
 1

A Public Key Cryptoscheme Using the Bit-pair Method
*

Shenghui Su 1, 2, Maozhi Xu 3, Tao Xie 4, and Shuwang Lü 5

1 College of Computers, Beijing University of Technology, Beijing 100124
2 College of Info. Engineering, Yangzhou University, Yangzhou 225009

3 School of Mathematics, Peking University, Beijing 100871
4 School of Computers, National University of Defense Technology, Changsha 410073

5 Graduate School, Chinese Academy of Sciences, Beijing 100039

Abstract: The authors give the definition and property of a bit-pair shadow, and design the
three algorithms of a public key cryptoscheme called JUNA which regards a bit-pair as an
operation unit, and is based on the multivariate permutation problem (MPP) and the anomalous
subset product problem (ASPP). Then, demonstrate that the decryption algorithm is correct,
deduce the probability that a plaintext solution is nonunique is nearly zeroth, dissect the time
complexities of the algorithms, and analyze the security of the cryptoscheme against extracting
a private key from a public key, and recovering a plaintext from a ciphertext by LLL lattice
base reduction, adaptive-chosen-ciphertext measure, and meet-in-the-middle dichotomy on the
assumption that the IFP, DLP, and SSP of low density can be solved efficiently. Besides, give
the conversion from the ASPP to the anomalous subset sum problem (ASSP) through a discrete
logarithm. The facts show the bit-pair method increases the density of a related ASSP knapsack
with D > 1, and decreases the length of modulus of the cryptoscheme with lg M = 384, 464,
544, or 640 corresponding to n = 80, 96, 112, or 128.

Keywords: Public key cryptoscheme; Anomalous subset sum problem; Bit-pair shadow string;
Compact sequence; Lever function

1 Introduction

In [1], we propose a prototypal public key cryptosystem called REESSE1+ which is based on the
three new provable problems, contains the five algorithms, and is used for data encryption and digital
signing.

In REESSE1+, a ciphertext is defined as Ḡ ≡ ∏

n
i=1 Ci

ḇi (% M), where ḇi is the bit shadow of a bit bi [1],
and n is the bit-length of a plaintext block.

Let C1 ≡ g
u1 (% M), …, Cn ≡ g

un (% M), and Ḡ ≡ g
v (% M), where g is a generator of (*

M, ·) which
can be found in tolerable subexponential time when the modulus M < 21024 can be factorized [2]. Then
solving Ḡ ≡ ∏

n
i=1 Ci

ḇi (% M) for ḇ1… ḇn is equivalent to solving
ḇ 1 u1 + … + ḇ n un ≡ v (%). (1)

where v may be substituted with v + k along with k ∈ [0, n – 1] [3].
Equation (1) is called an anomalous subset sum problem due to every ḇ i ∈ [0, n], shortly ASSP [1].

Likewise, due to every ḇ i ∈ [0, n], {u1, …, un} is called a compact sequence [4].
It is not difficult to understand that an ASSP may be converted into a subset sum problem (SSP), and

thus the density of an ASSP knapsack is defined as
D = ∑ n

i=1 lg n / lg M
= nlg n / lg M. (2)

Evidently, the parameters lg M and n have an important influence on the value of D.
In REESSE1+, there are n = 80, 96, 112, or 128 and lg M = 696, 864, 1030, or 1216. Substituting

the parameters with concrete values yields
D = 80 × 7 / 696 ≈ 0.8046 < 1 for n = 80 and lg M = 696,
D = 96 × 7 / 864 ≈ 0.7778 < 1 for n = 96 and lg M = 864,
D = 112 × 7 / 1030 ≈ 0.7612 < 1 for n = 112 and lg M = 1030,
D = 128 × 8 / 1216 ≈ 0.8421 < 1 for n = 128 and lg M = 1216.
The above values mean that the original solution to an ASSP may possibly be found through the

LLL lattice basis reduction algorithm [5][6]. However, it is uncertain to find the original solution to the
ASSP since D < 1 only assure that the shortest vector is unique, and it cannot assure that the vector of
the original solution is just the shortest vector or an approximately shortest vector occurring in the final

* This research is supported by MOST with Project 2007CB311100 and 2009AA01Z441. Correspondence email: sheenway@126.com.

 2

reduced basis.
The LLL algorithm is famous for it has a fatal threat to the classical MH knapsack cryptosystem [7]

which produces a ciphertext in the form of a subset sum problem.
To avoid it that the original solution may possibly be found through LLL and to decrease the length

of modulus of a cryptoscheme, on the basis of REESSE1+, we propose a new cryptoscheme called
JUNA which treats a bit-pair as an operation unit when a bit string is encrypted in this paper.

Throughout the paper, unless otherwise specified, n ≥ 80 is the bit-length of a plaintext block or the
item-length of a sequence, the sign % means “modulo”, means “M – 1” with M prime, lg x denotes
the logarithm of x to the base 2, ¬ does the opposite value of a bit, Þ does the maximal prime allowed
in coprime sequences, |x| does the absolute value of a number x, x does the order of an element x % M,
S does the size of a set S, and gcd(a, b) represents the greatest common divisor of two integers.
Without ambiguity, “% M ” is usually omitted in expressions.

2 Several Definitions

The following definitions lay the stone foundation for the new public key encryption scheme.

2.1 A Coprime Sequence

Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j), either
gcd(Ai, Aj) = 1 or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k ≠ i, j ∈ [1, n], these integers
are called a coprime sequence, denoted by {A1, …, An}, shortly {Ai}.

Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence
whose elements are pairwise coprime is a coprime sequence.

Property 1: Let {A1, …, An} be a coprime sequence. If we randomly select m ∈ [1, n] elements from
{A1, …, An}, and construct a subset {Ax1, …, Axm}, then the subset product G = ∏

m
i=1 Axi = Ax1…Axm is

uniquely determined, namely the mapping from {Ax1, …, Axm} to G is one-to-one.
Refer to [1] for its proof.

2.2 A Bit Shadow

Definition 2: Let b1…bn ≠ 0 be a bit string. Then ḇ i with i ∈ [1, n] is called a bit shadow if it comes
from such a rule: ḇ i = 0 if bi = 0, ḇ i = 1 + the number of successive 0-bits before bi if bi = 1, or ḇi
= 1 + the number of successive 0-bits before bi + the number of successive 0-bits after the rightmost 1-bit
if bi is the leftmost 1-bit.

Notice that of this definition is slightly different from that in [1].
For example, let n = 16, then when b1…b16 = 10 01 00 00 01 00 11 00 or 00 10 01 00 1100 01 00, ḇ1…ḇ16

= 3003000006003100 or 0050030031000400.
Fact 1: Let ḇ1…ḇn be the bit shadow string of b1…bn ≠ 0. Then there is ∑

n
i=1 ḇi = n.

