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Abstract

One-round group authenticated key exchange (GAKE) protocols typically provide implicit authen-
tication and appealing bind-width efficiency. As a special case of GAKE – the pairing-based one-round
tripartite authenticated key exchange (3AKE), recently gains much attention of research community
due to its strong security. Several pairing-based one-round 3AKE protocols have recently been pro-
posed to achieve provable security in the g-eCK model. In contrast to earlier GAKE models, the g-eCK
model particularly formulates the security properties regarding resilience to the leakage of various com-
binations of long-term key and ephemeral session state, and provision of weak perfect forward secrecy
in a single model. However, the g-eCK security proofs of previous protocols are only given under the
random oracle model. In this work, we give a new construction for pairing-based one-round 3AKE
protocol which is provably secure in the g-eCK model without random oracles. Security of proposed
protocol is reduced to the hardness of Cube Bilinear Decisional Diffie-Hellman (CBDDH) problem for
symmetric pairing. We also extend the proposed 3AKE scheme to a GAKE scheme with more than
three group members, based on multilinear maps. We prove g-eCK security of our GAKE scheme in
the standard model under the natural multilinear generalization of the CBDDH assumption.

Keywords: one-round, group key exchange, authenticated key exchange, bilinear maps, multilinear
maps

1 Introduction

The situation where three or more parties share a secret key is often called group (conference) keying.
A group authenticated key exchange protocol (GAKE) allows a set of parties communicating over public
network to create a common shared key that is ensured to be known only to those entities. In a pub-
lic key infrastructure (PKI) based GAKE protocol, each party typically possesses a pair of long-term
public/private key. The public key is expected to be certified with a party’s identity and corresponding
private key is kept secretly for authentication. GAKE protocols are essentially generalized from two party
authenticated key exchange (2AKE) protocols to the case of multiple parties. However, this brings new
challenges not only in the design but also in the analysis of the GAKE protocols. The formal security
model for GAKE was first studied by Bresson et al. [12], where the secrecy (indistinguishability) of the
established group key and mutual authentication are modelled following the seminal work of the 2AKE
model by Bellare and Rogawary [7]. Since then, figuring out new useful security properties for certain
class of GAKE and modelling them become continuing trends.

1Corresponding Author.
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One-Round GAKE. One import research direction in the research field of GAKE is to construct secure
one-round protocol due to its appealing bandwidth-efficiency (in contrast to other multiple-round GAKE).
A prominent example is the pairing-based tripartite protocol introduced by Joux [24, 25] which extends
the classical two-party Diffie-Hellman KE protocol [17] to the three party case. However Joux’s protocol
is unauthenticated and subject to well known man-in-the-middle attacks. Hence how to transform Joux’s
protocol to a secure one-round protocol in presence of active adversaries turns out to be an interesting
topic. Several attempts, e.g. [2, 31, 30, 33, 18], have been made to improve the original Joux’s protocol.
This has also pushed forward the development of security model for GAKE. Meanwhile, the most recently
proposed one is the g-eCK model by Fujioka et al. [18]. The g-eCK model basically can be seen as a gener-
alization from the two party eCK model [12, 28]. In contrast to earlier GAKE models [12, 11, 26, 13, 22],
the peculiarity of g-eCK model is that it captures lots of desirable security properties regarding resilience
to the leakage of various combinations of long-term key and ephemeral session state from target sessions
(i.e. the test session and its partner session in the security game), and provision of weak perfect forward
secrecy (wPFS) in a single model. So far the g-eCK model is known as one of the strongest security
model for one-round GAKE[18]. Therefore proving security for one-round GAKE in the g-eCK model
may provide more guarantees.

Motivations. Manulis et al. [33] recently pointed out that the one-round 3AKE constructions [2, 31, 30]
fail to achieve implicit key authentication, and introduced an improved protocol (which is called MSU
protocol in the following). In 2012, Fujioka et al. (FMSU) [18] generalized previous 3AKE protocols
into one framework based on admissible polynomials developed from [19] which yields many further
one-round 3AKE protocols. Meanwhile the one-round version of MSU protocol [33] can be seen as a
concrete instantiation of FMSU protocol.1 The generic FMSU protocol [18] was shown to satisfy g-eCK
security. However its security proof is given in the random oracle model (ROM) [6] under a specific strong
assumption, i.e. gap Bilinear Diffie-Hellman (GBDH) assumption [3]. It is well-known that the security
proof in the random oracle may not imply that corresponding protocol is secure in the real world. Several
results, e.g., [14, 4], have demonstrated that there exist schemes which are provably secure in the random
oracle model, but are insecure as soon as one replaces the random oracle by any concrete hash functions.
This also makes the schemes secure in the standard model to be more appealing than that in the random
oracle model. So far we are not aware of previous GAKE protocols being able to achieve g-eCK security
in the standard model. Hence, one of the open problems in research on GAKE is to construct a secure
scheme in the g-eCK model under standard assumptions without resorting to random oracles. Another
important motivation of this paper is try to simplify the security proof for GAKE protocols under the
g-eCK model from the perspective of reducing the freshness ceases that need to prove. Since under the
g-eCK model, the freshness cases are related to the group size which are not a small amount. Taking the
3AKE as example, there might be fourteen freshness cases at all that may lead proof to be very tiresome.
When the group size is very large, the situation might be worse because the possible freshness cases are
exponential in the number of group members. Those facts make us necessary to somehow reduce the
upper bound of the freshness cases that require to do proof simulation.

Contributions. We solve the above open problems by starting from 3AKE. We firstly give a concrete
construction in Section 5 for one-round 3AKE protocol that is g-eCK secure in the standard model under
standard assumptions. The proposed protocol is based on bilinear groups, target collision resistant hash
function family, and pseudo-random function family. In order to withstand active attackers, each (either
long-term or ephemeral) public key is required to be associated with some kind of ‘tag’ which is used to
verify the consistency of corresponding public key. Those tags are particularly customized using specific

1The MSU protocol consists of two communication rounds in which the first round is used to establish the session key
and the key confirmation steps are done in the second round. But it is able to execute without the second round.
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weak Programmable Hash Functions [23] for ephemeral key and long-term key respectively, whose output
lies in a pairing group. Interestingly the proposed protocol is built to be able to run without knowing
any priori information about its partners’ long-term public key. We make use of the pairing to provide a
means of consistency checking that (both long-term and ephemeral) public keys coming from the adversary
are in some sense of well-formed. Due to those tags, all public keys are mutually independent. Hence
an active adversary is not able to lead non-partnered fresh sessions to generate co-related session keys.
In particular, any active adversaries have to leave session key related secret information in those tags
which can be extracted and exploited by the challenger (during the proof simulation) using corresponding
trapdoor secret, e.g. the exponents of the group elements used to computing the tags. We make use of
the fact those trapdoor information can’t be trivially obtained by adversary. Intuitively, these tags are
what give us the necessary leverage to deal with the non-trivial g-eCK security. In order to facilitate the
security analysis of 3AKE protocols in the g-eCK model, we introduce propositions to formally reduce
fourteen freshness cases (which cover all freshness cases for 3AKE protocols) to four freshness cases. Then
it is only necessary to prove the security of considered protocol under the reduced four freshness cases.
It is not hard to check the validity of these reductions to all one-round 3AKE protocols in which the
message sent by a party is independent of the messages sent by the other parties. Any g-eCK security
analyzers for one-round 3AKE protocols might benefit from these results. We then provide a succinct
and rigorous game-based security proof by reducing the g-eCK security of proposed 3AKE protocol in
the standard model to breaking the cubic Bilinear Decisional Diffie-Hellman (CBDDH) assumption which
is slightly modified from the Bilinear Decisional Diffie-Hellman (BDDH) assumption [25].

In the latter we present a GAKE scheme with constant maximum group size in Section 6 following
the construction idea of 3AKE. Nevertheless the proposed GAKE scheme is based on the symmetric
multilinear map which is first postulated by Boneh and Silverberg [10]. Informally speaking, the symmetric
multilinear groups are equipped with a n-multilinear maps me : Gn → GT where n ≥ 2 is an integer, G
is a multiplicative cyclic group of large prime order p and GT is the target group with the same order.
Most recently, Garg, Gentry and Halvei [20] introduced a surprising candidate mechanism that would
approximate multilinear maps in discrete-logarithm hard groups. Their result may open the opportunity
to implement constructions using a multilinear map abstraction in practice. We prove g-eCK security of
our scheme in the standard model under a natural multilinear generalization of the CBDDH assumption
which is called n-Multiliear Decisional Diffie-Hellman Assumption (nMDDH). In particular we give a
general game-based security proof for our proposed GAKE scheme which is given under any polynomial
number of freshness cases. This general proof is applicable when the group size of our GAKE protocol
ranges from 2 to n+ 1, that also implies the concrete security proof of our 3AKE protocol.

2 Preliminaries

In this section, we recall the required definitions for our result on proposed protocols.

Notations. We let κ ∈ N denote the security parameter and 1κ the string that consists of κ ones. Let a
‘hat’ on top of a capital letter denote an identity; without the hat the letter denotes the public key of that

party. Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set, then a
$← S denotes

the action of sampling a uniformly random element from S. Let ‘||’ denote the operation concatenating
two binary strings.

2.1 Bilinear Groups

In the following, we briefly recall some of the basic properties of bilinear groups. Our AKE solution
mainly consists of elements from a single group G. We therefore concentrate on symmetric bilinear maps.
Our pairing based scheme will be parameterized by a symmetric pairing parameter generator, denoted
by PG.Gen. This is a polynomial time algorithm that on input a security parameter 1κ, returns the
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description of two multiplicative cyclic groups G and GT of the same prime order p, generator g for G,
and a bilinear computable pairing e : G×G→ GT .

Definition 1 (Symmetric Bilinear groups). We call PG = (G, g,GT , p, e)
$← PG.Gen(1κ) be a set of

symmetric bilinear groups, if the function e is an (admissible) bilinear map and it holds that:

1. Bilinear: ∀(a, b) ∈ G and ∀(x, y) ∈ Zp, we have e(ax, by) = e(a, b)xy.

2. Non-degenerate: e(g, g) 6= 1GT , is a generator of group GT .

3. Efficiency: ∀(a, b) ∈ G, e is efficiently computable.

2.2 Multilinear Groups

In the following, we recall the definition of symmetric multilinear groups introduced in [10]. We as-
sume that a party can call a group generator MLG.Gen(1κ, n) to obtain a set of multilinear groups. On
input a security parameter κ and a positive integer 2 < n ∈ N, the polynomial time group generator
MLG.Gen(1κ, n) outputs two multiplicative cyclic groups G and GT of the same prime order p, generator
g for G, and a n-multilinear map me : Gn ×G→ GT .

We summarize the properties of n-multilinear groups in the following definition.

