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Abstract. When outsourcing large sets of data to the cloud, it is desirable for clients to
efficiently check, whether all outsourced data is still retrievable at any later point in time
without requiring to download all of it. Provable data possession (PDP)/proofs of retrievability
(PoR), for which various constructions exist, are concepts to solve this issue. Interestingly, by
now, no PDP/PoR scheme leading to an efficient construction supporting both private and
public verifiability simultaneously is known. In particular, this means that up to now all
PDP/PoR schemes either allow public or private verifiability exclusively, since different setup
procedures and metadata sets are required. However, supporting both variants simultaneously
seems interesting, as publicly verifiable schemes are far less efficient than privately verifiable
ones. In this paper, we propose the first simultaneous privately and publicly verifiable (robust)
PDP protocol, which allows the data owner to use the more efficient private verification and
anyone else to run the public verification algorithm. Our construction, which is based on
elliptic curves, achieves this, as it uses the same setup procedure and the same metadata
set for private and public verifiability. We provide a rigorous security analysis and prove
our construction secure in the random oracle model under the assumption that the elliptic
curve discrete logarithm problem is intractable. We give detailed comparisons with the most
efficient existing approaches for either private or public verifiability with our proposed scheme
in terms of storage and communication overhead, as well as computational effort for the
client and the server. Our analysis shows that for choices of parameters, which are relevant
for practical applications, our construction outperforms all existing privately and publicly
verifiable schemes significantly. This means, that even when our construction is used for either
private or public verifiability alone, it still outperforms the most efficient constructions known,
which is particularly appealing in the public verifiability setting.

Keywords: Provable data possession, proofs of retrievability, remote data checking, simul-
taneous public and private verifiability, outsourced storage, elliptic curves, ECDLP, provable
security

1 Introduction

Cloud storage is an increasingly popular means for archiving, backup, sharing of data, synchroniza-
tion of multiple devices and it is also envisioned for future primary storage of (enterprise) data.
Despite the advantages of cloud storage being among others ubiquitous access to data, immediate
scalability and the pay-per-usage billing model, there are still concerns, which hinder a widespread
adoption. These concerns are mainly devoted to missing or inadequate security and privacy related
features, requiring customers to fully trust in the integrity of the cloud provider as well as the
provider’s security practices. Among these issues is the availability of outsourced data. Recent in-
cidents [11] indicate that, despite the assumed high availability guarantees of the cloud, outages
occur in practice. One way to mitigate this problem is to introduce redundancy in order to improve
availability [24]. Another crucial aspect in the context of availability is to verify whether all out-
sourced data is still retrievable and intact. A naive solution to this problem would be to download
all outsourced data and, thereby, check the completeness from time to time. However, for large data
sets this is apparently not feasible. Thus, the concepts of provable data possession (PDP) and proofs
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of retrievability (PoR) have been introduced. The goal of the aforementioned approaches is that a
client can regularly challenge the storage server to provide a proof that assures that the outsourced
data is still retrievable without having access to the data itself locally. In contrast to the naive
approach, this strategy aims at reducing the communication as well as the computational overhead
significantly. Ideally, such proofs are of constant length (independent of the size of the data) and
the verification of these proofs requires only a small and constant number of computations at the
client. Such schemes are said to support private verifiability, if only the client, who has previously
outsourced the data (the data owner), is able to verify proofs of data possession from the storage
server using a private key. In contrast, one speaks of public verifiability if the data owner provides
additional parameters into the public key, such that any third party is able to request and verify
proofs of data possession without the client giving away its private key. Consequently, no third party
is able to compute valid verification metadata for the data and, thus, cannot modify outsourced data
such that valid proofs can still be given. It should be noted that publicly verifiable PDP schemes in
general are far more expensive than privately verifiable schemes.

The first construction tailored for the use within outsourced storage denoted as provable data
possession (PDP) was presented in [2,1]. A PDP protocol works by constructing homomorphic
verifiable tags (HVTs), which are computed by the client prior to outsourcing the data and are
stored as metadata in addition to the data at the server. Typically, the proof then requires the
storage server (prover) to prove the knowledge of a linear combination of randomly challenged data
blocks. It can be efficiently verified by the client by using compact verification data sent by the
verifier, whose size is independent of the data size. Although elegant, this RSA-style construction
imposes a rather large computational burden on the verifier (client), i.e., a number of large integer
exponentiations and inversions linear in the number of challenged blocks. Independently to PDP,
proofs of retrievability (PoR) [18] were introduced, further refined in [7] and generalized as well as
studied from a coding theoretic point of view in [13,20]. PORs, in their original sense, pursue another
approach, namely, check-values (so called sentinels) are inserted in random positions into the data
and then the entire file is encrypted and permuted before outsourcing. A proof amounts to requiring
the server to send some of these sentinels to the client, who can then check them locally. While PORs
are restricted to a limited number of challenges for given data, PDPs usually support an unlimited
number of challenges, which is clearly desirable. We note that by using private information retrieval
(PIR) in order to hide the exact positions of the accessed sentinels, one can also realize PoR schemes
supporting an unlimited number of challenges. However, this approach is of theoretical interest only,
since PIR requires the storage server to access the entire data, which is clearly undesirable, and the
computational effort for the server as well as the client renders this approach impractical.