Proof.
According to Definition 2, every bit of b1…bn is considered into ∑

k
i=1 ḇ xi, where k ≤ n, and ḇ x1, …, ḇ xk

are 1-bit shadows in the string ḇ 1…ḇ n, and thus there is ∑

k
i=1 ḇ xi = n.

On the other hand, there is ∑

n−k
j=1 ḇ yj = 0, where ḇ y1, …, ḇ yn − k are 0-bit shadows.

In total, there is ∑

n
i=1 ḇ i = n.

Property 2: Let {A1, …, An} be a coprime sequence, and ḇ1…ḇn be the bit shadow string of b1…bn ≠
0. Then the mapping from b1…bn to G = ∏

n
i=1 Ai

ḇi is one-to-one.
Proof.
Firstly, let b1…bn and b′1…b′n be two different nonzero bit strings, and ḇ1…ḇ n and ḇ′1…ḇ′n be the two

corresponding bit shadow strings.
If ḇ1…ḇ n = ḇ′1…ḇ′n, then by Definition 2, there is b1…bn = b′1…b′n.
In addition, for any arbitrary bit shadow ḇ1…ḇ n, there always exists a preimage b1…bn. Thus, the

mapping from b1…bn to ḇ1…ḇ n is one-to-one.
Secondly, obviously the mapping from ḇ 1…ḇ n to ∏

n
i=1 Ai

ḇi is surjective.
Presuppose that ∏

n
i=1 Ai

ḇi = ∏

n
i=1 Ai

ḇ ′i for ḇ1…ḇ n ≠ ḇ′1…ḇ′n.
Since {A1, …, An} is a coprime sequence, and Ai

ḇi either equals 1 with ḇ i = 0 or contains the same

 3

prime factors as those of Ai with ḇ i ≠ 0, we can obtain ḇ1…ḇ n = ḇ′1…ḇ′n from ∏

n
i=1 Ai

ḇi = ∏

n
i=1 Ai

ḇ ′i, which is
in direct contradiction to ḇ1…ḇ n ≠ ḇ′1…ḇ′n.

Therefore, the mapping from ḇ 1…ḇ n to ∏

n
i=1 Ai

ḇi is injective [8].
In summary, the mapping from ḇ 1…ḇ n to ∏

n
i=1 Ai

ḇi is one-to-one, and further the mapping from b1…bn
to ∏

n
i=1 Ai

ḇi is also one-to-one.

2.3 A Bit-pair Shadow

It is well understood that a public key cryptosystem is mainly used for transmitting a symmetric key.
Assume that b1…bn is a symmetric key. At present, to prevent exhaustive search, namely brute force
attack, n should be no less than 80 [9].

To make the modulus M of the new cryptoscheme comparatively small, we will utilize the idea of a
bit-pair string and 2 to 3.

In this way, the length of a coprime sequence is changed to 3n / 2, namely {A1, …, An} is substituted
with {A1, A2, A3, …, A3n / 2 – 2, A3n / 2 – 1, A3n / 2} that may be orderly partitioned into n / 2 triples of which
each comprises 3 elements: A3i – 2, A3i – 1, A3i with i ∈ [1, n / 2]. Likewise, a non-coprime sequence
{C1, …, Cn} is substituted with {C1, C2, C3, …, C3n / 2 – 2, C3n / 2 – 1, C3n / 2}, where Ci with i ∈ [1, 3n / 2] is
acquired from Ai and other private parameters.

Definition 3: Let {A1, …, A3n / 2} be a coprime sequence. Orderly partition a bit string b1…bn into n / 2
pairs B1, …, Bn / 2, where Bi with i ∈ [1, n / 2] has four state: 00, 01, 10, and 11 which correspond to 1,
A3i – 2, A3i – 1, and A3i respectively. Then B1, …, Bn / 2 is called a bit-pair string, shortly B1…Bn / 2.

Property 3: Let {A1, …, A3n / 2} be a coprime sequence, and B1…Bn / 2 be a nonzero bit-pair string.
Then the mapping from B1…Bn / 2 to G′ = ∏

n /2
i=1 (A3(i – 1) + Bi)

Bi
/

3 with A0 = 1 is one-to-one, where Bi / 3 =

0 or 1, and G′ is called a coprime subsequence product.
Its proof is parallel to that of Property 1 in [1].
Definition 4: Let B1…Bn / 2 be a nonzero bit-pair string. Then Ḇ i with i ∈ [1, n / 2] is called a bit-pair

shadow if it comes from such a rule: Ḇ i = 0 if Bi = 00, Ḇ i = 1 + the number of successive 00-pairs
before Bi if Bi ≠ 00, or Ḇ i = 1 + the number of successive 00-pairs before Bi + the number of successive
00-pairs after the rightmost non-00-pair if Bi is the leftmost non-00-pair.

For example, let n = 16, then when B1…B8 = 10 01 00 00 01 00 11 00 or 00 10 01 00 1100 01 00, Ḇ1…Ḇ8
= 21003020 or 03102020.

Fact 2: Let Ḇ1…Ḇn / 2 be the bit-pair shadow string of B1…Bn / 2 ≠ 0. Then there is ∑

n / 2
i = 1 Ḇi = n / 2.

Proof.
According to Definition 4, every pair of B1…Bn / 2 is considered into ∑

k
i=1 Ḇxi, where k ≤ n / 2, and

Ḇx1, …, Ḇxk are non-00-pair shadows in the string Ḇ1…Ḇn / 2, and thus there is ∑

k
i=1 Ḇxi = n / 2.

On the other hand, there is ∑

n/2−k
j = 1 Ḇyj = 0, where Ḇy1, …, Ḇyn − k are 00-pair shadows.

In total, there is ∑

n / 2
i = 1 Ḇi = n / 2.

Property 4: Let {A1, …, A3n / 2} be a coprime sequence, and Ḇ1…Ḇ n / 2 be the bit-pair shadow string of
B1…Bn / 2 ≠ 0. Then the mapping from B1…Bn / 2 to G = ∏

n / 2
i = 1 (A3(i – 1) + Bi)Ḇi with A0 = 1 is one-to-one,

where G is called an anomalous coprime subsequence product.
Its proof is parallel to that of Property 2 in this text.
Property 3 and 4 manifest that G′ or G may still act as a trapdoor component under bit-pair string

circumstances.

2.4 A Lever Function

Considering a bit-pair string, in the following text, let ñ = 3n / 2, where n ≤ 128.
Definition 5: The secret parameter ℓ(i) in the key transform of a public key cryptoscheme is called a

lever function, if it has the following features:
• ℓ(.) is an injection from the domain {1, …, ñ} to the codomain Ω ⊂ {5, …, }, where is large;
• the mapping between i and ℓ(i) is established randomly without an analytical expression;
• an attacker has to be faced with all the arrangements of n elements in Ω when extracting a related

private key from a public key;
• the owner of a private key only needs to consider the accumulative sum of n elements in Ω when

recovering a related plaintext from a ciphertext.