Definition 2 (Multilinear groups). We call MLG = (G,GT , p,me)
$← MLG.Gen(κ, n) be symmetric

multilinear groups, if the n-multilinear map me holds that:

1. n-multilinear: ∀(c1, . . . , cn) ∈ G1 and ∀(y1, . . . , yn) ∈ Zp, we have
me(cy11 , . . . , c

yn
n ) = me(c1, . . . , cn)y1···yn .

2. Non-degenerate: me(g, . . . , g) 6= 1GT , is a generator of group GT .

3. Efficiency: ∀(c1, . . . , cn) ∈ G, the operation me(c1, . . . , cn) is efficiently computable.

We here focus on symmetric n-multilinear groups, since our group AKE solution makes use of elements
from a single group G. Concrete multilinear maps can be found in [21, 20] by Garg, Gentry, and Halvei
[21, 20]. We here just focus on a general definition of symmetric n-multilinear groups without loss of
generality.

2.3 Cube Bilinear Decisional Diffie-Hellman Assumption

Let PG = (G, g,GT , p, e) denote the description of symmetric bilinear group as Definition 1. The Cube
Bilinear Decisional Diffie-Hellman (CBDDH) problem that is stated as follows: given (g, ga, e(g, g)γ) for
(a, γ) ∈ (Z∗p)2 as input, output 1 if e(g, g)γ = e(g, g)a

3
and 0 otherwise.

Definition 3. We say that the CBDDH problem relative to generator PG.Gen is (t, εCBDDH)-hard, if the
probability bound |Pr[EXPcbddhPG.Gen,A(κ, n) = 1] − 1/2| ≤ εCBDDH holds for all adversaries A running in
probabilistic polynomial time t in the following experiment:

EXPcbddhPG.Gen,A(κ, n)

PG = (G, g,GT , p, e)
$← PG.Gen(1κ);

(a, γ)
$← Z∗p;

b
$← {0, 1}, if b = 1 Γ← e(g, g)a

3
, otherwise Γ← e(g, g)γ ;

b′ ← A(1κ,PG, ga,Γ);
if b = b′ then return 1, otherwise return 0;

where εCBDDH = εCBDDH(κ) is a negligible function in the security parameter κ.
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A relative hard problem is the Bilinear Decisional Diffie-Hellman (BDDH) problem [25], that given
tuple (g, ga, gb, gc, e(g, g)γ) ∈ G4 × GT it is infeasible for any PPT adversary to distinguish whether or
not γ = abc. It is not hard to see that if there exists an adversary A being able to solve the CBDDH
problem with non-negligible advantage, then we can construct an efficient algorithm B using A to solve
the BDDH problem. Since given a CBDDH challenge instance(g, ga, e(g, g)γ), B can construct a BDDH

challenge instance for A via choosing three random values (b, c, d)
$← (Z∗p)3 and computing the instance

as (g, gab, gac, gad, e(g, g)γbcd). Then if A is able to distinguish e(g, g)γbcd whether or not γbcd = a3bcd,
then B knows whetheror not γ = a3. But we cannot do the reduction in a reverse direction. Nevertheless,
the proof for the security of CBDDH assumption in the generic group model [34] is similar to the proof of
the BDDH assumption [9, Appendix A], and is therefore omitted here.

2.4 n-Multiliear Decisional Diffie-Hellman Assumption

We present a generalization of the CBDDH assumption in n-multilinear groups MLG = (G,GT , g, p,me)
that we call the n-Multilinear Decisional Diffie-Hellman (nMDDH) assumption. Roughly speaking, the
nMDDH problem is stated as follows: given (g, ga,me(g, . . . , g)γ) for (a, γ) ∈ (Z∗p)2 as input, output 1 if

me(g, . . . , g)γ = me(g, . . . , g)a
n+1

and 0 otherwise.

Definition 4. We say that the nMDDH problem relative to generator MLG.Gen is (t, εnMDDH)-hard, if
the probability bound |Pr[EXPnmddhPG.Gen,A(κ, n) = 1]− 1/2| ≤ εnMDDH holds for all adversaries A running in
probabilistic polynomial time t in the following experiment:

EXPnmddhPG.Gen,A(κ)

MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n);

(a, γ)
$← Z∗p;

b
$← {0, 1}, if b = 1 Γ← me(g1, . . . , g1)

an+1
, otherwise Γ← me(g, . . . , g)γ ;

b′ ← A(1κ,MLG, ga,Γ);
if b = b′ then return 1, otherwise return 0;

where εnMDDH = εnMDDH(κ) is a negligible function in the security parameter κ.

2.5 Pseudo-Random Functions

Let PRF : KPRF ×DPRF → RPRF denote a family of deterministic functions, where KPRF is the key space,
DPRF is the domain andRPRF is the range of PRF for security parameter κ. Let RL = {(x1, y1), . . . , (xq, yq)}
be a list which is used to record bit strings formed as tuple (xi, yi) ∈ (DPRF,RPRF) where 1 ≤ i ≤ q and
q ∈ N. So that in RL each x is associated with a y. Let RF : DPRF → RPRF be a stateful uniform random
function, which can be executed at most a polynomial number of q times and keeps a list RL for recording
each invocation. On input a message x ∈ DPRF, the function RF(x) is executed as follows:

• If x ∈ RL, then return corresponding y ∈ RL,

• Otherwise return y
$← RPRF and record (x, y) into RL.

Definition 5. We say that PRF is a (q, t, εPRF)-secure pseudo-random function family, if it holds that

|Pr[EXPprfPRF,A(κ) = 1]− 1/2| ≤ εPRF for all adversaries A running in probabilistic polynomial time t and
making at most q oracle queries in the following experiment:

EXPprfPRF,A(κ) F(b, x)

b
$← {0, 1}, k $← KPRF If x /∈ DPRF then return ⊥

b′ ← AF(b,·)(κ) If b = 1 then return PRF(k, x)
if b = b′ then return 1, otherwise return 0; Otherwise return RF(x)
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where εPRF = εPRF(κ) is a negligible function in the security parameter κ, and the number of allowed
queries q is bound by t.

2.6 Target Collision-Resistant Hash Functions

Let TCRHF : KTCRHF×MTCRHF → YTCRHF be a family of keyed-hash functions associated with key space
KTCRHF, message space MTCRHF and hash value space YTCRHF. The public key hkTCRHF ∈ KCRHF of
a hash function TCRHF(hkTCRHF, ·) is generated by a PPT algorithm TCRHF.KG(1κ) on input security
parameter κ.

Definition 6. TCRHF is called (t, εTCRHF)-target-collision-resistant if for all t-time adversaries A it holds
that

Pr

[
hkTCRHF

$← TCRHF.KG(1κ), m
$←MTCRHF, m

′ ← A(1κ, hkTCRHF,m),
m 6= m′, m′ ∈MTCRHF, TCRHF(hkTCRHF,m) = TCRHF(hkTCRHF,m

′)

]
≤ εTCRHF,

where the probability is over the random bits of A.

Note that the notion of target collision resistance is both qualitatively and quantitatively weaker than
the notion of (full) collision resistance. Commonly target collision resistant functions can be implemented
with a dedicated cryptographic hash function like MD5 or SHA, as described in [16]. If the hash key
hkTCRHF is obvious from the context, we write TCRHF(m) for TCRHF(hkTCRHF,m).

3 Security Model for Group Authenticated Key Exchange

In this section we present the formal security model for PKI-based group authenticated key-exchange
(GAKE) protocols. In this model, while emulating the real-world capabilities of an active adversary, we
provide an ’execution environment’ for adversaries following an important line of research [15, 26, 28,
33, 18] which is initiated by Bellare and Rogaway [7]. We formalize the capabilities of an adversary in a
strong sense who is provided enormous power to take full control over the communication network (e.g.,
alter or inject messages as she wishes), in particular she may compromise long-term keys of parties or
secret states of protocol instances at any time. Let KAKE be the key space of session key, and {PK,SK}
be key spaces for long-term public/private key respectively. Those spaces are associated with security
parameter κ of considered protocol.

Execution Environment. In the execution environment, we fix a set of honest parties {ID1, . . . , ID`}
for ` ∈ N, where ID is identity of a party which is chosen uniquely from space IDS. Each identity is
associated with a long-term key pair (skIDi , pkIDi) ∈ (SK,PK) for entity authentication, and is indexed
via integer i ∈ [`] in the model. Note that those identities are also lexicographically indexed via variable
i ∈ [`] . For public key registration, each party IDi might be required to provide extra information
(denoted by proof) to prove either the knowledge of the secret key or correctness of registered public
key (via e.g. non-interactive proof of knowledge schemes). In practice, the concrete implementation of
proof is up to the CA [1] and may be either interactive or non-interactive. Examples can be found in
RFC 4210 [1] and PKCS#10. In this model we focus on non-interactive proof. Each honest party IDi can
sequentially and concurrently execute the protocol multiple times with different indented partners, this
is characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [ρ]} for ρ ∈ N. Oracle πsi behaves as party IDi
carrying out a process to execute the s-th protocol instance, which has access to the long-term key pair
(skIDi , pkIDi) of IDi and to all other public keys. Moreover, we assume each oracle πsi maintains a list of
independent internal state variables with following semantics:

• pidsi – A variable stores a set of partner identities in the group with whom πsi intends to establish a
session key (including IDi itself), where the identities are ordered lexicographically.
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• Φs
i – A variable stores the oracle decision Φs

i ∈ {accept, reject}.

• Ks
i – A variable records the session key Ks

i ∈ KKE for symmetric encryption.

• stsi – A variable stores the maximum secret session states that are allowed to be leaked (e.g., the
exponent of exchanged ephemeral public key).

• T si – A variable stores the transcript of all messages sent and received by πsi during its execution,
where the messages are ordered by round and within each round lexicographically by the identities
of the purported senders.

All those variables of each oracle are initialized with empty string denoted by symbol ∅ in the
following. At some point, each oracle πsi may complete the execution always with a decision state
Φs
i ∈ {accept, reject}. Furthermore, we assume that the session key is assigned to the variable Ks

i

(such that Ks
i 6= ∅) iff oracle πsi has reached an internal state Φs

i = accept.

Adversarial Model. An adversary A in our model is a PPT Turing Machine taking as input the
security parameter 1κ and the public information (e.g. generic description of above environment), which
may interact with these oracles by issuing the following queries.

• Send(πsi ,m): The adversary can use this query to send any message m of his own choice to oracle
πsi . The oracle will respond the next message m∗ (if any) to be sent according to the protocol
specification and its internal states. Oracle πsi would be initiated via sending the oracle the first
message m = (>, pidsi ) consisting of a special initialization symbol > and a variable storing partner
identities. After answering a Send query, the variables (pidsi ,Φ

s
i ,K

s
i , st

s
i , T

s
i ) might be updated

depending on the specific protocol.

• RevealKey(πsi ): Oracle πsi responds with the contents of variable Ks
i .