Furthermore, PORs typically employ a coding theoretic approach, i.e., a file is encoded prior
to outsourcing, whereas PDPs initially were not concerned with encoding (and thus corrections of
minor corruptions), but only to handle the detection of corruptions of larger parts of the outsourced
file. While PORs come with an explicit knowledge extraction algorithm Extract to retrieve the file
from a sequence of challenges, PDPs only implicitly require such a knowledge extractor in the course
of their security proofs. Therefore, the security guarantees made by the original PDP constructions
are slightly weaker than those of a POR. However, we note that in recent works both approaches
seem to converge to a single unified approach as it is quite straightforward to combine PDPs with
suitable codes and thus obtain robustness against small corruptions as well. What we denote as
robust PDP also refers to this converged model and thus also may be seen as a “modern” PoR.

1.1 Related Work

In [3], the authors provide a generic construction of PDP protocols from any homomorphic identi-
fication protocol. The authors of [22] present a privately verifiable PDP construction from pseudo-
random functions in the standard model and a publicly verifiable construction from BLS signatures
[6] in the random oracle model. Based on this approach, the authors of [25] introduce a public audit-
ing scheme, which extends the classical publicly verifiable PDP/PoR model with the properties of
privacy-preservation and batch auditing. The former means that an auditor (verifier) can not learn
anything about the stored data during the auditing process. The latter means that a third party



performing the challenges on behalf of several clients is able to batch all single challenges in order
to obtain improved performance. Recently, [26] introduced a new privately verifiable PDP protocol
based on polynomial commitments in the standard model. Another scheme based on polynomial
commitments for public verifiability has been introduced in [27]. There are also constructions for a
distributed storage setting, that is, considering multiple storage servers [12,29]. The original PDP
setting applies only to static (or append-only) files or only supports limited updates with a bounded
number of challenges [4]. Dynamic provable data possession (DPDP), in contrast, extends the PDP
model to support provable updates to stored data [14,10,8] including insertions at arbitrary positions,
updates on existing blocks, revision control [28], etc.

1.2 Contribution

By now no PDP leading to an efficient construction supporting both private and public verifiabil-
ity simultaneously is known. In particular, this means that by now all PDP either allow public or
private verifiability only, since different setup procedures and metadata sets are required. However,
supporting both variants simultaneously seems interesting, as publicly verifiable schemes are far less
efficient than privately verifiable ones. In this paper, we propose the first simultaneous privately
and publicly verifiable (robust) PDP protocol, which allows the data owner to use the more efficient
private verification and anyone else to run the public verification algorithm. Our construction, which
is based on elliptic curves, achieves this, as it uses the same setup procedure and the same metadata
set for private and public verifiability. To the best of our knowledge, this is the only construction
supporting both features at the same time. Clearly, a trivial alternative to the feature of providing
private und public verifiability in parallel would be to use a privately verifiable PDP protocol re-
sulting in one set of metadata (tags) and a second publicly verifiable PDP protocol resulting in a
second set of metadata (tags) and to store both metadata sets at the storage site. Then, the data
owner could run the protocol on the first set of metadata and all other parties on the second set.
However, besides inducing a doubled storage overhead for the metadata, which may be quite signif-
icant, this trivial solution suffers from additional deficiencies. Namely, one needs to rely on different
PDP schemes likely requiring a different setting, e.g., the used groups, and providing security under
potentially unrelated cryptographic assumptions, the data owner has to maintain more private key
material as well as public parameters and the data owner has to run the computation of metadata
twice. The latter issue does not only apply to the preprocessing when outsourcing data but also for
the recomputation of tags when updating any already stored data. Clearly, this also results in an
unnecessary computational overhead for the data owner.

In contrast, our construction relies on a single well-established cryptographic assumption and
requires none of the aforementioned overheads. We provide a construction, which supports efficient
privately und publicly verifiable robust PDP on the same set of metadata and based on the same
setup procedure. Both versions can be shown to be secure in the random oracle model under the
assumption that the ECDLP is intractable. Moreover, we give detailed comparisons of the most
efficient existing approaches for either private or public verifiability [1,22,26] with our proposed
construction in terms of storage and communication overhead as well as computational effort for the
client and the server. Our analysis shows that our construction outperforms all existing privately
and publicly verifiable schemes significantly. This means, that even when our construction is used
for either private or public verifiability alone, it still outperforms the most efficient constructions
known, which is particularly appealing in the public verifiability setting.

1.3 Outline

Section 2 discusses the mathematical and cryptographic preliminaries. Section 3 introduces the
formal model of provable data possession and the corresponding security model. Then, Section 4
details our construction for simultaneous private and public verifiability. In Section 5, we compare
our results to related approaches, and, finally, Section 6 concludes the paper and lists open issues
for future work.



2 Preliminaries

In this section, we give an overview of required mathematical and cryptographic preliminaries.

2.1 Elliptic Curves and Pairings

An elliptic curve E over the finite field Fq is a plane, smooth algebraic curve usually defined by a
Weierstrass equation. The set E(Fq) of points (x, y) ∈ F2

q satisfying this equation plus the point at
infinity O, which is the neutral element, forms an additive Abelian group, whereas the group law is
determined by the chord-and-tangent method [23].

Furthermore, if G is a cyclic group and p a divisor of its group order, then there exists a subgroup
of order p, which we subsequently denote by G[p].

Definition 1 (Bilinear Map). Let G1, G2, GT be three cyclic groups of the same prime order p,
whereG1, G2 are additive groups andGT is a multiplicative group. We call the map e : G1×G2 → GT
a bilinear map or pairing, if the following conditions hold:

Bilinearity: For all P1, P2 ∈ G1 and P ′1, P
′
2 ∈ G2 we have:

– e(P1 + P2, P
′) = e(P1, P

′) · e(P2, P
′) for all P ′ ∈ G2,

– e(P, P ′1 + P ′2) = e(P, P ′1) · e(P, P ′2) for all P ∈ G1.
Non-degeneracy: If P is a generator of G1 and P ′ a generator of G2, then e(P, P ′) is a generator

of GT , i.e., e(P, P ′) 6= 1GT .
Efficiently computable: e can be computed efficiently.