 4

The latter two points manifest that if n is large enough, it is infeasible for the attacker to search all
the permutations of elements in Ω exhaustively while the decryption of a normal ciphertext is feasible
in time being polynomial in n. Thus, there are the large amount of calculation on ℓ(.) at “a public
terminal”, and the small amount of calculation on ℓ(.) at “a private terminal”.

Notice that in modular arithmetic, −x represents – x; the number of elements in Ω is not
less than n; considering the speed of decryption, the absolute values of all the elements should be
comparatively small; the lower limit 5 will make seeking the root W from W ℓ

(i) ≡ Ai
–1

 Ci (% M) face
an unsolvable Galois group when Ai ≤ 1201 is guessed [10].

Concretely to the JUNA cryptoscheme, ℓ(i) in Ci ≡ (Ai W ℓ(i))δ (% M) with i ∈ [1, ñ] is an exponent.
Property 5 (Indeterminacy of ℓ(.)): Let δ = 1 and Ci ≡ Ai W

ℓ

(i) (% M) with ℓ(i) ∈ Ω = {5, …, ñ + 4}

and Ai ∈ Λ = {2, …, Þ} for i = 1, …, ñ, where Þ ≤ 1201. Then ∀ W ∈ (1,), and ∀ x, y, z ∈ [1, ñ] with
z ≠ x, y,

 when ℓ(x) + ℓ(y) = ℓ(z), there is ℓ(x) + W + ℓ(y) + W ≠ ℓ(z) + W (%);
 when ℓ(x) + ℓ(y) ≠ ℓ(z), there always exist

Cx ≡ A′x W ′ ℓ′(x

), Cy ≡ A′y W ′ ℓ′(y

), and Cz ≡ A′z W ′ ℓ′(z

) (% M)
such that ℓ′(x) + ℓ′(y) ≡ ℓ′(z) (%) with A′z ≤ Þ.

Refer to [1] for its proof.
Notice that according to the proof in [1], it is not difficult to understand that if Ω = {5, …, ñ + 4} is

substituted with Ω ⊂ {±5, ±7, …, ±(2ñ + 3)}(x + y ≠ 0 ∀x, y ∈ Ω), where “±x” means the coexistence
of the numbers “+x” and “−x”, Property 5 still holds.

3 Design of the JUNA Cryptoscheme

In this new scheme, two adjacent bits are treated as a unit, namely a bit-pair string B1…Bn / 2
represent a related plaintext block b1…bn ≠ 0.

3.1 The Key Generation Algorithm

Let p1, …, pñ be the first ñ primes in the set which can constitute a smallest coprime sequence.
Considering 2 to 3, the elements of Ω should be of 3-tuple, and again considering the promptness of

decryption, the absolute values of elements of Ω should be as small as possible.
Thus, Let Ω ⊂ {(±5, ±7, ±9), …, (±(2ñ − 1), ±(2ñ + 1), ±(2ñ + 3))} with |x1| |x2| |x3| ≠ |y1| |y2| |y3| ∀(x1,

x2, x3), (y1, y2, y3) ∈ Ω, and Ω = n / 2. Then a concrete Ω is one of (3!)n / 22ñ potential sets consisting of
3-tuple elements.

Additionally, let Λ = {2, …, Þ}, where Þ = 863, 937, 991, or 1201 as n = 80, 96, 112, or 128.
Assume that Āi is the maximum in a triple (A3i – 2, A3i – 1, A3i) for i = 1, …, n / 2. Arrange Ā1, …, Ān / 2

in descending order, and obtain Āx1, …, Āxn / 2.
The following algorithm is generally employed by the owner of a key pair.
S1: Randomly produce an odd coprime sequence {A1, …, Añ}.
S2: Find a prime M > Āx1

n

/

4 + 1 ∏

n / 4
i=2 Āxi making ∏

k
i = 1 pi

ei | ,

where k meets ∏

k
i = 1 ei ≥ 210 and pk < ñ / 2.

S3: Generate pairwise distinct (ℓ(3i – 2), ℓ(3i – 1), ℓ(3i))
of which each belongs to Ω for i = 1, …, n / 2.

S4: Randomly pick δ, W ∈ [1,] making W ≥ 2n – 20 and gcd(δ,) = 1.
S5: Compute Ci ← (Ai W ℓ

(i))δ % M for i = 1, …, ñ.

At last, obtain a public key ({C1, …, Cñ}, M), and a private key ({A1, …, Añ}, W, δ). {ℓ(i)} may be
discarded.

Notice that
 for seeking a fit W, let W ≡ g / F (% M) since W = / gcd(, / F) [10], where F ≥ 2n – 30 is a

factor of , and g is a generator by Algorithm 4.80 in Section 4.6 of [11];
 gcd(A3i – 2, A3i – 1, A3i) ≠ 1 is allowed ― (33, 32, 3) for example since only one of three elements

will occur in G;
 the inequation M > Āx1

n

/

4 + 1 ∏

n / 4
i=2 Āxi assures that when n = 80, 96, 112, or 128, there exists lg M =

384, 464, 544, or 640.
Definition 6: Seeking {Ai}, {ℓ(i)}, W, δ from the key transform Ci = (Ai W ℓ

(i))δ % M with ℓ(i) ∈ (ℓ(j +

 5

1), ℓ(j + 2), ℓ(j + 3)) ∈ Ω and Ai ∈ Λ for i = 1, …, ñ is referred to as a multivariate permutation problem
(MPP), where j = 3(i – 1) / 3.

3.2 The Encryption Algorithm

Assume that ({C1, …, Cñ}, M) is a public key, and B1…Bn / 2 is the bit-pair string of a plaintext block
b1…bn ≠ 0.

Notice that if the number of 00-pairs in B1…Bn / 2 is larger than n / 4, let b1…bn = ¬b1…¬bn in order
that a related ciphertext can be decrypted correctly according to the constraint on M.

S1: Set C0 ← 1, k ← 0, i ← 1, s ← 0.
S2: If Bi = 00 then

let k ← k + 1, Ḇ i ← 0
else

let Ḇ i ← k + 1, k ← 0;
if s ≠ 0 then s ← i.

S3: Let i ← i + 1.
If i ≤ n / 2 then goto S2.

S4: If k ≠ 0 then let Ḇ s ← Ḇ s + k.
S5: Compute Ḡ ← ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i % M.
At last, a related ciphertext Ḡ is obtained.
We see that a JUNA ciphertext Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M) is different from an Naccache-Stern
ciphertext c ≡ ∏

n
i=1 vi

bi (% M) [12], where vi ≡ pi
1 / δ (% M) is a public key.

Definition 7: Let B1…Bn / 2 be the bit-pair string of b1…bn ≠ 0. Given {C1, …, C3n / 2}, M, and Ḡ, then
seeking B1…Bn / 2 from Ḡ1 ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)

Bi / 3 (% M) with C0 = 1 is referred to as a subset product
problem (SPP).