• StateReveal(πsi ): Oracle πsi responds with the secret state stored in variable stsi , e.g. the random
coins used to generate the session key.

• Corrupt(IDi): Oracle π1i responds with the long-term secret key skIDi of party IDi if i ∈ [`]. After
this query, oracles πsi (s > 1) can still answer other queries.

• RegisterCorrupt(IDτ , pkIDτ , proof IDτ ): This query allows the adversary to register an identity IDτ
(` < τ < N) and a static public key pkIDτ on behalf of a party IDτ , if IDτ is unique and pkIDτ
is ensured to be sound by evaluating the non-interactive proof proof IDτ . We only require that the
proof is non-interactive in order to keep the model simple. Parties established by this query are
called dishonest.

• Test(πsi ): This query may only be asked once throughout the experiment. Oracle πsi handles this
query as follows: If the oracle has state Ω = reject or Ks

i = ∅, then it returns some failure symbol
⊥. Otherwise it flips a fair coin b, samples a random element K0 from key space KKE, sets K1 = Ks

i

to the real session key, and returns Kb.

We stress that the exact meaning of the StateReveal must be defined by each protocol separately,
and each protocol should be proven secure to resist with such kind of state leakage as claimed. Namely
a protocol should specify the content stored in the variable st during protocol execution. In order to
protect those critical session states of AKE protocols, utilizing secure (e.g. tamper-proof) device might
be a natural solution, namely at each party an untrusted host machine is used together with a secure
hardware. In this way it is possible to adopt a “All-and-Nothing” strategy to define the session states –
namely we can assume that all states stored on untrusted host machine can be revealed via StateReveal

7



query and no state would be exposed at secure device without loss of generality.2 The RegisterCorrupt
query is used to model the chosen identity and public key attacks. In this query, the detail form of proofτ
(i.e. how to register an identity and corresponding public key) should be specified by each protocol, which
corresponds to the proof of knowledge assumptions for public key registration as discussed in [32, 5]. Please
note that if the protocol allows for arbitrary key registration then one could set the parameter proof = ∅.
Basically, our execution environment is consistent to the g-eCK model [18] except for the RegisterCorrupt
query. In the original g-eCK model, the adversary is allowed to register a public key (via AddUser query)
by checking whether corresponding register key comes from the key space for public key. However in our
model, we model the requirement of the key registration in a more general way via parameter proof.

Secure AKE Protocols. We first consider the correctness of a GAKE protocol to rule out those useless
protocols.

Definition 7 (Correctness). Let πsi and πtj be two oracles. We say a GAKE protocol Σ is correct, if both
oracles πsi and πtj accept such that πsi and πtj have matching sessions, then it holds that Ks

i = Kt
j .

To formalize the notion that two oracles are engaged in an on-line communication, we define the
partnership via matching sessions. We assume that messages in a transcript T si are represented as binary
strings.

Definition 8. We say that an oracle πsi has a matching session to oracle πtj , if pidsi = pidtj and πsi has
sent all protocol messages and T si = T tj .

Security Game. The security game is played between a challenger C and an adversary A, where the
following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsi : i ∈ [`], s ∈
[ρ]}, and generates ` long-term key pairs (pkIDi , skIDi) and corresponding proof proofi for all honest
parties IDi for i ∈ [`] where the identity IDi ∈ IDS of each party is chosen uniquely. C gives adversary
A all identities, public keys and corresponding proofs {(ID1, pkID1 , proof ID1

), . . . , (ID`, pkID` , proof ID`)}
as input.

2. A may issue polynomial number of queries as aforementioned, namely A makes queries: Send,
StateReveal, Corrupt, RegisterCorrupt and RevealKey.

3. At some point, A may issue a Test(πsi ) query on an oracle πsi during the experiment with only once.

4. At the end of the game, the A may terminate with outputting a bit b′ as its guess for b of Test
query.

For the security definition, we need the notion about the freshness of oracles which formulates the
restrictions on the adversary with respect to performing these above queries.

Definition 9 (Freshness). Let πsi be an accepted oracle. Let πS = {πtj}IDj∈pidsi ,j 6=i be a set of oracles (if
they exist), such that πsi has a matching session to πtj . Then the oracle πsi is said to be fresh if none of
the following conditions holds:

1. A queried RegisterCorrupt(IDj , pkIDj , proof IDj ) with some IDj ∈ pidsi .

2. A queried either RevealKey(πsi ) or RevealKey(πtj) for some oracle πtj ∈ πS .

2Similar modelling technique involving secure hardware was previously used by Bresson et al. [11]. Basing the security
models on specific implementation approach reduces the gap that often exists between formal models and practical security
without loss of generality, and this also enables us to define the detailed content of StateReveal query.
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3. A queried both Corrupt(IDi) and StateReveal(πsi ).

4. For some oracle πtj ∈ πS , A queried both Corrupt(IDj) and StateReveal(πtj).

5. If IDj ∈ pidsi (j 6= i) and there is no oracle πtj such that πsi has a matching session to πtj , A queried
Corrupt(IDj).

Security of GAKE protocols is now defined by requiring that the protocol is a session key secure
key-exchange protocol, thus an adversary cannot distinguish the session key from a random key.

Definition 10 (g-eCK Security). We say that an adversary A (t, ε)-breaks the g-eCK security of a correct
group AKE protocol Σ, if A runs the AKE security game within time t, and the following condition holds:

• If a Test query has been issued to an oracle πsi without failure and πsi is fresh throughout the security
game, then the probability that the bit b′ returned by A equals to the bit b chosen by the Test query
is bounded by

|Pr[b = b′]− 1/2| > ε,

We say that a correct group AKE protocol Σ is (t, ε)-g-eCK-secure, if there exists no adversary that
(t, ε)-breaks the g-eCK security of Σ.

4 Simplify the Security Proof for One-round GAKE in the g-eCK
Model

We first present a generic definition of one-round group authenticated key exchange (ORGAKE) to allow
us to describe our generic result for this class of protocols. In a (ORGAKE) protocol, each party may
send a single ‘message’ and this message is always assumed to be independent of the message sent by
the other party without loss of generality. The independence property of sent messages is required since
the session participants can’t achieve mutual authentication in one-round and it enables parties to run
protocol instances simultaneously (which is a key feature of one-round protocol). The key exchange
procedure is done within two pass and a common shared session key is generated to be known only by
session participants.

Let GD := ((ID1, pkID1), . . . , (IDn, pkIDn)) be a list which is used to store the public information of a
group of parties formed as tuple (IDi, pkIDi), where n is the size of the group members which intend to
share a key and pkIDi is the public key of party IDi ∈ IDS (i ∈ [n]). Let T denote the transcript storing
the messages sent and received by a protocol instance at a party which are sorted orderly. A general
PKI-based ORGAKE protocol may consist of four polynomial time algorithms
(ORGAKE.Setup,ORGAKE.KGen,ORGAKE.MF,ORGAKE.SKG) with following semantics:

• pms← Setup(1κ): This algorithm takes as input a security parameter κ and outputs a set of system
parameters storing in a variable pms.

• (skID, pkID, proof ID)
$← ORGAKE.KGen(pms, ID): This algorithm takes as input system parameters

pms and a party’s identity ID, and outputs a pair of long-term private/public key (skID, pkID) ∈
{PK,SK} for party ID and a non-interactive proof for pkID (which is required during key registra-
tion.).

• mID1

$← ORGAKE.MF(pms, skID1 , rID1 ,GD): This algorithm takes as input system parameters pms

and the sender ID1’s secret key skID1 , a randomness rID1

$← RORGAKE and the group information
variable GD, and outputs a message to be sent in a protocol pass, where RORGAKE is the randomness
space.3

3We remark that the parameter GD of algorithm ORGAKE.MF is only optional, which can be any empty string if specific
protocol compute the message without knowing any information about its indented partners.
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• K ← ORGAKE.SKG(pms, skID1 , rID1 ,GD,T): This algorithm take as the input system parameters

pms and ID1’s secret key skID1 , a randomness rID1

$← RORGAKE and the group information GD
and a transcript T orderly recorded all protocol messages exchanged4, and outputs session key
K ∈ KORGAKE.

For correctness, we require that, on input the same group description GD = ((ID1, pk1), . . . , (IDn, pkn))
and transcript T, algorithm ORGAKE.SKG satisfies the constraint:

– ORGAKE.SKG(pms, skID1 , rID1 ,GD,T) = ORGAKE.SKG(pms, skIDi , rIDi ,GD,T),

where skIDi is the secret key of a party IDi ∈ GD who generates randomness rIDi ∈ RORGAKE for
i ∈ [n].

Besides these algorithms, each protocol might consist of other steps such as long-term key registration
and message exchange, which should be described by each protocol independently.

Simplify the Security Proof for One-round Tripartite AKE in the g-eCK model. We show
how to reduce the complexity of the security proof of any one-round 3AKE protocol with the above form
in the g-eCK model. To prove the security of a protocol in the g-eCK model, it is necessary to show the
proof under all possible freshness cases formulated by Definition 9. Let oracle πs

∗

Â
be the test oracle with

intended partner B̂ and Ĉ for instance. If any adversary breaks the indistinguishability security property
of am OR3AKE protocol, then at least one of the following fresh events must occur:

• Event 0: There are oracles πt
∗

B̂
and πl

∗

Ĉ
, such that πs

∗

Â
has matching session to πt

∗

B̂
and to πl

∗

Ĉ
respectively.

• Event 1: There is an oracle πt
∗

F̂
such that πs

∗

Â
and πt

∗

F̂
have matching sessions but there is no oracle

at D̂ having matching session to πs
∗

Â
, where F̂ and D̂ are parties such that F̂ , D̂ ∈ {B̂, Ĉ} and

D̂ 6= F̂ .

• Event 2: πs
∗

Â
has no matching session.

Besides the restrictions regarding RegisterCorrupt and RevealKey queries which are ‘deterministic’, we
particular may obtain different freshness events on whether the test oracle has matching sessions and
corresponding freshness cases related to different combinations of StateReveal and Corrupt queries which
are ‘flexible’ and determined by adversary’s choice. However, among those different freshness cases,
at least one would occur in the security game. In the Table 1, we show the freshness cases regarding to
StateReveal and Corrupt query which might be occurred in each event. Let ‘nRS’ denote the situation that
the adversary did not issue StateReveal query to specific oracle, and ′nC’ denote the situation adversary
did not issue Corrupt query to corresponding party (e.g. the owner of certain oracle).

In order to complete the proof, we must provide the security proofs under all fourteen cases that
might be tiresome. However we introduce the following general propositions to facilitate the proof of any
OR3AKE protocols in the form of the above description. Our goal is to reduce the freshness cases which
have the similar restrictions on adversary’s queries.

Proposition 1. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case
C2, then there exists adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C5, such that
t1 ≈ t2 and εA1 = εA2.

