the decryption oracle “even after the challenge phase”, just before the adversary requests skh. However,
no such decryption query is allowed in the CCA1 security of the underlying “inner” scheme, and therefore
it seems hard to avoid this problem.

Even if we turn a blind eye to the above problem, it is obvious that efficiency of the naive construction
is roughly equal to the total costs of the building block PKE schemes. On the other hand, the efficiency
of our KH-PKE instantiations is very close to the corresponding (non-keyed-homomorphic) PKE schemes
based on HPSs. In particular, the efficiency of our decisional Diffie-Hellman (DDH)-based KH-PKE scheme
is comparably efficient as the Cramer–Shoup PKE (CS) scheme [12], where for ℓ-bit security, our scheme
yields only ℓ-bit longer ciphertext size than that of the CS PKE scheme. Whereas the naive construction
yields at least 5ℓ-bit longer ciphertext size even if we choose the Kurosawa–Desmedt (KD) PKE scheme [32]
and the Cramer–Shoup lite PKE scheme [12] that seems the most efficient combination under the DDH
assumption. We give the comparison in Table 6 in Section 5.3.

To sum up, our construction is superior to the naive construction from both security and efficiency
perspectives.

Our Methodology: As a well-known result, CCA2-secure PKE can be constructed via a HPS [14] which
has two projective hash families as its internal structure: A universal2 projective hash and a smooth projective
hash. Also it is known that a weaker property of universal2, that is called universal1 property, was shown to
be useful for achieving CCA1-secure PKE [31], and universal1 property (and smooth property also) does not
contradict the homomorphic property. That is, our aim seems to be achieved if we can establish a switching
mechanism from universal2 to universal1. Moreover, we can simulate the decryption oracle even after the
challenge phase and after revealing skh since the simulator knows all secret keys in the security proof.

In this paper, we show such a mechanism, which we call transitional universal property, can be obtained
from any diverse group system [14], then we propose a generic construction of KH-PKE through HPSs.
Moreover, as an implication result, KH-PKE is implied by CPA-secure homomorphic PKE (with cyclic-
group ciphertext space) which implies diverse group systems [25].

1.3 Related Work

Several previous works have attempted to construct homomorphic PKE schemes that provide security close
to CCA2 security, while retaining the homomorphic property. Canetti et al. [9] considered the notion of
replayable CCA (RCCA), which leaves a room for an adversary who is given two ciphertexts (C,C ′), to gain
information on whether C ′ was derived from C. (Modified RCCA notions have also been proposed [23, 39].)
In the RCCA security game, the decryption oracle given to an adversary is restricted in such a way that the
challenge ciphertext and ciphertexts derived from the challenge ciphertext cannot be queried to the oracle.
Similarly, in benignly-malleable (gCCA) security [2, 42], ciphertexts related to the challenge one cannot be
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input to the decryption oracle. Therefore, RCCA and gCCA are strictly weaker notions than CCA2, and
may not be sufficient if the encryption scheme is used as a building block for higher level protocols/systems.

In [40], Prabhakaran and Rosulek proposed homomorphic CCA (HCCA) security, where only the expected
operation, and no other operations, can be performed for any ciphertext. (Targeted malleability, which is
a similar concept to HCCA, was considered in [7].) In addition, they also showed that CCA2, gCCA, and
RCCA are special cases of HCCA. Note that HCCA does not handle the homomorphic property and CCA2
security simultaneously, since anyone can perform the homomorphic operation. Chase et al. [11] showed that
controlled-malleable non-interactive zero-knowledge can be used as a general tool for achieving RCCA and
HCCA security.

Embedding a ciphertext of homomorphic PKE into that of CCA2-secure PKE, was considered in [36, 6].
Note that their embedding encryption methods are nothing more than protecting a ciphertext of homomor-
phic PKE by that of CCA2 PKE, and therefore no homomorphic operation can be performed on embedded
ciphertexts. Meanwhile, in our KH-PKE, even after performing the homomorphic operation, a ciphertext is
still valid.

Barbosa and Farshim [4] proposed delegatable homomorphic encryption (DHE). The difference between
KH-PKE and DHE is that in DHE a trusted authority (TA) issues a token to control the capability to evaluate
circuits f over encrypted data M to untrusted evaluators. Furthermore, their security definitions of DHE
(input/output privacy (TA-IND-CPA) and evaluation security (IND-EVAL2)) do not allow an adversary to
access the decryption oracle and the evaluation oracle (the oracle for homomorphic operation) simultaneously.
We note that although Barbosa and Farshim defined verifiability (VRF-CCA2), where no homomorphic
operation can be performed without issuing a corresponding token, KH-CCA security for KH-PKE defined
in this paper guarantees a similar level of security, since if there exists an adversary that can perform the
homomorphic operation without using skh, then the adversary can break the KH-CCA security.

Following our work, Libert, Peters, Joye, and Yung (LPYJ) [35] proposed a KH-PKE scheme for support-
ing threshold decryption and publicly verifiable ciphertexts. They apply linearly homomorphic structure-
preserving signatures [34] to quasi-adaptive non-interactive zero-knowledge (QA-NIZK) proofs [27], proposed
QA-NIZK proofs with unbounded simulation-soundness (USS), and constructed a KH-PKE scheme by ap-
plying USS. The LPYJ KH-PKE scheme (with multiplicative homomorphic operations) is secure under the
DLIN assumption (and strong unforgeability of the underlying one-time signature). Jutla and Roy (JR) [28]
also proposed a publicly verifiable KH-PKE scheme with shorter ciphertext size, where a ciphertext of the
LPJY scheme consists 9 group elements and two more in the other plus a one-time signature key pair and
that of the JR scheme is 6 group elements. We remark that our KH-PKE schemes have a shorter ciphertext
size than those of the LPYJ/JR schemes though our schemes do not support public verifiability. Moreover,
our schemes are pairing-free whereas the LPYJ/JR schemes require bilinear groups. Though these KH-
PKE schemes including ours support either additive or multiplicative homoorphic operation, Lai et al. [33]
proposed Keyed-Fully Homomorphic Encryption (keyed-FHE) which supports the evaluation of any func-
tions on encrypted data. They first constructed convertible identity-based fully homomorphic encryption
(IBFHE) from the learning with errors (LWE) assumption and indistinguishability obfuscation (iO) [3, 19],
and proposed a generic conversion of keyed-FHE from IBFHE.

In the signature context, Abe et al. [1] considered selective randomizability, where a strongly unforgeable
signature to be randomized with the help of a randomization token, and a randomizable signature is still
existentially unforgeable.

1.4 Differences from the Proceedings Version [17]

In the proceedings version [17], there were several bugs. Specifically, in the second last component π̂ of
a ciphertext of the generic construction (in [17, Fig. 1]) and that of the DDH-based construction (in [17,
Fig. 2]) could be malleable, which could lead to CCA attacks on the schemes. Furthermore, the evaluation
algorithms for these constructions were (although “correct” in terms of the functionality of KH-PKE) not
properly designed in the sense that in the CCA security game, the result of the “evaluation oracle” for
challenge ciphertext-dependent inputs could leak some information. Moreover, we did not properly state
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the requirement of the second hash function (denoted by TCR2 in [17, Fig. 2]) used to “compress” the proof
value π̃ to reduce the ciphertext size.

We fix these bugs in the current version: First, we reconsider the proposed generic construction (in
Section 4): (1) the first proof value π̃ in the generic construction (in Fig. 1) is now made dependent on the
second proof value π̂, and (2) the evaluation algorithm Eval computes and “adds” a new ciphertext of 0.
These modifications enable us to prove our modified proposed constructions to be CCA secure.1 According to
these modifications, we do not have to newly define homomorphic transitional universal hash family. Instead,
we introduce transitional universal property of the pair of two HPSs. We also apply the similar modifications
to our DDH-based scheme (in Section 5.3). We would like to emphasize that the modifications here do not
incur additional computational cost or increase of the ciphertext size for both of our constructions.

Second, we reconsider the condition of the function that is used to “compress” the proof value π̃ in our
DDH-based construction, and newly introduce the notion of smoothness for a function. This is a statistical
property that roughly ensures that the “min-entropy” of the output of a function (for uniformly random
input) is sufficiently high, and thus it is information-theoretically hard to guess the output of a function for
random inputs. We also show that natural cryptographic functions, a one-way function (OWF), an always
second-preimage resistant (aSec secure) hash function [38], and a key derivation function (KDF) [15], have
the property, and thus in practice we can use (an appropriate modification of) cryptographic hash functions
such as SHA-series).

Third, we give a formal definition of KH-IBE and its concrete construction from the Gentry IBE
scheme [20] in this version.

2 Preliminaries

In this section, we review the basic notations and definitions related to HPSs (mostly following [14] but
slightly customized for our convenience).

Throughout this paper, PPT denotes probabilistic polynomial time. If n is a natural number, then
[n] = {1, . . . , n}. If D is a probability distribution (over some set), then [D] denotes its support, i.e.
[D] = {x|Prx′←D[x

′ = x] > 0}. Let X = {Xℓ}ℓ≥0 and Y = {Yℓ}ℓ≥0 be sequences of random variables
Xℓ and Yℓ, respectively, defined over a same finite set. As usual, we say that X and Y are statistically
(resp. computationally) indistinguishable if |Pr[A(Xℓ) = 1] − Pr[A(Yℓ) = 1]| is negligible in ℓ for any
computationally unbounded (resp. PPT) algorithm A. Furthermore, we say that X and Y are ϵ-close if the
statistical distance of Xℓ and Yℓ is at most ϵ = ϵ(ℓ). For a finite set Bℓ and its subset B′ℓ indexed (often
implicitly) by ℓ ≥ 0, we say that B′ℓ is approximately samplable relative to Bℓ, if there is a sequence of
random variables on Bℓ which is polynomial-time samplable and is statistically indistinguishable from the
uniform random variable on B′ℓ.

Projective Hash Families: Let X, Π, K, and S be finite non-empty sets, X ′ be a non-empty subset of
X, and L be a proper subset of X (i.e., L ⊂ X and L ̸= X). Furthermore, let H = {Hk : X → Π}k∈K
be a collection of hash functions indexed by k ∈ K, and α : K → S be a function. We say that H =
(H,K,X,X ′, L,Π, S, α) is a projective hash family for (X,X ′, L), if for all k ∈ K, the action of Hk on the
subset L is uniquely determined by α(k) ∈ S. When X ′ = X, we may omit the symbol X ′ in the notations
above.

Let H = (H,K,X,X ′, L,Π, S, α) be a projective hash family, and let 0 ≤ ϵ ≤ 1. We recall the following
properties of a projective hash family: We say that H is ϵ-universal1 if for all s ∈ S, x ∈ X \ L, and π ∈ Π,
it holds that

Pr
k

$←K
[Hk(x) = π ∧ α(k) = s] ≤ ϵ · Pr

k
$←K

[α(k) = s] .

1In the previous eprint version (20130618:085049 (posted 18-Jun-2013 08:50:49 UTC)), we considered the first modification
only, and therefore we achieved a weaker security which we call weak KH-CCA security, where no challenge-ciphertext-related
ciphertext is allowed to input the evaluation oracle. In this version, we can achieve KH-CCA security due to the second
modification.
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We say that H is ϵ-universal2 if for all s ∈ S, x, x∗ ∈ X \ L with x∗ ̸= x, and π, π∗ ∈ Π, it holds that

Pr
k

$←K
[Hk(x) = π ∧Hk(x

∗) = π∗ ∧ α(k) = s] ≤ ϵ · Pr
k

$←K
[Hk(x

∗) = π∗ ∧ α(k) = s] .

We say that H is ϵ-smooth if the following two distributions are ϵ-close:

{k $← K; x
$← X \ L : (α(k), x,Hk(x)) } and {k

$← K; x
$← X \ L; π $← Π : (α(k), x, π) } .

We also introduce a variant of the smoothness property: Suppose that Π is an abelian group (written in
additive form), and let Π′ be a subgroup of Π. In this case, we say that H is ϵ-smooth relative to (X ′,Π′),
if the following two distributions are ϵ-close:

{k $← K; x
$← X ′ \ L : (α(k), x,Hk(x)) } and {k

$← K; x
$← X ′ \ L; π $← Π′ : (α(k), x,Hk(x) + π) } .

We note that, when Π′ = Π, the term Hk(x)+π in the latter probability distribution above can be replaced
with π, since now Hk(x) + π is also uniformly random over Π. Hence, the notion of smoothness relative to
(X ′,Π′) above is in fact a generalization of the smoothness.

If a projective hash family is ϵ-universal1 (resp. -universal2, -smooth) for a negligible ϵ, then we simply
call the projective hash family universal1 (resp. universal2, smooth). We note that the ϵ-universal2 property
implies the ϵ-universal1 property, by summing up the inequalities in the definition of the universal2 property
over all π∗ ∈ Π. We also show some relations between the smoothness property and the universal1 property.

Lemma 2.1. If a projective hash family H = (H,K,X,L,Π, S, α) is 0-smooth, then it is (1/|Π|)-universal1.

Proof. Since H is 0-smooth, the two distributions appearing in the definition of the smoothness for H are
identical. Therefore, for any x ∈ X \ L, s ∈ S and π ∈ Π, we have

Pr
k

$←K
[(α(k),Hk(x)) = (s, π)] = Pr

k
$←K ,π† $←Π

[(α(k), π†) = (s, π)] =
1

|Π|
· Pr
k

$←K
[α(k) = s] .

This implies that H is (1/|Π|)-universal1, as desired.

Lemma 2.2. If a projective hash family H = (H,K,X,L,Π, S, α) is ϵ-universal1, then it is ϵ′-smooth where
ϵ′ = (ϵ|Π| − 1)(|Π| − 1)/2. In particular, if a projective hash family H = (H,K,X,L,Π, S, α) is (1/|Π|)-
universal1, then it is 0-smooth.

Proof. First, we note that ϵ ≥ 1/|Π| by the definition of the ϵ-universal1 property. Since H is ϵ-universal1,
for any x ∈ X \ L, s ∈ S and π ∈ Π, we have

Pr
k

$←K , x† $←X\L
[(α(k), x†,Hk(x

†)) = (s, x, π)] =
1

|X \ L|
· Pr
k

$←K
[(α(k),Hk(x)) = (s, π)]

≤ ϵ

|X \ L|
· Pr
k

$←K
[α(k) = s] = ϵ · Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)] .

Since the right-hand side is independent of π, by summing up the inequality over all π ∈ Π except a fixed
π′ ∈ Π, we have

Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x) ∧Hk(x

†) ̸= π′] ≤ (|Π| − 1)ϵ · Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)] ,

therefore

Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x) ∧Hk(x

†) = π′]

≥ Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)]− (|Π| − 1)ϵ · Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)]

= (1− (|Π| − 1)ϵ) · Pr
k

$←K , x† $←X\L
[(α(k), x†) = (s, x)] .
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By combining this inequality (where π′ is replaced with π) with the first inequality above, and by using the
relation Pr

k
$←K , x† $←X\L

[(α(k), x†) = (s, x)] = |Π| · Pr
k

$←K , x† $←X\L , π† $←Π
[(α(k), x†, π†) = (s, x, π)], we have

(|Π| − (|Π| − 1)|Π|ϵ) · Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)]

≤ Pr
k

$←K , x† $←X\L
[(α(k), x†, Hk(x

†)) = (s, x, π)] ≤ ϵ|Π| · Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)] ,

therefore (since ϵ ≥ 1/|Π|)∣∣∣∣ Pr
k

$←K , x† $←X\L
[(α(k), x†,Hk(x

†)) = (s, x, π)]− Pr
k

$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)]

∣∣∣∣
≤ max{1− |Π|+ ϵ|Π|(|Π| − 1), ϵ|Π| − 1} · Pr

k
$←K , x† $←X\L , π† $←Π

[(α(k), x†, π†) = (s, x, π)] .

By summing up the inequality over all s ∈ S, x ∈ X \L and π ∈ Π, and by dividing it by two, the statistical
distance between the two distributions appearing in the definition of the smoothness for H is bounded by
max{1−|Π|+ϵ|Π|(|Π|−1), ϵ|Π|−1}/2. Note that 1−|Π|+ϵ|Π|(|Π|−1) = (ϵ|Π|−1)(|Π|−1). Now if |Π| = 1,
then we have ϵ = 1 since 1/|Π| ≤ ϵ ≤ 1, therefore (ϵ|Π| − 1)(|Π| − 1) = ϵ|Π| − 1 = 0. On the other hand, if
|Π| ≥ 2, then we have (ϵ|Π| − 1)(|Π| − 1) ≥ ϵ|Π| − 1, therefore max{1 − |Π| + ϵ|Π|(|Π| − 1), ϵ|Π| − 1}/2 =
(ϵ|Π| − 1)(|Π| − 1)/2. Hence, the claim holds.

Subset Membership Problems: A subset membership problem M specifies a collection of probabilistic
distribution {Iℓ}ℓ≥0 (indexed by a security parameter ℓ) over instance descriptions. An instance description
Λ[X,X ′, L,W,R] ∈ [Iℓ] specifies a non-empty set X and its non-empty subsets X ′, L ⊂ X, a non-empty
set W , and a binary relation R defined over X ×W with the property that an x ∈ X is in the subset L
if and only if there exists a “witness” ω ∈ W such that (x,w) ∈ R. When X ′ = X, we may simply write
Λ[X,L,W,R] instead of Λ[X,X ′, L,W,R]. Moreover, if these objects are clear from the context, we will just
write Λ to indicate an instance description.

We require that a subset membership problem M provides the following algorithms: (1) the instance
sampling algorithm takes as input 1ℓ, and returns Λ[X,X ′, L,W,R] ∈ [Iℓ] chosen according to Iℓ, and (2)

the subset sampling algorithm takes as input 1ℓ and an instance Λ[X,X ′, L,W,R] ∈ [Iℓ], and returns x
$← L

and a witness ω ∈ W for x. We say that a subset membership problem M = {Iℓ}ℓ≥0 is hard relative to X ′,
if the following two distributions are computationally indistinguishable:

{Λ← Iℓ;x
$← L : (Λ, x)} and {Λ← Iℓ;x

$← X ′ \ L : (Λ, x)} .

When X ′ = X, we simply say that M is hard.

Hash Proof System (HPS): Informally, a HPS is a special kind of (designated-verifier) non-interactive
zero-knowledge proof system for a subset membership problem M = {Iℓ}ℓ>0. A HPS has, as its internal
structure, a family of hash functions with the special projective property, and this projective hash family is
associated with each instance of the subset membership problems. Although HPS does not treat for all NP
languages, HPS leads to an efficient CCA2-secure PKE construction.

As in [14], we will occasionally introduce an arbitrary finite set E to extend the sets X, X ′ and L in
an instance Λ[X,X ′, L,W,R] ∈ [Iℓ] of M into X × E, X ′ × E and L × E. If E is not required (e.g., for
a smooth HPS in our construction of KH-PKE), then we omit E from the following algorithms. A HPS
P = (HPS.param,HPS.priv,HPS.pub), for M associates each instance Λ = Λ[X,X ′, L,W,R] of M with a
projective hash family H = (H,K,X × E,X ′ × E,L × E,Π, S, α), provides the following three efficient
algorithms:
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1. The index sampling algorithm HPS.param takes an instance Λ as input, and returns k ∈ K and s ∈ S
such that α(k) = s.

2. The private evaluation algorithm HPS.priv takes Λ ∈ [Iℓ], k ∈ K and (x, e) ∈ X × E as input, and
returns π = Hk(x, e) ∈ Π.

3. The public evaluation algorithm HPS.pub takes Λ ∈ [Iℓ], s ∈ S, x ∈ L, e ∈ E, and a witness ω for x as
input, and returns π = Hk(x, e) ∈ Π.

We say that P is ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) if for all ℓ > 0 and for all Λ ∈ [Iℓ], H is an
ϵ-universal1 (resp. ϵ-universal2, ϵ-smooth) projective hash family.

The following homomorphic property of hash proof systems is required in our proposed construction.

Definition 2.1 (Homomorphic Projective Hash Family). We say that a projective hash family H = (H,K,X×
E,X ′ × E,L× E,Π, S, α) is homomorphic, if X, E and Π are abelian groups (written in additive form), L
is a subgroup of X, and we have Hk(x1) +Hk(x2) = Hk(x1 + x2) for any k ∈ K and x1, x2 ∈ X. We also
say that a hash proof system P is homomorphic, if the underlying projective hash family is homomorphic.
(We note that X ′ is not required to be a subgroup of X.)

Diverse Group System and Derived Projective Hash Family: Here, we recall the definition of
diverse group systems introduced in [14], which were used to construct projective hash families. Let X,
L, and Π be abelian groups, where L is a proper subgroup of X, and Hom(X,Π) be the group of all
homomorphisms ϕ : X → Π. Let H be a subgroup of Hom(X,Π). Then G = (H, X, L,Π) is called a group
system. In addition, we say that G is diverse if for all x ∈ X \ L, there exists ϕ ∈ H such that ϕ(L) = ⟨0⟩,
but ϕ(x) ̸= 0.

We recall the projective hash family H = (H,K,X,L,Π, S, α) derived from a diverse group system G
([14, Definition 2]): The instance Λ = Λ[X,L,W,R] of the underlying subset membership problem satisfies

that W = (Z|L|)d and (x, (ω1, . . . , ωd)) ∈ R if and only if x =
∑d
i=1 ωigi, where {g1, . . . , gd} is a fixed

generating set of L. Let the elements of the subgroup H of Hom(X,Π) be indexed as H = {Hk | k ∈ K}
for a set K. Set S = Πd, and define α : K → S by α(k) = (ϕ(g1), . . . , ϕ(gd)), where ϕ = Hk. Note
that H is a homomorphic projective hash family because Hk(x) for x ∈ L is determined by α(k) such that

Hk(x) = ϕ(
∑d
i=1 ωigi) =

∑d
i=1 ωiϕ(gi). The following was shown by Cramer and Shoup [14, Theorem 2].

Lemma 2.3. The projective hash family H derived from a diverse group system G as above is 1/p̃-universal1,
where p̃ is the smallest prime dividing |X/L|.

3 Definition of KH-PKE

In this section, we give the formal definitions of the syntax and the security requirements of KH-PKE.

3.1 Syntax of KH-PKE

Definition 3.1 (Syntax of KH-PKE for homomorphic operation ⊙). Let M be a message space and ⊙
be a binary operation over M. A KH-PKE scheme KH-PKE = (KeyGen,Enc,Dec,Eval) for homomorphic
operation ⊙ consists of the following four algorithms:

KeyGen: This algorithm takes a security parameter 1ℓ (ℓ ∈ N) as input, and returns a public key pk, a
decryption key skd, and a homomorphic operation key skh.

Enc: This algorithm takes pk, and a message M ∈M as input, and returns a ciphertext C.

Dec: This algorithm takes skd and C as input, and returns M or ⊥.

Eval: This algorithm takes skh, two ciphertexts C1 and C2 as input, and retunrs a ciphertext C or ⊥.

8



Note that the above definition for the evaluation algorithm Eval does not say anything about the homo-
morphic property, and its functionality is defined as a correctness requirement below. Let pk be a public key
generated by the KeyGen algorithm, and Cpk,M be the set of all ciphertexts of M ∈M under the public key
pk, i.e., Cpk,M = {C|∃r ∈ {0, 1}∗ s.t. C = Enc(pk,M ; r)}.

Definition 3.2 (Correctness). A KH-PKE scheme for homomorphic operation ⊙ is said to be correct if
for all (pk, skd, skh) ← KeyGen(1ℓ), the following two conditions are satisfied: (1) For all M ∈ M, and all
C ∈ Cpk,M , it holds that Dec(skd, C) = M . (2) For all M1,M2 ∈ M, all C1 ∈ Cpk,M1 , and all C2 ∈ Cpk,M2 ,
it holds that Eval(skh, C1, C2) ∈ Cpk,M1⊙M2 .

We call the Eval algorithm commutative if an operation ⊙ is commutative, the distribution of Eval(skh, C1,
C2) and that of Eval(skh, C2, C1) are identical. In fact, our KH-PKE schemes proposed in the paper are all
commutative; for example, the homomorphic property of the DDH-based instantiation given in later section
corresponds to the group operation in a multiplicative cyclic group.