Definition 8: Let B1…Bn / 2 be the bit-pair string of b1…bn ≠ 0, and Ḇ1…Ḇ n / 2 be the bit-pair shadow
string. Given {C1, …, C3n / 2}, M, and Ḡ, then seeking Ḇ1…Ḇ n / 2 from Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M) with
C0 = 1 is referred to as an anomalous subset product problem (ASPP).

3.3 The Decryption Algorithm

Assume that ({A1, …, Añ}, W, δ) is a related private key, and Ḡ is a ciphertext.
Notice that due to ∑

n / 2
i = 1 Ḇi = n / 2 and ℓ(3(i – 1) + Bi) odd (excluding ℓ(0) = 0), ḵ = ∑

n / 2
i=1 Ḇi ℓ(3(i – 1) + Bi)

must be even.
S1: Compute Z0 ← Ḡ

δ−1
 % M.

Set Z1 ← Z0, h ← 0.
S2: If 2 | Zh then do Zh ← Zh W 2(–1)h % M, goto S2.
S3: Set B1…Bn / 2 ← 0, j ← 0, k ← 0, i ← 1, s ← 0, G ← Zh.
S4: If A3 i – j

k +

1 | G then

do G ← G / A3 i – j
k +

1, Bi ← 3 – j, k ← 0;

if s ≠ 0 then s ← 3i – j else null
else

let j ← j + 1;
if j ≤ 2 then goto S4 else let k ← k + 1.

S5: Let i ← i + 1.
If i ≤ n / 2 and G ≠ 1 then set j ← 0, goto S4.

S6: If k ≠ 0 and As
k | G then do G ← G / As

k.
S7: If G ≠ 1 then

set h ← ¬h, do Zh ← Zh W 2(–1)h % M, goto S2.
At last, the original plaintext block B1…Bn / 2, namely b1…bn is recovered.
Only if Ḡ is a true ciphertext, can the algorithm terminate normally.
Notice that considering that it is possible that the number of 00-pairs in B1…Bn / 2 is larger than n / 4, a

satisfactory plaintext is either b1…bn or ¬b1…¬bn.

 6

4 Correctness, Uniqueness, and Complexity

In this section, we discuss whether a ciphertext can be decrypted correctly, a plaintext solution is
unique, and a decryption process can be finished in polynomial time.

4.1 Correctness of the Decryption Algorithm

Because (*
M , ·) is an Abelian group, namely a commutative group, ∀ḵ ∈ [1,], there is

W
ḵ
 (W –1)ḵ ≡ W ḵ (W ḵ

)–1 ≡ 1 (% M),
where W ∈ [1,] is any arbitrary integer.

Fact 3: Let ḵ = ∑

n / 2
i=1 Ḇi ℓ(3(i – 1) + Bi) % with ℓ(0) = 0, where Ḇ1…Ḇ n / 2 is the bit-pair shadow string

of B1…Bn / 2 corresponding to b1…bn ≠ 0. Then Ḡ
δ−1

(W –1)ḵ ≡ ∏

n / 2
i=1 (A3(i – 1) + Bi)Ḇ i (% M).

Proof:
Let b1…bn, namely B1…Bn / 2 be an n-bit plaintext block.
Additionally, let A0 = 1.
According to the key generator, the encryption algorithm, and ∑

n / 2
i=1 Ḇ i = n / 2, there is

Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + B i)Ḇ i

≡ ∏

n / 2
i=1 ((A3(i – 1) + Bi W

 ℓ

(3(i –

1)

+

Bi))δ)Ḇ i
≡ W (∑

n

/

2

i=1

Ḇ

i ℓ

(3(i –
1)

+

Bi))δ ∏

n / 2
i=1 (A3(i – 1) + Bi)

δ

Ḇ

i

≡ W ḵ δ ∏

n / 2
i=1 (A3(i – 1) + Bi)

δ

Ḇ

i (% M).

Further, raising either side of the above congruence to the δ–1-th yields
Ḡ
δ−1 ≡ (W ḵ

δ∏

n / 2
i=1 (A3(i – 1) + Bi)

δ

Ḇ

 i)δ−1
≡ W ḵ ∏

n / 2
i=1 (A3(i – 1) + Bi)Ḇ i (% M).

Multiplying either side of the just above congruence by (W
–1)ḵ yields

Ḡ
δ−1

 (W –1)ḵ ≡ W
ḵ
 ∏

n / 2
i=1 (A3(i – 1) + Bi)Ḇ i (W

–1)ḵ
≡ ∏

n / 2
i=1 (A3(i – 1) + Bi)Ḇ i

≡ G (% M).
Clearly, the above process also gives a method of seeking G meantime.
Notice that in practice, ḵ is unknowable in advance.
However, because |ḵ | < n(2ñ + 3) / 2 = 3n(n + 1) / 2 is comparatively small, we may search ḵ

heuristically by multiplying W –2 or W 2 and verifying whether G = 1 after it is divided exactly by some
A3 i – j

k +

1. It is known from the decryption algorithm that the original B1…Bn / 2 will be acquired at the

same time the condition G = 1 is satisfied.

4.2 Uniqueness of a Plaintext Solution

Because {C1, …, Cñ} is a non-coprime sequence, the mapping from B1…Bn / 2 to ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇi %

M = Ḡ is theoretically many-to-one. It might possibly result in the nonuniqueness of a plaintext solution
B1…Bn / 2 when Ḡ is being unveiled.

Suppose that a ciphertext Ḡ can be obtained respectively from two different bit-pair strings B1…Bn / 2
and B′1…B′n / 2. Then,

Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇi ≡ ∏

n / 2
i=1 (C3(i – 1) + B′i)

Ḇ ′i (% M).
That is,

∏

n / 2
i=1 (A3(i – 1) + Bi W

 ℓ

(3(i –

1)

+

Bi))δ
Ḇi ≡ ∏

n / 2
i=1 (A3(i – 1) + B′i W

 ℓ

(3(i –

1)

+

B′i))δ
Ḇ ′i (% M).

Further, owing to ∑

n / 2
i=1 Ḇ i = ∑

n / 2
i=1 Ḇ ′i = n / 2, there is

W
ḵ δ ∏

n / 2
i=1 (A3(i – 1) + Bi)

δ

Ḇi ≡ W

ḵ ′ δ ∏

n / 2
i=1 (A3(i – 1) + B′i)

δ

Ḇ ′i (% M),

where ḵ = ∑

n / 2
i=1 Ḇ i ℓ(3(i – 1) + Bi), and ḵ ′ = ∑

n / 2
i=1 Ḇ ′i ℓ(3(i – 1) + B′i) % with ℓ(0) = 0.