4The detail order needs to be specified by each protocol.
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Event 0 πs
∗

Â
πt

∗

B̂
πl

∗

Ĉ
Event 1 πs

∗

Â
πt

∗

F̂
D̂ Event 2 πs

∗

Â
B̂ Ĉ

Case 1 (C1) nRS nRS nRS Case 9 (C9) nRS nRS nC Case 13 (C13) nC nC nC
Case 2 (C2) nC nRS nRS Case 10 (C10) nC nRS nC Case 14 (C14) nRS nC nC
Case 3 (C3) nRS nRS nC Case 11 (C11) nC nC nC
Case 4 (C4) nC nRS nC Case 12 (C12) nRS nC nC
Case 5 (C5) nRS nC nRS
Case 6 (C6) nC nC nRS
Case 7 (C7) nC nC nC
Case 8 (C8) nRS nC nC

Table 1: Freshness Cases in Each Event

Proof. Intuitively, in cases C2 and C5, the test oracle has matching sessions, then the adversary could
selects either an oracle πs

∗

Â
or its partners πt

∗

B̂
or πl

∗

Ĉ
as test oracle since πs

∗

Â
, πt

∗

B̂
and πl

∗

Ĉ
will compute the

same session key. In both cases the adversary reveals the states of two oracles and corrupt a party. We
show the security reduction as follows. A2 interacts with the AKE challenger C and tries to break the
security of considered protocol under freshness case C5. It runs A1 as subroutine and responds all oracle
queries except for the test oracle. When A1 issues the Test query to πs

∗

Â
, A2 selects the matching partner

πt
∗

B̂
as the test oracle. When A2 receives the real session key or random key, A2 sends it to A1. If A1

outputs a bit, A2 outputs the same bit. Note that A2 can issue StateReveal(πs
∗

Â
) since it has matching

session to the ‘test oracle’ (i.e. πt
∗

B̂
) from the view of A2. A2 can issue Corrupt(Â) since from the view

of A2 the party Â is the intended partner of its ‘test oracle’. So A2 can correctly respond to all queries
issued by A1. Therefore, if A1 breaks the security of the considered protocol in case C2, A2 wins the
game in case C5 with the same advantage as A1’s. �

Proposition 2. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case C3
(C5), then there exists adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C9, such
that t1 ≈ t2 and εA1 = εA2.

Proof. This proof is similar to the proof of Proposition 1. A2 interacts with an AKE challenger C and
tries to break the security of considered protocol under freshness case C9. It runs A1 as subroutine and
responds all the oracle queries except for the test oracle. A1 issues the Test query to oracle πs

∗

Â
which has

a matching session to oracle πt
∗

F̂
and to πl

∗

D̂
in the view of A1. Note that the oracle πt

∗

F̂
is simulated by

challenger C, but the oracle πl
∗

D̂
is simulated by A2 on behalf of D̂ for A1 (since A2 is the challenger of A1).

The message generated by oracle πl
∗

D̂
is either generated by A2 or obtained from an oracle simulated by

C, which depends on A2’s choice. So that when A2 receives the real session key or random key, A2 sends
it to A1. If A1 outputs a bit, A2 outputs the same bit. A2 can respond to any oracle queries issued by
A1 since the restricted oracle queries are equivalent. Therefore, A2 breaks the security of the considered
protocol in case C9 if A1 wins the game in case C3 (C5). �

Proposition 3. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case
C7, then there exists adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C11. If such
adversary A2 exists, then there exists adversary A3 who can (t3, εA3)-breaks the g-eCK security of Σ in
case C13. We have that t1 ≈ t2 ≈ t3 and εA1 = εA2 = εA3.

Proof. This proof is similar to the proofs of Proposition 1 and Proposition 2. A2 runs A1 as subroutine
and responds all the oracle queries except for the test oracle. A1 issues the Test query to oracle πs

∗

Â

which has a matching session to oracle πt
∗

F̂
and to πl

∗

D̂
(in the view of A1). A2 could select πt

∗

F̂
as test

oracle which is possible since it has matching session to πs
∗

Â
. So that when A2 receives the real session
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key or random key, A2 sends it to A1. If A1 outputs a bit, A2 outputs the same bit. A2 can respond
to any oracle queries issued by A1 since the restricted oracle queries for those adversaries are equivalent.
Therefore, A2 breaks the security of the considered protocol in case C11 if A1 wins the game in case C7.
Analogously we have the reduction from C11 to C13, since the restricted oracle queries are the same to
adversaries. �

Proposition 4. If adversary A1 (t1, εA1)-breaks the g-eCK security of a OR3AKE protocol Σ in case C4
(C6), then there exists adversary A2 who can (t2, εA2)-breaks the g-eCK security of Σ in case C8. If such
adversary A2 exists, then there exists adversary A3 who can (t3, εA3)-breaks the g-eCK security of Σ in
case C12. If such adversary A3 exists, then there exists adversary A4 who can (t4, εA4)-breaks the g-eCK
security of Σ in case C14. We have that t1 ≈ t2 ≈ t3 ≈ t4 and εA1 = εA2 = εA3 = εA4.

Proof. This proof is similar to the proofs of Proposition 1, Proposition 2 and Proposition 3. Thus we
omit the detail here for avoid repetition. �

The above reductions routes are informally depicted in the Figure 1.

C2→ C5(C3)→ C9
C7→ C11→ C13

C4(C6)→ C8→ C12→ C14

Figure 1: Reductions of g-eCK-Freshness for One-round Tripartite AKE

Due to the above reductions, one could prove the security of any one-round 3AKE protocol in the
g-eCK model only under freshness cases C1, C9, C13 and C14. This would be dramatically simplify the
security proof. In the sequel, we call these freshness cases need to write proof as target freshness cease.

Towards Lower Bound of Target Freshness Cases for the Proof of One-round GAKE with
Arbitrary Group Size in the g-eCK Model. In order to make the proof for one-round GAKE
protocol in the g-eCK model to be more tight, we might also need to do the analogous reductions about
the freshness cases as it is done for OR3AKE. However, we might not be able to formally do so in a short
page when the group size n ∈ N is a large integer, in which the total number of the freshness cases would
be very large. So that we can only make certain conjecture for the lower bound of target freshness cases
for the proof of AAKE protocol with arbitrary group size n in the eCK Model.

Conjecture 1. For any one-round group AKE protocol with members n + 1, we have n + 2 freshness
cases that require proof simulations.

Proof. Please first note that each freshness case consists of two main aspects: (i) the status (e.g. the
number) of matching sessions, (ii) the restrictions of adversary’s queries. Since there are at most n + 1
parties in a protocol instance for which can be queried either Corrupt or StateReveal. It is not hard to
see that there are n+ 1 distinct events for the status of matching sessions, i.e. matching sessions of test
oracle vary between n and 0. Let ‘Event i’ (0 ≤ i ≤ n) denote the situation that the test oracle has n− i
matching sessions (we use the similar representation approach as three party case). In Event i, there is
2n−i+1 distinct freshness cases, because either the test oracle or each oracle having matching session to test
oracle has two distinct cases, i.e. it can be either corrupted or revealed states by adversary. Collect the
number of freshness cases in each event, we have total number of freshness cases 2(2n+1−1) =

∑n
i=0 2n−i+1.

From the reductions for three party case, we know that freshness cases have analogous or the same query
restrictions could be somehow reduced. So that we only need to do proof simulations for these ‘target’
freshness cases having distinct query restrictions. We observe that there are n + 2 such target freshness
cases. Since each event would contribute one distinct freshness case, except for the Event n in which
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event there is two distinct freshness cases related to test oracle. Namely in Event i (i 6= n) that the test
oracle has n − i matching sessions, we have the distinct freshness case as: The adversary did not query
StateReveal to these n− i matching sessions (of test oracle) and did not query Corrupt to these i parties
which have no matching session to test oracle. �

5 A Tripartite AKE Protocol from Bilinear Maps

In this section we present a three party one-round AKE protocol based on symmetric bilinear groups,
a target collision resistant hash function and a pseudo-random function family. The requirements for
underlying building blocks are standard, the proposed protocol provides g-eCK security without random
oracles.

Design Principle. The challenge here is that we have to simultaneously cope with chosen identity
and long-term public key (CIDPK) attacks (modeled by RegisterCorrupt query) and chosen ephemeral
key (CEK) attacks (modeled by Send query) in presence of strong adversaries who can reveal non-trivial
session states (via StateReveal query) and even compromise the long-term keys of participants (via Corrupt
query). The CIDPK attack addresses the situation that the adversary registers dishonest identity and
public key and tries to subvert the security, e.g. obtain information about honest user’s secret key via small
sub-group attacks [29]. The CEK attack addresses the situation that the adversary tries to manipulate the
session key via exchanged ephemeral keys of her own choice. To deal with these complicated situations,
we have to set up a proof simulation for our construction in the g-eCK model that is able to simulate all
queries ‘appropriately’.

Our main idea is to make use of the weak (3,poly)-PHF [23] to resist with not only CEK attacks
but also CIDPK attacks under the g-eCK model. This is possible, since there are at most three (either
long-term or ephemeral) public keys will not be compromised by adversary. However, we can’t efficiently
construct the protocol based on BDDH assumption. Because in a BDDH challenge instance, all DH keys
are distinct to each other. Consider the most awkward case that there are at most three uncorrupted
parties, each of which may possess a long-term key generated by a BDDH challenge value. Thus we might
need at least three different weak (3,poly)-PHFs to plug in all BDDH challenge values in order to simulate
the session keys correctly for all those uncorrupted oracles. To avoid this inefficient setting, the CBDDH
assumption might be a perfect alternative choice. We could simultaneously embed CBDDH challenge
value into these uncompromised DH keys and the parameters of weak (3,poly)-PHF in the security proof.

5.1 Protocol Description

We describe the protocol in terms of the following three parts: Setup, long-termkey generation and key
registration, protocol execution, one could think of the general algorithms defined in Section 4 are implied
in specific part.

Setup: The proposed protocol takes as input the following building blocks which are initialized respec-
tively in terms of the security parameter κ ∈ N:

• Symmetric bilinear groups PG = (G, g,GT , p, e)
$← PG.Gen(1κ) and a set of random values {ui}0≤i≤3

$←
G,

• a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF×G→ Zp, where hkTCRHF
$←

TCRHF.KG(1κ), and

• a pseudo-random function family PRF(·, ·) : GT × {0, 1}∗ → KAKE.