Next, we define the security notion for KH-PKE, which we call indistinguishability of message under
adaptive chosen ciphertext attacks (KH-CCA).

Definition 3.3 (KH-CCA). A KH-PKE scheme is said to be KH-CCA secure if for any PPT adversary A,
the advantage

AdvKH-CCA
KH-PKE,A(ℓ) =

∣∣Pr[(pk, skd, skh)← KeyGen(1ℓ);

(M∗0 ,M
∗
1 , State)← AO(find, pk); β

$← {0, 1};

C∗ ← Enc(pk,M∗β); β
′ ← AO(guess, State, C∗); β = β′]− 1

2

∣∣
is negligible in ℓ, where O consists of the three oracles Eval(skh, ·, ·), RevHK, and Dec(skd, ·) defined as
follows. Let D be a list which is set as D = {C∗} right after the challenge stage (D is set as ∅ in the find
stage).

• The evaluation oracle Eval(skh, ·, ·): If RevHK has already been queried before, then this oracle is not
available. Otherwise, this oracle responds to a query (C1, C2) with the result of C ← Eval(skh, C1, C2).
In addition, if C ̸= ⊥ and either C1 ∈ D or C2 ∈ D, then the oracle updates the list by D ← D ∪ {C}.

• The homomorphic key reveal oracle RevHK: Upon a request, this oracle responds with skh. (This oracle
is available only once.)

• The decryption oracle Dec(skd, ·): This oracle is not available if A has queried to RevHK and A has
obtained the challenge ciphertext C∗. Otherwise, this oracle responds to a query C with the result of
Dec(skd, ·) if C ̸∈ D or returns ⊥ otherwise.

Here, let us remark on the definition of KH-CCA security. Throughout this paper, an adversary who has
skh is called an insider, whereas an adversary who does not have skh is called an outsider.

In case A does not query the RevHK oracle (i.e., A is an outsider), A is allowed to adaptively issue
decryption queries and evaluation queries of any ciphertexts. In particular, in order to capture the mal-
leability in the presence of the homomorphic operation, the Eval oracle allows the challenge ciphertext C∗ as
input. To avoid an unachievable security definition, the Dec oracle immediately answers ⊥ for “unallowable
ciphertexts” that are the results of a homomorphic operation for C∗ and any ciphertext of an adversary’s
choice. Such unallowable ciphertexts are maintained by the list D.

The situation that the Dec oracle does not answer for ciphertexts that are derived from the challenge
ciphertext C∗ might seem somewhat analogous to the definition of RCCA security [9]. However, there is
a critical difference between KH-CCA and RCCA: In the RCCA security game, the Dec oracle does not
answer if a ciphertext C satisfies Dec(skd, C) ∈ {M∗0 ,M∗1 }. That is, the functionality of the Dec oracle is
restricted regardless of the adversary’s strategy. On the other hand, in the KH-CCA security game, in case
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an adversary selects the strategy that it does not submit C∗ to the Eval oracle, the restriction on the Dec
oracle is exactly the same as the CCA2 security for ordinary PKE scheme, and it is one of the adversary’s
possible strategies whether it submits C∗ to the Eval oracle, and thus the adversary has more flexibility than
in the RCCA game.

If an outsider A becomes an insider after A obtains the challenge ciphertext C∗, then A is not allowed
to issue a decryption query after obtaining skh via the RevHK oracle. In other words, A is allowed to issue a
decryption query until right before obtaining skh, even if C∗ is given to A. This restriction is again to avoid
a triviality. (If A obtains skh, A can freely perform homomorphic operations over the challenge ciphertexts,
and we cannot meaningfully define the “unallowable set” of ciphertexts.)

Note that we can show that any KH-CCA secure PKE scheme satisfies CCA1 (thus CPA also) security
against an adversary who is given (pk, skh) in the setup phase. Showing this implication is possible mainly
due to the RevHK oracle that returns skh to an adversary, and the Dec oracle in the KH-CCA game. Here, we
explain how the implication of KH-CCA security to CCA1 security is proved. Let A be a CCA1 adversary.
Using A as a building block, we can construct a reduction algorithm B that attacks KH-CCA security, as
follows: First, B is firstly given pk. Then B asks the RevHK oracle to obtain skh, and runs A with input
(pk, skh). Wnen A sends a ciphertext C as a decryption query, B forwards C as B’s decryption query. After
A submits (M∗0 ,M

∗
1 ) as A’s challenge, B submits (M∗0 ,M

∗
1 ) as B’s challenge. Given the challenge ciphertext

C∗, B runs A with input C∗. When A terminates with output a guess bit, B uses what A outputs as its
guess for the challenge bit, and terminates. It is easy to see that B perfectly simulates the CCA1 game
for A. Therefore, B’s KH-CCA advantage equals A’s CCA1 advantage. This implies that if the scheme is
KH-CCA secure, then the scheme is CCA1 secure as well.

4 Generic Construction of KH-PKE

In this section, we describe the proposed generic construction of KH-PKE scheme from projective hash fami-
lies, and give the security proof. For the purpose, in Section 4.1, we introduce two “computationally secure”
variants of the notion of universal2 projective hash families. Then in Section 4.2, we give the description of
the generic construction. Then in Section 4.3, we prove the security of the proposed construction. We note
that all of the projective hash families used in our construction can be constructed from a diverse group
system [14]. Therefore, our proposed construction is fairly generic.

4.1 Computationally Universal2 Projective Hash Families

In our generic construction of KH-PKE, a “computationally secure” variant of the notion of universal2
projective hash families is utilized. Here we describe a formalization of the notion, which we call (first-uniform
or first-adaptive) computationally universal2 property. We note that the computationally universal2 property
for projective hash families introduced by Hofheinz and Kiltz [26] implies the first-uniform computationally
universal2 property in our sense, therefore our definition of the notion here covers wider situations than that
in the previous work.

First, we define the first-uniform version of the computationally universal2 property as follows:

Definition 4.1 (First-Uniform Computationally Universal2 Property). Let H = (H,K,X,X ′, L,Π, S, α) be
a projective hash family. We say that H is first-uniform computationally universal2 relative to X ′, if for
any PPT adversary A with oracle Hash defined below, the probability that AHash wins the following game

(called the advantage of A and denoted by Adv
UComp.Univ2
A (ℓ)) is negligible in the security parameter ℓ, where

the game is as follows:

• First, the challenger generates k
$← K and x∗

$← X ′ \ L, and computes s = α(k) and π∗ = Hk(x
∗).

Then the challenger sends x∗, s and π∗ to the adversary A.

• During the game, the adversary can make queries Hash(x) to the oracle Hash adaptively, where x ∈ X.
The oracle returns ⊥ if the input x satisfies x ∈ X \ L, and returns Hk(x) if x ∈ L.
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• Finally, the adversary outputs elements x ∈ X and π ∈ Π. We define that adversary wins if and only
if x ̸∈ L, x ̸= x∗ and Hk(x) = π.

We may omit the term “relative to X ′” above when X ′ = X. We also say that a hash proof system is first-
uniform computationally universal2, if the underlying projective hash family is first-uniform computationally
universal2.

The word “first-uniform” in the definition above means that, for the two inputs x∗ and x for the projective
hash Hk in the game, the first one x∗ is generated uniformly at random and the adversary cannot choose
the first input. Secondly, we define the first-adaptive version of the computationally universal2 property as
follows, where the adversary can choose the first input for the projective hash:

Definition 4.2 (First-Adaptive Computationally Universal2 Property). Let H = (H,K,X,X ′, L,Π, S, α)
be a projective hash family. We say that H is first-adaptive computationally universal2, if for any PPT
adversary A with oracle Hash defined below, the probability that AHash wins the following game (called the

advantage of A and denoted by Adv
AComp.Univ2
A (ℓ)) is negligible in the security parameter ℓ, where the game

is as follows:

• First, the challenger generates k
$← K and computes s = α(k). Then the challenger sends s to the

adversary A.

• During the game, the adversary can make queries Hash(x) to the oracle Hash adaptively, where x ∈ X.
The oracle returns ⊥ if the input x satisfies x ∈ X \ L, and returns Hk(x) if x ∈ L.

• At any time in the game decided by the adversary, the adversary has to submit an element x∗ ∈ X
to the challenger. Then the challenger returns π∗ = Hk(x

∗) to the adversary, regardless of whether
x∗ ∈ L or not.

• Finally, the adversary outputs elements x ∈ X and π ∈ Π. We define that adversary wins if and only
if x, x∗ ̸∈ L, x ̸= x∗ and Hk(x) = π.

We also say that a hash proof system is first-adaptive computationally universal2, if the underlying projective
hash family is first-adaptive computationally universal2.

Here we show the implication relations among the two computationally universal2 properties and the
original universal2 property. Namely, we have the followings.

Lemma 4.1. If a projective hash family H is universal2, then H is first-adaptive computationally universal2.

Proof. Suppose that H is ϵ-universal2 for negligible ϵ. Let A = (A1,A2) be a PPT adversary for the first-
adaptive computationally universal2 game for H, where A1 denotes the first part of A that takes 1ℓ and
s = α(k) as input and outputs the submitted element x∗ ∈ X as well as the internal state st, and A2 denotes
the second part of A that takes st and π∗ = Hk(x

∗) as input and outputs the elements x ∈ X and π ∈ Π.
Namely, we have

Adv
AComp.Univ2
A (ℓ)

= Pr
k

$←K
[(x∗, st)← AHash

1 (1ℓ, α(k)); (x, π)← AHash
2 (st, Hk(x

∗)) : x, x∗ ̸∈ L ∧ x ̸= x∗ ∧Hk(x) = π] .

This expression can be rewritten as

Adv
AComp.Univ2
A (ℓ)

=
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

Pr
k

$←K
[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗)

: x∗† = x∗ ∧ x† = x ∧ π† = π ∧Hk(x
∗) = π∗ ∧Hk(x) = π ∧ α(k) = s]

.
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Now note that each of the algorithms A1 and A2 does not use any information on the key k except the
information on s = α(k), while the oracle Hash can be simulated (not efficiently, in general) without using k
(by exhaustively searching elements of L and witnesses for elements of L). This implies that, the expression
of the advantage of A is equal to

Adv
AComp.Univ2
A (ℓ)

=
∑
s∈S

∑
x,x∗∈X\L
x̸=x∗

∑
π,π∗∈Π

(
Pr[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗) : x∗† = x∗ ∧ x† = x ∧ π† = π]

·Pr
k

$←K
[Hk(x

∗) = π∗ ∧Hk(x) = π ∧ α(k) = s]
) .

Since H is ϵ-universal2, it follows that

Adv
AComp.Univ2
A (ℓ)

≤
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

(
Pr[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗) : x∗† = x∗ ∧ x† = x ∧ π† = π]

·ϵ · Pr
k

$←K
[Hk(x

∗) = π∗ ∧ α(k) = s]
) .

The right-hand side is equal to

ϵ ·
∑
s∈S

∑
x,x∗∈X\L
x ̸=x∗

∑
π,π∗∈Π

Pr
k

$←K
[(x∗†, st)← AHash

1 (1ℓ, s); (x†, π†)← AHash
2 (st, π∗)

: x∗† = x∗ ∧ x† = x ∧ π† = π ∧Hk(x
∗) = π∗ ∧ α(k) = s]

= ϵ · Pr
k

$←K
[(x∗, st)← AHash

1 (1ℓ, α(k)); (x, π)← AHash
2 (st,Hk(x

∗)) : x, x∗ ̸∈ L ∧ x ̸= x∗]

≤ ϵ .

Hence we have Adv
AComp.Univ2
A (ℓ) ≤ ϵ which is negligible, as desired.

Lemma 4.2. Suppose that X ′ \L is approximately samplable relative to X. If a projective hash family H is
first-adaptive computationally universal2, then H is first-uniform computationally universal2 relative to X ′.

Proof. Let A be any PPT adversary for the first-uniform computationally universal2 game for H relative to
X ′. We construct an adversary A† for the first-adaptive computationally universal2 game for H as follows.
Given input 1ℓ and s for A†, the algorithm A† first samples an element x∗ ∈ X which is negligibly close
to the uniform distribution on X ′ \ L (this can be efficiently done since X ′ \ L is approximately samplable
relative to X), submits x∗ to the challenger in the first-adaptive computationally universal2 game, and
receives π∗ = Hk(x

∗) by the challenger. Then A† executes A with input (1ℓ, x∗, s, π∗), where A† simulates
the oracle HashU in the first-uniform computationally universal2 game in the following manner: For each
query x′ to HashU made dy A, A† makes a query x′ to HashA, receives its reply π

′ and then returns π′ to A
as the reply to the query. Finally, A† receives the output (x, π) by A, and outputs (x, π). We note that the
algorithm A† is PPT as well as A.

To evaluate the advantage of A†, we may assume without loss of generality that x∗ is a uniformly random
element of X ′ \ L, since the modification causes at most negligible change of the advantage of A†. In the
present case, the simulation by A† of the first-uniform computationally universal2 game for A is perfect, and

A† wins the game if and only if A wins. This implies that Adv
AComp.Univ2
A† (ℓ) = Adv

UComp.Univ2
A (ℓ), therefore

A† has non-negligible advantage whenever A has. Hence, the claim holds.

4.2 The Generic Construction

First, we summarize the primitives used in the generic construction. Let M = {Iℓ}ℓ≥0 be a subset member-
ship problem which specifies an instance description Λ = Λ[X,X ′, L,W,R] ∈ [Iℓ]. In our construction, we

use the following three projective hash families H, Ĥ and H̃, and the corresponding hash proof systems P,
P̂ and P̃ associated to M.
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• H = (H,K,X,X ′, L,Π, S, α) is a homomorphic projective hash family which is smooth relative to
(X ′,Π′), and P = (HPS.param,HPS.priv,HPS.pub) is the corresponding hash proof system, associated
to the subset membership problem M. In particular, Π is an abelian group (written in additive form)
and Π′ is a subgroup of Π. Moreover, Π′ is approximately samplable relative to Π.

• Ĥ = (Ĥ, K̂,X,X ′, L, Π̂, Ŝ, α̂) is a homomorphic universal1 projective hash family, and P̂ = (ĤPS.param,

ĤPS.priv, ĤPS.pub) is the corresponding hash proof system associated to M.

• H̃ = (H̃, K̃,X×Π×Π̂, X ′×Π×Π̂, L×Π×Π̂, Π̃, S̃, α̃) is a computationally or information-theoretically

universal2 projective hash family (see below for the detail), and P̃ = (H̃PS.param, H̃PS.priv, H̃PS.pub)
is the corresponding hash proof system.

We also introduce some additional assumptions on the objects above. For the purpose, we introduce an
auxiliary terminology:

Definition 4.3. Let Λ = Λ[X,X ′, L,W,R] be an instance description for M. We say that a positive integer
is a critical integer, if it is not coprime to |X| and is not a multiple of o(Λ), where o(Λ) denotes the least
common multiplier of the orders of elements of X ′ in the quotient group X/L.

Now we describe the additional assumptions mentioned above. Here we introduce three kinds of as-
sumptions, which have the following trade-off relations: The requirement for the HPS P̃ is weakened in the
direction Assumption I→ Assumption A→ Assumption U, while the other conditions is relaxed in the other
direction Assumption U → Assumption A → Assumption I. The reason of considering the three incompara-
ble assumptions is to cover several instantiations of the proposed generic construction under various settings
discussed in later sections. Now the three assumptions are as follows:

Assumption I: P̃ is (information-theoretically) universal2.

Assumption A: P̃ is first-adaptive computationally universal2, and X ′ \ L is approximately samplable
relative to X.

Assumption U: P̃ is first-uniform computationally universal2 relative toX
′×Π×Π̂, P̂ is smooth relative to

(X ′, Π̂), X ′ \L is approximately samplable relative to X, and Π′ = Π. Moreover, it is computationally
hard to find a critical integer from a given instance Λ of M (see Definition 4.3 for the terminology); it
can be efficiently checked whether a given integer is a critical integer or not; we have x + y ∈ X ′ for
any x ∈ X ′ \L and y ∈ L; and we have a ·x ∈ X ′ for any x ∈ X ′ \L and any integer a coprime to |X|.

Using these building blocks, we construct a KH-PKE scheme as in Figure 1. Roughly, the homomorphic
smooth projective hash family H is used to hide a plaintext in a ciphertext. Moreover the universal property
of Ĥ and H̃ are used to detect the invalidity of ciphertexts, which leads to resistance against ciphertext
modification. However, the latter property looks contradictory to the homomorphic property that inherently
involves such modification. In order to manage to deal with these two properties consistently, we utilize the
following “transitional universal” property of the pair of Ĥ and H̃:

• If an adversary does not have the secret key of H̃ (which is the homomorphic key), then the (com-

putationally or information-theoretically) universal2 property of H̃ can be used to reject invalid input
ciphertexts for the decryption and the evaluation algorithms.

• On the other hand, if an adversary has obtained the secret key of H̃, then the evaluation algorithm
can update the values of Ĥ and H̃ by using the key for H̃ and the homomorphic property of Ĥ, while
the universal1 property of Ĥ (instead of the universal2 property of H̃ which is no longer available) can
be still used to reject invalid input ciphertexts for the decryption algorithm.
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KeyGen(1ℓ) :
Pick Λ = Λ[X,X ′, L,W,R]← [Iℓ]

(k, s)← HPS.param(1ℓ,Λ)

(k̂, ŝ)← ĤPS.param(1ℓ,Λ)

(k̃, s̃)← H̃PS.param(1ℓ,Λ)
pk ← (s, ŝ, s̃)

skd ← (k, k̂, k̃); skh ← (k̃)
Return (pk, skd, skh)

Dec(skd, C) :

Parse skd as (k, k̂, k̃)
Parse C as (x, e, π̂, π̃)

π̂′ ← ĤPS.priv(1ℓ,Λ, k̂, x)

π̃′ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂′))
If π̂ ̸= π̂′ or π̃ ̸= π̃′ then return ⊥
π ← HPS.priv(1ℓ,Λ, k, x)
Return M ← e− π

Enc(pk,M) (for M ∈M := Π′) :

Choose x
$← L and its witness ω ∈W

π ← HPS.pub(1ℓ,Λ, s, x, ω); e←M + π

π̂ ← ĤPS.pub(1ℓ,Λ, ŝ, x, ω)

π̃ ← H̃PS.pub(1ℓ,Λ, s̃, (x, e, π̂), ω)
Return C ← (x, e, π̂, π̃)

Eval(skh, C1, C2) :
Parse Cb as (xb, eb, π̂b, π̃b) for b = 1, 2

π̃′b ← H̃PS.priv(1ℓ,Λ, k̃, (xb, eb, π̂b)) for b = 1, 2
If π̃1 ̸= π̃′1 or π̃2 ̸= π̃′2 then return ⊥
Choose x0

$← L and its witness ω0 ∈W

e0 ← HPS.pub(1ℓ,Λ, s, x0, ω0)

π̂0 ← ĤPS.pub(1ℓ,Λ, ŝ, x0, ω0)
x← x0 + x1 + x2; e← e0 + e1 + e2
π̂ ← π̂0 + π̂1 + π̂2

π̃ ← H̃PS.priv(1ℓ,Λ, k̃, (x, e, π̂))
Return C ← (x, e, π̂, π̃)

Figure 1: The proposed KH-PKE construction from HPS.

One might think that in the construction, H̃ is redundant, and thus is not necessary. However, this is not
true. Namely, if H̃ is removed, then the adversary can extract meaningful information from the Eval oracle
by submitting invalid ciphertexts, and therefore, the resulting scheme becomes insecure. In other words,
with the help of H̃, the Eval oracle can distinguish invalid ciphertexts from valid ones, and consequently, the
above attack is prevented.

Now we state the main theorem of the paper.

Theorem 4.1. Our construction above is KH-CCA-secure, if the subset membership problem M is hard
relative to X ′ ⊂ X, the hash proof systems P, P̂ and P̃ are as above, and one of Assumption I, Assumption
A and Assumption U above is satisfied.

Since all of the projective hash families used in our construction can be constructed from a diverse group
system, from the result of [25] (where CPA-secure homomorphic PKE (with cyclic-group ciphertext space)
implies diverse group systems), the following corollary is given.

Corollary 4.1. KH-CCA secure KH-PKE is implied by CPA-secure homomorphic PKE with cyclic-group
ciphertext space.

4.3 Security Proof

From now, we give a proof of Theorem 4.1. Here we introduce some terminology used in the proof. For a
ciphertext C = (x, e, π̂, π̃), we say that C is regular, if x ∈ L; and irregular, if x ∈ X \L. Similar terminol-

ogy is used for inputs for Hk, Ĥk̂, and H̃k̃. We say that C is Ĥ-consistent (respectively, H̃-consistent), if

Ĥk̂(x, e) = π̂ (respectively, H̃k̃(x, e, π̂) = π̃); and Ĥ- (respectively, H̃-)inconsistent otherwise. We say that

C is Ĥ-forging (respectively, H̃-forging), if it is irregular but Ĥ-consistent (respectively, H̃-consistent).

We say that C is valid, if it is regular, Ĥ-consistent and H̃-consistent; and invalid otherwise. On the other
hand, let the term private information on the secret key for a projective hash family mean any information
on the key k except the corresponding public information s = α(k).

First, we show the correctness of the Eval algorithm. Given valid inputs C1 = (x1, e1, π̂1, π̃1) and C2 =
(x2, e2, π̂2, π̃2) of plaintexts M1 and M2, respectively, the algorithm first generates a triple (x0, e0, π̂0), which
is identical to the first three components of a ciphertext of plaintext 0 generated by the encryption algorithm.
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Since P and P̂ are homomorphic, by putting x = x0 + x1 + x2, e = e0 + e1 + e2 and π̂ = π̂0 + π̂1 + π̂2, we
have

e = (0 +Hk(x0)) + (M1 +Hk(x1)) + (M2 +Hk(x2)) = (M1 +M2) +Hk(x) ,

π̂ = Ĥk̂(x0) + Ĥk̂(x1) + Ĥk̂(x2) = Ĥk̂(x) .

Therefore, (x, e, π̂) is identical to the first three components of a ciphertext of M1 +M2. This implies that
the output C = (x, e, π̂, π̃) of the evaluation algorithm is a valid ciphertext of M1 +M2, as desired.

Intuitively, the evaluation algorithm performs the homomorphic operation of C1, C2 and a random
ciphertext of 0. The reason of introducing the last random factor is to realize the following property, which
plays a key role in the security proof:

Lemma 4.3 (Source Ciphertext Hiding Property). Let (pk, skd, skh)← KeyGen(1ℓ), let C2 = (x2, e2, π̂2, π̃2)

be any H̃-consistent ciphertext, and assume that ciphertexts C1 = (x1, e1, π̂1, π̃1) and C ′1 = (x′1, e
′
1, π̂
′
1, π̃
′
1)

are H̃-consistent and satisfy the following conditions:

x′ := x′1 − x1 ∈ L , e′ := e′1 − e1 = Hk(x
′) and π̂′ := π̂′1 − π̂1 = Ĥk̂(x

′, e′) . (1)

As a remark, e′ := e′1 − e1 = Hk(x
′) means C1 and C ′1 are ciphertexts of the same plaintext. Then the

outputs of Eval(skh, C1, C2) and of Eval(skh, C
′
1, C2) also satisfy the condition in (1), and the distributions

of these two outputs of Eval are identical.

Proof. The first three components of the output of Eval(skh, C1, C2) are of the form x12 := x0 + x1 + x2,

e12 := e0 + e1 + e2 and π̂12 := Ĥk̂(x0, e0) + π̂1 + π̂2 with x0
$← L and e0 = Hk(x0), and the first three

components of the output of Eval(skh, C
′
1, C2) are of the form x′12 := x′0 + x′1 + x2, e

′
12 := e′0 + e′1 + e2 and

π̂′12 := Ĥk̂(x
′
0, e
′
0) + π̂′1 + π̂2 with x′0

$← L and e′0 = Hk(x
′
0). Now we have

x′12 = x′0 + x′1 + x2 = x′0 + x′ + x1 + x2 = (x′0 − x0 + x′) + x12 .

where x′ := x′1 − x1. Similarly, since P and P̂ are homomorphic, we have

e′12 = Hk(x
′
0 + x′) + e1 + e2 = Hk(x

′
0 − x0 + x′) + e12 = Hk(x

′
12 − x12) + e12 ,

π̂′12 = Ĥk̂(x
′
0 + x′, e′0 + e′) + π̂1 + π̂2

= Ĥk̂(x
′
0 − x0 + x′, e′0 − e0 + e′) + π̂12 = Ĥk̂(x

′
12 − x12, e′12 − e12) + π̂12 .