Raising either side of the above congruence to the δ–1-th power yields
W

ḵ ∏

n / 2
i=1 (A3(i – 1) + Bi)

Ḇi ≡ W
ḵ ′ ∏

n / 2
i=1 (A3(i – 1) + B′i)

Ḇ ′i (% M).
Without loss of generality, let ḵ ≥ ḵ ′. Because (*

M , ·) is an Abelian group, there is
W ḵ – ḵ ′ ≡ ∏

n / 2
i=1 (A3(i – 1) + B′i)

Ḇ ′i (∏

n / 2
i=1 (A3(i – 1) + Bi)

Ḇi)–1 (% M).
Let θ ≡ ∏

n / 2
i=1 (A3(i – 1) + B′i)

Ḇ ′i (∏

n / 2
i=1 (A3(i – 1) + Bi)

Ḇi)–1 (% M), namely θ ≡ W ḵ – ḵ
′ (% M).

 7

This congruence signifies when the plaintext B1…Bn / 2 is not unique, the value of W must be relevant
to θ. The contrapositive assertion equivalent to it is that if the value of W is irrelevant to θ, B1…Bn / 2
will be unique. Thus, we need to consider the probability that W takes a value relevant to θ.

If an adversary tries to attack an 80-bit symmetric key through the exhaustive search, and a computer
can verify trillion values per second, it will take 38334 years for the adversary to verify all the potential
values. Hence, currently 80 bits are quite enough for the security of a symmetric key.

B1…Bn / 2 contains n bits which indicates ∏

n / 2
i=1 (A3(i – 1) + Bi)

Ḇi has 2n potential values, and thus the
number of potential values of θ is at most 2n × 2n. Notice that because A1

–1, …, Añ–1 are not necessarily
coprime, some values of θ may possibly occur repeatedly.

Because |ḵ − ḵ ′| < 3n(n + 1) ≤ 47601 ≈ 216 as n ≤ 128, and W has at most 216 solutions to every θ, the
probability that W takes a value relevant to θ is at most 216

 22n
 / M.

When n ≥ 80, there is 216
 22n

 / M ≤ 2176
 / 2384 = 1 / 2208 (notice that when n = 80, 96, 112, or 128, there

is lgM = 384, 464, 544, or 640), which is close to zero. The probability will further decrease when W
is a prime since the solutions to θ lean to being composite integers in the average case.

In addition, if you please, resorting to ∑

n / 2
i = 1 Ḇ i = n / 2, may exclude some unoriginal plaintext solutions.

4.3 Time Complexities of the Algorithms

In the paper, the running time, time complexity of an algorithm on an input is measured in the
number of bit operations [11], and it has an asymptotic implication. According to [11], a modular
addition will take O(lgM) bit operations, and a modular multiplication will take O(2lg2M) bit
operations.

4.3.1 Running Time of the Key Generation Algorithm

In the key generation algorithm, the step which exerts a dominant effect on the running time is S5.
For every i, S5 contains a modular power and the computing of Ai W ℓ

(i) which is equivalent to ñ

modular multiplications. Thus, the running time of the key generation algorithm is O(ñ(ñlg2M + lg3M)).

4.3.2 Running Time of the Encryption Algorithm

In the encryption algorithm, the dominant step is S5.
Due to ∑

n / 2
i = 1 Ḇ i = n / 2, S5 contains n / 2 modular multiplications. Thus, the running time of the

encryption algorithm is O(nlg2M).

4.3.3 Running Time of the Decryption Algorithm

In the decryption algorithm, the dominant step is S2 which pairs with S7 to construct a loop.
It is easy to see that the number of times of executing the loop S2 S7 which mainly contain a

modular multiplication is ḵ = ∑

n / 2
i=1 Ḇi ℓ(3(i – 1) + Bi), where Ḇi is relevant to a plaintext block, and ℓ(3(i –

1) + Bi) is relevant to the set Ω which is indeterminate. Therefore, it is very difficult accurately to know
the value of ḵ.

When a plaintext block B1…Bn / 2 contains n / 4 successive 00-pairs, we may obtain the maximal value
of ḵ, where ḵ is considered only as a positive number.

The maximal value of ḵ is
ḵ = (n / 4 + 1)(2ñ + 3) + (2ñ − 3) + (2ñ − 9) + … + (2ñ + 3 − 6(n / 4 − 1))

= (3 / 4)(n + 4)(n + 1) + (3 / 16) (3n + 4)(n − 4)
= (3 / 16)n(7n + 12).

Similarly, when a plaintext block B1…Bn / 2 contains suitable bit-pairs, we may obtain the minimal
value of ḵ which equals 0.

In summary, the simply expected value of ḵ is (3 / 32)n(7n + 12) ≈ (21 / 32)n2.
Again considering that ḵ is possibly negative, and W 2(–1)h is multiplied every time, the simply

expected value of ḵ should be 2(1 / 2)(21 / 32)n2 which is still (21 / 32)n2.
Thus, the simply expected running time of the decryption algorithm is O((21 / 32) n2lg2M).
However, in practice, because 2n ḵ-values will distribute at (3 / 32) n(7n + 12) integral points 0, 2,

4, …, (3 / 16) n(7n + 12) which is the maximal possible range, and the probability that ḵ takes large
integers is comparatively small, the concrete running time of a decryption process will be far smaller
than O((21 / 32) n2lg2M).

 8

5 Analysis of Security of a JUNA Private Key

In this section, we will analyze the security of the new cryptoscheme against extracting a related
private key from a public key.

In cryptanalysis, we suppose that the integer factorization problem (IFP) [2], the discrete logarithm
problem (DLP) [13][14], and the subset sum problem of low density (SSP) [7] can all be solved in
tolerable subexponential time [15].

5.1 A Property of the MPP

In the new cryptoscheme, there is the MPP Ci = (AiW ℓ(i))δ % M with Ai ∈ Λ and ℓ(i) ∈ (x, y, z) ∈ Ω ⊂
{(±5, ±7, ±9), …, (±(2ñ − 1), ±(2ñ + 1), ±(2ñ + 3))} for i = 1, …, ñ. Notice that the structure of the set
Ω consisting of triples has no change compared with that in [1] in essence.

According to Definition 6, the MPP has the following property.
Property 6: The MPP Ci = (Ai W ℓ

(i))δ % M with Ai ∈ Λ and ℓ(i) ∈ (ℓ(j + 1), ℓ(j + 2), ℓ(j + 3)) ∈ Ω for i =

1, …, ñ is computationally at least equivalent to DLP in the same prime field, where j = 3(i – 1) /3.
Refer to Section 4.1 of [1] for its proof.

5.2 Attack by Interaction of the Key Transform Items

In the key transform Ci ≡ (Ai W ℓ(i))δ (% M), the parameters Ai ∈ Λ = {2, 3, …, Þ | Þ = 863, 937, 991,
or 1201} and ℓ(i) ∈ (x, y, z) ∈ Ω ⊂ {(±5, ±7, ±9), …, (±(2ñ − 1), ±(2ñ + 1), ±(2ñ + 3))} are vulnerable.