The system parameter variable encompasses pms := (PG, {ui}0≤i≤3, hkTCRHF).
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Â
(skÂ = a

$← Z∗p,
pkÂ = (A, tA) :=

(ga, (u0u
hA
1 u

h2
A

2 u
h3
A

3 )a)

B̂
(skB̂ = b

$← Z∗p,
pkB̂ = (B, tB) :=

(gb, (u0u
hB
1 u

h2
B

2 u
h3
B

3 )b)

Ĉ
(skĈ = c

$← Z∗p,
pkĈ = (C, tC) :=

(gc, (u0u
hC
1 u

h2
C

2 u
h3
C

3 )c)

x
$← Z∗p, X := gx y

$← Z∗p, Y := gy z
$← Z∗p, Z := gz

hX := TCRHF(X) hY := TCRHF(Y ) hZ := TCRHF(Z)

tX := (u0u
hX
1 u

h2
X

2 u
h3
X

3 )x tY := (u0u
hY
1 u

h2
Y

2 u
h3
Y

3 )y tZ := (u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 )z

broadcast (Â, A, tA, X, tX) broadcast (B̂, B, tB , Y, tY ) broadcast (Ĉ, C, tC , Z, tZ)

hB := TCRHF(B)
hC := TCRHF(C)

hA := TCRHF(A)
hC := TCRHF(C)

hA := TCRHF(A)
hB := TCRHF(B)

hY := TCRHF(Y )
hZ := TCRHF(Z)

hX := TCRHF(X)
hZ := TCRHF(Z)

hX := TCRHF(X)
hY := TCRHF(Y )

UB := u0u
hB
1 u

h2
B

2 u
h3
B

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3 UA := u0u
hA
1 u

h2
A

2 u
h3
A

3

UC := u0u
hC
1 u

h2
C

2 u
h3C
3 UC := u0u

hC
1 u

h2C
2 u

h3
C

3 UB := u0u
hB
1 u

h2
B

2 u
h3
B

3

UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3 UX := u0u
hX
1 u

h2
X

2 u
h3
X

3

UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UZ := u0u
hZ
1 u

h2
Z

2 u
h3
Z

3 UY := u0u
hY
1 u

h2
Y

2 u
h3
Y

3

reject if either reject if either reject if either
e(tB , g) 6= e(UB , B) or e(tA, g) 6= e(UA, A) or e(tA, g) 6= e(UA, A) or
e(tC , g) 6= e(UC , C) or e(tC , g) 6= e(UC , C) or e(tB , g) 6= e(UB , B) or
e(tY , g) 6= e(UY , Y ) or e(tX , g) 6= e(UX , X) or e(tX , g) 6= e(UX , X) or
e(tZ , g) 6= e(UZ , Z) e(tZ , g) 6= e(UZ , Z) e(tY , g) 6= e(UY , Y )

Each party has sid := Â||A||tA||X||tX ||B̂||B||tB ||Y ||tY ||Ĉ||C||tC ||Z||tZ
Each party rejects if some values recorded in sid are identical

k := e(BY,CZ)a+x k := e(AX,CZ)b+y k := e(AX,BY )c+z

ke := PRF(k, sid) ke := PRF(k, sid) ke := PRF(k, sid)

Figure 2: One-round Tripartite AKE Protocol
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Long-term Key Generation and Registration: On input pms := (PG, {ui}0≤i≤3, hkTCRHF), a party

Â may run an efficient algorithm (skÂ, pkÂ, ∅)
$← ORGAKE.KGen(pms, Â) to generate the long-term key

pair as: skÂ = a
$← Z∗p, pkÂ = (A, tA) where A = ga, tA := (u0u

hA
1 u

h2A
2 u

h3A
3 )a and hA = TCRHF(A). Please

note that we allow arbitrary key registration, i.e. the adversary is able to query RegisterCorrupt(Â, pkÂ, ∅)
with proofÂ = ∅.

Protocol Execution: On input the system parameter pms, the protocol among parties Â, B̂ and Ĉ is
executed as following, which is also informally depicted in the Figure 2.

1. Upon activating a new session with participants (Â, B̂, Ĉ), the party Â first chooses an ephemeral pri-

vate key x
$← Z∗p and compute ephemeral public key X := gx. Next Â computes hX := TCRHF(X),

and tX := (u0u
hX
1 u

h2X
2 u

h3X
3 )x. To the end Â broadcasts messages (Â, A, tA, X, tX) to B̂ and Ĉ.

2. Upon activating a new session with participants (Â, B̂, Ĉ), the party B̂ first chooses an ephemeral

private key y
$← Z∗p and compute ephemeral public key Y := gy. Next B̂ computes hY := TCRHF(Y ),

and tY := (u0u
hY
1 u

h2Y
2 u

h3Y
3 )y. To the end B̂ broadcasts messages (B̂, B, tB, Y, tY ) to Â and Ĉ.

3. Upon activating a new session with participants (Â, B̂, Ĉ), the party Ĉ first chooses an ephemeral

private key z
$← Z∗p and compute ephemeral public key Z := gz. Next Ĉ computes hZ := TCRHF(Z),

and tZ := (u0u
hZ
1 u

h2Z
2 u

h3Z
3 )z. To the end Â broadcasts messages (Â, B̂, Ĉ, Â, C, tC , Z, tZ) to Â and

B̂.

4. Upon receiving (B̂, B, tB, Y, tY ) and (Ĉ, C, tC , Z, tZ), the party Â sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values recorded
in sid are identical. Next Â computes hB = TCRHF(B), hC = TCRHF(C), hY = TCRHF(Y ) and

hZ = TCRHF(Z) and rejects the session if either e(tB, g) 6= e(u0u
hB
1 u

h2B
2 u

h3B
3 , B) or e(tC , g) 6=

e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tY , g) 6= e(u0u

hY
1 u

h2Y
2 u

h3Y
3 , Y ) or e(tZ , g) 6= e(u0u

hZ
1 u

h2Z
2 u

h3Z
3 , Z). Finally, Â

computes k := e(BY,CZ)a+x and session key ke := PRF(k, sid).

5. Upon receiving (Â, A, tA, X, tX) and (Ĉ, C, tC , Z, tZ), the party B̂ sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values recorded
in sid are identical. Next B̂ computes hA = TCRHF(A), hC = TCRHF(C), hX = TCRHF(X)

and hZ = TCRHF(Z) and rejects the session if either e(tA, g) 6= e(u0u
hA
1 u

h2A
2 u

h3A
3 , A) or e(tC , g) 6=

e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tX , g) 6= e(u0u

hX
1 u

h2X
2 u

h3X
3 , X) or e(tZ , g) 6= e(u0u

hZ
1 u

h2Z
2 u

h3Z
3 , Z). Finally, B̂

computes k := e(AX,CZ)b+z and session key ke := PRF(k, sid).

6. Upon receiving (Â, A, tA, X, tX) and (B̂, B, tB, Y, tY ) the party Ĉ sets identifier
sid := Â||A||tA||X||tX ||B̂||B||tB||Y ||tY ||Ĉ||C||tC ||Z||tZ and rejects the session if some values recorded
in sid are identical. Next Ĉ computes hB = TCRHF(B), hC = TCRHF(C), hX = TCRHF(X) and

hY = TCRHF(Y ) and rejects the session if either e(tB, g) 6= e(u0u
hB
1 u

h2B
2 u

h3B
3 , B) or e(tC , g) 6=

e(u0u
hC
1 u

h2C
2 u

h3C
3 , C) or e(tX , g) 6= e(u0u

hX
1 u

h2X
2 u

h3X
3 , X) or e(tY , g) 6= e(u0u

hY
1 u

h2Y
2 u

h3Y
3 , Y ). Finally, Â

computes k := e(AX,BY )a+x and session key ke := PRF(k, sid).

Implementation and Session States: We assume that the maximum states of party Â allowing
for leakage consist of ephemeral private key x (resp. y and z for parties B̂ and Ĉ) – namely those
values would be stored in the state variable st of each oracle at any time. For example this can be
guaranteed by performing the computations for k and ke on secure device. Note that the all pairing
operations including e(BY,CZ) can be done on host machine.
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In a nutshell, other non-trivial states, e.g. the secret exponent c+ z and key material k, should be
carefully protected. We stress that it is not allowed to simultaneously leak the ephemeral private
key say z and secret key material say k = e(AX,BY )c+z to any attackers. Otherwise the protocol is
insecure in the g-eCK model. Since such attacker can simply replay the ephemeral key say X = gx

generated by test session owned by Â to any session of Ĉ and extract non-trivial secret e(AX,BY )c

from the knowledge of z and k, where Y could be chosen by the attacker on behalf of B̂. Then it
can break the security by sending any ephemeral keys Z ′ = gz

′
and Y of her own choice on behalf

of Ĉ and B̂ respectively to test session which generates the session key PRF(e(AX,BY )c+z
′
, sid).

Analogously the leakage of ephemeral private key z and corresponding secret exponent c+ z would
lead to the expose of private key c. As well the leakage of only exponent c+z would enable adversary
to launch infinite replay attacks.

We remark that our scheme can satisfy perfect forward secrecy by increase key confirmation procedures
in an extra round, but the protocol then would become less efficient. We leave this problem for future
work, that is to construct secure one-round GAKE protocols in the g-eCK+ model [33].

5.2 Performance Improvement

In this section, we discuss the issue on how to improve the efficiency of proposed one-round tripartite pro-
tocol. Obviously, the consistency checks on both long-term and ephemeral keys are somewhat costly which
requires four pairing operations in each session. Thus we mainly focus on the performance improvement
concerning those consistency checks.

We first introduce an alternative consistency checking algorithm which is derived from the similar
technique in [27] used to improve the efficiency of identity-based KEM scheme. The idea is to merge con-
sistency checks on incoming Diffie-Hellman keys. In the new consistency check algorithm, upon receiving
(Ĉ, Â, A, tA, X, tX) and (Ĉ, C, tC , Z, tZ) the party Â may perform the following steps:

1. Compute UB := u0u
hB
1 u

h2B
2 u

h3B
3 , UC := u0u

hC
1 u

h2C
2 u

h3C
3 , UY := u0u

hY
1 u

h2Y
2 u

h3Y
3 and UZ := u0u

hZ
1 u

h2Z
2 u

h3Z
3 .

2. Choose four random values θ1, θ2, θ3, θ4
$← Z∗p.

3. Reject the session if e(tθ1B t
θ2
C t

θ3
Y t

θ4
Z , g) 6= e(U θ1B , B)e(U θ2C , C)e(U θ3Y , Y )e(U θ4Z , Z).