Since x′ ∈ L, we have x′0−x0+x′ ∈ L, therefore the condition in (1) is satisfied. Moreover, since x0, x
′
0

$← L,

e0 = Hk(x0) and e
′
0 + e′ = Hk(x

′
0 + x′), the distributions of (x′0 + x′, Hk(x

′
0 + x′), Ĥk̂(x

′
0 + x′, e′0 + e′)) and

(x0, e0, Ĥk̂(x0, e0)) are identical, so do the distributions of (x12, e12, π̂12) and (x′12, e
′
12, π̂

′
12). Hence, the claim

holds.

Here we give an intuitive explanation of how the source ciphertext hiding property is used to prove the
security. A very brief outline of the security proof is the following: First we replace the valid challenge
ciphertext C∗ = (x∗, e∗, π̂∗, π̃∗), x∗ ∈ L, with an invalid one with x∗ ∈ X ′ \ L (owing to the hardness of
the subset membership problem). Secondly, we replace the second component e∗ = M∗β + Hk(x

∗) with

π† + Hk(x
∗) where π† ∈ Π is statistically close to the uniformly random element of Π′ (owing to the

smoothness of P relative to (X ′,Π′)). Then the resulting challenge ciphertext is not dependent on M∗β any
longer, therefore any adversary has negligible advantage, as desired. However, in the proof strategy, for the
step where x∗ ∈ X ′ \L and e∗ =M∗β +Hk(x

∗), the adversary can obtain many H̃-forging ciphertexts, hence

many values of H̃ for irregular inputs, by applying evaluation queries to the irregular challenge ciphertext. In
such a case, the universal2 property of P̃ is no longer enough to prevent the adversary to make a decryption
or an evaluation query with H̃-forging input ciphertext(s) and to get its reply that is dependent on private
information on the secret key k. Then we cannot safely replace e∗ = M∗β +Hk(x

∗) with e∗ = π† +Hk(x
∗)
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Table 1: Summary of differences of games in the preliminary part; see the main text for details
Game pre-0 = KH-CCA pre-1 pre-2 pre-3 = 0

Reply to Eval ordinary refreshing

Critical query
(for Assumption U)

ordinary rejected

Hash evaluation public private
← source ciphertext hiding →

Why negligible
difference

←
hard to find

critical integer
(see Table 4)

→

← identical games →

even by utilizing the smoothness of P. In short, the problem here is that the replies to the evaluation queries
may in general depend on the challenge ciphertext (which is switched from regular to irregular in the proof);
this is the reason why, despite the similarity of our proposed construction to the Cramer–Shoup PKE scheme,
a straightforward extension of the original proof strategy for CCA security of the Cramer–Shoup scheme is
not sufficient for the security proof of our scheme.

Our new idea to resolve the aforementioned problem specific to our case is the following: We modify the
security game in such a way that, when an evaluation query involves the challenge ciphertext as input, the
challenger first generates a fresh ciphertext (which we call source ciphertext in the proof) of the same
challenge plaintext, and then proceeds the remaining calculation of the query by using the source ciphertext
instead of the challenge ciphertext. In the starting case of the proof where x∗ ∈ L, the source ciphertext
hiding property implies that the output distribution of the evaluation query calculated from the source
ciphertext is identical to that calculated from the challenge ciphertext, therefore the modification of the
game does not affect the advantage of the adversary. On the other hand, after the modification of the game
where x∗ ∈ X ′ \ L, the challenge ciphertext becomes invalid but each source ciphertext is kept valid. This

prevents the adversary to obtain additional values of P̃ with irregular inputs by using the evaluation queries
as above; this implies that the universal2 property of P̃ is still sufficient to achieve the security. (In fact,
we should also introduce the replacement of the challenge ciphertext with a source ciphertext, not only for
the cases of evaluation queries involving the challenge ciphertext, but also for the cases where an evaluation
query involves a ciphertext related to the challenge ciphertext; see the proof below for the detail.)

Based on the discussion above, we start the proof of our main theorem.

Proof of Theorem 4.1. Let A be a PPT adversary against the KH-CCA game. We show that the advantage
AdvKH-CCA

KH-PKE,A(ℓ) of A is negligible. First note that, since A is PPT, the total number of queries made by
A is bounded by a polynomial Q = Q(ℓ). We use game-hopping from the original KH-CCA game to the
ideal situation that the challenge bit β is not used during the game (hence the advantage is zero). The
game-hopping consists of the preliminary part and the main part.

Preliminary part of the game-hopping: We start with the KH-CCA game (Game pre-0). First we
replace the challenge ciphertext involved in each evaluation query with a fresh ciphertext, as mentioned before
the proof (Game pre-1). Then, in order to deal with irregular ciphertexts, we use the private evaluation

algorithms for P, P̂, and P̃ in Enc instead of the public evaluation algorithms (Game pre-3). Moreover, for
the case of Assumption U, we also introduce an additional technical step (Game pre-2) between Game pre-1
and Game pre-3 to avoid a problem caused later by certain evaluation queries related to critical integers, by
making such queries automatically rejected. Detailed descriptions of the games are as follows (see Table 1
for a summary). In the proof, let Ti denote the event that Game i outputs 1.

Game pre-0: This game simulates the KH-CCA game. We give notational remarks: Let M∗0 ,M
∗
1 denote

the challenge plaintexts, let β denote the challenge bit, and let C∗ = (x∗, e∗, π̂∗, π̃∗) denote the challenge
ciphertext generated by C∗ ← Enc(pk,M∗β). We say that the challenger rejects a query, if the reply to
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the query is ⊥. Then, the game outputs 1 if the guessing bit β′ output by the adversary in the simulated
KH-CCA game is equal to β, and outputs 0 otherwise.

We note that the complexity of the game is polynomial, and |Pr[Tpre-0]− 1/2| = AdvKH-CCA
KH-PKE,A(ℓ).

Game pre-1: In comparison to Game pre-0, in guess stage, we introduce another auxiliary dictionary D′
and modify the rule for the challenger to reply to evaluation queries (C ′, C ′′) satisfying that at least one
of C ′ and C ′′ is listed in the original dictionary D and the query is not rejected (i.e., RevHK has not been

queried, and any of the two input ciphertexts that is not in D is H̃-consistent; note that any ciphertext in
D passes the test by the construction of Eval). When D = (C0, C1, . . . , Cκ) where C0 = C∗ and C1, . . . , Cκ
were added to D in this order, D′ is of the form ((D′1, D

′′
1 ), . . . , (D

′
κ, D

′′
κ)) where each of D′i and D

′′
i is either

an H̃-consistent ciphertext or an index in {0, 1, . . . , i−1}. (We note that D′ is empty at the beginning of the
guess stage where D = (C∗).) Intuitively, the content of D′ means that Ci was the reply to the evaluation
query (D′i, D

′′
i ) where, if D

′
i or D

′′
i is an index j, then it is interpreted as the content Cj of D.

Now we describe the modified rule for the challenger to reply to the next evaluation query of the form
(C ′, C ′′) as above, where D = (C0, C1, . . . , Cκ) and D′ = ((D′1, D

′′
1 ), . . . , (D

′
κ, D

′′
κ)). We call it the (κ + 1)-

th refreshing process in the sequel, and we also call the query the (κ + 1)-th refreshing query. In

the process, the challenger first generates auxiliary ciphertexts C0
(κ+1) = C

∗(κ+1), C1
(κ+1), . . . , Cκ

(κ+1) as
follows:

• First, the challenger generates C
∗(κ+1) ← Enc(pk,M∗β) instead of using C∗ itself, which we call the

source ciphertext for the refreshing process. Then for each i = 1, . . . , κ, the challenger generates
Ci

(κ+1) by using Eval(skh, ·, ·), where its second (respectively, third) input is D′i (respectively, D
′′
i ) if

D′i (respectively, D
′′
i ) is a ciphertext (i.e., not an index), and it is Cj

(κ+1) if D′i (respectively, D
′′
i ) is

an index j ∈ {0, 1, . . . , i− 1}.

Secondly, the challenger sets D′κ+1 to be C ′ if C ′ ̸∈ D, and to be an index i if C ′ ∈ D and i is the smallest
index satisfying C ′ = Ci. The challenger also determines D′′κ+1 similarly by using C ′′ instead of C ′. Thirdly,
the challenger generates Cκ+1 by using Eval(skh, ·, ·), where its second (respectively, third) input is D′κ+1

(respectively, D′′κ+1) if D′κ+1 (respectively, D′′κ+1) is a ciphertext, and it is Ci
(κ+1) if D′κ+1 (respectively,

D′′κ+1) is an index i ∈ {0, 1, . . . , κ}. Finally, the challenger adds Cκ+1 to D, adds (D′κ+1, D
′′
κ+1) to D′ and

gives Cκ+1 to the adversary as the reply to the evaluation query.
By using the source ciphertext hiding property recursively, the distribution of Cκ+1 in the modified rule

becomes identical to that of Cκ+1 in the original rule (note that any two outputs of Enc(pk,M∗β) satisfy
the condition (1)). This implies that the distribution of the adversary’s view is identical in the two cases,
therefore we have Pr[Tpre-1] = Pr[Tpre-0]. We note that the (time and memory) complexity of this game is
still polynomial, since the number of evaluation queries made by A is bounded by the polynomial Q and the
complexity of each refreshing process is linear in κ.

Game pre-2: We need the game only for the case of Assumption U (in the other case, we set the game to
be identical to Game pre-1). First we introduce some auxiliary definitions. For the dictionary D = (C0 =
C∗, C1, . . . , Cκ) and a ciphertext C, we define ιD(C) = h if C ∈ D and h is the smallest index with C = Ch,
and ιD(C) = ⊥ if C ̸∈ D. Moreover, for an index h ∈ {0, 1, . . . , κ}, we define a positive integer λD(h) in
the following manner: We set λD(0) = 1, and for h > 0, if Ch was the reply to an evaluation query (C ′, C ′′)
where either C ′ or C ′′ was in D, then we set λD(h) = λ′+λ′′ where λ′ = λD(ιD(C

′)) if C ′ ∈ D and λ′ = 0 if
C ′ ̸∈ D, and λ′′ is similarly defined by using C ′′ instead of C ′. Intuitively, the integer λD(h) indicates how
many copies of the challenge ciphertext C∗ were added in the calculation of the ciphertext Ch in D.

Based on the definition, we modify Game pre-1 in such a way that any evaluation query (C ′, C ′′) satisfying
the condition for a refreshing query and that C ′ ∈ D, C ′′ ∈ D and λD(ιD(C

′)) + λD(ιD(C
′′)) is a critical

integer is always rejected (we call such a query a critical query); in the sequel, we exclude each critical
query from the refreshing queries.

By the definition, the difference |Pr[Tpre-2]−Pr[Tpre-1]| will be evaluated owing to the hardness of finding
a critical integer (see Assumption U); details will be discussed later. We note that the complexity of the
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Table 2: Summary of differences of games in the main part; see the main text for details
Game 0 ... κ− 1 κ ... Q Q+ 1

Plaintext for
first source
ciphertext

original random

...

Plaintext for
κ-th source
ciphertext

original random

...

Plaintext for
Q-th source
ciphertext

original random

Plaintext for
challenge
ciphertext

original random

Why negligible
difference

← see Table 3 → ← see Table 3 →

game is polynomial, owing to the efficiency of deciding whether a given integer is a critical integer or not
(see Assumption U).

Game pre-3: Recall that, in the algorithm Enc, values of P, P̂, and P̃ are computed by using the public
evaluation algorithms and witnesses of elements of L. In the game, we modify Game pre-2 in such a
way that the challenger executes Enc by using the private evaluation algorithms of P, P̂ and P̃ and their
secret keys, where witnesses of elements of L are no longer required. To avoid confusion, we write the
modified algorithm by Enc′ from now. Since the modification does not change the output distributions of
the encryption algorithms, we have Pr[Tpre-3] = Pr[Tpre-2]. We note that the complexity of the game is still
polynomial.

Main part of the game-hopping: In Game pre-3, the source ciphertexts in the refreshing queries have been
made fresh and their first components have been made independent of the challenge ciphertext. Owing to this,
now the replacement of the first component x∗ ∈ L of the challenge ciphertext with x∗ ∈ X ′ \ L performed
in the following game-hopping does not affect the behaviors of the refreshing queries, as desired. However,
as a trade-off, now not only the challenge ciphertext but also the source ciphertexts involve information on
M∗β . From now, we proceed the game-hopping to remove the information on β from the source ciphertexts
one by one as well as from the challenge ciphertext. The process is performed by the following sequence of
Games 0, 1, . . . , Q, (Q+ 1), where Game 0 is identical to Game pre-3 (see Table 2 for a summary):

Game κ (0 ≤ κ ≤ Q): In comparison to Game pre-3, the constructions of the source ciphertexts C
∗(κ′)

in the first κ refreshing processes, 1 ≤ κ′ ≤ κ, are modified as follows:2 The second component of C
∗(κ′)

is chosen as e∗(κ
′) ← π† + HPS.priv(1ℓ,Λ, k, x∗(κ

′)), instead of e∗(κ
′) ← M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ

′)) as in

the algorithm Enc′, where x∗(κ
′) is the first component of C

∗(κ′) and π† ∈ Π is chosen independently of β
according to the probability distribution which is negligibly close to the uniform distribution on Π′ (note
that Π′ is approximately samplable relative to Π). We note that the complexity of the game is polynomial.

Game (Q+1): In comparison to Game Q, the construction of the challenge ciphertext C∗ = (x∗, e∗, π̂∗, π̃∗)
is modified as follows: The second component of C∗ is chosen as e∗ ← π† + HPS.priv(1ℓ,Λ, k, x∗), instead

2When there are only less than κ refreshing processes, we simply ignore the case of κ′ beyond the number of the refreshing
processes. Similar remarks are applied to the following arguments.
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Table 3: Summary of differences of games from Game (κ − 1) to Game κ (when κ = Q + 1, the challenge
ciphertext is focused on instead of source ciphertexts); see the main text for details

Game κ− 1 κ.1 κ.2 κ.3 Why negligible
κ.7 = κ κ.6 κ.5 κ.4 difference

First component
x∗(κ) of κ-th

source ciphertext
regular irregular

Hash evaluation
for regular input

private public

Query with
irregular input

ordinary rejected

Plaintext for κ-th original ↑ P is
source ciphertext random smooth ↓

PPT part
of the game

all
except for
challenger’s

choice of x∗(κ)
adversary’s side

← membership decision
for L is hard

→

Why negligible
difference

← identical games →

←
P̂ and P̃ are
universal

(see Table 5)

→

of e∗ ← M∗β + HPS.priv(1ℓ,Λ, k, x∗) as in Game Q, where π† ∈ Π is chosen independently of β according
to the probability distribution which is negligibly close to the uniform distribution on Π′ (note that Π′ is
approximately samplable relative to Π).

We note that Game (Q+ 1) is the goal of our game-hopping, where the information on the challenge bit
has been removed from the replies to all the (at most) Q refreshing queries and from the challenge ciphertext,
therefore the advantage of the adversary becomes zero. In order to evaluate the differences of probabilities
Pr[Tκ] between these games later, we introduce the following subdivision of the game sequence that connects
each Game (κ−1) to Game κ. An outline is as follows: We replace the first component x∗(κ) ∈ L of the source

ciphertext C
∗(κ) with x∗(κ) ∈ X ′ \ L owing to the hardness of the subset membership problem (SubGame

κ.1), and then the second component e∗(κ) of C
∗(κ) is chosen as e∗(κ) ← π†+HPS.priv(1ℓ,Λ, k, x∗(κ)) instead

of e∗(κ) ← M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ)) owing to the smoothness of P (SubGame κ.4). In order to utilize
the smoothness of P, we should guarantee that the private information on the keys for P are not used at any
other step. For the purpose, before utilizing the smoothness of P, we modify the game in such a way that all
queries involving irregular ciphertexts are automatically rejected, owing to the universal properties of P̂ and
P̃ (SubGame κ.2 and SubGame κ.3). Moreover, after the replacement of the choice of e∗(κ) as above, we
restore the modifications introduced in SubGame κ.1 to SubGame κ.3 to the original situation (SubGame
κ.5 to SubGame κ.7). When κ = Q+1, similar modifications are applied to the challenge ciphertext instead
of the source ciphertexts. The precise description is as follows (see Table 3 for a summary):

SubGame κ.1: In the game, we modify the construction in Game (κ − 1) of the source ciphertext C
∗(κ)

in the following manner (when κ = Q + 1, we apply the same modification by focusing on the challenge

ciphertext C∗ instead of the source ciphertexts): For the source ciphertext C
∗(κ) = (x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ))

originally generated by using Enc′, the first component x∗(κ) is chosen uniformly at random from X ′ \ L
instead of L. Then the complexity of the game is polynomial except for the challenger’s choice of x∗(κ). Now
we can bound the difference |Pr[Tκ.1]−Pr[Tκ− 1]| owing to the hardness of the subset membership problem;
we will give a detailed argument later.
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SubGame κ.2: In the game, we modify SubGame κ.1 in the following manner: In algorithms Enc′, Dec and
Eval, the challenger computes the values of P, P̂, and P̃ for regular inputs by first exhaustively searching
a witness for the first component of the input and then using the public evaluation algorithms and the
witness instead of the private evaluation algorithms. To avoid confusion, we denote the modified algorithms
by Enc′′, Dec′′ and Eval′′, respectively. This modification aims at clarifying that private information on the
keys for HPSs are not used to compute their values for regular inputs. Now the projective property of the
projective hash family implies that the computed value is not changed by the modification, therefore we
have Pr[Tκ.2] = Pr[Tκ.1].

SubGame κ.3: In comparison to SubGame κ.2, in the game, we modify the rule to decide in which case
the challenger rejects each decryption or evaluation query made by A in such a way that any query with
irregular input that is not in the dictionary D is automatically rejected. From now, we refer to the new rule
as the enhanced rejection rule, while we refer to the original rule as the original rejection rule.

In the game, the complexity of the adversary alone is still polynomial. The difference Pr[Tκ.3]−Pr[Tκ.2]

can be evaluated owing to the computationally or information-theoretically universal properties of P̂ and P̃.
In fact, in order to carefully analyze the behaviors of the games, we will introduce further subdivision of the
game-hopping, SubSubGames κ.3.0 to κ.3.Q that connect SubGame κ.2 to SubGame κ.3, where the rejection
rule for one query is replaced at each step of the subdivided game-hopping. Details will be described later.

SubGame κ.4: In the game, we modify the construction in SubGame κ.3 of the source ciphertext C
∗(κ) =

(x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ)) in the κ-th refreshing process as follows (when κ = Q + 1, we apply the same
modification by focusing on the challenge ciphertext C∗ instead of the source ciphertexts): The second
component is chosen as e∗(κ) ← π†+HPS.priv(1ℓ,Λ, k, x∗(κ)), instead of e∗(κ) ←M∗β+HPS.priv(1ℓ,Λ, k, x∗(κ))

as in SubGame κ.3, where π† ∈ Π is chosen independently of β according to the probability distribution
which is negligibly close to the uniform distribution on Π′ (note that Π′ is approximately samplable relative
to Π).

We can show that, the private information on the key k for P is not used in SubGame κ.3 except in
the computation of e∗(κ) = M∗β + HPS.priv(1ℓ,Λ, k, x∗(κ)) (or of e∗ = M∗β + HPS.priv(1ℓ,Λ, k, x∗), when
κ = Q+ 1), and the smoothness of P relative to (X ′,Π′) implies that the difference |Pr[Tκ.4]− Pr[Tκ.3]| is
negligible. A detailed argument will be given later.

SubGame κ.5: This game is identical to SubGame κ.2, except for the modification made from SubGame κ.3
to SubGame κ.4 for the plaintext for κ-th source ciphertext (or the challenge ciphertext, when κ = Q+1). In
the same way as SubGame κ.3, the difference Pr[Tκ.5]−Pr[Tκ.4] can be evaluated owing to the computationally

or information-theoretically universal properties of P̂ and P̃. We will introduce further subdivision of the
game-hopping, SubSubGames κ.5.0 to κ.5.Q that connect SubGame κ.4 to SubGame κ.5, where the rejection
rule for one query is restored at each step. Details will be described later.

SubGame κ.6: This game is identical to SubGame κ.1, except for the modification made from SubGame
κ.3 to SubGame κ.4 for the plaintext for κ-th source ciphertext (or the challenge ciphertext, when κ = Q+1).
In the same way as SubGame κ.2, the projective property of the projective hash family implies again that
Pr[Tκ.6] = Pr[Tκ.5].

SubGame κ.7: This game is identical to Game (κ−1), except for the modification made from SubGame κ.3
to SubGame κ.4 for the plaintext for κ-th source ciphertext (or the challenge ciphertext, when κ = Q+ 1).
Namely, this game is nothing but Game κ. In the same way as SubGame κ.1, we can bound the difference
|Pr[Tκ.7] − Pr[Tκ.6]| owing to the hardness of the subset membership problem. We will give a detailed
argument later.

In Game (Q+1), the information on the challenge bit β is not used during the game, which implies that
Pr[TQ+1] = 1/2. This is the goal of the game-hopping. Then we have

AdvKH-CCA
KH-PKE,A(ℓ) = |Pr[Tpre-0]− 1/2| = |Pr[Tpre-0]− Pr[TQ+1]| .
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Table 4: Summary of differences of games from Game pre-1 to Game pre-2; see the main text for details
Game pre-2.0 = pre-1 ... pre-2.(κ− 1) pre-2.κ ... pre-2.Q = pre-2

Reply to
first evaluation

query
ordinary

rejected
if critical

...

Reply to
κ-th evaluation

query
ordinary

rejected
if critical

...

Reply to
Q-th evaluation

query
ordinary

rejected
if critical

Why negligible
difference

← hard to find
critical integers

→

Now, since we have mentioned that the differences for some steps of the game-hopping are zero, we have

Pr[Tpre-0]− Pr[TQ+1]

=
(
Pr[Tpre-1]− Pr[Tpre-2]

)
+

Q+1∑
κ=1

((
Pr[Tκ− 1]− Pr[Tκ.1]

)
+

(
Pr[Tκ.2]− Pr[Tκ.3]

)
+
(
Pr[Tκ.3]− Pr[Tκ.4]

)
+
(
Pr[Tκ.4]− Pr[Tκ.5]

)
+
(
Pr[Tκ.6]− Pr[Tκ]

))
= δ1 + δ2 + δ3 + δ4 ,

where
δ1 = Pr[Tpre-1]− Pr[Tpre-2] ,

δ2 =

Q+1∑
κ=1

((
Pr[Tκ− 1]− Pr[Tκ.1]

)
+
(
Pr[Tκ.6]− Pr[Tκ]

))
,

δ3 =

Q+1∑
κ=1

((
Pr[Tκ.2]− Pr[Tκ.3]

)
+

(
Pr[Tκ.4]− Pr[Tκ.5]

))
,

δ4 =

Q+1∑
κ=1

(
Pr[Tκ.3]− Pr[Tκ.4]

)
.

From now, we evaluate the quantities δ1, δ2, δ3 and δ4 above.