5.2.1 Eliminating W through ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2)

∀ x1, x2, y1, y2 ∈ [1, n], assume that ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2).
Let Gz ≡ Cx1Cx2 (Cy1Cy2)

–1 (% M), namely
Gz ≡ (Ax1 Ax2 (Ay1 Ay2)

–1)δ (% M).
If an adversary divines the values of Ax1, Ax2, Ay1, Ay2 ∈ Λ, he may compute δ through a discrete

logarithm in time of LM [1 / 3, 1.923] with lgM ≤ 640.
However, due to Ω = n / 2 and Ω ⊂ {(±5, ±7, ±9), …, (±(2ñ − 1), ±(2ñ + 1), ±(2ñ + 3))} with |x1| |x2|

|x3| ≠ |y1| |y2| |y3| ∀(x1, x2, x3), (y1, y2, y3) ∈ Ω, a concrete Ω is one of (233!)n / 2 potential sets consisting of
triples, and indeterminate.

For example, assume that ℓ(x1) + ℓ(x2) = 5 + 11, and ℓ(y1) + ℓ(y2) = −7 + 9, then there is ℓ(x1) + ℓ(x2)
≠ ℓ(y1) + ℓ(y2). Therefore, among ℓ(1), …, and ℓ(ñ), there does not necessarily exist ℓ(x1) + ℓ(x2) = ℓ(y1)
+ ℓ(y2).

The above example illustrates that to determinate the existence of ℓ(x1) + ℓ(x2) = ℓ(y1) + ℓ(y2), an
adversary must first determinate the constitution of Ω, which will take the running time of O((233!)n / 2).

5.2.2 Eliminating W through the W -th Power

Due to lg M = 384, 464, 544, or 640, can be factorized in tolerable subexponential time. Again
due to ∏

k
i=1 pi

ei | and ∏

k
i=1 ei ≥ 210 with pk < ñ / 2, W can be divined in the running time of about 210.

Raising either side of Ci ≡ (Ai W ℓ

(i))

δ % M to the W-th power yields
Ci

W ≡ (Ai)δ W (% M).
Let Ci ≡ g

u

i (% M), and Ai ≡ g

vi (% M), where g is a generator of (*
M , ·). Then

ui W ≡ vi W δ (%)
for i = 1, …, ñ. Notice that ui ≠ vi δ (%) owing to W | .

The above congruence looks to be the MH transform [7]. Actually, {v1 W, …, vñ W} is not a super
increasing sequence, and moreover there is not necessarily lg (ui W) = lg .

Because vi W ∈ [1,] is stochastic, the inverse δ–1 % not need be close to the minimum / (ui

W), 2 / (ui W), …, or (ui W – 1) / (ui W). Namely δ–1 may lie at any integral position in the
interval [k / (ui W), (k + 1) / (ui W)], where k = 0, 1, …, ui W – 1, which illustrates the
accumulation points of minima do not exist. Further observing, in this case, when i traverses the
interval [2, ñ], the number of intersections of the intervals including δ–1 is likely max2 ≤ i ≤ ñ {ui W}
which is promisingly close to . Therefore, the Shamir attack by the accumulation point of minima is
fully ineffectual [16].

 9

Even though find out δ

–1 by the Shamir attack method, because each of vi has W solutions, the
number of potential sequences {gv1, …, gv

ñ} is up to W ñ. Because of needing to verify whether {gv1, …,
gv
ñ} is a coprime sequence for each different sequence {v1, …, vñ}, the number of coprime sequences is

in direct proportion to W ñ. Hence, the initial {A1, …, Añ} cannot be determined in subexponential
time. Further, the value of W cannot be computed, and the values of W and δ–1 cannot be verified in
subexponential time, which indicates that MPP can also be resistant to the attack by the accumulation
point of minima.

Additionally, an adversary may divine value of Ai in running time of about Λ, where i ∈ [1, ñ], and
compute δ by ui W ≡ vi Wδ (%). However, because of W | , the equation will have W solutions.
Therefore, the running time of finding the original δ is at least

Ŧ = ñ Λ LM [1 / 3, 1.923] + 210
 Λ W

= ñ Λ LM [1 / 3, 1.923] + 210
 Λ 2n – 20

≈ ñ Λ LM [1 / 3, 1.923] + 2n > 2n.
It is at least exponential in n when 80 ≤ n ≤ 128.

5.3 Attack by a Certain Single Ci

Assume that there is only a solitary Ci = (Ai W ℓ(i))δ % M — i = 1 for example, and other Ci′s (i = 2, …,
ñ) are unknown for adversaries.

Through divining A1 ∈ Λ and ℓ(1) ∈ Ω, the parameters W and δ ∈ (1,) can be computed. Thus, the
number of solution (A1, ℓ(1), W, δ) will be up to Ω Λ 2 > 2n, which manifests that the original (A1,
ℓ(1), W, δ) cannot be determined in time being subexponential in n.

Evidently, if g1 ≡ A1 W ℓ

(1) (% M) is a constant, solving C1 = g1
δ % M for δ is equivalent to DLP.

Factually, g1 is not a constant, and at present, seeking the original g1 and δ will take at least O(M) >

O(2n) steps.
In summary, the time complexity of inferring a related private key from a public key is at least O(2n).

6 Analysis of Security of a JUNA Plaintext

In this section, we will analyze the security of the new cryptoscheme against recovering a related
plaintext from a ciphertext.

The security of a JUNA plaintext depends on the ASPP Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M) with C0 = 1, but
we need also to understand the SPP Ḡ1 ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)

Bi / 3 (% M) with C0 = 1.

6.1 Two Properties

According to Definition 7, the SPP has the following property.
Property 7: The SPP Ḡ1 ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)

Bi / 3 (% M) with C0 = 1 is computationally at least
equivalent to DLP in the same prime field, where B1…Bn / 2 ≠ 0 is a bit-pair string.

Proof:
For the explanation of the problem, we extend B1…Bn / 2 to b′1…b′ñ by the following rule for i = 1, …,

n / 2:
 when Bi = 0, let b′3(i – 1) + 1 = b′3(i – 1) + 2 = b′3(i – 1) + 3 = 0;
 when Bi ≠ 0, let b′3(i – 1) + 1 = b′3(i – 1) + 2 = b′3(i – 1) + 3 = 0 and b′3(i – 1) + Bi = 1.

Then, we have
Ḡ1 ≡ ∏

ñ
i = 1 Ci

b′i (% M).
The above form of Ḡ1 is similar to that of Ḡ1 in [1]. Therefore, the rest of this proof is parallel to the

proof of Property 5 in [1].
According to Definition 8, the ASPP has the following property.
Property 8: The ASPP Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M) with C0 = 1 is computationally at least equivalent
to DLP in the same prime field, where Ḇ1…Ḇn / 2 is the bit-pair shadow string of B1…Bn / 2 ≠ 0.