If G1 = G2, then e is called symmetric and asymmetric otherwise. The former type is also called
Type-1 pairing, whereas in case of the latter we distinguish between Type-2 and Type-3 pairings.
For Type-2 pairings there is an efficiently computable isomorphism Ψ : G2 → G1 [9] and for Type-3
pairings such an efficiently computable isomorphism does not exist. Furthermore, let GT = F∗qk [p],
which is an order p subgroup of F∗qk . Note that k, the so called embedding degree, is defined as

k = min{` ∈ N : p | q` − 1}.

Definition 2 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E(Fq)[p] be an
elliptic curve group of prime order p generated by P ∈ E(Fq)[p]. Given elements P, aP ∈ E(Fq)[p]
compute a ∈ Zp.

2.2 Erasure Codes

An (n, k, d)-erasure code is a code that transforms a message of k symbols into a codeword of n
symbols, such that the minimum Hamming distance of any two codewords is d. In general, this
allows to detect up to d − 1 and to correct up to (d − 1)/2 erroneous symbols per codeword. A
standard choice for erasure codes, are Reed-Solomon codes [21], which are based on polynomials
over finite fields Fq = Fpn . For this particular erasure code, we have n = q − 1 and a minimum
distance of d = n− k + 1. Consequently, up to n− k erroneous symbols can be detected and up to
(n− k)/2 can be corrected.

3 Provable Data Possession

The goal of a provable data possession scheme is that a client C can outsource data to some storage
server S (typically a cloud provider), then delete the local copy of the data while being able to
regularly challenge S to provide a proof that the outsourced data is still retrievable. Ideally, such
proofs are of constant length (independent of the size of the data) and the verification of these proofs
requires only a small and constant number of computations at C. This is achieved by requiring C to
compute verification metadata (tags) for the data prior to outsourcing and storing the data together
with the tags at S. Furthermore, S should not need to access the entire data for generating a proof
and, therefore, a probabilistic spot checking approach is used. This means that C challenges S to



prove the possession of a randomly sampled subset of data blocks, such that the best strategy S can
follow is to store the entire data. Otherwise, C will detect this misbehavior with high probability (see
Section 3.1 for a discussion of the choice of parameters). Furthermore, the data is encoded prior to
outsourcing to obtain robustness against minor corruptions, which would not be detected by means
of spot checking. Subsequently, we give a formal definition of such a provable data possession scheme
and in the remainder we denote an outsourced data unit as file.

3.1 Spot Checking and Robustness

Spot checking means that the client asks the server to prove the possession of a subset of c randomly
sampled file blocks of the entire file. This allows a client to detect, whether the server has corrupted
a larger portion of the file. Now, one can ask how the choice of c should be made when a file consists
of ` blocks and that the server has corrupted/deleted β blocks. As discussed in [1], the probability
P that at least one of c blocks sampled by the client matches one of the blocks corrupted/deleted
by the server can be analyzed by an urn experiment and can be shown to be bounded by

1−
(

1− β

`

)c
≤ P ≤ 1−

(
1− β

`− c+ 1

)c
.

For instance, let us assume that we have a file consisting of ` = 106 file blocks (of t elements each)
and we assume that the server has corrupted β = 103 of these blocks, i.e., 0.1% of all blocks, then
to achieve P ≈ 0.99 we have to set the challenge size to c = 4600.

However, when the server only corrupts a very small fraction of the file , e.g., a single block, this
can not be efficiently recognized via spot checking. Therefore, erasure codes can be applied to a file
before outsourcing in order to resolve this problem (cf. [1,18] for a discussion). PDP schemes that
also take resistance against small corruptions into account, typically by means of erasure codes, are
called robust PDP schemes [10].

3.2 PDP Protocol and Security Model

Definition 3 (Provable Data Possession Scheme (PDP)). A PDP scheme is a tuple of
polynomial-time algorithms (KeyGen,Tag,Prove,Verify) so that:

KeyGen(κ): This probabilistic algorithm gets the security parameter κ ∈ N and returns a public and
private key pair (pk, sk).

Tag(pk, sk, id, i,mi): This deterministic algorithm takes a key pair (pk, sk), a file identifier id, the
index i of the file block mi as input and returns a verification tag Ti.

Prove(pk,M, T , C): This deterministic algorithm gets as input the public key pk, a file M (whose
id is determined by C), the sequence of corresponding tags T , and the challenge C. It returns a
proof of possession π for the blocks determined by the challenge C.

Verify(pk, sk, C, π): This deterministic algorithm takes as input a key pair (pk, sk), a challenge C and
a proof of data possession π. It returns accept if π is a correct proof of possession for the blocks
determined by the challenge C and reject otherwise.

A PDP scheme is called correct, if for any honestly generated proof of possession π using honestly
generated tags T , the probability that the verify algorithm accepts is 1. Using the definition of a
PDP scheme, we can now specify the interaction between a client C and a server S by means of the
following generic PDP protocol.

Definition 4 (Provable Data Possession Protocol). A PDP protocol is a tuple of interactive
polynomial-time algorithms (Setup,Store,Challenge) so that:

Setup: The client C obtains a key pair (pk, sk) by running KeyGen(κ), publishes pk and keeps sk
private.

Store: Given a file F identified by id, encode the file using a suitable erasure code and obtain the
fileM. Then, divide it into ` = n/t elements and execute Tag(pk, sk, id, i,mi) on every file block
mi of t elements in M = (M1, . . . ,Mdnt e). Finally, send (id,M, T ) to the server S.