Evaluation of δ1: We note that δ1 = 0 for the cases of Assumption I and Assumption A. On the other hand,
for the case of Assumption U, we divide the game-hopping from Game pre-1 to Game pre-2 by introducing
the following subdivision (see Table 4 for a summary):

SubGame pre-2.κ (0 ≤ κ ≤ Q): In the game, we modify Game pre-1 in such a way that the challenger
rejects any of the first κ evaluation queries that is a critical query. Note that SubGame pre-2.0 and SubGame
pre-2.Q are the same as Game pre-1 and Game pre-2, respectively. Note also that the complexity of the
game is polynomial, by the efficiency of deciding whether a given integer is a critical integer or not (see
Assumption U).
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For each 1 ≤ κ ≤ Q, let R(pre-2.κ) denote the event that, in SubGame pre-2.κ, the κ-th evaluation
query (exists and) is a critical query. Since SubGame pre-2.(κ − 1) and SubGame pre-2.κ are identical
unless the κ-th evaluation query is a critical query, we have |Pr[Tpre-2.(κ− 1)]− Pr[Tpre-2.κ]| ≤ Pr[R(pre-2.κ)],

therefore |δ1| = |Pr[Tpre-1] − Pr[Tpre-2]| ≤
∑Q
κ=1 Pr[R

(pre-2.κ)] by the triangle inequality. Now, to evaluate
the right-hand side, we introduce the following auxiliary adversary A1 finding a critical integer:

• Given input 1ℓ for A1, first A1 chooses a game uniformly at random from the Q Games pre-2.1 to
pre-2.Q and simulates the game, say Game pre-2.κ. If the κ-th evaluation query (C ′, C ′′) is critical,
then A1 outputs λD(ιD(C

′))+λD(ιD(C
′′)) which is a critical integer. Otherwise, A1 aborts the game.3

By the definition, A1 is PPT, and the advantage AdvA1 of A1 (that is, the probability that A1 output a

critical integer) satisfies that AdvA1 = 1
Q

∑Q
κ=1 Pr[R

(pre-2.κ)]. This implies that |δ1| ≤ Q · AdvA1 , while

AdvA1 is negligible since finding a critical integer is hard by Assumption U. Hence, |δ1| is negligible as well.

Evaluation of δ2: In order to evaluate the quantity δ2, we introduce the following auxiliary distinguisher
A2 for the underlying subset membership problem for P:

• The distinguisher A2 chooses a game uniformly at random from SubGame κ.1 with 1 ≤ κ ≤ Q + 1
and SubGame κ.6 with 1 ≤ κ ≤ Q+ 1, and simulates the game by using the given instance Λ. At the
challenge stage of the simulated game, A2 receives M∗0 and M∗1 from A. Then:

– When κ ≤ Q, A2 has received x∗(κ) ∈ L or x∗(κ) ∈ X ′ \ L from the challenger for the subset
membership problem. Then A2 generates a challenge ciphertext for A as usual and sends it to A.

– When κ = Q + 1, A2 has received x∗ ∈ L or x∗ ∈ X ′ \ L from the challenger for the subset
membership problem. Then A2 generates a challenge ciphertext for A by using the element x∗ as
its first component, and sends it to A.

At the remaining part of the simulated game for the case κ ≤ Q, A2 generates κ-th source ciphertext
for A by using the element x∗(κ) above as its first component. Finally:

– For the case of SubGame κ.1, A2 outputs the opposite bit to the output bit of A; that is, A2

outputs 1 − b if A outputs b. (Note that the simulated game is identical to Game (κ − 1) and
SubGame κ.1 if the challenger gave an element of L and of X ′ \ L, respectively.)

– For the case of SubGame κ.6, A2 outputs the output bit of A. (Note that the simulated game
is identical to Game κ and SubGame κ.6 if the challenger gave an element of L and of X ′ \ L,
respectively.)

We note that A2 is PPT. By the construction of A2, we have

Pr[1← A2 | L is chosen ] =
1

2(Q+ 1)

Q+1∑
κ=1

(
(1− Pr[Tκ−1]) + Pr[Tκ]

)
and

Pr[1← A2 | X ′ \ L is chosen ] =
1

2(Q+ 1)

Q+1∑
κ=1

(
(1− Pr[Tκ.1]) + Pr[Tκ.6]

)
,

therefore

Pr[1← A2 | X ′ \ L]− Pr[1← A2 | L]

=
1

2(Q+ 1)

Q+1∑
κ=1

(
Pr[T

(κ−1)
ℓ ]− Pr[T

(κ)
ℓ ]− Pr[T

(κ.1)
ℓ ] + Pr[T

(κ.6)
ℓ ]

)
=

δ2
2(Q+ 1)

.

3More precisely, the adversary outputs any object that trivially yields loss of the game.
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Table 5: Summary of differences of games from SubGame κ.2 to SubGame κ.3; see the main text for details
Game κ.3.0 = κ.2 ... κ.3.(ρ− 1) κ.3.ρ ... κ.3.Q = κ.3

first query with
irregular input

ordinary rejected

...

ρ-th query with
irregular input

ordinary rejected

...

Q-th query with
irregular input

ordinary rejected

Why negligible
difference

← P̂ and P̃ are
universal

→

Hence we have
|δ2| = 4(Q+ 1)AdvA2(ℓ) ,

which is negligible by the assumption that the subset membership problem is hard.

Evaluation of δ3: From now, we evaluate the quantity δ3. For the purpose, first we divide the game-hopping
from SubGame κ.2 to κ.3 for each 1 ≤ κ ≤ Q+ 1 by introducing the following subdivision (see Table 5 for
a summary):

SubSubGame κ.3.ρ (0 ≤ ρ ≤ Q): In comparison to SubGame κ.2, in the game, we replace the original
rejection rules with the enhanced rejection rules for the first ρ decryption or evaluation queries. Note that
SubSubGame κ.3.0 and SubSubGame κ.3.Q are the same as SubGame κ.2 and SubGame κ.3, respectively.

Let R(κ.3.ρ) denote the event in SubSubGame κ.3.ρ that the ρ-th query (exists and) is rejected by the
enhanced rejection rule but is not rejected by the original rejection rule. Then we have |Pr[Tκ.3.(ρ− 1)] −
Pr[Tκ.3.ρ]| ≤ Pr[R(κ.3.ρ)], therefore |Pr[Tκ.2]− Pr[Tκ.3]| ≤

∑Q
ρ=1 Pr[R

(κ.3.ρ)] by the triangle inequality. Now,
to evaluate the right-hand side, we prove the following properties.

Claim 1. In SubSubGame κ.3.ρ, among the private information on the keys for P, P̂, and P̃ that are not
obtained by using RevHK (which we call non-queried keys), the collection of replies to the first ρ queries

depends only on at most one value of each of H, Ĥ, and H̃ for irregular inputs. Moreover, the replies to the
evaluation queries (that are not rejected) among the first ρ queries are regular ciphertexts, except for the
case of κ-th refreshing query which is one of the ρ queries provided κ ≤ Q. In this exceptional case, let D =
(C0 = C∗, C1, . . . , Cκ) and D′ = ((D′1, D

′′
1 ), . . . , (D

′
κ, D

′′
κ)) be the two dictionaries after the κ-th refreshing

query, let C0
(κ), C1

(κ), . . . , Cκ
(κ) be the ciphertexts calculated in the κ-th refreshing process (hence C0

(κ) is

the source ciphertext C
∗(κ) = (x∗(κ), e∗(κ), π̂∗(κ), π̃∗(κ)) and Cκ

(κ) = Cκ), and put Cκ′ (κ) = (xκ′ , eκ′ , π̂κ′ , π̃κ′)
for each κ′ = 0, 1, . . . , κ. Then for each κ′, we have:

• xκ′ is the sum of λD(κ
′) · x∗(κ), an integer linear combination of elements of L independent of x∗(κ),

and an integer linear combination of the first components of ciphertexts D′i and D′′i (i.e., those D′i
and D′′i are not indices) listed in D′ with 1 ≤ i ≤ κ′. Hence, xκ′ − λD(κ′) · x∗(κ) is an element of L
independent of x∗(κ).

• eκ′ is the sum of λD(κ
′) · e∗(κ), an integer linear combination of elements of the form Hk(x) with x ∈ L

being independent of x∗(κ), and an integer linear combination of the second components of ciphertexts
D′i and D

′′
i listed in D′ with 1 ≤ i ≤ κ′.

• For any ciphertext C = (x, e, π̂, π̃), we define ∆̂(C) = π̂ − Ĥk̂(x). Then, ∆̂(Cκ′ (κ)) is an integer linear

combination of ∆̂(D′i) and ∆̂(D′′i ) for ciphertexts D
′
i and D

′′
i listed in D′ with 1 ≤ i ≤ κ′. Moreover,
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the calculation of these ∆̂(D′i) and ∆̂(D′′i ) from given the D′i and D′′i is independent of the private

information on the keys for P̂.

Proof of Claim 1. We focus on any of the first ρ queries. First, by the enhanced rejection rule, any decryption
query with irregular input is always rejected. Secondly, the replies to any decryption query with regular input
and to any evaluation query with regular inputs that are not in D are computable by using the projective
hashes for regular inputs only, therefore the private information on the non-queried keys does not increase by
the reply. Hence, it suffices to consider the case of an evaluation query, say (C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′)
and C ′′ = (x′′, e′′, π̂′′, π̃′′), where at least one of C ′ and C ′′ is either irregular or in D. Moreover, by the
enhanced rejection rule, the query is rejected if at least one of C ′ and C ′′ is irregular and not in D. Hence,
it suffices to consider the case that at least one of C ′ and C ′′ is in D and the other input is either in D or
regular. We also assume that the latter input is H̃-consistent (which can be now checked without private
information on the keys), RevHK has not been queried, and the query is not a critical query (for the case
of Assumption U; see Game pre-2), since otherwise the query is rejected. These conditions imply that the
query is a (say, κ†-th) refreshing query.

Let D = (C0 = C∗, C1, . . . , Cκ†−1) and D′ = ((D′1, D
′′
1 ), . . . , (D

′
κ†−1, D

′′
κ†−1)) be the two dictionaries

before this query. Let Cκ† be the reply to the query, which is added to D by this query, and let (D′κ† , D
′′
κ†)

be the pair added to D′ by this query. Let C0
(κ†), C1

(κ†), . . . , Cκ†
(κ†) be the ciphertexts calculated in

this refreshing process, hence C0
(κ†) = C

∗(κ†) and Cκ†
(κ†) = Cκ† . We note that, any object D′i or D′′i ,

1 ≤ i ≤ κ†−1, in D′ which is a ciphertext (i.e., not an index) is an input ciphertext (which was not in D) for
some previous evaluation query which was not rejected, therefore it is a regular ciphertext by the enhanced
rejection rule. On the other hand, since any of C ′ and C ′′ that is not in D is regular as discussed above, it
follows that any of D′κ† and D′′κ† that is a ciphertext is also regular.

From now, we first consider the case κ† ̸= κ. We show that all the ciphertexts appearing in this
refreshing process are regular, therefore Cκ† is also regular and the calculation of Cκ† does not use the private

information on the keys. The claim for C0
(κ†) = C

∗(κ†) follows from the construction C
∗(κ†) ← Enc′′(pk,M∗β)

(recall that κ† ̸= κ). On the other hand, for 1 ≤ i ≤ κ†, Ci
(κ†) is the output of Eval′′ with inputs being

either a ciphertext listed in D′ or the ciphertext Cj
(κ†) for some 0 ≤ j < i. By the induction on i and the

argument in the previous paragraph, both of the two input ciphertexts for the Eval′′ are regular, therefore

Ci
(κ†) is also regular and the calculation of Ci

(κ†) does not use the private information on the keys. Hence,
the claim holds for the present case κ† ̸= κ.

Finally, we consider the case κ† = κ. To show the properties in the statement, we use induction on
κ′ = 0, 1, . . . , κ. For the case κ′ = 0, since λD(0) = 1 and C0

(κ) = C
∗(κ), the claim follows from the

construction of C
∗(κ) in the κ-th refreshing process. We suppose that κ′ > 0. We divide the proof into the

following three cases:

• Suppose that D′κ′ is an index h′ ∈ {0, 1, . . . , κ′− 1} and D′′κ′ is an index h′′ ∈ {0, 1, . . . , κ′− 1}. In this

case, by the definition of Eval′′, for some x
$← L and e = Hk(x) (computed without private information

on the key), we have xκ′ = xh′ + xh′′ + x, eκ′ = eh′ + eh′′ + e, and

∆̂(Cκ′
(κ)) = π̂κ′ − Ĥk̂(xκ′)

= π̂h′ + π̂h′′ + Ĥk̂(x)− Ĥk̂(xh′)− Ĥk̂(xh′′)− Ĥk̂(x)

= ∆̂(Ch′
(κ)) + ∆̂(Ch′′

(κ))

since P̂ is homomorphic. Then, since λD(κ
′) = λD(h

′)+λD(h
′′) by definition, the induction hypothesis

for Ch′ (κ) and Ch′′ (κ) implies that the claim here also holds for the Cκ′ (κ).

• Suppose that D′κ′ is an index h′ ∈ {0, 1, . . . , κ′ − 1} and D′′κ′ = (x†, e†, π̂†, π̃†) is a ciphertext. In this

case, by the definition of Eval′′, for some x
$← L and e = Hk(x) (computed without private information
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on the key), we have xκ′ = xh′ + x† + x, eκ′ = eh′ + e† + e, and

∆̂(Cκ′
(κ)) = π̂κ′ − Ĥk̂(xκ′)

= π̂h′ + π̂† + Ĥk̂(x)− Ĥk̂(xh′)− Ĥk̂(x
†)− Ĥk̂(x)

= ∆̂(Ch′
(κ)) + ∆̂(D′′κ′)

since P̂ is homomorphic. Then, since λD(κ
′) = λD(h

′) by definition, the induction hypothesis for
Ch′ (κ) implies that the claim here also holds for the Cκ′ (κ).

• Suppose that D′κ′ is a ciphertext and D′′κ′ is an index. In the case, the symmetry implies that the claim
holds by the same argument as the previous case.

Hence the claim holds for any κ′ = 0, 1, . . . , κ; in particular, Cκ = Cκ
(κ) is of the form as in the statement,

where only a single value of H with irregular input is used to compute e∗(κ), only a single value of Ĥ with
irregular input is used to compute π̂κ = ∆̂(Cκ) + Ĥk̂(xκ), and only a single value of H̃ with irregular input
is used to compute π̃κ. This completes the proof of Claim 1.

Claim 2. For the case of Assumption U, in SubSubGame κ.3.ρ with κ ≤ Q, suppose that the κ-th refreshing
query is ρ-th or earlier query and Cκ = (xκ, eκ, π̂κ, π̃κ) is its reply. If λD(κ) is not a multiple of o(Λ) (see
Definition 4.3 for the definition of o(Λ)), then both λD(κ) · x∗(κ) and xκ are uniformly random over X ′ \ L;
otherwise, both λD(κ) · x∗(κ) and xκ are always in L.

Proof of Claim 2. First, we consider the case that λD(κ) is a multiple of o(Λ). By the definition of o(Λ),
λD(κ) is a multiple of the order of x∗(κ) in the quotient group X/L, therefore we have λD(κ) · x∗(κ) ∈ L.
Since xκ − λD(κ) · x∗(κ) ∈ L by Claim 1, it follows that xκ ∈ L, as desired.

Secondly, we consider the other case that λD(κ) is not a multiple of o(Λ). Since any critical query is
rejected (see Game pre-2), λD(h) is not a critical integer for any index h by induction on h. By the definition
of critical integers, it follows that λD(κ) is coprime to |X|. Therefore, there is an integer λ′ satisfying that
λD(κ)λ

′ ≡ 1 (mod |X|), which is also coprime to |X|. This relation implies that the multiplications by
λD(κ) and by λ′ define two mappings X → X which are inverses of each other. Moreover, each of the
mappings maps L to L since L is a subgroup of X, while by Assumtion U, it maps X ′ \L to X ′. This implies
that the multiplication by λD(κ) defines a bijection X ′ \ L → X ′ \ L, therefore λD(h) · x∗(κ) is uniformly
random over X ′ \ L as well as x∗(κ). On the other hand, by Assumption U, for any y ∈ L, the addition by
y defines a bijection X ′ \L→ X ′ \L (since L is a subgroup of X). Since xκ − λD(κ) · x∗(κ) is an element of
L independent of x∗(κ) by Claim 1, it follows that xκ is also uniformly random over X ′ \L, as desired. This
completes the proof of Claim 2.

Before evaluating the quantities Pr[R(κ.3.ρ)], we also introduce subdivision of the game-hopping from
SubGame κ.4 to SubGame κ.5 for 1 ≤ κ ≤ Q+ 1 in a similar manner:

SubSubGame κ.5.ρ (0 ≤ ρ ≤ Q): In comparison to SubGame κ.4, in the game, we replace the enhanced
rejection rules for the (Q+1−ρ)-th or later queries with the original rejection rules. Note that SubSubGame
κ.5.Q and SubSubGame κ.5.0 are the same as SubGame κ.4 and SubGame κ.5, respectively.

Now we note that each SubSubGame κ.5.ρ satisfies properties similar to Claim 1 and Claim 2 above,
where the (Q+ 1− ρ)-th query plays the role of the ρ-th query in the original Claim 1 and Claim 2.

Let R(κ.5.ρ) denote the event in SubSubGame κ.5.ρ that the (Q+1− ρ)-th query (exists and) is rejected
by the enhanced rejection rule but is not rejected by the original rejection rule. Then an argument similar
to the case of SubSubGame κ.3.ρ implies that |Pr[Tκ.4]− Pr[Tκ.5]| ≤

∑Q
ρ=1 Pr[R

(κ.5.ρ)].

In order to evaluate Pr[R(κ.3.ρ)] and Pr[R(κ.5.ρ)], we introduce further the following events:

• We define R
(κ.3.ρ)
1 to be the event in SubSubGame κ.3.ρ that the ρ-th query is a decryption query with

Ĥ-forging input C and is in the find stage, and RevHK has been queried before this query. In a similar

manner, we also define the event R
(κ.5.ρ)
1 , where we focus on the (Q + 1 − ρ)-th query instead of the

ρ-th query.
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• We define R
(κ.3.ρ)
2 (respectively, R

(κ.3.ρ)
3 ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is a

decryption query with input C (respectively, an evaluation query (C ′, C ′′)), C is H̃-forging and C ̸∈ D
(respectively, C ′ is H̃-forging and C ′ ̸∈ D), RevHK has not been queried before this query, and:

– In the case κ ≤ Q, either this query is the κ-th refreshing query or before the κ-th refreshing
query, or this query is after the κ-th refreshing query and the reply to the κ-th refreshing query
is a regular ciphertext.

– In the case κ = Q+ 1, this query is in the find stage.

We define the event R
(κ.3.ρ)
4 to be the same as R

(κ.3.ρ)
3 except that we focus on C ′′ instead of C ′.

In a similar manner, we also define the events R
(κ.5.ρ)
2 , R

(κ.5.ρ)
3 and R

(κ.5.ρ)
4 , where we focus on the

(Q+ 1− ρ)-th query instead of the ρ-th query.

• We define R
(κ.3.ρ)
5 (respectively, R

(κ.3.ρ)
6 ) to be the event in SubSubGame κ.3.ρ that the ρ-th query is a

decryption query with input C (respectively, an evaluation query (C ′, C ′′)), C is H̃-forging and C ̸∈ D
(respectively, C ′ is H̃-forging and C ′ ̸∈ D), RevHK has not been queried before this query, and:

– In the case κ ≤ Q, this query is after the κ-th refreshing query and the reply to the κ-th refreshing
query is an irregular ciphertext.

– In the case κ = Q+ 1, this query is in the guess stage.

We define the event R
(κ.3.ρ)
7 to be the same as R

(κ.3.ρ)
6 except that we focus on C ′′ instead of C ′.

In a similar manner, we also define the events R
(κ.5.ρ)
5 , R

(κ.5.ρ)
6 and R

(κ.5.ρ)
7 , where we focus on the

(Q+ 1− ρ)-th query instead of the ρ-th query.

By the definitions of the events, we have Pr[R(κ.3.ρ)] ≤
∑7
i=1 Pr[R

(κ.3.ρ)
i ], and a similar inequality holds

for R(κ.5.ρ). Therefore, we have

|δ3| ≤
7∑
i=1

Q∑
ρ=1

Q+1∑
κ=1

(
Pr[R

(κ.3.ρ)
i ] + Pr[R

(κ.5.ρ)
i ]

)
.

We evaluate the quantities in the right-hand side of the inequality. Here, we put ρ = ρ for the case of events
R(κ.3.ρ), and ρ = Q+ 1− ρ for the case of events R(κ.5.ρ).

For the events R
(·)
1 , Claim 1 implies that the private information on k̂ is not used in the game before

the ρ-th query, therefore the universal1 property of P̂ implies that the adversary can generate the Ĥ-forging

input for the query with only negligible probability common to all κ and ρ. Hence, the sum of Pr[R
(κ.3.ρ)
1 ]

and Pr[R
(κ.5.ρ)
1 ] over all κ and ρ is negligible.

For the case of Assumption I, a similar argument based on Claim 1 implies that the sum of Pr[R
(κ.3.ρ)
i ]

and Pr[R
(κ.5.ρ)
i ] over all i ∈ {2, 3, 4}, κ, and ρ is negligible owing to the universal1 property of P̃, since the

private information on k̃ is not used in the game before the ρ-th query. Similarly, Claim 1 implies that
the behavior of the game before the ρ-th query depends only on at most one value of P̃ for irregular input

among private information on the non-queried keys, therefore the sum of Pr[R
(κ.3.ρ)
i ] and Pr[R

(κ.5.ρ)
i ] over

all i ∈ {5, 6, 7}, κ, and ρ is negligible owing to the universal2 property of P̃. Summarizing, |δ3| is negligible
for the case of Assumption I.

From now, we consider the other cases of Assumptions A and U. We reduce the evaluation of Pr[R
(κ.3.ρ)
i ]

and Pr[R
(κ.5.ρ)
i ] for 2 ≤ i ≤ 7 to evaluation of the advantages of the following two adversaries A3,1 and A3,2

for the security game of the first-adaptive or first-uniform computationally universal2 property for P̃. Here
A3,1 corresponds to the events with 2 ≤ i ≤ 4, while A3,2 corresponds to the events with 5 ≤ i ≤ 7. The
descriptions of these adversaries are as follows:
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Adversaries A3,1 and A3,2: First, the adversary generates (k, s) ← HPS.param(1ℓ,Λ) and (k̂, ŝ) ←
ĤPS.param(1ℓ,Λ). Secondly, the adversary chooses a game from SubSubGame κ.3.ρ (we set ρ = ρ in this
case) and SubSubGame κ.5.ρ (we set ρ = Q+1− ρ in this case) for 1 ≤ κ ≤ Q+1 and 1 ≤ ρ ≤ Q, which we
call the internal game in the following, and chooses one of the three modes dec, eval1, and eval2. Then the
adversary simulates the internal game until the ρ-th query. Here, the adversary aborts when any condition

for the corresponding event R
(·)
i becomes unable to be satisfied. For example, in the case κ = Q + 1, A3,1

aborts if the find stage of the internal game ends before the ρ-th query (hence A3,1 does not need to compute
the challenge ciphertext).

In the case κ ≤ Q, the adversary deals with the κ-th refreshing query in the following manner:

• First, A3,1 calculates the first three components (xκ, eκ, π̂κ) of the resulting ciphertext at the refreshing
process, where the first component of the source ciphertext is chosen from X ′\L uniformly at random.4

Then A3,1 queries (xκ, eκ, π̂κ) to Hash, and aborts if Hash replies ⊥ (this corresponds to the condition

of the event R
(·)
i with 2 ≤ i ≤ 4 that the reply to the κ-th refreshing query must be regular). Otherwise,

A3,1 receives π̃κ from Hash and replies (xκ, eκ, π̂κ, π̃κ) to the refreshing query.

• First, A3,2 chooses the first component x∗(κ) of the source ciphertext uniformly at random from X ′ \L,
and compute the first three components (xκ, eκ, π̂κ) of the result of the refreshing process according
to the formula shown in Claim 1. Then A3,2 queries (xκ, eκ, π̂κ) to Hash, and aborts if Hash replies

an element other than ⊥ (this corresponds to the condition of the event R
(·)
i with 5 ≤ i ≤ 7 that the

reply to the κ-th refreshing query must be irregular). Otherwise:

– For the case of Assumption A, A3,2 submits (xκ, eκ, π̂κ) to the challenger and receives π̃κ. Then
A3,2 replies (xκ, eκ, π̂κ, π̃κ) to the κ-th refreshing query.

– For the case of Assumption U, note that A3,2 has given some (x∗∗, e∗∗, π̂∗∗) and π̃∗∗ as a part of
input. Then A3,2 replies (x∗∗, e∗∗, π̂∗∗, π̃∗∗) to the κ-th refreshing query.