Proof:
For the explanation of the problem, we extend Ḇ1…Ḇn / 2 to ḇ′1…ḇ′ñ by the following rule for i = 1, …,

n / 2:
 when Ḇ i = 0, let ḇ′3(i – 1) + 1 = ḇ′3(i – 1) + 2 = ḇ′3(i – 1) + 3 = 0;

 10

 when Ḇ i ≠ 0, let ḇ′3(i – 1) + 1 = ḇ′3(i – 1) + 2 = ḇ′3(i – 1) + 3 = 0 and ḇ′3(i – 1) + Bi = Ḇi.
Then, we have

Ḡ ≡ ∏

ñ
i = 1 Ci

ḇ′i (% M).
The above form of Ḡ is similar to that of Ḡ in [1]. Therefore, the rest of this proof is parallel to the

proof of Property 6 in [1].

6.2 Resisting LLL Lattice Base Reduction

We know that after a lattice base is reduced through the LLL algorithm, the final reduced base will
contain the shortest or approximately shortest vectors, but among them does not necessarily exist the
original solution to a subset sum problem because only if

 the solution vector for the SSP is the shortest, and
 the shortest vector is unique in the lattice,

will the original solution vector appear in the reduced base with large probability.
In the JUNA cryptoscheme, there are n = 80, 96, 112, or 128 and lg M = 384, 464, 544, or 640.

Under this circumstances, DLP and IFP can be solved in tolerable subexponential time, namely DLP
and IFP can not resist the attack of adversaries.

For convenience, extend Ḇ1…Ḇ n / 2 to ḇ′1…ḇ′ñ by the following rule for i = 1, …, n / 2:
 when Ḇ i = 0, let ḇ′3(i – 1) + 1 = ḇ′3(i – 1) + 2 = ḇ′3(i – 1) + 3 = 0;
 when Ḇ i ≠ 0, let ḇ′3(i – 1) + 1 = ḇ′3(i – 1) + 2 = ḇ′3(i – 1) + 3 = 0 and ḇ′3(i – 1) + Bi = Ḇi.

For example, suppose that B1…B4 = 00 10 01 00, then Ḇ1…Ḇ4 = 0310, and ḇ′1…ḇ′12 = 000 030 100 000.
In this way, there is

Ḡ ≡ ∏

ñ
i = 1 Ci

ḇ′i (% M).
Let g be a generator of (*

M, ·).
Let C1 ≡ g

u1 (% M), …, Cñ ≡ g
uñ (% M), and Ḡ ≡ g

v (% M).
Then, through a conversion in subexponential time, seeking Ḇ1…Ḇ n / 2 from Ḡ is equivalent to seeking

ḇ′1…ḇ′ñ from the congruence
u1 ḇ′1 + … + uñ ḇ′ñ ≡ v (%), (3)

where v may be substituted with v + k along with k ∈ [0, ñ – 1] [3].
Similar to Section 1, {u1, …, uñ} is called a compact sequence due to every ḇ′i ∈ [0, n / 4 + 1] [4], and

solving Equation (3) for ḇ′1…ḇ′ñ is called an ASSP [1].
This ASSP may also be converted into a SSP, and thus according to ḇ′i ∈ [0, n / 4 + 1], the density of

a related ASSP knapsack is defined as
D = ∑ñ

i=1 lg(n / 4 + 1) / lg M
= ñlg(n / 4 + 1) / lg M.

Namely,
D = 3nlg(n / 4 + 1) / (2lg M). (4)

which is slightly different from Formula (2).
Concretely speaking, in the JUNA cryptoscheme, there are
D = 120 × 5 / 384 ≈ 1.5625 > 1 for n = 80 and lg M = 384,
D = 144 × 5 / 464 ≈ 1.5517 > 1 for n = 96 and lg M = 464,
D = 168 × 5 / 544 ≈ 1.5441 > 1 for n = 112 and lg M = 544,
D = 196 × 6 / 640 ≈ 1.8375 > 1 for n = 128 and lg M = 640.
Therefore, Equation (3) represents an ASSP of high density, which indicates that many different

subsets will have the same sum, and probability that the original solution vector will occur in the final
reduced lattice base is nearly zeroth. Meanwhile, our experiment demonstrates that the original solution
vector does not occur in the final reduced base.

6.3 Avoiding Adaptive-chosen-ciphertext Attack

Most of public key cryptoschemes may probably be faced with adaptive-chosen-ciphertext attack
[17]. The Cramer-Shoup asymmetric encryption scheme is the first efficient one which is extremely
malleable, and proven to be secure against the adaptive-chosen-ciphertext attack using standard
cryptographic assumptions [18]. In our scheme, to avoiding adaptive-chosen-ciphertext attack, we have
two approaches of which each makes the algorithm be able to produce many different ciphertexts to an
identical plaintext.

 11

6.3.1 Introducing a Random Bit String into the Encryption

 The Adjusted Encryption Algorithm
Parallel to Section 3.2, assume that ({C1, …, Cñ}, M) is a public key, and B1…Bn / 2 is the bit-pair

string of a plaintext block b1…bn ≠ 0.
S1: Set C0 ← 1, k ← 0, i ← 1, s ← 0.
S2: If Bi = 00 then

let k ← k + 1, Ḇ i ← 0
else

let Ḇ i ← k + 1, k ← 0;
if s ≠ 0 then s ← i.

S3: Let i ← i + 1.
If i ≤ n / 2 then goto S2.

S4: Randomly produce r1…rn / 2 ∈ {0, 1}n / 2.
S5: rs ← 1.

If k ≠ 0 then let Ḇ s ← Ḇ s + k.
S6: Compute Ḡ ← ∏

n / 2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḇi) % n / 2 + Bi))Ḇ

i % M.
Clearly, when an identical plaintext is inputted repeatedly, a ciphertext different from one another

will be returned by the above algorithm every time.
It is easily understood that contrarily a ciphertext can almost uniquely be decrypted in polynomial

time in terms of Section 3.3 and 4.2.
 The Adjusted Decryption Algorithm

Parallel to Section 3.3, we redesign a corresponding decryption algorithm of which the running time
is equivalent to that of the algorithm in Section 3.3.

Assume that ({A1, …, Añ}, W, δ) is a related private key, and Ḡ is a ciphertext.
Notice that due to ∑

n / 2
i = 1 Ḇi = n / 2 and ℓ(3(i – 1) + Bi) odd (excluding ℓ(0) = 0), ḵ = ∑

n / 2
i=1 Ḇi ℓ(3(i – 1) + Bi)

must be even.
S1: Compute Z0 ← Ḡ

δ−1
 % M.

Set Z1 ← Z0, h ← 0.
S2: If 2 | Zh then do Zh ← Zh W 2(–1)h % M, goto S2.
S3: Set B1…Bn / 2 ← 0, j ← 0, k ← 0, l ← 0, i ← 1, G ← Zh.
S4: If A3 i – j

l +

1 | G then let l ← l + 1, goto S4.