Challenge: The challenger V (not necessarily the client C) generates a challenge C = (id, I, l), where
id is the file identifier, I is a subset of block indexes I ⊆ {1, . . . , dnt e} and l is a randomly chosen
coefficient. V sends the challenge C to S and S runs Prove(pk,M, T , C) to generate the proof π.
S sends π back to V and V checks the proof via Verify(pk, sk, C, π).

We emphasize that in a privately verifiable PDP protocol Store and Challenge can only be run by the
data owner, while in a publicly verifiable PDP protocol Challenge can be run by any (third) party
and Store only by the data owner.

Now, we state the security for a PDP protocol using a game that captures what we require for
this protocol to be secure. Loosely speaking, a server should only be able to provide a valid proof,
if it holds all challenged data and corresponding tags and can only forge valid proofs for files he
does not possess with at most negligible probability. Our security model adopts the security model
of [26].

Definition 5 (Data Possession Game). The data possession game is comprised of the following
consecutive phases:

Setup: The challenger V executes KeyGen(κ), gives pk to the adversary B and keeps sk private.

Query: The adversary B makes adaptive tagging and verification queries. B can perform tagging
queries for potentially different file id’s, i.e., B chooses a file block mi, sends it to the chal-
lenger, who returns Ti obtained by running Tag(pk, sk, id, i,mi). Per file id, B is only allowed to
query consecutive file blocks. For each id the adversary stores these blocks and the sequence of
corresponding tags. B is restricted to query only unique (id, i) pairs.

Retrieve: V challenges B λ times for some previously queried file M∗ identified by id∗, where the
challenged indexes have been queried before and sends it to B. B computes the according proofs
π1, . . . , πλ for the file M∗ identified by id∗ and challenge Ci and returns them to V . From the
file blocks obtained in these proofs, V extracts a file M′ using some PPT knowledge extractor.
B wins the game if M′ 6=M∗.

An adversary is called ε-admissible, if the probability that it is able to convince V to accept a proof
in the retrieve phase of the above game is at least ε.

Now, we state what constitutes a secure PDP protocol:

Definition 6 (Secure PDP Protocol). A PDP protocol (Setup,Store,Challenge) built upon a
PDP scheme (KeyGen,Tag,Prove,Verify) guarantees robust provable data possession, if it is correct
and if for any ε-admissible PPT adversary there is a value λ for the number of queries in the retrieve
phase, which is bounded by some polynomial in the number of file blocks, such that the probability
that B wins the data possession game is negligibly small in the security parameter κ.

4 Construction

In this section, we present our construction for simultaneous private and public verifiability. The
intuition behind our protocol in general is that S is required to prove the knowledge of a linear
combination of file blocks (indicated by the challenge), where the coefficients are based on a value
randomly chosen by the client in each protocol run. This makes storing linear combinations of file
blocks instead of file blocks impractical. Along with this linear combination, S aggregates the tags
corresponding to the challenged file blocks, which enable verification at C without having access to
the actual file blocks.

In the following, we identify each file block with a vector. Therefore, as it is common, we split
the file M = (m1, . . . ,mn) represented as elements of Zp into ` = n

t consecutive vectors mi =
(mi,1, . . . ,mi,t) for 1 ≤ i ≤ ` of t subsequent elements of Zp, where t is a parameter chosen by the
user to adjust the storage overhead. We assume that the length n of M is a multiple of t, whereas
M is padded with an appropriate number of elements of the form 0 ∈ Zp if this condition is not



satisfied. Doing so, we obtain a representation M′ of M such that

M′ =



m1

...
mi

...
mn

t

 =



m1,1 · · · m1,t

...
...

mi,1 · · · mi,t

...
...

mn
t ,1
· · · mn

t ,t

 .

For each vector mi, we compute a tag Ti, i.e., every tag aggregates t elements of Zp. We emphasize
that the challenge in designing PDP protocols, which aggregate vectors into single tags, is to prevent
the storage server from storing the sum of the vectors components instead of all components thereof.

Scheme 4.1 shows the detailed construction of our scheme for simultaneous private and public
verifiability, which is used as building block for Protocol 4.1. Note that for the data owner it is con-
siderably cheaper to run the private verification, since it, firstly, does not involve pairing evaluations
and, secondly, saves a considerable amount of scalar multiplications and point additions, as the data
owner has access to the private key.

KeyGen: On input κ, choose an elliptic curve E(Fq) with a subgroup of large prime order p generated by P ∈
E(Fq)[p], such that the bitlength of p is κ. Choose an asymmetric pairing e : E(Fq)[p]×G2 → F∗qk [p] with

G2 being a p-order elliptic curve subgroup over (an extension of) the field Fq with generator P ′, where
the choice of G2 depends on the specific instantiation of the pairing. Now, let elements s1, s2, α ∈R Zp, let
Q′1 = s1P

′, Q′2 = s2P
′, compute αP, . . . , αtP , choose two cryptographic hash functions h : {0, 1}∗ → Zp

and H : {0, 1}∗ → E(Fq)[p] and output pk = (E(Fq), G2, e, p, P, P
′, Q′1, Q

′
2, αP, . . . , α

tP, h,H) as well as
sk = (s1, s2, α).

Tag: Given pk, sk, a file identifier id, a vector index i and a vector mi = (mi,j)
t
j=1, compute the corresponding

tag as Ti = (s1H(id‖i) + s2h(id‖i)
∑t

j=1mi,jα
jP ) and output Ti.