We claim that the combined consistency check equation implies that all received tags are consistent. In

order to prove our argument we define functions ∆1(tY ) :=
e(u0u

hY
1 u

h2Y
2 u

h3Y
3 ,Y )

e(tY ,g)
, ∆2(tB) :=

e(u0u
hB
1 u

h2B
2 u

h3B
3 ,B)

e(tB ,g)
,

∆1(tZ) :=
e(u0u

hZ
1 u

h2Z
2 u

h3Z
3 ,Z)

e(tZ ,g)
and ∆1(tC) :=

e(u0u
hC
1 u

h2C
2 u

h3C
3 ,C)

e(tC ,g)
. Obviously, we have ∆1(tY ) = ∆2(tB) =

∆1(tZ) = ∆2(tC) = 1 if and only if tY , tB, tZ , tC are consistent. Consequently, for random values

θ1, θ2, θ3, θ4
$← Z∗p, function (∆1(tY ))θ1(∆2(tB))θ2(∆3(tZ))θ3(∆4(tC))θ4 evaluates to 1 if tY , tB, tZ , tC are

consistent and to a random group value in GT otherwise. This alternative consistency check algorithm
substitutes one multiple-exponentiation for three pairing operations. Note that the above technique could
be extended to merge more consistency check equations that would dramatically improve the efficiency
of consistency check procedure, e.g. the consistency check operations in our upcoming one-round group
AKE protocols in Section 6.

Furthermore, we notice that a party Â has to do consistency check on long-term key in every sessions
that might be wasteful. An alternative solution could make the Certificate Authority to check the consis-
tency of long-term public key during key registration procedure. In this way, it might reduce two pairing
operations for protocol execution and also the number of public key. To register a public key pkÂ = A,

each party Â should at least prove the consistency via tag tA. Then the public key A is registered if

e(tA, g) = e(A, u0u
hA
1 u

h2A
2 u

h3A
3 ). Thus this check would be done only once at CA. The downside of this

approach is that it might increase the burden of CA. In particular, the tag tA is required while querying
the RegisterCorrupt(Â, pkÂ, proofÂ) in the security game, i.e. proofÂ = tA.
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5.3 Security Analysis

We show the security of proposed protocol in our strong security model.

Theorem 1. Assume each ephemeral key chosen during key exchange has bit-size λ ∈ N. Suppose that the
CBDDH problem is (t, εCBDDH)-hard in the symmetric bilinear groups PG, the TCRHF is (t, εTCRHF)-secure
target collision resistant hash function family, and the PRF is (q, t, εPRF)-secure pseudo-random function
family. Then the proposed protocol is (t′, ε)-session-key-secure in the sense of Definition 10 with t′ ≈ t,

q ≥ 3 and ε ≤ (ρ`)2

2λ
+ εTCRHF + 4(ρ`)3 · εCBDDH + εPRF.

The full proof of theorem 1 is presented in Appendix A.

6 A GAKE Construction from Multilinear Maps

An interesting work is to extend the proposed 3AKE scheme to GAKE scheme with more than three group
members. Based on bilinear groups might be impossible to achieve so. Since we can not get an aggregate
long-term shared key for a group of members from bilinear map. However, Boneh and Silverberg [10]
have given us inspiration on how to generalize the 3AKE to GAKE by exploiting multilinear maps.

6.1 Protocol Description

Setup: The proposed protocol takes as input the following building blocks which are initialized respec-
tively in terms of the security parameter κ ∈ N and upper-bound of group size n+ 1:

• n-mulitilinear groups MLG = (G,GT , g, p,me)
$← MLG.Gen(κ, n) and a set of random values

{uj}0≤j≤n+1
$← G.

• a target collision resistant hash function TCRHF(hkTCRHF, ·) : KTCRHF×G→ Zp, where hkTCRHF
$←

TCRHF.KG(1κ), and

• a pseudo-random function family PRF(·, ·) : GT × {0, 1}∗ → KAKE.

Let pms := (MLG, {uj}0≤j≤n+1, hkTCRHF) be the variable used to store the public system parameters.

Long-term Key Generation and Registration: On input pms := (MLG, {uj}0≤j≤n+1, hkTCRHF),

a party Â may run an efficient algorithm (skD̂, pkD̂, ∅)
$← ORGAKE.KGen(pms, D̂) to generate the long-

term key pair for a party D̂ as: skD̂ = d
$← Z∗p, pkD̂ = (D, tD), where D = ga, tD :=

∏n+1
j=0 u

hjD
j and

hA = TCRHF(A). Please note that we allow arbitrary key registration, i.e. the adversary is able to query
RegisterCorrupt(D̂, pkD̂, ∅) with proofD̂ = ∅.

Let ω denote the size of group for a protocol instance such that 2 ≤ ω ≤ n+1. An important attribute
for a GAKE protocol is the scalable group size. In the following we show our construction for protocol
execution phase which is scalable with range between 2 and n+ 1. Recall that the upper bound of group
size is determined by the n-multilinear map.

Protocol Execution: We consider the protocol execution for a protocol instance with ω group members
denoted by (D̂1, D̂2, . . . , D̂ω), where each party D̂i (1 ≤ i ≤ ω) has long-term key Di. In the key exchange

phase, each party D̂i generates an ephemeral key Xi = gxi , computes tag tXi :=
∏n+1
j=0 u

hjXi
j and broadcasts

(D̂i, Di, tDi , Xi, tXi) to its intended communication partners, where xi
$← Z∗p and hXi := TCRHF(Xi).

Upon receiving all messages {D̂l, Dl, tD1 , Xl, tXl}1≤l≤ω,l 6=i from each session participant, the party D̂i
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rejects the session if the consistency check on one of the received either long-term or ephemeral keys

fails, i.e. me(tWl
, g, . . . , g) 6= me(

∏n+1
j=0 u

hjWl
j ,Wl, g, . . . , g) where Wl ∈ {Dl, Xl} for 1 ≤ l ≤ ω, l 6= i

and hWl
= TCRHF(Wl).

5 The party D̂i sets sid := D̂1||D1||tD1 ||X1||tX1 || . . . ||D̂ω||Dω||tDω ||Xω||tXω , and
rejects the session if some values recorded in sid are identical. To this end, the party D̂i generates
the key material k := me(D1X1, . . . , Di−1Xi−1, Di+1Xi+1, . . . , DωXω, . . . , DωXω)di+xi and session key
ke := PRF(k, sid), where the values D0, X0, Dω+1, Xω+1 are ‘empty’ which should be omitted. Other
parties in this group will do the similar procedures to generate the session key.

Please note that the scalability is achieved generally by setting all Diffie-Hellman keys after the posi-
tion ω in n-multilinear map me to be DωXω. This is possible since at least one DH key in (Dω, Xω) is
not compromised by adversary in the security game. As otherwise such session is no longer fresh in terms
of Definition 9.

Implementation and Session States: We assume that the maximum states of party D̂i allowing for
leakage from a session consist of ephemeral private key xi – namely those values would be stored in the
variable in the state variable st of each oracle at any time. The implementation scenario is similar to the
three party case presented in Section 5, namely generate the k and ke on secure device.

Remark 1. The above construction implies the proposed tripartite AKE protocol in Section 5 if the
parameter of n-multilinear map such that n = 2 which is equivalent to bilinear map. Then the scalable
construction of GAKE could also yield a two party eCK secure AKE protocol that might be of independent
interesting. It is not hard to see that the security of such two party AKE protocol can be proved without
random oracles based on CBDDH assumption in the g-eCK model when group size equals two (i.e. then
it implies the eCK model).

6.2 Security Analysis

We show the security of above group AKE protocol in our strong security model.

Theorem 2. Assume each ephemeral key chosen during key exchange has bit-size λ ∈ N. Suppose
that the nMDDH problem is (t, εnMDDH)-hard in the symmetric multilinear groups MLG, the TCRHF is
(t, εTCRHF)-secure target collision resistant hash function family, and the PRF is (q, t, εPRF)-secure pseudo-
random function family. Then the proposed protocol of size 2 ≤ ω ≤ n + 1 is (t′, ε)-g-eCK-secure in the

sense of Definition 10 with t′ ≈ t, q ≥ n+ 1 and ε ≤ (ρ`)2

2λ
+ εTCRHF + (n+ 2)(ρ)n+1

(
`

n+1

)
· εnMDDH + εPRF.

The full proof of theorem 2 is presented in Appendix B.
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A Proof of Theorem 1

It is straightforward to see that two oracles accept with matching sessions would compute the same session
key. Namely the proposed protocol is correct. In the sequel, we wish to show that the adversary is unable
to distinguish random value from the session key of any fresh oracle. Without loss of generality, we
consider that the adversary chooses the test oracle πs

∗

Â
executed with its indented partners B̂ and Ĉ.

Next we introduce the notations which might be used in the proof. Let the ephemeral keys generated
by oracles πs

Â
, πt

B̂
and πt

Ĉ
are X = gx, Y = gy and Z = gz respectively. we use the superscript ‘*’ to

highlight corresponding values processed by the test oracle and its partner oracles (if they exist), say
the ephemeral key X∗ generated by oracle πs

∗

Â
. Let D = gd, F = gf , W = gw and V = gv denote the

Diffie-Hellman (DH) keys received by an oracle πsi (i ∈ [`]) which are used to compute the session key,
where these DH keys could be either ephemeral or long-term key.

To complete the proof of Theorem 1, we only need to prove the advantage of the adversary is negligible
under target freshness cases C1, C9, C13 and C14, due to the reductions (by Proposition 1, Proposition 2,
Proposition 3 and Proposition 4.) in Section 4. The proof proceeds in a sequence of games, following [35,
8]. Let Sδ be the event that the adversary wins the security experiment in Game Gδ and freshness cases
in the set {C1, C9, C13, C14}. Let Advδ := Pr[Sδ]− 1/2 denote the advantage of A in Game Gδ.

Game G0. This is the original game with adversary A. The system parameters are chosen honestly
by challenger as protocol specification. Meanwhile, the challenger chooses four uniform random values

ri
$← Z∗p for 0 ≤ i ≤ 3, and sets ui := gri as public parameters. Thus we have that

Pr[S0] = 1/2 + ε = 1/2 + Adv0.
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Game G1. In this game, the challenger proceeds exactly like previous game, except that we add an
abort rule. The challenger raises event aborteph and aborts, if during the simulation an ephemeral key
(say X) replied by an oracle πsi but it has been sample by another oracle or sent by adversary before.
Since there are ρ` such ephemeral keys would be sampled uniform randomly from {0, 1}λ. Thus, the event

aborteph occurs with probability Pr[aborteph] ≤ (ρ`)2

2λ
. We have that

Adv0 ≤ Adv1 +
(ρ`)2

2λ
.

Note that the ephemeral key chosen by each oracle is unique in this game.

Game G2. In this game we want to make sure that the received Diffie-Hellman keys are correctly formed.
Technically, we add an abort condition, namely the challenger proceeds exactly as before, but raises event
aborthash and aborts if there exist two distinct (either ephemeral or long-term) public keys M and N such
that TCRHF(M) = TCRHF(N). Obviously the Pr[aborthash] ≤ εTCRHF, according to the security property
of underlying hash function. Thus we have

Adv1 ≤ Adv2 + εTCRHF.