In the case κ = Q+ 1, A3,1 does not need to deal with the challenge ciphertext in the internal game as
mentioned above. On the other hand, A3,2 deals with the challenge ciphertext in the following manner:

• First, A3,2 chooses the first component x∗ of the challenge ciphertext uniformly at random from X ′ \L,
and compute the first three components (x∗, e∗, π̂∗) of the challenge ciphertext. Then:

– For the case of Assumption A, A3,2 submits (x∗, e∗, π̂∗) to the challenger and receives π̃∗. Then
A3,2 sets C∗ = (x∗, e∗, π̂∗, π̃∗) to be the challenge ciphertext.

– For the case of Assumption U, note that A3,2 has given some (x∗∗, e∗∗, π̂∗∗) and π̃∗∗ as a part of
input. Then A3,2 sets (x∗∗, e∗∗, π̂∗∗, π̃∗∗) to be the challenge ciphertext.

Finally, we consider the ρ-th query. Here we note that A3,1 has not submitted anything to the challenger;

now, in the case of Assumption A, A3,1 submits (x∗∗, e∗∗, π̂∗∗) ∈ (X ′\L)×Π×Π̂ chosen uniformly at random
and receives π̃∗∗. Then the adversary A3,1 or A3,2 performs as follows:

• In mode dec, the adversary aborts if this query is not a decryption query. When it is a decryption
query with input C = (x, e, π̂, π̃), the adversary aborts if C ∈ D. Otherwise, the adversary outputs
(x, e, π̂) and π̃.

• In mode eval1, the adversary aborts if this query is not an evaluation query. When it is an evaluation
query (C ′, C ′′) with C ′ = (x′, e′, π̂′, π̃′), the adversary aborts if C ′ ∈ D. Otherwise, the adversary
outputs (x′, e′, π̂′) and π̃′.

• The case of mode eval2 is similar to eval1, where C
′′ plays the role of C ′.

4Note that this process does not require the key for P̃; since all the ciphertexts appearing during the refreshing process are
guaranteed to be H̃-consistent, the consistency checks for the fourth components can be omitted.
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Note that, in the internal game until the ρ-th query, any other decryption or evaluation query with irregular
input ciphertext(s) can be always rejected owing to the enhanced rejection rule, and the oracle Hash enables

the adversary to detect the irregular input and, if it is regular, to obtain values of P̃ for regular inputs
required to respond to the query. (In the case of evaluation query with input ciphertext that is irregular and
is in D, even if the query cannot be rejected, the definition of refreshing process ensures that the resulting
ciphertext is always regular.) On the other hand, the adversary aborts if RevHK has been queried in the
internal game (according to the condition of the corresponding event). This concludes the descriptions of
A3,1 and A3,2.

In fact, these adversaries simulate the internal game correctly. The only non-trivial point here is for the
reply (x∗∗, e∗∗, π̂∗∗, π̃∗∗) of A3,2 to the κ-th refreshing query (or to the challenge query, when κ = Q + 1)
in the case of Assumption U. First, for κ-th refreshing process in the case κ ≤ Q, since Hash with input
(xκ, eκ, π̂κ) replies ⊥ (which depends solely on λD(κ) and not on x∗(κ) by Claim 2), Claim 2 implies that both
λD(κ)·x∗(κ) and xκ are uniformly random overX ′\L. Moreover, Claim 1 implies that the private information

on the keys for P and P̂ are not used during the internal game except for the values Hk(λD(κ) · x∗(κ)) =
λD(κ) · e∗(κ) and Ĥk̂(xκ) used in the calculation of eκ and π̂κ. Therefore, since Π

′ = Π, P is smooth relative

to (X ′,Π′) and P̂ is smooth relative to (X ′, Π̂) by Assumption U, the distributions of λD(κ) · e∗(κ) and

Ĥk̂(xκ) have negligible statistical distances from the uniform distributions over Π and Π̂, respectively. Since

the differences eκ − λD(κ) · e∗(κ) and π̂κ − Ĥk̂(xκ) are independent of x∗(κ) by Claim 1, it follows that the
distribution of (xκ, eκ, π̂κ) has negligible statistical distance from the uniform distribution of (x∗∗, e∗∗, π̂∗∗)

over (X ′ \L)×Π× Π̂. Similarly, for the challenge ciphertext in the case κ = Q+1, the smoothness of P and

P̂ as above imply that the distribution of the first three components (x∗, e∗, π̂∗) of the challenge ciphertext
in the internal game has negligible statistical distance from the uniform distribution of (x∗∗, e∗∗, π̂∗∗) over

(X ′\L)×Π×Π̂. Hence, the simulation of the internal game by the adversaries is correct, with only negligible
statistical distance.

By the constructions of the adversaries, A3,j (j ∈ {1, 2}) in mode dec (respectively, eval1, eval2) wins the

game for P̃ if and only if the corresponding event R
(·)
3j−1 (respectively, R

(·)
3j , R

(·)
3j+1) occurs in the internal

game unless the uniformly random (x∗∗, e∗∗, π̂∗∗) contained in the input for A3,1 (in the case of Assumption
U) or chosen by A3,1 (in the case of Assumption A) coincides with the corresponding component of the
output of A3,1. Now note that the output of A3,1 is independent of (x∗∗, e∗∗, π̂∗∗), therefore the exceptional
case above occurs with only negligible probability (since otherwise X ′ \L must be not large enough to make
the underlying subset membership problem hard). Summarizing, the differences∣∣∣∣∣AdvA3,1 −

1

6(Q+ 1)Q

4∑
i=2

Q∑
ρ=1

Q+1∑
κ=1

(
Pr[R

(κ.3.ρ)
i ] + Pr[R

(κ.5.ρ)
i ]

)∣∣∣∣∣
and ∣∣∣∣∣AdvA3,2 −

1

6(Q+ 1)Q

7∑
i=5

Q∑
ρ=1

Q+1∑
κ=1

(
Pr[R

(κ.3.ρ)
i ] + Pr[R

(κ.5.ρ)
i ]

)∣∣∣∣∣
are both negligible. Moreover, we define A′3,j (j = 1, 2) by modifying A3,j in such a way that the (possibly
inefficient) uniformly random choices of elements of X ′ \L are replaced with statistically close and efficiently
samplable distributions over X, owing to the assumption that X ′ \L is approximately samplable relative to
X. Then A′3,j is PPT and |AdvA′

3,j
−AdvA3,j | is negligible, while AdvA′

3,j
is negligible by the first-adaptive

or first-uniform computationally universal2 property of P̃. Hence, the average of probabilities Pr[R
(κ.3.ρ)
i ]

and Pr[R
(κ.5.ρ)
i ] for 2 ≤ i ≤ 7, all κ and all ρ (polynomially bounded number in total) is negligible, so is the

sum of these probabilities. This implies that |δ3| is negligible as well.

Evaluation of δ4: Finally, we evaluate the quantity δ4. By Claim 1 in the evaluation of δ3 above, in
SubGame κ.3 with κ ≤ Q, the private information on the key for P is not used during the game except the
value Hk(x

∗(κ)) for x∗(κ) ∈ X ′ \L used in the computation of e∗(κ) =M∗β +Hk(x
∗(κ)) in the κ-th refreshing
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process. Therefore, by replacing Hk(x
∗(κ)) above with Hk(x

∗(κ)) + π†† where π†† is chosen uniformly at
random from Π′, only negligible statistical distance is induced to the behavior of the game owing to the
smoothness of P relative to (X ′,Π′). Secondly, since the uniformly random π†† is independent of M∗β , the

elementM∗β+π
†† is also uniformly random over Π′. Then, owing to the assumption that Π′ is approximately

samplable relative to Π, by replacing the value M∗β + π†† above further with the element π† ∈ Π chosen as
in the definition of SubGame κ.4, only negligible statistical distance is induced to the behavior of the game.
Now the resulting choice of e∗(κ) is identical to SubGame κ.4, therefore |Pr[Tκ.3]−Pr[Tκ.4]| is negligible for
any κ. The same argument works for the case κ = Q + 1, where the challenge ciphertext plays the role of
κ-th source ciphertext. Summarizing, |δ4| is negligible, as desired.

By these results, we have AdvKH-CCA
KH-PKE,A(ℓ) ≤ |δ1| + |δ2| + |δ3| + |δ4|, while all of |δ1|, |δ2|, |δ3| and |δ4|

are negligible, therefore the advantage of the adversary A for our proposed KH-PKE scheme is negligible as
well. This completes the proof of Theorem 4.1.

5 KH-PKE Instantiations of the Generic Construction

5.1 Cramer–Shoup Projective Hash Family

To instantiate the (computationally or information-theoretically) universal2 hash proof system P̃ in our
generic construction of KH-PKE given in Section 4, the construction of hash proof systems proposed by
Cramer and Shoup [13, §7.43 Theorem 3] based on diverse group systems can be used. Here we recall
the definition of the Cramer–Shoup (CS) hash proof system. In fact, we deal with not only the original
construction based on an injective function as the internal function, but also its variants (already mentioned
in [13]) where the internal function is generalized to more various classes of functions.

The construction of the CS projective hash family [13] is as follows. Let G = (H, X, L,Π) be a diverse
group system, and let {g1, . . . , gd} be a fixed generating set of L. Let E be a finite set. Moreover, let
Γ: X × E → {0, . . . , p̃ − 1}n be a function, where p̃ is the smallest prime dividing |X/L| (in the original
construction, Γ is supposed to be an injective function; here we consider more general functions Γ). Then
the CS projective hash family H = (H,K,X × E,L× E,Π, S, α) is constructed as follows:

• We set K = Hn+1, and for
−→
k = (k0, k1, . . . , kn) ∈ K and (x, e) ∈ X × E, the value of H is defined as

follows, where we write Γ(x, e) = (γ1, . . . , γn) = (γ1(x, e), . . . , γn(x, e)):

H−→
k
(x, e) = k0(x) +

n∑
i=1

γiki(x) .

• We set S = Π(n+1)d, and for
−→
k = (k0, k1, . . . , kn) ∈ K, the value of α is defined by

α(
−→
k ) = (k0(g1), . . . , k0(gd), k1(g1), . . . , k1(gd), . . . , kn(g1), . . . , kn(gd)) .

Now, given a public information −→s = α(
−→
k ), an element (x, e) ∈ L × E and an expression x =

∑d
j=1 ωjgj

of x with the generating set {g1, . . . , gd} of L (which is a witness of (x, e) ∈ L × E), the private evaluation
algorithm for the corresponding hash proof system can compute the value of H by

H−→
k
(x, e) =

d∑
j=1

ωjs0,j +
n∑
i=1

γi(x, e)
d∑
j=1

ωjsi,j ,

where si,j = ki(gj) for i ∈ {0, 1, . . . , n} and j ∈ {1, . . . , d}.
The following lemma is the key property for our argument below. We note that essentially the same

argument appeared in [13]; here we include the proof for the sake of completeness.
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Lemma 5.1. For the CS projective hash family constructed as above, for −→s ∈ S, (x, e), (x∗, e∗) ∈ (X\L)×E
and π, π∗ ∈ Π, if Γ(x, e) ̸= Γ(x∗, e∗), then we have

Pr
−→
k

$←K
[H−→

k
(x, e) = π ∧H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] ≤ 1

p̃
· Pr
−→
k

$←K
[H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] .

Proof. Since Γ(x, e) ̸= Γ(x∗, e∗), by symmetry, we may assume without loss of generality that γn(x, e) ̸=
γn(x

∗, e∗). Now the left-hand side of the inequality in the statement is equal to∑
−→
k ∈K(−→s )

1

|H|n+1
· χ[k0(x) + γn(x, e)kn(x) = π ∧ k0(x∗) + γn(x

∗, e∗)kn(x
∗) = π∗] ,

where K(−→s ) denotes the set of all
−→
k ∈ K satisfying that α(

−→
k ) = −→s , we put π = π−

∑n−1
i=1 γi(x, e)ki(x) and

π∗ = π∗ −
∑n−1
i=1 γi(x

∗, e∗)ki(x
∗), and χ[·] denotes the characteristic function that returns 1 if the specified

condition is satisfied and returns 0 otherwise. Similarly, the right-hand side of the inequality in the statement
is equal to

1

p̃
·

∑
−→
k ∈K(−→s )

1

|H|n+1
· χ[k0(x∗) + γn(x

∗, e∗)kn(x
∗) = π∗] .

Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H, we have∑
(k0,kn)∈K′

χ[k0(x) + γn(x, e)kn(x) = π ∧ k0(x∗) + γn(x
∗, e∗)kn(x

∗) = π∗]

≤ 1

p̃
·

∑
(k0,kn)∈K′

χ[k0(x
∗) + γn(x

∗, e∗)kn(x
∗) = π∗] ,

whereK ′ denotes the set of all (k0, kn) ∈ H2 satisfying that ki(gj) = si,j for any i ∈ {0, n} and j ∈ {1, . . . , d}.
The inequality above becomes trivial if K ′ = ∅; from now, we suppose that K ′ ̸= ∅. We take an element

(k∗0 , k
∗
n) of K ′. Let A denote the subgroup of H consisting of homomorphisms ψ : X → Π satisfying that

ψ(a) = 0 for all a ∈ L. Then any element of K ′ is uniquely expressed as (k∗0 +ψ0, k
∗
n+ψn) with ψ0, ψn ∈ A.

Moreover, we take an element ψ∗ of A satisfying that ψ∗(x) ̸= 0, which exists since the group system G is
diverse and x ̸∈ L. Let ord(ψ∗) denote the order of the group element ψ∗ ∈ A. Then there exist elements
ψ1, . . . , ψℓ ∈ A with ℓ = |A|/ord(ψ∗) (namely, the representative elements of the cosets in the quotient group
of A by the subgroup generated by ψ∗) satisfying that any element of A is uniquely expressed as ψi + aψ∗
with i ∈ {1, . . . , ℓ} and a ∈ {0, 1, . . . , ord(ψ∗)− 1}. Now if k0 = k∗0 + ψi0 + a0ψ∗ and kn = k∗n + ψin + anψ∗,
then we have

k0(x) + γn(x, e)kn(x) = k∗0(x) + ψi0(x) + γn(x, e)(k
∗
n(x) + ψin(x)) + (a0 + γn(x, e)an)ψ∗(x) ,

k0(x
∗) + γn(x

∗, e∗)kn(x
∗) = k∗0(x

∗) + ψi0(x
∗) + γn(x

∗, e∗)(k∗n(x
∗) + ψin(x

∗)) + (a0 + γn(x, e)an)ψ∗(x
∗) .

Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H and any i0, in ∈ {1, . . . , ℓ}, we have

ord(ψ∗)−1∑
a0,an=0

χ[(a0 + γn(x, e)an)ψ∗(x) = π′ ∧ (a0 + γn(x
∗, e∗)an)ψ∗(x

∗) = π′∗]

≤ 1

p̃
·
ord(ψ∗)−1∑
a0,an=0

χ[(a0 + γn(x
∗, e∗)an)ψ∗(x

∗) = π′∗] ,

where we put

π′ = π − k∗0(x)− ψi0(x)− γn(x, e)(k∗n(x) + ψin(x)) ,

π′∗ = π∗ − k∗0(x∗)− ψi0(x∗)− γn(x∗, e∗)(k∗n(x∗) + ψin(x
∗)) .
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We show that ψ∗(a · x) ̸= 0 for any integer a ̸= 0 with |a| < p̃. First, a is coprime to |X/L| by the
definition of p̃, therefore we have b1a = b2|X/L|+1 for some integers b1, b2. Now we have ψ∗(b2|X/L| ·x) = 0
since |X/L| · x ∈ L (note that the order of the image of x in the quotient group X/L is a divisor of |X/L|),
while ψ∗(x) ̸= 0 by the choice of ψ∗. This implies that ψ∗(b1a · x) ̸= 0, therefore ψ∗(a · x) ̸= 0, as desired.

The previous paragraph implies that ord(ψ∗) ≥ p̃, since ψ∗(ord(ψ∗) · x) = (ord(ψ∗) · ψ∗)(x) = 0. Now,

since γn(x, e), γn(x
∗, e∗) ∈ {0, 1, . . . , p̃ − 1} and γn(x, e) ̸= γn(x

∗, e∗), the matrix

(
1 γn(x, e)
1 γn(x

∗, e∗)

)
is non-

singular, where the components are considered modulo ord(ψ∗). This implies that, when a0 and an run
over {0, 1, . . . , ord(ψ∗)− 1}, the pair of (a0 + γn(x, e)an mod ord(ψ∗)) and (a0 + γn(x

∗, e∗)an mod ord(ψ∗))
distributes uniformly on {0, 1, . . . , ord(ψ∗)−1}2. Therefore, it suffices to show that, for any k1, . . . , kn−1 ∈ H
and any i0, in ∈ {1, . . . , ℓ}, we have

ord(ψ∗)−1∑
a,a′=0

χ[aψ∗(x) = π′ ∧ a′ψ∗(x∗) = π′∗] ≤ 1

p̃
·
ord(ψ∗)−1∑
a,a′=0

χ[a′ψ∗(x
∗) = π′∗] .

Now we note that, the condition aψ∗(x) = π′ is satisfied by at most ord(ψ∗)/p̃ integers a ∈ {0, 1, . . . , ord(ψ∗)−
1}. Indeed, if the number of such a is larger than ord(ψ∗)/p̃, then the pigeonhole principle implies that we
have a1ψ∗(x) = a2ψ∗(x) = π′ for some integers a1 < a2 with a2 − a1 < p̃. However, this implies that
ψ∗((a2 − a1) · x) = (a2 − a1)ψ∗(x) = 0, contradicting the previous paragraph. Hence, we have

ord(ψ∗)−1∑
a,a′=0

χ[aψ∗(x) = π′ ∧ a′ψ∗(x∗) = π′∗] ≤
ord(ψ∗)−1∑
a′=0

ord(ψ∗)

p̃
χ[a′ψ∗(x

∗) = π′∗]

=
1

p̃
·
ord(ψ∗)−1∑
a,a′=0

χ[a′ψ∗(x
∗) = π′∗] ,

as desired. This completes the proof of Lemma 5.1.

Owing to Lemma 5.1, we will show that the CS projective hash family is (information-theoretically or
computationally) universal2, if the internal function Γ satisfies some appropriate property. First, we recall
the notions of collision resistant (CR) hash family and target collision resistant (TCR) hash family.

Definition 5.1 (Collision Resistant Hash Family). Let {fhk | hk ∈ HK} be a family of hash functions
fhk : X → Y indexed by a hash key hk ∈ HK. We say that the family is collision resistant (CR), if for any
PPT adversary A, its advantage AdvCRA (ℓ) defined by

AdvCRA (ℓ) = Pr[hk
$← HK; (x, x∗)← A(1ℓ, hk) : x ̸= x∗ ∧ fhk(x) = fhk(x

∗)]

is negligible in the security parameter ℓ.

Definition 5.2 (Target Collision Resistant Hash Family). Let {fhk | hk ∈ HK} be a family of hash functions
fhk : X → Y indexed by a hash key hk ∈ HK. Let X ′ ⊂ X . We say that the family is target collision resistant
(TCR) relative to X ′, if for any PPT adversary A, its advantage AdvTCRA (ℓ) defined by

AdvTCRA (ℓ) = Pr[x∗
$← X ′;hk $← HK;x← A(1ℓ, hk, x∗) : x ̸= x∗ ∧ fhk(x) = fhk(x

∗)]

is negligible in the security parameter ℓ. When X ′ = X , we simply say that the family of hash functions is
target collision resistant.

On the other hand, we also introduce a simple but useful technique to improve the efficiency; we can
“compress” the output of the CS projective hash family by using a “smooth” function. The smoothness of a
function defined below is a statistical property that roughly ensures that the “min-entropy” of the output of
the function (for uniformly random input) is sufficiently high, and thus it is information-theoretically hard
to guess the output.5 The definition is as follows.

5Note that this notion is (somewhat similar to but) different from the smoothness of a projective hash family.
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Definition 5.3 (Smooth Function). Let f : X → Y be a hash function. We say that f is ϵ-smooth, if the
quantity Smthf := max

y∈Y
Pr
x

$←X
[f(x) = y] is not larger than ϵ. We say that f is smooth, if it is ϵ-smooth for a

negligible ϵ.

We note that, besides the injective functions (with superpolynomially large domain) which are trivially
smooth, the smoothness is in fact satisfied by several famous cryptographic functions such as OWFs, always
second-preimage resistant (aSec secure) hash functions [38], and KDFs [15]; see Appendix A. Interestingly,
the universal2 property of the CS projective hash family is preserved by hashing its output to be a shorter
element. Intuitively, for the CS projective hash family, the bound of the advantage of adversaries for the
universal2 property is closely related to the parameter for the underlying subset membership problem M,
therefore the bound cannot be freely selected (e.g., the order of the group should be larger than a certain
threshold relevant to the desired security level) since M must be hard. Our proposed technique provides a
way to reduce the output size of the projective hash family, while the too strong bound of the universal2
advantage is increased but is still reasonably strong. It is a bit surprising that this technique can be also
applied to the original Cramer–Shoup scheme, but to the best of our knowledge, it has never explicitly been
stated in the literature. When applying our technique to the Cramer–Shoup scheme, ciphertext length of
the resulting scheme becomes the same as that of the Kurosawa–Desmedt (KD) scheme [32] which is the
best known DDH-based PKE scheme. We should also note that this technique is not applicable to other
similar schemes such as the Cash–Kiltz–Shoup [10], Hanaoka–Kurosawa [24], and Kiltz schemes [30]. This
fact is primarily due to the structure of HPS-based constructions, and thus, it is difficult to apply the above
technique to PKE schemes from other methodology, e.g. [8, 24, 29].

We describe the technique discussed above. For any projective hash family H and any smooth function f
with domain including Π, we define the composition f ◦H to be the projective hash family obtained from H
by taking the composition f ◦Hk for the function Hk, k ∈ K. We will show that, for the case that H is the
CS projective hash family, f ◦H is (information-theoretically or computationally) universal2 provided some
appropriate conditions are satisfied. For the purpose, we require a trapdoor property for the underlying
subset membership problem, formalized as follows.

Definition 5.4 (Trapdoor Subset Membership Problem). We say that a subset membership problem M is
a trapdoor subset membership problem, if it is endowed with an additional trapdoor mode as well as the
ordinary mode, satisfying the followings: (1) In the trapdoor mode, the instance sampling algorithm takes as
input 1ℓ and returns Λ = Λ[X,X ′, L,W,R] ∈ [Iℓ] and a trapdoor element τ , where the distribution of Λ in
the trapdoor mode is identical to that of Λ in the ordinary mode; (2) there exists a PPT algorithm that takes
the trapdoor τ and an element x ∈ X as input and decides whether x ∈ L or not.

We say that a trapdoor subset membership problem M is hard (relative to X ′), if it is hard (relative to
X ′) in the ordinary mode as a subset membership problem.

Based on the definitions above, we give the following result:

Proposition 5.1. Let H be the CS projective hash family constructed as above. Let f : Π → Y be an
ϵ-smooth hash function.

1. If the function Γ is injective, then f ◦H is (|Π|ϵ/p̃)-universal2.

2. If Γ is sampled from a CR hash family, the subset membership problem associated to H is a trap-
door subset membership problem, and |Π|ϵ/p̃ is negligible, then f ◦H is first-adaptive computationally
universal2.

3. If Γ is sampled from a TCR hash family relative to a subset X ′ × E ⊂ X × E, the subset membership
problem associated to H is a trapdoor subset membership problem, and |Π|ϵ/p̃ and |X ′ ∩ L|/|X ′| are
negligible, then f ◦H is first-uniform computationally universal2 relative to X ′ × E.
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Proof. For the first part, let (x, e), (x∗, e∗) ∈ (X \L)×E with (x, e) ̸= (x∗, e∗), let −→s ∈ S, and let y, y∗ ∈ Y.
Then we have

Pr
−→
k

$←K
[f ◦H−→

k
(x, e) = y ∧ f ◦H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ]

=
∑

π∈f−1(y),π∗∈f−1(y∗)

Pr
−→
k

$←K
[H−→

k
(x, e) = π ∧H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ] .

Since Γ is injective, we have Γ(x, e) ̸= Γ(x∗, e∗), therefore Lemma 5.1 implies that the right-hand side of the
last equality is not larger than ∑

π∈f−1(y),π∗∈f−1(y∗)

1

p̃
· Pr
−→
k

$←K
[H−→

k
(x∗, e∗) = π∗ ∧ α(

−→
k ) = −→s ]

=
|f−1(y)|

p̃
· Pr
−→
k

$←K
[f ◦H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ] .