Prove: On input pk, M = (m1, . . . ,mn
t

), T and challenge C = (id, I, l), compute

µ = (µj)
t
j=1 =

(
h(id‖i)

∑
i∈I

mi,j l
i)t

j=1
and τ =

∑
i∈I

liTi,

where mi,j is the element with index (i, j) in the representation M′ of M. Return π = (µ, τ) ∈ Zt
p ×

E(Fq).
VerifyPriv: Given pk = null, sk, challenge C and proof π, check whether the relation

s1
∑
i∈I

li ·H(id‖i) + (s2

t∑
j=1

µjα
j)P = τ

holds and return accept on success and reject otherwise.
VerifyPub: Given pk, sk = null, challenge C and proof π, check whether the relation

e(
∑
i∈I

li ·H(id‖i), Q′1) · e(
t∑

j=1

µj(α
jP ), Q′2) = e(τ, P ′)

holds and return accept on success and reject otherwise.

Scheme 4.1: PDP scheme with simultaneous private and public verifiability.

4.1 Security Analysis

For Protocol 4.1 we are able to prove the following statement.

Theorem 1. Assuming the hardness of the ECDLP, Protocol 4.1 guarantees robust provable data
possession in the random oracle model.

The proof of Theorem 1 can be found in Appendix A.



Setup: C runs KeyGen(κ) and obtains the key pair (pk, sk), where pk =
(E(Fq), G2, e, p, P, P

′, Q′1, Q
′
2, αP, . . . , α

tP, h,H) and sk = (s1, s2, α). C publishes pk in an authentic
way and keeps sk private.

Store: Apply a Reed-Solomon code [21] to the file F and obtain an encoded file M. For every vector mi of
t elements in M identified by id, C invokes Tag(pk, sk, id,i,mi) to build the sequence of tags T . Then,
C sends (id,M, T ) to the server S and removes M and T locally.

ChallengePriv: C requests a proof of possession for file M with identifier id by spot checking c vectors of M
as follows:
– C picks an index set I ⊆ {1, . . . , n

t
} of c elements, a random element l ∈ Zp and sends the challenge

C = (id, I, l) to the server S.
– On receiving C, S runs Prove(pk,M, T , C) to obtain π and sends it to C.
– Finally, C runs VerifyPriv(null, sk, C, π).

ChallengePub: V requests a proof of possession for file M with identifier id by spot checking c vectors of M
as follows:
– V picks an index set I ⊆ {1, . . . , n

t
} of c elements, a random l ∈ Zp and sends the challenge

C = (id, I, l) to S.
– On receiving C, S runs Prove(pk,M, T , C) to obtain π and sends it to V .
– Finally, V runs VerifyPub(pk, null, C, π).

Protocol 4.1: PDP protocol with simultaneous private and public verifiability.

4.2 On Efficient Implementations

In our construction, we make use of a hash function H : {0, 1}∗ → E(Fq)[p], which maps to an elliptic
curve group. We note that there are well-known strategies to hash into elliptic curve groups [17].
However, in our concrete scenario, we are able to choose H to be of a particular form, which allows
us to obtain very efficient implementations of our construction. In particular, we choose H in such a
way that H(x) = h(0‖x) · P , whereas h is the cryptographic hash function mapping to the integers
modulo the group order used in Scheme 4.1. Note that prepending 0 to the input of h yields a hash
function, which is independent from h itself. This is necessary to prevent tags from being malleable.

The above hash function instantiation allows us to simplify Scheme 4.1 as follows:

Tag:

Ti = (s1h(0‖id‖i) + s2h(id‖i)
t∑

j=1

mi,jα
j)P

VerifyPriv:

(s1
∑
i∈I

h(0‖id‖i)li + s2

t∑
j=1

µjα
j)P = τ

VerifyPub:

e((
∑
i∈I

h(0‖id‖i)li)P,Q′1) · e(
t∑

j=1

µj(α
jP ), Q′2) = e(τ, P ′)

Operation Semantics Operand Size Description

P e(P1,P
′
2) 224 Pairing computation

E bd 2048 Large integer exponentiation
S d·P 224 Scalar multiplication
A P1+P2 224 Point addition

I b−1 (mod N) 2048 Large integer modular inversion
M b1·b2 2048 Large integer multiplication

i b−1 224 Field inversion
m b1·b2 224 Field multiplication
H H(m) 224 Hash or PRF function evaluation

Table 1. Symbols for costs of arithmetical operations.



As one can see, this allows us to trade expensive elliptic curve scalar multiplications for inexpen-
sive field multiplications in Zp. Furthermore, using Horner’s method for the polynomial evaluations,
the number of field multiplications in the algorithms Prove, VerifyPriv and VerifyPub can be kept at a
minimum. Moreover, note that the algorithms Prove and VerifyPub are well-suited for the application
of simultaneous multiple point multiplication [16], which improves their computational efficiency
considerably.

Notice, that we can use such an instantiation of the hash function H without sacrificing the
security of the overall construction, as we incorporate the random and unknown value s1 in the
computation of the tags. An implication of this particular choice of H is that e needs to be a Type-3
pairing, in order to prevent Q′1 and Q′2 to be mapped to the group E(Fq)[p], as, otherwise, the tag
construction is no longer secure. Nevertheless, Type-3 pairings are the best choice from a security
and performance perspective [9].

Finally, we emphasize that after applying these optimizations, the data owner still benefits signif-
icantly from using the private verification relation, which will be clear from the analysis in Section 5.