Game G3. This game proceeds as previous game, but C aborts if one of the following guesses fails: (i)
the freshness case occurred to test oracle from the set {C1, C9, C13, C14}, (ii) the test oracle πs

∗

Â
, (iii) its

partner parties B̂ and Ĉ, and (iv) corresponding oracles (if any) πt
∗

D̂
(D̂ ∈ {B̂, Ĉ}) such that πs

∗

Â
has a

matching session to πt
∗

D̂
, in terms of specific guessed freshness case. Since there are four considered fresh

cases, ` parties and at most ρ oracles for each party, then the probability that all above guesses of C are
correct is at least 1/4(ρ`)3. Thus we have that

Adv2 ≤ 4(ρ`)3 · Adv3.

Game G4. Please first note that there are at least three uncompromised (either long-term and ephemeral)
Diffie-Hellman keys which are used by test oracle to generate its key material k∗, as otherwise the test
oracle is not g-eCK-fresh any more. We call such guessed three uncompromised DH keys as target DH
keys.

Technically, this game is proceeded as previous game, but the challenger C replaces the key material
ksi with random value k̃si for oracles {πsi : i ∈ [`], s ∈ [ρ]} which satisfy the following conditions:

• The ksi is computed involving the three target DH keys which are guessed by C for test oracle, and

• Those target DH keys used by πsi are from three distinct parties.

The second condition is necessary, because the adversary can easily result in one oracle receiving DH
keys from certain party which are all uncompromised via e.g. Send query RegisterCorrupt queries. On the
other side, if those uncompromised DH keys are not from distinct parties, that might imply all DH keys
from certain party are chosen (or revealed) by adversary. In this case, the adversary can compute the
session key herself. The above two conditions are used to ensure that the changed key materials of oracles
can not be trivially generated by adversary. This also enables us to embed CBDDH challenge instance
into the simulation of those modified oracles.

If there exists an adversary A can distinguish the Game G4 from Game G3 then we can use it to
construct a distinguisher D to solve the CBDDH problem as follows. Given a CBDDH challenge instance
(g, gµ,Γ) ∈ G2 × GT , the goal of D is to determine whether Γ = e(g, g)µ

3
or a random element from

GT where g is a generator of G. Let p(h) = p0 + p1h + p2h
2 + p3h

3 be a polynomial of degree 3 over
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Z∗p. The detail form of this polynomial will be discussed in the simulation based on specific freshness
case. Let q(h) = q0 + q1h + q2h

2 + q3h
3 be a random polynomial of degree 3 over Z∗p. In the following,

D simulates the challenger for A as previous game but with the some modifications based on its correct
guesses (otherwise it aborts).

1. Case C1. In this case D does the following modifications:

(a) Set X∗ := gµrx , Y ∗ := gµry and Z∗ := gµrz where rx, ry, rx
$← Z∗p.

(b) Compute the key material of test oracle and its partner oracles as:

• k∗
Â

= k∗
B̂

= k∗
Ĉ

:= Γrxryrz ·e(CZ∗, BY ∗)a · e(Z∗, X∗)b · e(BY ∗, X∗)c.
(c) Compute those tags of test oracle and its partner oracles as:

• t∗X := (X∗)r3(h
∗
X)3+r2(h∗X)2+r1h∗X+r0 ,

t∗Y := (Y ∗)r3(h
∗
Y )3+r2(h∗Y )2+r1h∗Y +r0 and

t∗Z := (Z∗)r3(h
∗
Z)

3+r2(h∗Z)
2+r1h∗Z+r0 .

2. Case C9. We assume there is an oracle πt
∗

B̂
having matching session to test oracle without loss of

generality. In this case D does the following modifications:

(a) Set C := gµrc , X∗ := gµrx and Y ∗ := gµry where rc, rx, ry
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h−h∗X)(h−h∗Y )(h−hC), where h∗Y = TCRHF(Y ∗),
h∗X = TCRHF(X∗) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3.

(d) Compute the tags tC = Cq(hC), t∗Y = (Y ∗)q(h
∗
Y ) and t∗X = (Z∗)q(h

∗
X).

(e) Compute the key material of test oracle and its partner oracle as:

• k∗
Â

= k∗
B̂

:= Γrxryrc ·e(CV ∗, BY ∗)a · e(( tV
V q(hV ) )rx/p(hV ), BY ∗) · e(C,X∗)b.

(f) Compute the key material of other oracles of Ĉ in terms of the following situations:

• There are at most two DH keys in {F, V,D,W} which are equivalent to keys in the set
{X∗, Y ∗} and from different parties. Since the adversary can either register these keys as
public key for dishonest users or replay them as ephemeral key. Recall that these DH keys
in {F, V,D,W,C,Z} should be distinct in corresponding sid. We assume that E = X∗ and
D = Y ∗ for example, then the kl

Ĉ
is computed as: kl

Ĉ
:= Γrxryrc · e(( tW

W q(hW ) )rc/p(hW ), FV ) ·
e(( tV

V q(hV ) )rc/p(hV ), D).

• The DH keys (either long-term or ephemeral public key) from one party do not belong
to the set {X∗, Y ∗}. We assume that {F, V } /∈ {X∗, Y ∗} for example, then the kl

Ĉ
is

computed as:

• kl
Ĉ

:= e(( tE
Eq(hE) )rc/p(hE)( tV

V q(hV ) )rc/p(hV ), DW ) · e(FV,DW )z when V /∈ {X∗, Y ∗}.

3. Case C13. In this case D does the following modifications:

(a) Set A := gµra , B := gµrb , and C := gµrc , where ra, rb, rc
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h− hA)(h− hB)(h− hC), where hA = TCRHF(A),
hB = TCRHF(B) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3. Please note that we have that u0u
h
1u

h2
2 u

h3
3 = gµp(h)gq(h) and

u0u
h
1u

h2
2 u

h3
3 = gµp(h)gq(h).

(d) Compute the tags tA = Aq(hA), tB = Bq(hB) and tC = Cq(hC).

(e) Replace the value e(B,C)a with Γrarbrc when compute the key material k of oracles πs
Â

, πt
B̂

and πl
Ĉ

which involve all public keys (A,B,C) including the test oracle πs
∗

Â
, more specifically:
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• ks
Â

:= Γrarbrc · e(CV,BW )x · e(( tW
W q(hW ) )ra/p(hW ), C) · e(( tV

V q(hV ) )ra/p(hV ), BW ).

• kt
B̂

:= Γrarbrc · e(CV,AW )y · e(( tW
W q(hW ) )rb/p(hW ), C) · e(( tV

V q(hV ) )rb/p(hV ), AW ).

• kl
Ĉ

:= Γrarbrc · e(BV,AW )z · e(( tW
W q(hW ) )rc/p(hW ), B) · e(( tV

V q(hV ) )rc/p(hV ), AW ).

(f) Compute the secret key material k for other oracles of parties Â, B̂ and Ĉ, following the
similar approach as did in the proof of Case C9 when computing the key material for oracles of
uncorrupted party Ĉ (i.e. the modification in the step 2f). The common point here is that we
should simulate the key material for situations when there exist DH keys equal to challenged
DH keys (i.e. A or B or C).

4. Case C14. In this case D does the following modifications:

(a) Set X∗ := gµrx , B := gµrb and C := gµrc where rx, rb, rc
$← Z∗p.

(b) Set polynomial p(h) to satisfy that p(h) = (h− h∗X)(h− hB)(h− hC), where hB = TCRHF(B),
h∗X = TCRHF(X∗) and hC = TCRHF(C).

(c) Set ui = gµpigqi for 0 ≤ i ≤ 3.

(d) Compute the tag tB = Bq(hB), tC = Cq(hC) and the tag t∗X = (X∗)q(h
∗
X).

(e) Compute the key material k∗
Â

of test oracle πs
∗

Â
, kt

B̂
of oracles πt

B̂
and kl

Ĉ
of oracles πl

Ĉ
which

compute the session keys using public keys (X∗, B,C) as:

• k∗
Â

:= Γrxrbrc ·e(CV,BW )a · e(( tW
W q(hW ) )rx/p(hW ), C) · e(( tV

V q(hV ) )rx/p(hV ), BW ).

• kt
B̂

:= Γrxrbrc ·e(CV,X∗D)y · e(( tD
Dq(hD) )rb/p(hD), C) · e(( tV

V q(hV ) )rb/p(hV ), DX∗).

• kl
Ĉ

:= Γrxrbrc ·e(BW,X∗D)z · e(( tD
Dq(hD) )rc/p(hD), B) · e(( tW

W q(hW ) )rc/p(hW ), DX∗).

(f) Change the computation of secret key material k of other oracles of B̂ and Ĉ following the
similar approach as did in the proof of Case C9 when computing the key material for oracles
of uncorrupted party Ĉ. One could think of replacing the symbols (e.g. Y ∗) in the step 2f with
the symbols (e.g. B) in this case.

Those modified tags are consistent with the original form. we make use of the fact there is no collision
on those hash values due to the result of previous game. To answer the RevealKey query for those modified
oracles, the D will use the changed key material (e.g. kB̂) to compute the final session key as protocol
specification. With respect to the other queries, the D simulates them honestly as the challenger using
corresponding values chosen by herself. Without flipping the bit b, the Test-query is replied with the
session key which is computed using modified key material. Based on the condition that all guesses of
D are correct, if Γ = e(g, g)µ

3
, then the simulation is equivalent to Game G3; otherwise the simulation is

equivalent to Game G4. At the end of the game, D returns what A returns to the CBDDH challenger. If
A can distinguish the real key from the random value, that implies D solves the CBDDH problem. We
therefore obtain that

Adv3 ≤ Adv4 + εCBDDH.

Game G5. In this game, we change function PRF(k̃∗
Â
, ·) to a truly random function for test oracle and

its partner oracles (if they exist). We make use of the fact that the secret seed k̃∗
Â

of test oracle is a truly
random value. Any PPT algorithm distinguishing the Game G5 from Game G4 implies that it is able to
break the security of the pseudo-random function PRF. Thus we have that

Adv4 ≤ Adv5 + εPRF.

Note that in this game the session key returned by Test-query is totally a truly random value which is
independent to the bit b and any messages. Thus the advantage that the adversary wins this game is
Adv5 = 0.

Sum up the probabilities from Game G0 to Game G5, we proved this theorem.
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B Proof of Theorem 2

Basically, the proof can be generalized from the proof of Theorem 1 due to the intimate relationship
between proposed 3AKE and GAKE schemes. We will focus on the largest group size n+ 1 without loss
of generality, because we need to evaluate the maximum advantage of adversary to break the protocol.
For the test query involving group of size smaller than n+ 1, the simulation is quite similar.

Let Sδ be the event that the adversary wins the security experiment in Game Gδ. Let Advδ :=
Pr[Sδ]− 1/2 denote the advantage of A in Game Gδ.

Game G0. This is the original game with adversary A. The system parameters are chosen honestly
by challenger as protocol specification. However, the challenger chooses n + 1 uniform random values

{rj}
$← Z∗p for 0 ≤ j ≤ n, and sets uj := grj as public parameters. Thus we have that

Pr[S0] = 1/2 + ε = 1/2 + Adv0.