This implies that f ◦H is (maxy∈Y |f−1(y)|/p̃)-universal2. Moreover, we have Smthf = maxy∈Y |f−1(y)|/|Π|,
therefore maxy∈Y |f−1(y)| ≤ |Π|ϵ since f is ϵ-smooth. Hence f ◦H is (|Π|ϵ/p̃)-universal2, as desired.

For the second part of the claim, let A be an adversary for the first-adaptive computationally universal2
game of f ◦ H. Let τ denote the trapdoor element for the subset membership problem associated to H
generated in its trapdoor mode. Then we construct an adversaryA† for the CR property for Γ in the following

manner. The adversary A† first generates the key
−→
k ∈ K uniformly at random, computes −→s = α(

−→
k ),

and then executes the adversary A with input −→s . In the simulation of the first-adaptive computationally
universal2 game, A† emulates the oracle Hash by using the trapdoor element τ (to efficiently decide whether

the query (x, e) is in L×E or not) and the key
−→
k (to compute the reply H−→

k
(x, e) to the query). Similarly,

given an element (x∗, e∗) ∈ X × E submitted by A, A† computes the reply y∗ = f ◦ H−→
k
(x∗, e∗) by using

−→
k . Finally, A† receives an output ((x, e), y) ∈ (X × E) × Y of A, and outputs (x, e) and (x∗, e∗). Now let
T (respectively, T ′) denote the event that Γ(x, e) = Γ(x∗, e∗) (respectively, Γ(x, e) ̸= Γ(x∗, e∗)) and A wins

the first-adaptive computationally universal2 game. Then we have Adv
AComp.Univ2
A (ℓ) = Pr[T ] + Pr[T ′] and

Pr[T ] ≤ AdvCRA†(ℓ). Moreover, the same argument as the previous paragraph based on Lemma 5.1 implies
that

Pr[T ′] = Pr[Γ(x, e) ̸= Γ(x∗, e∗) ∧H−→
k
(x, e) = y | H−→

k
(x∗, e∗) = y∗ ∧ α(

−→
k ) = −→s ] ≤ |Π|ϵ

p̃
,

which is negligible by the assumption. Hence, AdvCRA†(ℓ) is non-negligible provided Adv
AComp.Univ2
A (ℓ) is non-

negligible. This completes the proof of the second part of the claim.
Similarly, for the third part of the claim, let A be an adversary for the first-uniform computationally

universal2 game of f ◦H relative to X ′ ×E. Let τ denote the trapdoor element for the subset membership
problem associated to H generated in its trapdoor mode. Then we construct an adversary A† for the TCR
property for Γ relative to X ′ ×E in the following manner. Given an input (x∗, e∗) ∈ X ′ ×E, the adversary

A† first generates the key
−→
k ∈ K uniformly at random, computes −→s = α(

−→
k ), and then executes the

adversary A with input (x∗, e∗), −→s and y∗ = f ◦H−→
k
(x∗, e∗). Here A† efficiently simulates the first-uniform

computationally universal2 game by using τ and
−→
k in the same manner as the previous paragraph. Finally,

A† receives an output ((x, e), y) ∈ (X×E)×Y of A, and outputs (x, e) and (x∗, e∗). We define the events T
and T ′ in the same manner as in the previous paragraph. Moreover, let T0 and T ′0 denote the same events as
T and T ′, respectively, except that the input (x∗, e∗) for A† is chosen uniformly at random from (X ′ \L)×E
instead of X ′×E. Then we have Adv

UComp.Univ2
A (ℓ) = Pr[T0]+Pr[T ′0]. On the other hand, by the assumption

that |X ′ ∩L|/|X ′| is negligible, it follows that the uniform distributions on X ′×E and on (X ′ \L)×E have
negligible statistical distance, therefore |Pr[T ]−Pr[T0]| is negligible. Moreover, we have Pr[T ] ≤ AdvTCRA† (ℓ),
while the same argument as the previous paragraph implies that Pr[T ′0] ≤ |Π|ϵ/p̃, which is negligible by the

assumption. Hence, AdvTCRA† (ℓ) is non-negligible provided Adv
UComp.Univ2
A (ℓ) is non-negligible. This completes

the proof of Proposition 5.1.
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5.2 Instantiation of KH-PKE from Diverse Group Systems

Here we give an instantiation of our generic construction of KH-PKE schemes proposed in Section 4, based
on a general diverse group system and the corresponding CS projective hash family. Let G = (H, X, L,Π)
be a diverse group system for which the associated subset membership problem is hard. Let p̃ denote the
smallest prime dividing |X/L|. Suppose that ϵ′ := 1/p̃ and ϵ := (ϵ′|Π| − 1)(|Π| − 1)/2 are both negligible.

In the setting, we define the three hash proof systems P, P̂ and P̃ used by our generic construction in the
following manner:

• We set H to be the homomorphic projective hash family constructed from G as mentioned in Section 2,
and set P to be the corresponding hash proof system. Then P is ϵ-smooth by Lemma 2.3 and Lemma
2.2, and ϵ is negligible as above.

• We set Ĥ = H and P̂ = P. Then P̂ is homomorphic and ϵ′-universal1 by Lemma 2.3, and ϵ′ is
negligible as above.

• Let f : Π → Y be an ϵsmth-smooth function, and suppose that ϵ′′ := |Π|ϵsmth/p̃ is negligible. We

put E := Π2, and let Γ: X × E → {0, 1, . . . , p̃ − 1}n be any injective function. We set H̃ to be
the composition of f and the CS projective hash family constructed from the diverse group system
G and the internal function Γ, and set P̃ to be the corresponding hash proof system. Then P̃ is
(information-theoretically) ϵ′′-universal2 by Lemma 2.3 and Proposition 5.1, and ϵ′′ is negligible as
above.

Then the conditions of Theorem 4.1 with Assumption I are satisfied, therefore the resulting instantiation of
our KH-PKE scheme is KH-CCA secure.

For example, we can use any G satisfying that |Π| = |X/L| and it is an exponentially large prime p̃,
and the identity map Π → Π as the smooth function f . Then we have ϵ = 0, ϵ′ = 1/p̃, ϵsmth = 1/|Π| and
ϵ′′ = 1/p̃, therefore all of ϵ, ϵ′ and ϵ′′ are negligible, as desired.

5.3 DDH-Based Instantiation of KH-PKE

From now, we give instantiations of our KH-PKE schemes based on some standard computational assump-
tions. First, we describe the instantiation based on the DDH assumption. We recall the definition of the
DDH assumption.

Definition 5.5 (The Decisional Diffie–Hellman (DDH) Assumption). Let G be a multiplicative cyclic group
of prime order p. We say that the DDH assumption holds in G, if for any PPT algorithm A, the advantage
AdvDDHG,A (ℓ) := |Pr[A(g0, g1, gr0, gr1) = 0]−Pr[A(g0, g1, gr0, gr

′

1 ) = 0]| is negligible, where g0 and g1 are chosen
from G uniformly at random, and r and r′ are chosen from Zp uniformly at random.

In order to construct the DDH-based instantiation, we define a trapdoor subset membership problem M
and a diverse group system G in the following manner. Let G be a cyclic group of prime order p for which
the DDH assumption holds. In particular, 1/p is negligible (since otherwise the DDH assumption is not
satisfied), therefore the uniform distributions on G and on G \ {1} have negligible statistical distance.

• The instance sampling algorithm for M chooses two generators g0, g1 ∈ G \ {1} of G uniformly at
random, sets X := G2, L := {(gi0, gi1) ∈ X | i ∈ Zp} ≃ G which is generated by (g0, g1), W := Zp,
and defines the relation R in such a way that, for (x0, x1) ∈ X and ω ∈ W , we have ((x0, x1), ω) ∈ R
if and only if x0 = gω0 and x1 = gω1 . On the other hand, the subset sampling algorithm first chooses
ω ∈ W uniformly at random, and then outputs (gω0 , g

ω
1 ) ∈ L and the ω ∈ W . The construction of M

satisfies the condition for a hard subset membership problem, where the hardness follows immediately
from the DDH assumption on G.

• In the trapdoor mode for M, the algorithm chooses the g0 and g1 above in such a way that g0 is chosen
first; secondly τ ∈ Zp \ {0} is chosen uniformly at random, which is the trapdoor element; and then g1
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KeyGen(1ℓ) :

hk
$← HK; g0, g1

$← G
k0, k1, k̂0, k̂1, k̃0,0, k̃0,1, k̃1,0, k̃1,1

$← Zp

s← gk0
0 gk1

1 ; ŝ← gk̂0
0 gk̂1

1

s̃0 ← g
k̃0,0

0 g
k̃0,1

1 ; s̃1 ← g
k̃1,0

0 g
k̃1,1

1

pk ← (hk, f, g0, g1, s, ŝ, s̃0, s̃1)

skd ← (k0, k1, k̂0, k̂1, k̃0,0, k̃0,1, k̃1,0, k̃1,1)

skh ← (k̃0,0, k̃0,1, k̃1,0, k̃1,1)
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x0, x1, e, π̂, y)

π̂′ ← xk̂0
0 xk̂1

1

γ ← Γhk(x0, x1, e, π̂)

y′ ← f(x
k̃0,0+γk̃1,0

0 x
k̃0,1+γk̃1,1

1 )
If either π̂ ̸= π̂′ or y ̸= y′ then

return ⊥
π ← xk0

0 xk1
1

Return M ← e/π

Enc(pk,M) (for M ∈M := G) :

ω
$← Zp; x0 ← gω0 ; x1 ← gω1

π ← sω; e←M · π
π̂ ← ŝω

γ ← Γhk(x0, x1, e, π̂)
y ← f((s̃0 · s̃γ1 )ω)
Return C ← (x0, x1, e, π̂, y)

Eval(skh, C1, C2) :
Parse Cb as (xb,0, xb,1, eb, π̂b, yb) for b = 1, 2
γb ← Γhk(xb,0, xb,1, eb, π̂b) for b = 1, 2

y′b ← f(x
k̃0,0+γbk̃1,0

b,0 x
k̃0,1+γbk̃1,1

b,1 ) for b = 1, 2

If either y1 ̸= y′1 or y2 ̸= y′2 then
return ⊥

ω
$← Zp

x0 ← x1,0x2,0g
ω
0 ; x1 ← x1,1x2,1g

ω
1

e← e1e2s
ω; π̂ ← π̂1π̂2ŝ

ω

γ ← Γhk(x0, x1, e, π̂)

y ← f(x
k̃0,0+γk̃1,0

0 x
k̃0,1+γk̃1,1

1 )
Return C ← (x0, x1, e, π̂, y)

Figure 2: DDH-based instantiation of our KH-PKE scheme. Here G is a cyclic group of prime order p satisfying the
DDH assumption; {Γ = Γhk : G4 → {0, 1, . . . , p − 1} | hk ∈ HK} is a TCR hash family; and f : G → Y is a smooth
function.

is defined by g1 := gτ0 . Then, by using τ , it can be efficiently decided whether a given (x0, x1) ∈ X is
in L or not, by checking if x1 = xτ0 . Hence, M is a hard trapdoor subset membership problem.

• To define the corresponding diverse group system G, we set Π := G, and define H to be the set of
homomorphisms Hk0,k1 : X → Π, indexed by (k0, k1) ∈ Z2

p, satisfying that Hk0,k1(x0, x1) := xk00 x
k1
1 for

any (x0, x1) ∈ X. Then G is diverse; indeed, for any (x0, x1) = (gi0, g
j
1) ∈ X, by putting g1 = gτ0 , we

have H−τ,1(x0, x1) = g
(j−i)τ
0 = 1 if and only if j ≡ i mod p, i.e., (x0, x1) ∈ L.

By the construction, we have |X/L| = |Π| = p, therefore the homomorphic hash proof system P = P̂
associated to the M and G is (1/p)-universal1 (by Lemma 2.3) and 0-smooth (by Lemma 2.2). On the other
hand, let Γ = Γhk : X×Π2 → {0, 1, . . . , p− 1} be a function indexed by hk ∈ HK sampled from a TCR hash
family. Let f : Π → Y be an ϵsmth-smooth function, where ϵsmth is negligible. Then, since M is a trapdoor
subset membership problem and the values |Π|ϵsmth/p = ϵsmth and |L|/|X| = 1/p are negligible, Proposition

5.1 implies that the composition (denoted by P̃) of f and the CS hash proof system constructed from the
diverse group system G and the internal function Γ is a first-uniform computationally universal2 hash proof
system.

Now we show that the conditions of Theorem 4.1 with Assumption U (where X ′ = X and Π′ = Π) are
satisfied (note that the last two conditions in Assumption U are now trivial, since X ′ = X). First, since
|L|/|X| = 1/p is negligible, the uniform distributions on X and on X \L have negligible statistical distance,
therefore X \ L is approximately samplable relative to X. Secondly, for the condition for critical integers,
since |X/L| = p, we have o(Λ) = p. On the other hand, we have |X| = p2, therefore any positive integer
that is not coprime to |X| is a multiple of p. This implies that there exist no critical integers, therefore
the condition for critical integers in Assumption U is automatically satisfied. Hence, all the conditions for
Theorem 4.1 with Assumption U are satisfied, therefore the resulting instantiation of our KH-PKE scheme
is KH-CCA secure. We write down the instantiation of the KH-PKE scheme in Figure 2.

Efficiency Comparison In Table 6, we give an efficiency comparison of our DDH-based KH-PKE scheme
with the CS PKE [12], the KD PKE [32], and the naive construction (see Section 1). We note that the latter
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Table 6: Comparison among the Cramer–Shoup (CS) scheme, the Kurosawa–Desmedt (KD) scheme, the KD + CS-
lite (using the double encryption) scheme, and our DDH-based KH-PKE scheme (here |C| − |M | denotes ciphertext
overhead; |g| denotes the size of an element in the underlying group G; exp denotes exponentiation; and we count 1
multi-exp as 1.2 regular exp, and the size of MAC and the output length of f as ℓ and n = n(ℓ), respectively)

|C| − |M | Cost (Enc) Cost (Dec) KH property

CS [12] 3|g| 4.2 exp 2.4 exp No

KD [32] 2|g|+ ℓ 3.2 exp 1.2 exp No

KD+CS-lite Double Enc 5|g|+ ℓ 7.2 exp 3.6 exp No?

Our DDH-based KH-PKE 3|g|+ n 5.4 exp 3.6 exp Yes

three schemes do not possess the keyed-homomorphic property and/or the KH-CCA security. As seen in
Table 6, our scheme is comparably efficient to the best known DDH-based (standard) PKE schemes, i.e. the
CS and the KD schemes, in terms of computational costs. The ciphertext size of our construction is dependent
on how large the output length n of the smooth function f is. However, as analyzed in Appendix A, if we
assume that f is a OWF, an aSec hash function, or a KDF, that is secure against non-uniform adversaries,
then n can be as small as ℓ for ℓ-bit security. In this case, the ciphertext overhead of our scheme is only
ℓ-bit longer than that of the CS scheme for ℓ-bit security.6 Then, for 128-bit security, ciphertext overhead of
our scheme is 896-bit while that of the Cramer–Shoup scheme is 768-bit (assuming that these schemes are
implemented over elliptic curves).

It is somewhat surprising that it is possible to realize KH property with only significantly small additional
cost. Furthermore, comparing with the naive construction (from KD and CS(-lite)) which appears to have
KH property (but does not satisfy KH-CCA security), we see that our scheme is more efficient. This means
that our methodology does not only yield KH property (and KH-CCA security) but also significantly high
efficiency.

5.4 DCR-Based Instantiation of KH-PKE

Here we describe the instantiation of our KH-PKE scheme based on the DCR assumption. First, we recall
the definition of the DCR assumption.

Definition 5.6 (The Decisional Composite Residuosity (DCR) Assumption [37]). Let p, q, p′, q′ be distinct
odd primes with p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are both λ = λ(ℓ) bits in length. Let
N = pq. We say that the DCR assumption holds in Z∗N2 , if for any PPT adversary A, the advantage
AdvDCRN,A (1ℓ) := |Pr[A(g,N) = 0]− Pr[A(gN , N) = 0]| is negligible, where g is a uniformly random element
of Z∗N2 .

In order to construct the DCR-based instantiation, we note the following immediate consequence of the
DCR assumption:

Lemma 5.2. Let p, q, p′, q′ and N = pq be as in the definition of the DCR assumption. If the DCR
assumption holds in Z∗N2 , then |Pr[A(g2, N) = 0]− Pr[A(g2N , N) = 0]| is negligible for any PPT adversary
A, where g is a uniformly random element of Z∗N2 .

We define a trapdoor subset membership problem M and a diverse group system G as follows.

• The instance sampling algorithm for M chooses the primes p, q, p′ and q′ as in the DCR assumption,
puts N := pq, and sets X := {g2 | g ∈ Z∗N2} and L := {g2N | g ∈ Z∗N2}. By the choice of N , we have

6Even if this “non-uniform” security assumption is not justified (and only security against uniform PPT adversaries is
assumed), n can still be as small as at most 2ℓ-bit, which is still smaller than (or in some group equal to) the size of an element
in the group G.See our analysis of smoothness of these cryptographic functions in Appendix A.
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Z∗N2 ≃ Z∗p2 ×Z∗q2 ≃ (Cp×C2×Cp′)× (Cq×C2×Cq′) where Cn denotes the multiplicative cyclic group
of order n, therefore X ≃ Cp ×Cp′ ×Cq ×Cq′ and L ≃ Cp′ ×Cq′ . Let ι denote the isomorphism from
X to Cp×Cp′ ×Cq ×Cq′ . Moreover, X ′ is defined to be the subset of X consisting of elements ι−1(y)
with y = (yp, yp′ , yq, yq′) ∈ Cp×Cp′×Cq×Cq′ satisfying either yp ̸= 1 and yq ̸= 1, or yp = yq = 1. Now
let g∗ be a generator of L, which can be approximately sampled by g∗ = g2N where g ∈ Z∗N2 is chosen
uniformly at random.7 Then the instance sampling algorithm sets W := {1, . . . , ⌊N/4⌋}, and defines
the relation R in such a way that, for (x, i) ∈ X ×W , we have (x, i) ∈ R if and only if x = gi∗. On the
other hand, the subset sampling algorithm first chooses ω ∈W uniformly at random, and then outputs
gω∗ ∈ L together with ω ∈W as the witness.8 Now we have |X| = pqp′q′ and |X ′\L| = (p−1)(q−1)p′q′,
therefore |X ′ \ L|/|X| is overwhelming and the three uniform distributions on X, on X \ L and on
X ′ \L have negligible statistical distances from each other. By this and Lemma 5.2, it follows that the
construction of M satisfies the condition for a hard subset membership problem relative to X ′ provided
the DDH assumption holds in Z∗N2 . Moreover, X ′ \ L is approximately samplable relative to X.

• In the trapdoor mode for M, the algorithm also outputs τ := p′q′ as the trapdoor element. Then, by
using τ , it can be efficiently decided whether a given x ∈ X is in L or not, by checking if xτ = 1.
Hence, M is a hard trapdoor subset membership problem (relative to X ′).

• To define the corresponding diverse group system G, we set Π := X, and define H to be the set of
homomorphisms Hk : X → Π, indexed by k ∈ K := Zpqp′q′ , satisfying that Hk(x) := xk for any x ∈ X.

Then G is diverse; indeed, for any x ∈ X, we have Hp′q′(x) = xp
′q′ = 1 if and only if x ∈ L.

By the construction, we have |X/L| = pq and |Π| = pqp′q′, therefore p̃ = min{p, q}. This implies that,

by setting both P and P̂ to be the homomorphic HPS associated to G, P̂ is (1/p̃)-universal1 by Lemma
2.3, and 1/p̃ is negligible. On the other hand, for the HPS P, we define the subgroup Π′ of Π = X by
Π′ := ι−1(Cp × 1 × Cq × 1). We note that Π′ = {x ∈ X | xN = 1} and it is generated by 1 + N ∈ Z∗N2 ,
therefore a uniformly random element of Π′ can be efficiently chosen (in particular, Π′ is approximately
samplable relative to Π). Now we have the following:

Lemma 5.3. In the setting, P is 0-smooth relative to (X ′,Π′).

Proof. Let k ∈ K and x ∈ X ′ \L. Write k = λ1p
′q′+λ2 with λ1 ∈ {0, 1, . . . , pq−1} and λ2 ∈ {0, 1, . . . , p′q′−

1}, and ι(x) = y = (yp, yp′ , yq, yq′). Then we have yp ̸= 1 and yq ̸= 1 by the definition of X ′ and L. Put
yp,q := (yp, 1, pq, 1) and yp′,q′ := (1, yp′ , 1, yq′). On the other hand, we have s = α(k) = gk∗ = gλ2

∗ since
g∗ ∈ L, therefore λ2 is uniquely determined from s since g∗ is a generator of L. Now we have

yk = yλ1p
′q′yλ2 = yλ1p

′q′

p,q yλ1p
′q′

p′,q′ yλ2 = (yp
′q′

p,q )λ1yλ2 ,

therefore xk = ι−1(yp
′q′

p,q )λ1xλ2 . Since yp ̸= 1 and yq ̸= 1, yp
′q′

p,q is a generator of Cp×1×Cq×1. Hence, when
k is chosen uniformly at random subject to the condition α(k) = s for a given s, λ1 is uniformly random
while λ2 is fixed, therefore xk is the product of the fixed element xλ2 of Π and a uniformly random element
ι−1(yp

′q′

p,q )λ1 of Π′. This implies that P is 0-smooth relative to (X ′,Π′), as desired.

Moreover, let Γ = Γhk : X × Π2 → {0, 1, . . . , p̃ − 1} be a function indexed by hk ∈ HK sampled from a
CR hash family. Let f : Π→ Y be an ϵsmth-smooth function, where ϵsmth satisfies that the value |Π|ϵsmth/p̃ =
pqp′q′ϵsmth/min{p, q} is negligible (for example, f may be an identity mapping Π → Π; then we have
ϵsmth = 1/|Π| and |Π|ϵsmth/p̃ = 1/p̃ is negligible, as desired). Then, since M is a trapdoor subset membership

problem, Proposition 5.1 implies that the composition (denoted by P̃) of f and the CS hash proof system
constructed from the diverse group system G and the internal function Γ is a first-adaptive computationally
universal2 hash proof system.