Scheme Key Size Tagging Server Client

Private Verifiability

S-PDP [1] κ=2048 `(2κE+2M+H) (2ct+c)E+2(c−1)M+H (c+2)E+I+cM+(c+1)H
SPOR [22] κ=2048 `tM+(`+1)H c(t+1)M (c+t)M+(c+1)H
EPOR [26] κ=224 `(t+1)m+`H (t−1)(S+A)+(ct+c+t)m 2S+i+(c+1)m+cH
Scheme 4.1 κ=224 `(S+(t+3)m+2H) cS+(c−1)A+c(t+2)m+cH S+(c+t+2)m+cH

Public Verifiability

P-PDP [1] κ=2048 2n(κE+M+H) cE+2(c−1)M (c+2)E+I+2(c−1)M+2cH
PPOR [22] κ=224 `((t+1)S+tA+H) cS+(c−1)A+ctm 2P+(c+t)S+(c+t−1)A
Scheme 4.1 κ=224 `(S+(t+3)m+2H) cS+(c−1)A+c(t+2)m+cH 3P+(t+1)S+(t−1)A+cm+cH

Table 2. Comparison of computational complexity of PDP schemes with private and public verifiability.

4.3 Remarks

– In our challenge, we have included the index set I. For sake of reduced communication bandwidth,
it can be generated by the server from a compact seed by using the (δ, γ)-hitter construction
given by Goldreich [15] or by using pseudo-random functions (PRFs) as in [1].

– We suggest point compression for all transmitted and stored curve points.
– Note that the proposed scheme can be easily adapted to batch challenges [25] over multiple files,

which yields a constant communication overhead independent of the number of challenged files.

Scheme Key Size Communication Overhead Storage Overhead

Private Verifiability

S-PDP [1] κ=2048 (c+1)κ+h `κ
SPOR [22] κ=2048 (2t+c+1)κ+h `κ+tκ
EPOR [26] κ=224 (c+3)κ `κ
Scheme 4.1 κ=224 (t+1)κ `κ

Public Verifiability

P-PDP [1] κ=2048 (c+2)κ ≥nκ
PPOR [22] κ=224 (2t+c+2)κ `κ+(t+1)κ
Scheme 4.1 κ=224 (t+1)κ `κ

Table 3. Comparison of communication and storage overhead of PDP schemes with private and public
verifiability.

5 Comparative Analysis

In this section we draw a comparison between existing approaches and our construction in terms
of storage and communication overhead as well as computational effort. We point out that existing
literature typically uses far too small security parameters for the intended use of provable data
possession, i.e., outsourcing large datasets for long-term storage. In particular, all works we are



(a) Computational costs for Prove in the
case of public and private verifiability.

(b) Computational costs for Verify in the
case of private verifiability.

(c) Computational costs for Verify in the
case of public verifiability.

Fig. 1. Figure 1(a) illustrates the computational costs of the Prove algorithms of all schemes in Table 2 by
varying both parameters c and t. Figure 1(b) illustrates the computational costs of the Verify algorithms of
all privately verifiable schemes in Table 2 by varying both parameters c and t. The time is in logarithmic
scale with radix 10. Figure 1(c) illustrates the costs of the Verify algorithms of the publicly verifiable schemes
PPOR and Scheme 4.1 in Table 2 by varying both parameters c and t. Furthermore, we set H = 0.

aware of suggest parameter sizes of 1024 bits for RSA-based/DL-based approaches and 160 bits for
ECDL-based approaches. However, having the long-term characteristic in mind, it is more natural
to choose at least 2048 and 224 bits security, respectively, as suggested by NIST in [5]. Subsequently,
κ, t and ` stand for the security parameter, the number of file elements, which are aggregated into
one tag and ` = n/t the number of file blocks (vectors), respectively. Furthermore, let the challenged
index set of file blocks (vectors) I be of size c.

5.1 Computational Effort

In Table 2, we compare our proposed scheme with existing approaches in terms of computational
effort. The symbols for the operands and their respective meanings are illustrated in Table 1.

Figure 1 illustrates the performance comparison of our proposed scheme with existing approaches.
We conducted the experiments on an Intel Core i5-2540M equipped with 8GB RAM running Ubuntu
12.10/amd64 and OpenJDK 6/amd64. For the 2048-bit integer arithmetics we use the standard

Java
TM

BigInteger class. Furthermore, we were using the jPBC library 1 version 1.2.1. We have
chosen an MNT curve [19] with a group size of 224 bits and embedding degree k = 6 over a prime
field and used the Tate pairing in order to perform our benchmarks. In order to guarantee fairness and
simplicity for the comparisons illustrated in Figure 1, we have omitted the costs of hash function
evaluations in our benchmarks. Figure 1 shows that our scheme is the most efficient scheme for
private and public verifiability with respect to server and client computations for reasonable values
of the challenge size c and vectors size t. It is important to note that an efficient Verify algorithm,

1 http://gas.dia.unisa.it/projects/jpbc

http://gas.dia.unisa.it/projects/jpbc


as achieved by our scheme, is the most important aspect with respect to practicality. This is due
to the fact that the client can be assumed to be far more resource constraint than the server (the
cloud), since the client could, for instance, be a smart phone.

In Table 2, one can see that for the data owner it is considerably cheaper to run the private
verification, as the data owner has access to the private key. More precisely, the data owner can trade
three pairing evaluations, t scalar multiplications and t− 1 additions for t+ 2 cheap multiplications
in Zp.

5.2 Storage Overhead

In Table 3, we give an analysis of the storage and communication overhead of our scheme compared
to existing approaches. In the following, h stands for the output length of a hash function or HMAC
of suitable size. As one can see from Table 3, our proposed scheme is as efficient as the most
efficient previous schemes, which either support only private or public verifiability with respect to
communication and storage overhead. Here, we need to note that when one wants to have private
and public verifiability simultaneously than for all other schemes except ours the storage overhead
will be the sum of the storage overheads of the respective privately and publicly verifiable PDP
schemes.