Game G1. This game proceeds as the same as the Game 2 in the proof of Theorem 1. With the similar
argument from the proof of Game 2 of Theorem 1, we have that

|Adv0 − Adv1| ≤
(ρ`)2

2λ
+ εTCRHF.

Game G2. This game proceeds as previous game, but C aborts if one of the following guesses fails: (i)
the freshness case occurred to test oracle from all n+2 possibilities, (ii) the test oracle, (iii) the n intended
communication partners of test oracle, and (iv) every oracles (if they exist in terms of specific guessed
freshness case) which have matching session to test oracle. Since there are n + 2 fresh cases that need
to do proof simulation, ` parties at all and at most ρ oracles for each party, then the probability that all
above guesses of C are correct is at least 1

(n+2)(ρ)n+1( `
n+1)

. Thus we have that

Adv1 ≤ (n+ 2)(ρ)n+1

(
`

n+ 1

)
· Adv2.

Game G3. Please note that the g-eCK freshness definition guarantees that for our protocol there are at
least n+1 Diffie-Hellman (DH) keys from all session participants of test fresh oracle are not compromised
by adversary. We call such guessed n + 1 uncompromised DH keys as target DH keys. This game is
proceeded as previous game, but the challenger C replaces the key material ksi with random value k̃si for
oracles {πsi : i ∈ [`], s ∈ [ρ]} which satisfy the following conditions:

• The ksi is computed involving the n+ 1 target DH keys which are guessed by C for test oracle, and

• Those target DH keys used by πsi are from n+ 1 distinct parties.

Of course if two oracles have matching sessions and satisfy both above conditions, then we could use the
same modified random key material to generate corresponding session key. The above two conditions
ensure that the changed key materials of oracles can not be trivially generated by adversary. This
also enables us to embed nMDDH challenge instance into the simulation of all oracles satisfying above
conditions. The second condition is used to exclude the situation that the DH keys from some party are
all compromised in which case the adversary can simply compute the session key.

If there exists an adversary A can distinguish the Game 3 and 2 then we can use it to construct a
distinguisher D to solve the nMDDH problem. Given a nMDDH challenge instance (g, gµ,Γ) ∈ G2 ×GT ,
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the goal of D is to determine whether Γ = me(g, . . . , g)µ
n+1

or a random element from GT where g is a
generator of G. Meanwhile, D simulates the challenger for A as previous game but with the following
modifications based on its correct guesses (otherwise it aborts). We highlight that, after all those correct
guesses, D knows the ‘distribution’ of all n + 1 uncompromised target DH keys among honest parties
and theirs oracles. Namely D knows the facts about which parties’ long-term keys are not corrupted
(if any) and which oracles’ ephemeral keys are not revealed (if any), under specific guessed freshness
cases. Let p(h) =

∑n+1
j=0 p

hj
j = (h − hW1) . . . (h − hWn+1) be a polynomial of degree n + 1 over Z∗p such

that p(hW1) = p(hW2), . . . ,= p(hWn+1) = 0 where hWj = TCRHF(Wj) for 1 ≤ j ≤ n + 1 and each Wj

is either uncorrupted long-term key Dj or uncompromised ephemeral key Xj in specific freshness case.

Let q(h) =
∑n+1

j=0 q
hj
j be a random polynomial of degree n + 1 over Z∗p. It will also set uj = gµpjgqj for

0 ≤ j ≤ n+ 1. Meanwhile, we would plug the challenge value gµ to all n+ 1 target uncompromised DH

keys in specific (guessed) freshness case, i.e. D generates the DH key as Wj = gµrwj where rwj
$← Z∗p.

Moreover, the tag tWj of Wj would be computed as tWj = W
q(hWj )

j . The remaining problem is to simulate
the RevealKey query and Test query correctly in terms of freshness case.

On the next we discuss how to simulate the key material for any oracle πsi (i ∈ [`], s ∈ [ρ]), including
test oracle and its partner oracle (if they exists). In the sequel, we let (D1, tD1 , X1, tX1) denote the values
generated for oracle πsi , and let {Dj , tDj , Xj , tXj}2≤j≤n+1 denote a set of values received by oracle πsi .

6

We consider the following cases (which cover all) concerning the DH keys of πsi :

1. Case 1: the ephemeral key X1 is generated from challenge value gµ.

2. Case 2: the long-term key D1 is generated from challenge value gµ.

3. Case 3: neither long-term key D1 nor ephemeral key X1 is generated from challenge value gµ.

It is not hard to see, in the Case 3 D can simulate the key honestly as protocol specification. Thus
we only need to do modifications on oracles πsi under Case 1 and Case 2. With respect to the Case 1, the

d1
$← Z∗p is chosen by D as protocol specification and X1 is generated using challenge value as X1 := gµrx1

where rx1
$← Z∗p. Then the tag tX1 can be computed as tX1 := X

q(hX1
)

1 and hX1 = TCRHF(X1). With

respect to the Case 2, the x1
$← Z∗p might be chosen by D and D1 can be set as D1 := gµrd1 where

rd1
$← Z∗p. The tag tD1 can be computed as tD1 := D

q(hD1
)

1 and hD1 = TCRHF(D1).
Let W1 denote the DH key generated for oracle πsi such that W1 ∈ {D1, X1} and W1 is generated using

challenge value as gµrw1 where rw1 ∈ {rx1 , rd1} depending on the value of W1. We further let W 1 = gw1

denote the DH key generated for oracle πsi such that W 1 ∈ {D1, X1} and W 1 is not generated using
challenge value. Then we could rewrite the key material ksi of oracle πsi as

ksi =me(D2X2, . . . , Dn+1Xn+1)
d1+x1 = me(D2X2, . . . , Dn+1Xn+1)

w1+w1

=me(D2X2, . . . , Dn+1Xn+1)
w1 ·me(D2X2, . . . , Dn+1Xn+1)

w1 .

Since the w1 is chosen by D then it is able to compute the value

α = me(D2X2, . . . , Dn+1Xn+1)
w1 .

For both above cases, we further consider the following disjoint event that covers all possibilities.

• Event 1: Firstly, we consider the event that every DH key tuple (Dj , Xj) for 2 ≤ j ≤ n+ 1 received
by oracle πsi consists of one DH key that is computed using challenge value gµ. As all values recorded

6Please forget the (subscripts) positions of DH keys recorded in sidsi of πsi for the time being. We here need to differentiate
the DH keys generated by oracle πsi with other DH keys received by πsi in the following modification, even though those DH
keys of πsi might be located in different position in sidsi rather than the first place.
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in sidsi are distinct, so that in each received DH key tuple (Dj , Xj) there is at most one DH key that
is generated using challenge value in this event. We further let Wj = gµrwj for 2 ≤ j ≤ n+ 1 denote
the DH key received by oracle πsi such that Wj ∈ {Dj , Xj} and Wj is generated using challenge
value. And we let W j = gwj for 2 ≤ j ≤ n + 1 denote the DH key received by oracle πsi such
that W j ∈ {Dj , Xj} and W j is not generated using challenge value for 2 ≤ j ≤ n + 1. Then in
this event, D could compute the key material ksi using the value Γ, randomness rw1 and the value
gµwj extracted from tW j

, and n-multilinear map operations. To elaborate the simulation of ksi , we

rewrite the β := me(D2X2, . . . , Dn+1Xn+1)
w1 as following:

β :=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, D3X3, . . . , Dn+1Xn+1)
w1

=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, g
µw3rw1 , D4X4, . . . , Dn+1Xn+1)

·me(W2,W3, D4X4, . . . , Dn+1Xn+1)
w1

=me(gµw2rw1 , D3X3, . . . , Dn+1Xn+1) ·me(W2, g
µw3rw1 , D4X4, . . . , Dn+1Xn+1)

·me(W2,W3, g
µw4rw1 , D5X5, . . . , Dn+1Xn+1)·

. . .

·me(W2,W3,W4, . . . ,Wn−1, g
µwnrw1 , Dn+1Xn+1)

·me(W2,W3,W4, . . . ,Wn−1,Wn, g
µwn+1rw1 ) ·me(W2,W3, . . . ,Wn+1)

w1 .

The above ‘expansion’ of the equation is only conceptual that is consistent to the original com-
putation of β. However this enables us to embed the challenge value Γ into the key material ksi
and compute ksi without knowing w1. More specifically we change β to β′ by replacing the value
me(W2,W3, . . . ,Wn+1)

w1 in above computation of β with value Γrw1 ···rwn+1 and computing values

gµwj from tag tW j
as gµwj = (

tWj

W
q(h

Wj
)

j

)

1
p(h

Wj
)

where tW j
∈ {tDj , tXj} and 2 ≤ j ≤ n+ 1. Eventually

we compute the key material ksi = α · β′ and use it to compute the final session key of oracle πsi .

• Event 2: On the second, we consider the event that there exists one DH key tuple (Dj , Xj) (2 ≤ j ≤
n + 1) received by oracle πsi which are all not generated using challenge value gµ. Then, in order
to simulate the key material ksi , the jobs of D are only to compute gµdj from tDj (if Dj is chosen

by adversary, as otherwise D knows corresponding exponent dj) as gµdj := (
tDj

D
q(hDj

)

j

)
1

p(hDj
)

and to

compute gµxj from tXj as gµxj := (
tXj

X
q(hXj

)

j

)
1

p(hXj
)
. Let {ηl} for 1 ≤ l ≤ n − 1 be a set of variables

each of which stores distinct integer number ranging from 2 to n + 1 except for j. Thus the key
material is generated as ksi = α ·me(gµdjrw1gµxjrw1 , Dη1Xη1 , . . . , Dηn−1Xηn−1), which is consistent
to original form.

In a nutshell D is able to simulate all session keys appropriately in terms of the tags of both ephemeral
key and long-term key. If Γ = me(g, . . . , g)µ

n+1
then the simulation is exactly equivalent to previous game,

otherwise it equals to this game. By applying the security of nMDDH assumption, we therefore obtain
that

Adv2 ≤ Adv3 + εnMDDH.

Game G4. In this game, we change function PRF(k̃∗i , ·) to a truly random function for test oracle and

its partner oracles (if they exist). We make use of the fact, that the secret seed k̃∗i of test oracle is a truly
random value. If there exists a polynomial time adversary A can distinguish the Game G4 from Game
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G3. Then we can construct an algorithm B using A to break the security of PRF. Exploiting the security
of PRF, we have that

Adv3 ≤ Adv4 + εPRF.

Note that in this game the session key returned by Test-query is totally a truly random value which is
independent to the bit b and any messages. Thus the advantage that the adversary wins this game is
Adv4 = 0.

Sum up the probabilities from Game G0 to Game G4, we proved this theorem.
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