7The probability that g∗ is not a generator of L is 1 − (1 − 1/p′)(1 − 1/q′) = 1/p′ + 1/q′ − 1/(p′q′), which is negligible
(otherwise, the DCR assumption can be trivially broken since Z∗

N2 is not large enough).
8The distribution of the gω∗ and the uniform distribution on L have statistical distance (⌊N/4⌋− p′q′)(2/(p′q′)− 1/(p′q′)) ≤

(2p′ + 1)(2q′ + 1)/(4p′q′)− 1 = 1/(2p′) + 1/(2q′) + 1/(4p′q′), which is negligible.
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KeyGen(1ℓ) :

hk
$← HK; µ $← Z∗N2 ; g ← µ2N

k, k̂, k̃0, k̃1
$← {1, . . . , ⌊N2/4⌋}

s← gk; ŝ← gk̂; s̃0 ← gk̃0 ; s̃1 ← gk̃1

pk ← (hk, g, s, ŝ, s̃0, s̃1)

skd ← (k, k̂, k̃0, k̃1)

skh ← (k̃0, k̃1)
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x, e, π̂, y)

π̂′ ← xk̂

γ′ ← Γhk(x, e, π̂); y′ ← f(xk̃0+γ′k̃1)
If either π̂ ̸= π̂′ or y ̸= y′ then

return ⊥
π ← xk; M̃ ← e · π−1

Return M ← (M̃ − 1)/N

Enc(pk,M) (for M ∈M := ZN ) :

ω
$← {1, . . . , ⌊N/4⌋}; x← gω

π ← sω; e← (1 +N)M · π
π̂ ← ŝω

γ ← Γhk(x, e, π̂); y ← f((s̃0 · s̃γ1 )ω)
Return C = (x, e, π̂, y)

Eval(skh, C1, C2) :
Parse Cb as (xb, eb, π̂b, yb) for b = 1, 2
γb ← Γhk(xb, eb, π̂b) for b = 1, 2

y′b ← f(xk̃0+γbk̃1) for b = 1, 2
If either y1 ̸= y′1 or y2 ̸= y′2 then

return ⊥
ω

$← {1, . . . , ⌊N2/4⌋}
x← x1x2g

ω; e← e1e2s
ω; π̂ ← π̂1π̂2ŝ

ω

γ ← Γhk(x, e, π̂); y ← f(xk̃0+γk̃1)
Return C ← (x, e, π̂, y)

Figure 3: DCR-based instantiation of our KH-PKE scheme (here N = pq with p = 2p′ + 1 and q = 2q′ + 1 satisfies
that the DCR assumption holds in Z∗N2 ; {Γ = Γhk : X

3 → {0, 1, . . . , p̃ − 1} | hk ∈ HK} is a CR hash family where
X = {g2 | g ∈ Z∗N2} and p̃ = min{p, q}; and f : X → Y is a smooth function)

Summarizing, all the conditions for Theorem 4.1 with Assumption A are satisfied, therefore the resulting
instantiation of our KH-PKE scheme is KH-CCA secure. We write down the instantiation of the KH-
PKE scheme in Figure 3. Here we note that, for the choice of secret keys for the hash proof systems, the
uniform distribution on {1, . . . , pqp′q′} has negligible statistical distance from the uniform distribution on
{1, . . . , ⌊N2/4⌋}. We note also that, the multiplicative group Π′ is isomorphic to the additive group ZN ,
with efficiently computable isomorphism ZN ∋M 7→ (1 +N)M mod N2 ∈ Π′ and its efficiently computable

inverse Π′ ∋ M̃ 7→ (M̃ − 1)/N mod N ∈ ZN . In the instantiation here, we switch the plaintext space from
Π′ to ZN via the isomorphism. As in [14], we implicitly assume that the Dec algorithm checks that x, e, and

π̂ lie in Z∗N2 and M̃ − 1 is a multiple of N .

6 Keyed-Homomorphic Identitiy-Based Encryption

In this section, we give a formal definition of KH-IBE and its concrete construction from the Gentry IBE
scheme. In KH-IBE, one can perform the homomorphic operation to ciphertexts if these ciphertexts are
generated by the same identitiy and one has a homomorphic operation key. As a different point from KH-
PKE, a homomorphic operation key is generated for each identity. Thus, CCA security is guaranteed for
one who does not have the corresponding homomorphic operation key.

6.1 Syntax of KH-IBE

Definition 6.1 (Syntax of KH-IBE for homomorphic operation ⊙). Let M be a message space, ID be an
identitiy space, and ⊙ be a binary operation overM. A KH-IBE scheme KH-IBE = (IBE.Setup, IBE.KeyGen,
IBE.Enc, IBE.Dec, IBE.Eval) consists of the following five algorithms:

IBE.Setup: This algorithm takes a security parameter 1ℓ (ℓ ∈ N) as input, and returns a public parameter
params and a master secret key msk.

IBE.KeyGen: This algorithm takas params, msk, and an identitiy ID ∈ ID as input, and reurns a decryption
key skd,ID and a homomorphic operation key skh,ID.

9

9In this paper, we assume that the IBE.KeyGen algorithm is deterministic as in the definition of the Gentry IBE.
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IBE.Enc: This algorithm takes params, ID, and a message M ∈M as input, and returns a ciphertext C.

IBE.Dec: This algorithm takes params, skd,ID and C as input, and returns M or ⊥.

IBE.Eval: This algorithm takes params, skh,ID and two ciphertexts C1 and C2 as input, and returns a ci-
phertext C or ⊥.

Let ID ∈ ID be an identitiy, params be a public parameter generated by the IBE.Setup, and CID,M
be the set of all ciphertexts of M ∈ M under the public key ID, i.e., CID,M = {C|∃r ∈ {0, 1}∗ s.t. C =
IBE.Enc(params, ID,M ; r)}.

Definition 6.2 (Correctness). A KH-IBE scheme for homomorphic operation ⊙ is said to be correct if for
all (params,msk)← IBE.Setup(1k), (1) for all ID ∈ ID and (skd,ID, skh,ID)← IBE.KeyGen(params,msk, ID),
all M ∈ M, and all C ∈ CID,M , it holds that IBE.Dec(params, skd,ID, C) = M . (2) For all ID ∈ ID and all
(skd,ID, skh,ID)← IBE.KeyGen(params,msk, ID), all M1,M2 ∈ M, all C1 ∈ CID,M1 and C2 ∈ CID,M2 , it holds
that IBE.Eval(params, skh,ID, C1, C2) ∈ CID,M1⊙M2 .

Next, we define the security notion for KH-IBE, which we call indistinguishability of message under
adaptive chosen ciphertext and identitiy attacks (KH-ID-CCA).

Definition 6.3 (KH-ID-CCA). A KH-IBE scheme is said to be KH-ID-CCA secure if for any PPT adversary
A, the advantage

AdvKH-ID-CCA
KH-IBE,A (ℓ) =

∣∣Pr[(params,msk)← IBE.Setup(1k);

(M∗0 ,M
∗
1 , ID

∗, State)← AO(find, params);

β
$← {0, 1}; C∗ ← IBE.Enc(params, ID∗,M∗β);

β′ ← AO(guess, State, C∗) : β = β′]− 1

2

∣∣
is negligible in ℓ, where O consists of the four oracles Eval(·, ·, ·), RevDK(·), RevHK(·), and Dec(·, ·)
defined as follows. Let D be a list which is set as D = {C∗} right after the challenge stage (D is set as ∅ in
the find stage).

• The evaluation oracle Eval(·, ·, ·): This oracle responds to a query (ID, C1, C2) with the result of C =
IBE.Eval(skh,ID, C1, C2). In addition, in the case ID = ID∗, if C ̸= ⊥ and either C1 ∈ D or C2 ∈ D,
then the oracle updates the list by D ← D ∪ {C}.

• The key generation oracle RevDK(·): This oracle responds to a query ID ∈ ID with skd,ID where skd,ID
is the result of (skd,ID, skh,ID) ← IBE.KeyGen(params,msk, ID). A is not alowed to query ID∗ to the
oracle.

• The homomorphic key reveal oracle RevHK(·): This oracle responds to a query ID ∈ ID with skh,ID
where skh,ID is the result of (skd,ID, skh,ID)← IBE.KeyGen(params,msk, ID).

• The decryption oracle Dec(·, ·): For a query (ID, C) and ID = ID∗, this oracle is not available if A
has sent ID∗ to RevHK (i.e, A has obtained skh,ID∗) and A has obtained the challenge ciphertext C∗.
Otherwise, this oracle responds to a query C with the result of IBE.Dec(skd,ID, C) if C ̸∈ D or ID ̸= ID∗,
or returns ⊥ if C ∈ D and ID = ID∗.
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IBE.Setup(1ℓ):

hk
$← HK; g

$← G; hi
$← G for i ∈ [4]

α
$← Zp; g1 ← gα

Return params← (g, g1, h1, h2, h3, h4, hk, f)
and msk ← α

IBE.KeyGen(params,msk, ID):

rID,i
$← Zp for i ∈ [4]

hID,i ← (hig
−rID,i)1/(α−ID) for i ∈ [4]

Return skd,ID = {(rID,i, hID,i)}4i=1

and skh,ID = {(rID,i, hID,i)}4i=3

IBE.Dec(params,C, dkID):
Parse skd,ID as {(rID,i, hID,i)}4i=1

Parse C as (c1, c2, c3, c4, τ)
δ ← Γhk(c1, c2, c3, c4)

c′4 ← e(c1, hID,2)c
rID,2

2

c5 ← e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ

2

If c′4 ̸= c4 or τ ̸= f(c5) then return ⊥
Return M ← c3 · e(c1, hID,1)c

rID,1

2

IBE.Enc(params, ID,M) (for M ∈M := GT ):

s
$← Zp; c1 ← gs1g

−sID; c2 ← e(g, g)s

c3 ←M · e(g, h1)
−s; c4 ← e(g, h2)

s

δ ← Γhk(c1, c2, c3, c4);

c5 ← e(g, h3)
se(g, h4)

sδ; τ ← f(c5)
Return C = (c1, c2, c3, c4, τ)

IBE.Eval(params, skh,ID, C1, C2):
Parse skh,ID as {(rID,i, hID,i)}4i=3

Parse Cb as (cb,1, cb,2, cb,3, cb,4, τb) for b = 1, 2
δb ← fhk(cb,1, cb,2, cb,3, cb,4) for b = 1, 2

cb,5 = e(cb,1, hID,3h
δb
ID,4)c

rID,3+rID,4δb
b,2 for b = 1, 2

If τ1 ̸= f(c1,5) or τ2 ̸= f(c2,5) then return ⊥
s

$← Zp

c1 ← c1,1c2,1 · gs1g−sID; c2 ← c1,2c2,2 · e(g, g)s
c3 ← c1,3c2,3 · e(g, h1)

−s; c4 ← c1,4c2,4 · e(g, h2)
s

δ ← Γhk(c1, c2, c3, c4); c5 ← e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ

2

τ ← f(c5) Return C = (c1, c2, c3, c4, τ)

Figure 4: Our KH-IBE scheme. Here G and GT are groups of prime order p; e : G × G → GT is a bilinear map;
ID := Zp is an identity space;M := GT is a message space; {Γ = Γhk : G4 → {0, 1, . . . , p− 1} | hk ∈ HK} is a TCR
hash family; and f : GT → Y is a smooth function.

6.2 Proposed KH-IBE Scheme

In Figure 4, we give our proposed KH-IBE scheme. Here, (c1, c2, c3, c5) is essencially the same as a ciphertext
of the original (CCA secure) Gentry IBE scheme, and (c1, c2, c3, c4) is its CCA1 secure and homomorphic
variant. As in our KH-PKE schemes, c5 in the ciphertext of our KH-IBE for validity checking upon the
homomorphic operation, and this can be compressed into a smaller value τ due to the smoothness of the
function f .

Our KH-IBE scheme is comparably efficient to the original Gentry IBE, and secure under the truncated
decisional augmented bilinear Diffie-Hellman exponent (truncated decisional ABDHE) assumption as in the
original Gentry IBE, which is defined as follows.

Definition 6.4 (truncated decision q-ABDHE [20]). Let G and GT be cyclic groups with prime order p, where

⟨g⟩ = G, and e : G × G → GT be a bilinear map. Let g′
$← G, α

$← Zp, and Z
$← GT , and set g′i := g′

(αi)

and gi := g(α
i). We say that truncated decision q-ABDHE assumption holds, if for any PPT adversary

A, its advantage AdvABDHE
A (ℓ) defined by AdvABDHE

A (ℓ) := |Pr[A(g′, g′q+2, g, g1, . . . , gq, e(gq+1, g
′)) = 0] −

Pr[A(g′, g′q+2, g, g1, . . . , gq, Z) = 0]| is negligible

Theorem 6.1. Our construction above is KH-ID-CCA-secure, if truncated decision q-ABDHE assumption
holds and Γhk is a TCR hash family. Here, q := qID + 2 and qID is the number of key generation queries.

Before starting the security proof of 6.1, we show that the following property holds as in the KH-PKE case.

We say that a ciphertext C is τ -consistent if τ = f(e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ
2 ).

Lemma 6.1 (Source Ciphertext Hiding Property). Let (params,msk) ← IBE.Setup(1k). For all ID ∈ ID,
let (skd,ID, skh,ID) ← IBE.KeyGen(params,msk, ID), and let C2 = (c2,1, c2,2, c2,3, c2,4, τ2) be any τ -consistent
ciphertext, and assume that ciphertexts C1 = (c1,1, c1,2, c1,3, c1,4, τ1) and C ′1 = (c′1,1, c

′
1,2, c

′
1,3, c

′
1,4, τ

′
1) are

τ -consistent and satisfy the following conditions: for some s ∈ Zp,

c′′1 := c′1,1/c1,1 = gs1g
−sID , c′′2 := c′1,2/c1,2 = e(g, g)s,

c′′3 := c′1,3/c1,3 = e(g, h1)
−s, and c′′4 := c′1,4/c1,4 = e(g, h2)

−s . (2)
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As a remark, c′′1 := c′1,1/c1,1 = gs1g
−sID means C1 and C ′1 are ciphertexts of the same identity ID, and

c′3 := c′1,3/c1,3 = e(g, h1)
−s means C1 and C ′1 are ciphertexts of the same plaintext. Then the outputs of

IBE.Eval(params, skh,ID, C1, C2) and of IBE.Eval(params, skh,ID, C
′
1, C2) also satisfy the condition in (2), and

the distributions of these two outputs of IBE.Eval are identical.

Proof. The first four components of IBE.Eval(params, skh,ID, C1, C2) are of the from c1 := c1,1c2,1 · gs
′

1 g
−s′ID,

c2 := c1,2c2,2 · e(g, g)s
′
, c3 := c1,3c2,3 · e(g, h1)−s

′
, and c4 := c1,4c2,4 · e(g, h2)s

′
with s′

$← Zp, and the

first four components of IBE.Eval(params, skh,ID, C
′
1, C2) are of the from c′1 := c′1,1c2,1 · gs

′′

1 g−s
′′ID, c′2 :=

c′1,2c2,2 · e(g, g)s
′′
, c′3 := c′1,3c2,3 · e(g, h1)−s

′′
, and c′4 := c′1,4c2,4 · e(g, h2)s

′′
with s′′

$← Zp. Now we have

c′1 = c′1,1c2,1 · gs
′′

1 g−s
′′ID = c′′1c1,1c2,1 · gs

′′

1 g−s
′′ID = c′′1c1 · gs

′′−s′
1 g−(s

′′−s′)ID .

where c′′1 := c′1,1/c1,1 = gs1g
−sID. Similarly, do to the homomorphic property, we have

c′2 := c′1,2c2,2 · e(g, g)s
′′
= c′′2c1,2c2,2 · e(g, g)s

′′
= c′′2c2 · e(g, g)s

′′−s′ ,

c′3 := c′1,3c2,3 · e(g, h1)−s
′′
= c′′3c1,3c2,3 · e(g, h1)−s

′′
= c′′3c3 · e(g, h1)−(s

′′−s′),

c′4 := c′1,4c2,4 · e(g, h2)s
′′
= c′′4c1,4c2,4 · e(g, h2)s

′′
= c′′4c4 · e(g, h2)s

′′−s′

Since c′′1 has the form gs1g
−sID for some s ∈ Zp, c′′1g

s′′−s′
1 g−(s

′′−s′)ID also has the same form such as

gs+s
′′−s′

1 g−(s+s
′′−s′)ID. Similarly, c′′2 · e(g, g)s

′′−s′ , c′′3 · e(g, h1)−(s
′′−s′), and c′′4 · e(g, h2)s

′′−s′ have the form

e(g, g)s+s
′′−s′ , e(g, h1)

−(s+s′′−s′), and e(g, h2)
s+s′′−s′ , respectively. Therefore the condition in (2) is satisfied.

Moreover, since s′, s′′
$← Zp, the distributions of (c1, c2, c3, c4) and (c′1, c

′
2, c
′
3, c
′
4) are identical. Hence, the

claim holds.

We start the proof of Theorem 6.1. Basically, this is the same as that of the proof of 4.1, where the proof
is divided as three parts, preliminary part, main part, and concluding part.

Proof of Theorem 6.1. Let A be a PPT adversary against the KH-ID-CCA security of our construction. Our
goal in the proof is to show that the advantage AdvKH-ID-CCA

KH-IBE,A (ℓ) of A is negligible. First note that, since A
is of polynomial time, there exists a polynomial Q(ℓ) with the property that the total number of decryption
queries, key generation queries, and evaluation queries made by A is not larger than Q(ℓ) for any security
parameter ℓ.

Preliminary part of the game-hopping: Let T
(i)
ℓ denote the event that Game i outputs 1.

Game pre-0. Let C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4, τ
∗) be the challenge ciphertext where C∗ ← IBE.Enc(params, ID∗,M∗β).

If A outputs β′ = β, then this game outputs 1, and 0 otherwise. Then, |Pr[T (pre-0)
ℓ ]−1/2| = AdvKH-ID-CCA

KH-IBE,A (ℓ)
holds.

Game pre-1. In comparison to Game pre-0, in guess stage, we introduce another auxiliary dictionary
D′ and modify the rule for the challenger to reply evaluation queries (ID, C ′, C ′′) satisfying that ID = ID∗

and at least one of C ′ and C ′′ is listed in the original dictionary D and the query is not rejected. When
D = (C0, C1, . . . , Cκ) where C0 = C∗ and C1, . . . , Cκ were added to D in this order, D′ is of the form
((D′1, D

′′
1 ), (D

′
2, D

′′
2 ), . . . , (D

′
κ, D

′′
κ)) where each of D′i and D′′i (i ∈ [1, κ]) is either a ciphertext with fifth

component being consistent or an index in {0, 1, . . . , i− 1}. Intuitively, the content of D′ means that Ci was
the reply to the evaluation query (D′i, D

′′
i ) where, if D

′
i or D

′′
i is an index j, then it is interpreted as Cj .

Now, we describe the modified rule for the challenger to reply (κ+ 1)-th evaluation queries (ID, C ′, C ′′)
as above, where D = (C0, C1, . . . , Cκ) and D′ = ((D′1, D

′′
1 ), (D

′
2, D

′′
2 ), . . . , (D

′
κ, D

′′
κ)). We call it the (κ+1)-th

refreshing process in the sequel, and we also call the query (ID, C ′, C ′′) the (κ+1)-th refreshing query.

In the process, the challenger first generates auxiliary ciphertexts C0
(κ+1) = C

∗(κ+1), C1
(κ+1), . . . , Cκ

(κ+1)

as follows:
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• The challenger generates C
∗(κ+1) ← IBE.Enc(params, ID∗,M∗β) instead of using C∗ itself, which we

call the source ciphertext for the refreshing process.

• For each i = 1, 2, . . . , κ, the challenger generates Ci
(κ+1) by using the algorithm IBE.Eval, where its

third (respectively, fourth) input is D′i (respectively D
′′
i ) if D′i (respectively D

′′
i ) is a ciphertext (i.e.,

not an index), and it is Cj
(κ+1) if D′i (respectively D

′′
i ) is an index j ∈ {0, 1, . . . , i− 1}.

Secondly, the challenger sets D′κ+1 := C ′ if C ′ ̸∈ D, and D′κ+1 := i if C ′ ∈ D and i is the smallest index
satisfying C ′ = Ci ∈ D. The challenger also determines D′′κ+1 similarly by using C ′′ instead of C ′. Thirdly,
the challenger generates Cκ+1 by using the algorithm IBE.Eval, where its third (respectively, fourth) input is
D′κ+1 (respectively, D

′′
κ+1) if D

′
κ+1 (respectively, D

′′
κ+1) is a ciphertext, and it is Ci

(κ+1) if D′κ+1 (respectively,
D′′κ+1) is an index i ∈ {0, 1, . . . , κ}. Finally, the challenger adds Cκ+1 to D, adds (D′κ+1, D

′′
κ+1) to D′, and

gives Cκ+1 to the adversary as the reply to the evaluation query.

By the source ciphertext hiding property, the distributions of C
(κ+1)

1 , . . . , C
(κ+1)

κ are identical to those
of C1, . . . , Cκ. Therefore, by the source ciphertext hiding property again, the distribution of Cκ+1 in the
modified rule is identical to that of Cκ+1 in the original rule. This implies that the distribution of the

adversary’s view is identical in the two cases, therefore we have Pr[T
(pre-1)
ℓ ] = Pr[T

(pre-0)
ℓ ].

Main part of the game-hopping: From now, we proceed the game-hopping to remove the information
on β from the source ciphertexts one by one. The process is performed by the following sequence of Games
0, 1, . . . , Q(ℓ), where Game 0 is identical to Game pre-1:

Game κ (1 ≤ κ ≤ Q(ℓ)). In Game κ, a random message M ∈ GT is used for the κ′-th evaluation query
instead of usingM∗β , where 1 ≤ κ′ ≤ κ. From now on, we construct an algorithm B that solves the truncated
decision q-ABDHE problem by using whether A can distinguish β or not, where q = Q(ℓ).

Lemma 6.2. There exist PPT algorithms B1 and B2 which satisfy Pr[T
(κ)
ℓ ]−Pr[T

(κ−1)
ℓ ] ≤ 2(AdvABDHE

B1
(ℓ)+

AdvTCRB2
(ℓ) + ϵSmth +Q(ℓ)/p).

Let define the following subGames from κ.0 to κ.2. We say that a ciphertext is irregular, if c2 ̸=
e(c1, g)

1/(α−ID), and regular otherwise.

Game κ.0 Same as Game κ.
Game κ.1 If an irregular ciphertext which is not contained in D is queried to the decryption oracle or the

evaluation oracle, then reject this query. Let C̄∗
(κ)

be an irregular source ciphertext of a random plaintext.

Claim 6.1. There exist PPT algorithms B1 and B2 that satisfy Pr[T
(κ.0)
ℓ ] − Pr[T

(κ.1)
ℓ ] ≤ AdvABDHE

B1
(ℓ) +

AdvTCRB2
(ℓ) + ϵSmth +Q(ℓ)/p.

Proof. Let (g′, g′q+2, g, g1, . . . , gq, Z) be an instance of the truncated decision q-ABDHE problem where q =

Q(ℓ). B1 chooses a random polynomial fi(x) ∈ Zp[x] of degree q and sets hi = gfi(α) (i = 1, 2, 3, 4). Here,
hi can be computed by the instance. We assume that ID ̸= α, otherwise, B1 directly solves the q-ABDHE
problem. For ID ̸= α, set Fi,ID(x) := (fi(x) − fi(ID))/(x − ID) and (rID,i, hID,i) := (fi(ID), g

Fi,ID(α)). Then
gFi,ID(α) = g(fi(α)−fi(ID))/(α−ID) = (hig

−fi(ID))1/(α−ID) hold. Since fi(x) is randomly chosen, the distribution
of dkID = {(rID,i, hID,i)}4i=1 is identical to that in the actual construction. For ID∗ ̸= α (if not, B1 directly
solves the q-ABDHE problem), B1 generates {(rID∗,i, hID∗,i)}i=1,2,3,4 as in the above. Let f̄(x) = xq+2, define
a monic polynomial F̄ID∗(x) := (f̄(x)− f̄(ID∗))/(x− ID∗) of (at most) q+1 degree, and set F̄ID∗,i as the i-th

coefficient of F̄ID∗ (i ∈ [0, q]). Compute the source ciphertext C̄∗
(κ)

= (c∗1, c
∗
2, c
∗
3, c
∗
4, τ
∗) as follows:

c∗1 := g′q+2 · g′
−ID∗q+2

, c∗2 := Z · e(g′,
q∏
i=0

gF̄ID∗ ,i
i ), c∗3 :=M∗β/e(c

∗
1, hID∗,1)c

∗
2
rID∗,1

c∗4 := e(c∗1, hID∗,2)c
∗
2
rID∗,2 , c∗5 := e(c∗1, hID∗,3h

δ∗

ID∗,4)c
∗
2
rID∗,3+rID∗,4δ

∗
, and τ∗ := f(c∗5)
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where δ∗ := Γhk(c
∗
1, c
∗
2, c
∗
3, c
∗
4). Here, c∗1 = g′q+2 · g′

−ID∗q+2

= g′
f̄(α)−f̄(ID∗)

= g(logg g
′)F̄ID∗ (α)(α−ID∗) hold since

f̄(α)− f̄(ID∗) = F̄ID∗(α)(α − ID∗). Set s∗ = (logg g
′)F̄ID∗(α), and then c∗1 = gs

∗(α−ID∗) = gs
∗

1 · g−s
∗·ID∗

. For
the bit β′ output by A, B1 outputs 1 (Z = e(g′, gq+1)) if β

′ = β, and 0, otherwise.