6 Conclusions

In this paper we have presented a novel construction for privately and publicly verifiable robust
provable data possession. Our construction is based on elliptic curves and is provable secure in the
random oracle model assuming the intractability of the elliptic curve discrete logarithm problem. We
have shown that our scheme is the most efficient (robust) scheme with respect to server and client
computations for reasonable values of challenge and block size for private as well as public verifia-
bility. To the best of our knowledge our construction is the first to support the use of simultaneous
private and public verifiability on the same set of metadata. This means that the data owner can
use the more efficient scheme with private verification, while any other party can run the publicly
verifiable variant at the same time without having access to the owner’s private key. Thereby, both
versions use the same parameters as well as metadata (tag) sets.

6.1 Future Work

The original PDP setting applies only to static (or append-only) files or only supports limited
updates with a bounded number of challenges [4]. Dynamic provable data possession (DPDP), in
contrast, extends the PDP model to support provable updates to stored data [14,10,8] including
insertions at arbitrary positions, updates on existing blocks, revision control [28], etc. Future work
includes investigating our construction in the DPDP model.
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14. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In: CCS.
pp. 213–222 (2009)

15. Goldreich, O.: A sample of samplers - a computational perspective on sampling (survey). ECCC 4(20)
(1997)

16. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer-Verlag New
York, Inc., Secaucus, NJ, USA (2003)

17. Icart, T.: How to hash into elliptic curves. In: CRYPTO. pp. 303–316 (2009)

18. Juels, A., S. Kaliski Jr., B.: Pors: proofs of retrievability for large files. In: ACM CCS. pp. 584–597
(2007)

19. Miyaji, Nakabayashi, Takano: New Explicit Conditions of Elliptic Curve Traces for FR-Reduction. TIE-
ICE: IEICE Transactions on Communications/Electronics/Information and Systems (2001)

20. Paterson, M.B., Stinson, D.R., Upadhyay, J.: A coding theory foundation for the analysis of general un-
conditionally secure proof-of-retrievability schemes for cloud storage. Cryptology ePrint Archive, Report
2012/611 (2012), http://eprint.iacr.org/

21. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial
and Applied Mathematics 8(2), 300–304 (1960)

22. Shacham, H., Waters, B.: Compact proofs of retrievability. In: ASIACRYPT. pp. 90–107 (2008)

23. Silverman, J.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106. Springer
(1986)

24. Slamanig, D., Hanser, C.: On Cloud Storage and the Cloud of Clouds Approach. In: ICITST-2012. pp.
649 – 655. IEEE (2012)

25. Wang, C., Chow, S.S.M., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure
cloud storage. IEEE Trans. Computers 62(2), 362–375 (2013)

26. Xu, J., Chang, E.C.: Towards efficient proofs of retrievability. In: AsiaCCS. ACM (2012)

27. Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communication cost in
cloud. In: International Workshop on Security in Cloud Computing. ACM (2013)

28. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via balanced update trees.
In: AsiaCCS. pp. 183–194. ACM (2013)

29. Zhu, Y., Hu, H., Ahn, G.J., Yu, M.: Cooperative provable data possession for integrity verification in
multicloud storage. IEEE Trans. Parallel Distrib. Syst. 23(12), 2231–2244 (2012)

A Proof of Theorem 1

Proof. This proof consists of three parts addressing the correctness, the unforgeability of the tags,
via a reduction to the ECDLP in E(Fq)[p], and the retrievability of the file F .

http://www.crn.com/slide-shows/cloud/231000954/the-10-biggest-cloud-outages-of-2011-so-far.htm
http://www.crn.com/slide-shows/cloud/231000954/the-10-biggest-cloud-outages-of-2011-so-far.htm
http://eprint.iacr.org/


At first, we show the correctness of Scheme 4.1. From the verification relation in VerifyPriv we get:

s1
∑
i∈I

li ·H(id‖i) + (s2

t∑
j=1

µjα
j)P =

s1
∑
i∈I

li ·H(id‖i) + (s2

t∑
j=1

∑
i∈I

lih(id‖i)mi,jα
j)P =

∑
i∈I

li · (s1H(id‖i) + s2

t∑
j=1

h(id‖i)mi,jα
jP ) =

∑
i∈I

liTi = τ

Furthermore, from the verification relation in VerifyPub we get:

e(
∑
i∈I

li ·H(id‖i), Q′1) · e(
t∑

j=1

µj(α
jP ), Q′2) =

e(s1
∑
i∈I

li ·H(id‖i), P ′) · e(s2
t∑

j=1

µj(α
jP ), P ′) =

e(s1
∑
i∈I

li ·H(id‖i) + s2

t∑
j=1

µj(α
jP ), P ′) =

e(s1
∑
i∈I

li ·H(id‖i) + s2

t∑
j=1

∑
i∈I

lih(id‖i) ·mi,j · αjP, P ′) =

e(
∑
i∈I

li(s1 ·H(id‖i) + s2

t∑
j=1

h(id‖i) ·mi,j · αjP ), P ′) =

e(
∑
i∈I

liTi, P
′) = e(τ, P ′)

This demonstrates the correctness of both verification relations.

Secondly, we prove that the tags in our scheme are unforgeable. We do so by showing that any
PPT adversary B winning the data possession game for a file not equal to the original file, can be
turned into an efficient PPT algorithm A that solves arbitrary instances of the ECDLP in E(Fq)[p].
In the following, we describe how this algorithm simulates the environment of the challenger when
interacting with the adversary.

Algorithm A is given an arbitrary instance (P,R = rP ) of the ECDLP in E(Fq)[p]. Then, A sets
the public and private keys as (E(Fq), G2, e, p, P, P

′, Q′1, Q
′
2, αP, . . . , α

tP, h,H), where A chooses
αjP = (φjP + ψjR) with φj , ψj ∈R Zp for j = 1, . . . t, as well as sk = (s1, s2) and gives pk to B.
Note that this choice of the values αjP in the simulation is indistinguishable from the values chosen
in the real game. It will be clear from the simulation of the hash function why we use values αjP of
this particular form.

Furthermore, A simulates the tagging and hash oracle queries for B, whereas B is allowed to run
the public verification algorithm for all generated tags. Now, if A receives a tagging query for a file
block mi identified by (id, i), A checks whether a previous query has already been made for (id, i).
If so, A retrieves the recorded tuple (id, i,mi, ti, Ti). Otherwise, A chooses an element ti ∈R Zp and
computes the tag as the point Ti = tiP ∈ E(Fq)[p] and records the tuple (id, i,mi, ti, Ti). In both
cases A returns Ti. A answers B’s hash oracle queries for the hash function h as follows. If A receives
a hash query for some value id‖i, then A checks whether a previous query has already been made for
id‖i. If so, A retrieves the recorded tuple (id‖i, xid,i) and otherwise A chooses a value xid,i ∈R Zp and
records the tuple (id‖i, xid,i). In both cases A returns xid,i. A answers B’s hash oracle queries for the
hash function H as follows. If A receives a hash query for some value id‖i, then A checks whether a
previous query has already been made for id‖i. If so, A retrieves the recorded tuple (id‖i,H(id‖i)).
Otherwise, A retrieves (id, i,mi, ti, Ti) from the list of recorded tagging queries and the required



tuples (id‖i, xid,i) from the list of recorded hash queries for the hash function h and computes

H(id‖i) = s−11 (tiP − s2xid,i

t∑
j=1

mi,j(α
jP )) ∈ E(Fq)[p]

and records the tuple (id‖i,H(id‖i)). In both cases, A returns the recorded value H(id‖i).
In the retrieve phase, A generates challenges Ci = (id∗, I, l) for 1 ≤ i ≤ λ for a file M∗ identified

by id∗. Now, if B delivers proofs πi = (µ, τ) for file M′ 6= M∗ and challenge Ci then A proceeds
as follows. W.l.o.g. we demonstrate the reduction by means of a single proof π with µ = (µj)

t
j=1 =(∑

i∈I l
ih(id∗‖i) ·m∗i,j

)t
j=1

and τ =
∑
i∈I l

iTi. Recall that the verification relation, after substituting

the simulated hash function values, looks as follows:

∑
i∈I

li · (tiP − s2xid,i

t∑
j=1

mi,j(α
jP )) + s2

t∑
j=1

µj(α
jP ) = τ

By replacing the values αjP , we obtain:

∑
i∈I

li · (tiP − s2xid,i

t∑
j=1

mi,j(φjP + ψjR)) + s2

t∑
j=1

µj(φjP + ψjR) = τ

Simplifications of the left-hand-side yield:

∑
i∈I

li(tiP − s2xid,i

t∑
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mi,j(φjP + ψjR)) + s2

t∑
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li(tiP + s2xid,i
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δi,j(φjP + ψjR)) =
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li(tiP + s2xid,i

t∑
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δi,jφjP )+

where δi,j = mi,j − m∗i,j . Equating the so obtained simplification with the right-hand-side and
subtracting the right-hand-side, we get:

∑
i∈I

li(ti + s2xid,i

t∑
j=1

δi,jφj)P + (
∑
i∈I

lis2xid,i

t∑
j=1

δi,jψj)R = O

From this it follows that

R = rP = −
∑
i∈I l

i(ti + s2xid,i
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j=1 δi,jφj)

(
∑
i∈I l

is2xid,i
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Consequently, if B provides a forged proof, i.e., if there is at least one pair mi,j 6= m∗i,j implying

that
∑t
j=1(mi,j −m∗i,j) 6= 0, then A can compute r ∈ Zp, which is the solution to the given instance

(P,R = rP ) of the ECDLP in E(Fq)[p]. A returns (P,R, r).
Note that the reduction can be performed analogously using the public verification relation,

which would lead to the following relation:

gr = g
−

∑
i∈I l

i(ti+s2xid,i
∑t
j=1 δi,jφj)

(
∑
i∈I lis2xid,i

∑t
j=1

δi,jψj) .

A returns (P,R, r) which is a valid solution to the ECDLP, since E(Fq)[p] ' F∗qk [p] ' Zp and

g = e(P, P ′) is a generator of F∗qk [p].
Finally, we need to show that for sufficiently large λ the original file F can be reconstructed. As

shown in [13], it suffices to prove that if the encoding of the file (primary encoding) as well as the
response from the server (secondary encoding) are efficiently erasure-decodable, then the original
file can be efficiently reconstructed. The primary encoding of the file is done using a Reed-Solomon
code and is, thus, efficiently erasure decodable. By looking at the server’s response, in particular at
the value

µ = (µj)
t
j=1 =

(
h(id‖i)

∑
i∈I

mi,j l
i
)t
j=1

it is clear that the verifier can eliminate the values h(id‖i) giving the sequence
(∑

i∈I mi,j l
i
)t
j=1

,

whose elements constitute Reed-Solomon encodings of the sequences (mi,j)i∈I . This means that our
secondary encoding is also efficiently erasure decodable. Consequently, by applying Lemma 6 and
then applying Lemma 7 of [13], the desired result follows.
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