Next, we show that C̄∗
(κ)

is a regular ciphertext of M∗β as follows. Since

c∗2 = Z · e(g′,
q∏
i=0

gF̄ID∗ ,i
i ) = e(g′, gq+1) · e(g′,

q∏
i=0

gF̄ID∗ ,i
i )

= e(g, g)(logg g
′)αq+1

e(g′,

q∏
i=0

gF̄ID∗ ,i·αi

)

= e(g, g)(logg g
′)F̄ID∗ (α) = e(g, g)s

∗

hold,

c∗3/M
∗
β = e(c∗1, hID∗,1)c

∗
2
rID∗,1 = e(gs

∗(α−ID∗), (h1g
−rID∗,1)1/(α−ID

∗))e(g, g)s
∗rID∗,1 = e(g, h1)

s∗ ,

c∗4 = e(c∗1, hID∗,2)c
∗
2
rID∗,2 = e(g, h2)

s∗ , and c∗5 = e(c∗1, hID∗,3h
δ∗

ID∗,4)c
∗
2
rID∗,3+rID∗,4δ

∗
= e(g, h3)

s∗e(g, h4)
s∗δ∗

hold. Therefore, C̄∗
(κ)

is a regular ciphertext of M∗β .
Next, we evaluate information obtained from public keys and queries. Frist, we confirm that a cipher-

text with c2 = e(c1, g)
1/(α−ID) always passes the validation process in the decryption algorithm under a

legitimately generated dkID as follows. For i = 2, 3, 4,

e(c1, hID,i)c
rID,i

2 = e(c1, (hig
−rID,i)1/(α−ID))c

rID,i

2

= e(c1, hi)
1/(α−ID){e(c1, g)1/(α−ID)}−rID,ic

rID,i

2

= e(c1, hi)
1/(α−ID)c

−rID,i

2 c
rID,i

2

= e(c1, hi)
1/(α−ID)

= e(gs(α−ID), hi)
1/(α−ID)

= e(g, hi)
s

hold. Therefore c4 = e(c1, hID,2)c
rID,2

2 and c5 = e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ
2 hold.

Next, we show that the decryption oracle rejects a ciphertext with overwhelming probability if c2 ̸=
e(c1, g)

1/(α−ID) holds. Let a1 = logg c1, a2 = loge(g,g) c2, a4 = loge(g,g) c4, and a5 = loge(g,g) c5, where

δ = Γhk(c1, c2, c3, c4). If c4 = e(c1, hID,2)c
rID,2

2 and c5 = e(c1, hID,3h
δ
ID,4)c

rID,3+rID,4δ
2 hold, then

a4 = a1 logg hID,2 + a2rID,2

a5 = a1(logg hID,3 + δ logg hID,4) + a2(rID,3 + δrID,4)

hold. We evaluate the probability that A can produce such c4 and c5 as follows. Here, A knows the relations
logg hi = (α− ID) logg hID,i+rID,i (i = 1, 2, 3, 4) from dkID = {(rID,i, hID,i)}4i=1. Then, we obtain the following
relations:

a4 =(a1/(α− ID)) logg h2 + (a2 − a1/(α− ID))rID,2

a5 =(a1/(α− ID))(logg h3 + δ logg h4) + (a2 − a1/(α− ID))(rID,3 + δrID,4)
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Here, remark that z := a2 − a1/(α − ID) ̸= 0 holds since c2 ̸= e(c1, g)
1/(α−ID). Let fi,j be the coefficient of

xj in fi(x), and xk be the k-th identity queried by A to the key generation oracle, and xq−1 = α. Then,
define the matrix V by the (q + 1)× (q − 1) Vandermonde matrix Mv as:

V :=

 Mv 0 0
0 Mv 0
0 0 Mv

 where Mv :=


1 1 · · · 1
x1 x2 · · · xq−1
...

...
...

...
xq1 xq2 · · · xqq−1


and then its columns are linearly independent. Let f = [f2,0, f2,1, . . . , f2,q, f3,0, f3,1, . . . , f3,q, f4,0, f4,1, . . . , f4,q]
be a 3(q + 1)-degree vector, and evaluate f · V . From the viewpoint of A, the solution space for f is six-
dimensional since V has six more rows than columns. Let γID = (1, ID, ID2, . . . , IDq) Then, we obtain

a4 =“public” terms + z(f · γID||0||0)
a5 =“public” terms + z(f · 0||γID||δγID)

where 0 := (0, . . . , 0) be the (q+1)-degree zero vector. We remark that the decryption oracle checks both c4
and c5 whereas the evauation oracle checks c5 only, and therefore acccessing the evauation oracle is better
strategy from the viewpoint of A. Actualy, γID||0||0 is in the linear span of V , then potentially A could
use knowledge gained from its key generation queries to compute a4. In the following, we assume that A
can produce a ciphertext that passes the validation process using c4. Then, we define a marix V ′ (whose
columns are linearly independent) as

V ′ :=

[
Mv 0
0 Mv

]
Then, for 2(q + 1)-degree vector f ′ = [f3,0, f3,1, . . . , f3,q, f4,0, f4,1, . . . , f4,q], we evaluate f ′ · V ′. From the
viewpoint of A, the solution space for f ′ is four-dimensional since V ′ has six more rows than columns. Then,
we obtain

a5 =“public” terms + z(f ′ · γID||δγID)

and γID||δγID is not in the linear span of V ′. Therefore, for the total number of decryption/evaluation queries
Q(ℓ), the decryption oracle rejects a ciphertext with overwhelming probability 1−Q(ℓ)/p.

Next, we evaluate the case that Z is random. Then, c∗1 and c∗2 are uniformly random and independent.
That is, c∗2 ̸= e(c∗1, g)

1/(α−ID∗) holds with the probability 1− 1/p. Then,

c∗3/M
∗
β = e(c∗1, hID∗,1)c

∗
2
rID∗,1 = e(c∗1, (h1g

−rID∗ )1/(α−ID
∗))c∗2

rID∗,1 = e(c∗1, h1)
1/(α−ID∗)(c∗2/e(c

∗
1, g)

1/(α−ID∗))rID∗,1

hold. Moreover, since c∗2/e(c
∗
1, g)

1/(α−ID∗) ̸= 1 and rID∗,1 is uniformly random, c∗3/M
∗
β is distributed uniformly

at random. Therefore, no information of the challenge bit β is revealed from (c∗1, c
∗
2, c
∗
3) as in the CPA security

of the original Gentry IBE scheme.
Next, we show that the A’s advantage of guessing β is at most Q(ℓ)/p if the decryption oracle rejects

all ciphertexts with c2 ̸= e(c1, g)
1/(α−ID) and are not contained in D as follows. For the challenge ciphertext

C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4, τ
∗ = f(c∗5)), let a1 = logg c

∗
1, a2 = loge(g,g) c

∗
2, a4 = loge(g,g) c

∗
4, and a5 = loge(g,g) c

∗
5,

where δ = Γhk(c
∗
1, c
∗
2, c
∗
3, c
∗
4). Here a1 and a2 are uniformly random and independent over Zp since Z is

random. As in the previous discussion, A can obtain the relations
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log(M∗β/c
∗
3) = (a1/(α− ID∗)) logg h1 + (a2 − a1/(α− ID∗))rID∗,1

a4 = (a1/(α− ID∗)) logg h2 + (a2 − a1/(α− ID∗))rID∗,2

a5 = (a1/(α− ID∗))(logg h3 + δ logg h4) + (a2 − a1/(α− ID∗))(rID∗,3 + δrID∗,4)

from the source ciphertext C̄∗
(κ)

. If all irregular ciphertexts that are not contained in D are rejected, then
no information of rID∗,1 is revealed. Moreover, key generation queries and homomorphic key reveal queries
do not contain rID∗,1. Therefore, the challenge bit β is independent to c∗3 from the viewpoint of A.

Next, we show that the decryption oracle rejecs a ciphertext with c2 ̸= e(c1, g)
1/(α−ID) with the prbability

1−Q(ℓ)/p. Let (c1, c2, c3, c4, τ = f(c5), ID) ̸= (c∗1, c
∗
2, c
∗
3, c
∗
4, τ
∗ = f(c∗5), ID

∗) be a query of A.

1. (c1, c2, c3, c4) = (c∗1, c
∗
2, c
∗
3, c
∗
4): Then, δ = δ∗ holds where δ = Γhk(c1, c2, c3, c4) and δ

∗ = Γhk(c
∗
1, c
∗
2, c
∗
3, c
∗
4).

• If ID = ID∗, then c5 ̸= c∗5 must be hold. However, the probability that τ∗ = f(c5) is at most ϵSmth

due to the smoothness of f . Therefore, the query is rejected with overwhelming probability.

• If ID ̸= ID∗, then A needs to produce c5 = e(g, g)a5 which satisfies a5 = “public” terms + z(f ′ ·
γID||δγID). However, A cannot generate such a c5 except with probability 1/(p− i+1) when it is
the i-th query since the vector γID||δγID is linearly independent to γID∗ ||δ∗γID∗ and the columns
of V .

2. (c1, c2, c3, c4) ̸= (c∗1, c
∗
2, c
∗
3, c
∗
4) and Γhk(c1, c2, c3, c4) = Γhk(c

∗
1, c
∗
2, c
∗
3, c
∗
4): This case contradicts that Γhk

is TCR. We remark that for c∗4 = e(c∗1, h2)
1/(α−ID∗)(c∗2/e(c

∗
1, g)

1/(α−ID∗))rID∗,2 , c∗2/e(c
∗
1, g)

1/(α−ID∗) ̸= 1
holds since Z is random. Moreover, since rID∗,2 is random, (c∗1, c

∗
2, c
∗
3, c
∗
4) is also random over the domain

of the hash function.

3. (c1, c2, c3, c4) ̸= (c∗1, c
∗
2, c
∗
3, c
∗
4) and Γhk(c1, c2, c3, c4) ̸= Γhk(c

∗
1, c
∗
2, c
∗
3, c
∗
4): As in the case 1, the query is

rejected except with probability 1/(p− i+ 1) when it is the i-th query.

From the above discussion, if Z = e(g′, gq+1) then the source ciphertext is legitimately generated whereas
if Z is random then the source ciphertext is irregular. Therefore, truncated decision q-ABDHE problem can
be solved by using whether A can guess the challenge bit or not.

Game κ.2 In addition to Game κ.1, replace the source ciphertext C̄∗
(κ+1)

as regular. Game κ.2 is the same
as Game κ+ 1.

The following claim can be proved as in Claim 6.1 with the exception that the source ciphertext is computed
such that c∗3/M = e(c∗1, hID∗,1)c

∗
2
rID∗,1 whereM is a random plaintext. This concludes the proof of Lemma 6.2.

Claim 6.2. Pr[T
(κ.1)
ℓ ]− Pr[T

(κ.2)
ℓ ] ≤ AdvABDHE

A (ℓ) +AdvTCRA (ℓ) + ϵSmth +Q(ℓ)/p

Concluding part of the game-hopping: Currently, no information of the challenge bit β is contained in
ciphertexts contained in D. In this concluding part, finally, information of β is removed from the challenge
ciphertext.

Game con-0. Same as Game Q(ℓ).

Game con-1. In addition of Game con-0, the decryption oracle and the evaluation oracle reject all irregular
ciphertexts except that the challenge ciphertext is queried to the evaluation oracle. Replace the challenge
ciphertext C∗ to be irregular andM∗β to be a random plaintext. The follwing claim is proved as in Lemma 6.2
with the exception that C∗ is generated by the q-ABDHE instance instead of using the source ciphertext.

Claim 6.3. There exist PPT algorithms that satisfy Pr[T
(con-0)
ℓ ]− Pr[T

(con-1)
ℓ ] ≤ AdvABDHE

B1
(ℓ) +AdvTCRB2

(ℓ)
+ ϵSmth +Q(ℓ)/p.

This concludes the proof of Theorem 6.1.
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A Smoothness of Cryptographic Functions

In this section, we show that natural cryptographic functions, a one-way function (OWF), an always second-
preimage resistant (aSec secure) hash function [38], and a key derivation function (KDF) [15], are smooth
in the sense of Definition 5.3.

Interestingly, although the amount of smoothness, Smthf , is always negligible, its “tightness” is different
depending on whether the function f is secure against uniform adversaries or against non-uniform adver-
saries.10 More specifically, for each cryptographic function f considered here, we show that the smoothness
of f is (essentially) upperbounded by the square root of the advantage of some (uniform) PPT adversary A
attacking the security of the function f . We also show that the smoothness of f is (essentially) upperbounded
by the advantage of some non-uniform PPT adversary Anu. These results suggest that if we can assume the
security of these cryptographic functions against non-uniform adversaries, then the output length can be as
small as ℓ-bit for ℓ-bit security, because the smoothness of the functions are “tightly” upperbounded by the
advantage of “non-uniform” adversaries attacking the security of the cryptographic functions Furthermore,
even if this “non-uniform” security assumption is not justified (and instead only security against uniform
adversaries is assumed), the output length the function can still be as small as at most 2ℓ-bit, because the
main term that contribute to the smoothness is the square root of the advantage of an adversary attacking
the security of the cryptographic functions (against uniform PPT adversaries).

In practice, for example, (an appropriate modification of) cryptographic hash functions such as SHA-
series, can be assumed to be the cryptographic functions (secure against non-uniform adversaries) considered
here.

Some Notation: To show the smoothness of each cryptographic function, it is useful to introduce the
following notation. Let f : Xℓ → {0, 1}ℓ be a function. For each ℓ ∈ N, let ymax

ℓ ∈ {0, 1}ℓ be the lexicograph-
ically smallest string11 such that Pr

x
$←Xℓ

[f(x) = ymax
ℓ ] ≥ Pr

x
$←Xℓ

[f(x) = y] holds for any y ∈ {0, 1}ℓ. Then,
by definition, we have Smthf = maxy∈{0,1}ℓ Prx $←Xℓ

[f(x) = y] = Pr
x

$←Xℓ

[f(x) = ymax
ℓ ]. Next, for each ℓ ∈ N,

we define xmax
ℓ ∈ Xℓ to be the lexicographically smallest string in the set {x ∈ Xℓ|f(x) = ymax

ℓ }. Note that
ymax
ℓ ∈ {0, 1}ℓ and xmax

ℓ ∈ Xℓ are uniquely determined for each ℓ ∈ N.

10Recall that a non-uniform algorithm is an algorithm that takes as an advice string (which is dependent only on the input
length) as an additional input. The class of non-uniform PPT algorithms is equivalent to the class of polynomial-sized circuit
families.

11In general, there could be multiple strings y ∈ {0, 1}ℓ that maximize the probability Pr
x

$←Xℓ

[f(x) = y]. Choosing the

lexicographically smallest one is to canonically specify one of such strings.
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For the function f , it is also useful to note the following properties about the probability of “collision”
for random inputs:

Pr
x

$←Xℓ

[f(x) = ymax
ℓ ] = Smthf and Pr

x,x′ $←Xℓ

[f(x) = f(x′)] ≥ (Smthf )
2, (3)

where the former is by definition, and the latter is obtained as follows:

Pr
x,x′ $←Xℓ

[f(x) = f(x′)] ≥ Pr
x,x′ $←Xℓ

[f(x) = ymax
ℓ ∧ f(x) = ymax

ℓ ]

= ( Pr
x

$←Xℓ

[f(x) = ymax
ℓ ])2 = (Smthf )

2

A.1 One-Way Function

Definition A.1 (One-Way Function (OWF)). Let f : Xℓ → {0, 1}ℓ be a function, where n = n(ℓ) :=
log2 |Xℓ| ∈ ω(log2 ℓ). We say that f is a one-way function (OWF) if (1) f is efficiently computable in terms
of the security parameter ℓ (and thus n is some polynomial of ℓ), (2) we can efficiently sample an element
uniformly at random from the domain Xℓ, and (3) AdvOWF

A (ℓ) := Pr
x

$←Xℓ

[x′ ← A(1ℓ, f(x)) : f(x′) = f(x)] is

negligible for any PPT algorithm A.
Furthermore, we say that f is a OWF against non-uniform adversaries if the condition (3) is replaced

with “AdvOWF
Anu

(ℓ) is negligible for any non-uniform PPT algorithms Anu.”

Lemma A.1. If f is a OWF as defined in Definition A.1, then f is smooth. Specifically, there exists a PPT
algorithm A such that

Smthf ≤
√
AdvOWF

A (ℓ).

Furthermore, there exists a non-uniform PPT algorithm Anu such that

Smthf = AdvOWF
Anu

(ℓ).

Proof. We first show the existence of the uniform PPT adversary A against the one-wayness of f . Consider
the algorithm A that takes 1ℓ and y = f(x) (where x ∈ Xℓ is chosen uniformly at random) as input, picks
x′ ∈ Xℓ uniformly at random, and terminates with output this x′. Note that A is a (uniform) PPT algorithm,
and its one-wayness advantage is as follows:

AdvOWF
A (ℓ) = Pr

x,x′←Xℓ

[f(x) = f(x′)] ≥ (Smthf )
2

where in the last step we use the inequation (3). Therefore, we have Smthf ≤
√
AdvOWF

A (ℓ), as required.

We next show the existence of the non-uniform adversary Anu against the one-wayness of f . Consider
the non-uniform PPT algorithm Anu that has xmax

ℓ as an advice (i.e. xmax
ℓ is hard-wired inside Anu for each

security parameter ℓ ∈ N), takes 1ℓ and y = f(x) as input (where x ∈ Xℓ is chosen uniformly at random),
and terminates with output the string xmax

ℓ . Clearly Anu is PPT, and its one-wayness advantage is:

AdvOWF
Anu

(ℓ) = Pr
x

$←Xℓ

[f(x) = f(xmax
ℓ )] = Pr

x
$←Xℓ

[f(x) = ymax
ℓ ] = Smthf ,

as required.
This completes the proof of Lemma A.1.
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A.2 Always Second-Preimage Resistant Hash Functions

Definition A.2 (Always Second-Preimage Resistant (aSec) Hash Functions [38]). Let H : Xℓ → {0, 1}ℓ be
a function, where n = n(ℓ) := log2 |Xℓ| ∈ ω(log2 ℓ). We say that H is an always second-preimage resistant
(aSec secure) hash function if (1) H is efficiently computable in terms of the security parameter ℓ (and thus
n is some polynomial of ℓ), (2) we can efficiently sample an element uniformly at random from the domain
Xℓ, (3) AdvaSecA (ℓ) := Pr

x
$←Xℓ

[x′ ← A(1ℓ, x) : H(x′) = H(x) ∧ x′ ̸= x] is negligible for any PPT algorithm A.
Furthermore, we say that H is an aSec secure hash function against non-uniform adversaries if the

condition (3) is replaced with “AdvaSecA (ℓ) is negligible for any non-uniform PPT algorithm.”

We remark that an aSec secure hash function is (close to but) different from the notion of universal one
way hash function (UOWHF) [5]. UOWHF is a family of hash functions (or a keyed hash function), and in
the security experiment, an adversary is allowed to choose the first message x for which the adversary has
to find a collision, but is required to find a colliding input x′ under a randomly chosen key hk.

Lemma A.2. If H is an aSec secure hash function as defined in Definition A.2, then H is smooth. Specifically,
there exists a PPT algorithm A such that

SmthH ≤
√
AdvaSecA (ℓ) + |Xℓ|−1.

Furthermore, there exists a non-uniform PPT algorithm Anu such that

SmthH = AdvaSecAnu
(ℓ) + |Xℓ|−1.

Proof. The proof proceeds very similarly to that of Lemma A.1. First, we show the existence of the uniform
PPT adversary A against the aSec security of H. Consider the algorithm A that takes 1ℓ and x (for a
uniformly chosen value x ∈ Xℓ) as input, picks x′ ∈ Xℓ uniformly at random, and terminates with output
this x′. Note that A is trivially a (uniform) PPT algorithm, and its advantage against aSec security of H is
as follows:

AdvaSecA (ℓ) = Pr
x,x′ $←Xℓ

[H(x) = H(x′) ∧ x ̸= x′]

= Pr
x,x′ $←Xℓ

[H(x) = H(x′)]− Pr
x,x′ $←Xℓ

[x = x′]

≥ (SmthH)
2 − |Xℓ|−1

Therefore, we have SmthH ≤
√
AdvaSecA (ℓ) + |Xℓ|−1, as required.

We next show the existence of the non-uniform adversary Anu against the aSec security of H. Consider
the non-uniform PPT algorithm Anu that has xmax

ℓ ∈ Xℓ as an advice (i.e. xmax
ℓ is hard-wired inside Anu

for each security parameter ℓ ∈ N), takes 1ℓ and x as input (where x is chosen uniformly at random), and
terminates with output the string xmax

ℓ . Clearly Anu is PPT, and its advantage is:

AdvaSecAnu
(ℓ) = Pr

x
$←Xℓ

[H(x) = H(xmax
ℓ ) ∧ x ̸= xmax

ℓ ]

= Pr
x

$←Xℓ

[H(x) = ymax
ℓ ]− Pr

x
$←Xℓ

[x = xmax
ℓ ]

= SmthH − |Xℓ|−1,

Therefore, we have SmthH = AdvaSecAnu
(ℓ) + |Xℓ|−1, as required.

This completes the proof of Lemma A.2.
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A.3 Key Derivation Function

Definition A.3 (Key Derivation Function (KDF) [15]). Let KDF : Xℓ → {0, 1}ℓ be a function, where
n = n(ℓ) := log2 |Xℓ| ∈ ω(log2 ℓ). We say that KDF is a secure key derivation function (KDF) if (1)
KDF is efficiently computable in terms of the security parameter ℓ (and thus n is some polynomial of ℓ),
(2) We can efficiently sample an element uniformly at random from the domain Xℓ, and (3) AdvKDF

A (ℓ) :=
|Pr

x
$←∆

[A(1ℓ,KDF(x)) = 1]− Pr
y

$←{0,1}ℓ
[A(1ℓ, y) = 1]| is negligible for any PPT algorithm A.

Furthermore, we say that KDF is a secure KDF against non-uniform adversaries if AdvKDF
Anu

(ℓ) is negligible
for any non-uniform algorithm Anu.

Lemma A.3. If KDF be a secure key derivation function as defined in Definition A.3, then KDF is smooth.
Specifically, there exists a uniform PPT algorithm A such that

SmthKDF ≤
√
AdvKDF

A (ℓ) + 2−ℓ.

Furthermore, there exists a non-uniform PPT algorithm Anu such that

SmthKDF = AdvKDF
Anu

(ℓ) + 2−ℓ.

Proof. We first show the existence of the uniform PPT adversary A against the security of KDF. Consider
the algorithm A that takes 1ℓ and y ∈ {0, 1}ℓ as input, picks x′ ∈ Xℓ uniformly at random, and returns 1 if
G(x′) = y or returns 0 otherwise. Note that A is clearly PPT, and its advantage is as follows:

AdvKDF
A (ℓ) = | Pr

x
$←Xℓ

[A(1ℓ,KDF(x)) = 1]− Pr
y

$←{0,1}ℓ
[A(1ℓ, y) = 1]|

= | Pr
x,x′ $←Xℓ

[KDF(x) = KDF(x′)]− Pr
y

$←{0,1}ℓ,x′ $←Xℓ

[y = KDF(x′)]|

≥ (SmthKDF)
2 − 2−ℓ,

where in the last inequality we use the inequality (3) and the fact that y is chosen uniformly at random from

{0, 1}ℓ. Therefore, we have SmthKDF ≤
√
AdvKDF

A (ℓ) + 2−ℓ, as required.

Next, we show the existence of the non-uniform PPT adversary Anu against the security of KDF. Consider
the algorithm Anu that has ymax

ℓ ∈ {0, 1}ℓ as an advice (i.e. ymax
ℓ is hard-wired inside Anu for each ℓ ∈ N),

takes 1ℓ and y ∈ {0, 1}ℓ as input, and returns 1 if y = ymax
ℓ or returns 0 otherwise. Note that Anu is clearly

PPT, and its advantage is as follows:

AdvKDF
Anu

(ℓ) = | Pr
x

$←Xℓ

[Anu(1
ℓ,KDF(x)) = 1]− Pr

y
$←{0,1}ℓ

[Anu(1
ℓ, y) = 1]|

= | Pr
x

$←Xℓ

[KDF(x) = ymax
ℓ ]− Pr

y
$←{0,1}ℓ

[y = ymax
ℓ ]|

= SmthKDF − 2−ℓ.

Therefore, we have SmthKDF = AdvKDF
Anu

(ℓ) + 2−ℓ, as required.
This completes the proof of Lemma A.3.
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