S5: Let j ← j + 1. If l = 0 and j ≤ 2 then goto S4.
S6: If l = 0 then

let k ← k + 1, i ← i + 1
else

compute G ← G / A3 i – j
l;

if k > 0 or l ≥ i then
let Bi ← 3 – j, i ← i + 1

else
let Bi + l – 1 ← 3 – j, i ← i + l;

set l ← 0, k ← 0.
S7: If i ≤ n / 2 and G ≠ 1 then set j ← 0, goto S4.
S8: If G ≠ 1 then

set h ← ¬h, do Zh ← Zh W 2(–1)h % M, goto S2.
It is easy to see that only if Ḡ is a true ciphertext, can the decryption algorithm terminate normally.
In this wise, the original plaintext block B1…Bn / 2, namely b1…bn is recovered although r1…rn / 2 is

introduced into the encryption process.

6.3.2 Appending a Stochastic Bit String to a Plaintext

The second approach to avoiding adaptive-chosen-ciphertext attack is to append a stochastic fixed-
length bit string to the terminal of a plaintext block when it is encrypted. For a concrete implementation,
refer to the OAEP+ scheme [19].

Of course, we may combine the first approach with the second approach.

 12

6.4 Avoiding Meet-in-the-middle Attack

Meet-in-the-middle dichotomy was first developed in 1977 [20]. Section 3.10 of [11] puts forward a
meet-in-the-middle attack on a subset sum problem.

INPUT: a set of positive integers {C1, C2, …, Cn} and a positive integer s.
OUTPUT: bi ∈ {0, 1}, 1 ≤ i ≤ n, such that ∑

n
i=1 Ci bi = s, provided such bi exist.

S1: Set t ← n / 2.
S2: Construct a table with entries (∑

t
i=1 Ci bi, (b1, b2, …, bt)) for (b1, b2, …, bt) ∈ (2)t.

Sort this table by the first component.
S3: For each (bt + 1, bt + 2, …, bn) ∈ (2)n − t, do the following:

S3.1: Compute r = s − ∑

n
i=t +1 Ci bi and check, using a binary search,

whether r is the first component of some entry in the table;
S3.2: If r = ∑

t
i=1 Ci bi, then return (a solution is (b1, b2, …, bn)).

S4: Return (no solution exists).
It is not difficult to understand that the time complexity of the above algorithm is O(n2n / 2).
Likewise, meet-in-the-middle dichotomy may be used to attack the ASSP Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M)
when Bn / 4 ≠ 00 and Bn / 2 ≠ 00 which occur with the probability 9 / 16 = 0.5625, and it will take the
time complexity of O(n2n / 2 lg2M) bit operations.

Hence, to avoid meet-in-the-middle attack as efficiently as possible, parallel to Section 6.3.1, a
random bit string r1…rn / 2 should be brought into the encryption algorithm so as to extend the scope of
exhaustive search.

In this case, the ASPP is converted into Ḡ ≡ ∏

n / 2
i=1 (Cri(3(i – 1) + Bi) + ¬ri(3(i – Ḇi) % n / 2 + Bi))Ḇ

i (% M), and
moreover, it is not difficult to understand that the time complexity of the attack task is increased to
O(n25n / 8 lg2M) bit operations. Notice that the probability of success is still 9 / 16.

Concretely speaking,
when n = 80 with lg M = 384, Ŧ = n25n / 8

 lg2M = 27250218 = 275 bit operations,
when n = 96 with lg M = 464, Ŧ = n25n / 8

 lg2M = 27260218 = 285 bit operations,
when n = 112 with lg M = 544, Ŧ = n25n / 8

 lg2M = 27270220 = 297 bit operations,
when n = 128 with lg M = 640, Ŧ = n25n / 8

 lg2M = 27280220 = 2107 bit operations.
If the above time complexities do not satisfy users′ requirement, the users need further appending a

stochastic bit string to a plaintext.

7 Conclusion

In the paper, the authors propose a new public key cryptoscheme which includes the key generator,
encryption algorithm, and decryption algorithm.

The cryptoscheme builds its own security on the two problems Ci = (AiW ℓ(i))δ % M with Ai ∈ Λ and
ℓ(i) ∈ (x, y, z) ∈ Ω and Ḡ ≡ ∏

n / 2
i=1 (C3(i – 1) + Bi)Ḇ

i (% M) that are classified as MPP and ASPP to which no
DLP subexponential time solutions are found [21], and there exist only exponential time solutions so
far, utilizes a bit-pair string to decrease the bit-length of the modulus M, exploits a bit-pair shadow
string to prevent attack by LLL lattice base reduction, and employs the two approaches of introducing a
random bit string into the encryption and appending a stochastic bit string to a plaintext to avoid attack
by adaptive-chosen-ciphertext measure and meet-in-the-middle dichotomy.

As n = 80, 96, 112, or 128, there exists lg M = 384, 464, 544, or 640, which assures that when a
JUNA ciphertext is converted into an ASSP through a discrete logarithm, the density of a related ASSP
knapsack is pretty high, and larger than 1.

There exists contradiction between time and security, so does between space and security, and so
does between time and space. We attempt to find a balance which is none other than a delicate thing
among time, space, and security.

Acknowledgment
The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou, Changxiang Shen, Zhengyao Wei, Andrew C.

Yao, Binxing Fang, Xicheng Lu, and Guangnan Ni for their important guidance, suggestions, and help.
The authors also would like to thank the Professors Dingyi Pei, Dengguo Feng, Jie Wang, Ronald L. Rivest, Moti Yung, Adi

Shamir, Dingzhu Du, Mulan Liu, Huanguo Zhang, Maozhi Xu, Yixian Yang, Xuejia Lai, Xiaoyun Wang, Yupu Hu, Kefei Chen,
Jiwu Jing, Rongquan Feng, Ping Luo, Jianfeng Ma, Xiao Chen, Dongdai Lin, Zhenfu Cao, Chao Li, Lei Hu, Lusheng Chen,

 13

Wenbao Han, Xinchun Yin, Bogang Lin, Qibin Zhai, Dake He, Hong Zhu, Zhiying Wang, and Quanyuan Wu for their important
advice, suggestions, and corrections.

References
[1] S. Su and S. Lü, A Public Key Cryptosystem Based on Three New Provable Problems, Theoretical Computer Science, v426-

427, Apr. 2012, pp. 91-117.
[2] R. L. Rivest, A. Shamir, and L. M. Adleman, A Method for Obtaining Digital Signatures and Public-key Cryptosystems,

Communications of the ACM, v21(2), 1978, pp. 120-126.
[3] V. Niemi, A New Trapdoor in Knapsacks, Proc. Advances in Cryptology: EUROCRYPT ’90, LNCS 473, Springer-Verlag,

Berlin, 1991, pp. 405-411.
[4] G. Orton, A Multiple-Iterated Trapdoor for Dense Compact Knapsacks, Proc. Advance in Cryptology: EUROCRYPT ’94,

Springer-Verlag, 1994, pp. 112-130.
[5] E. F. Brickell, Solving Low Density Knapsacks, Proc. Advance in Cryptology: CRYPTO ’83, Plenum Press, 1984, pp. 25-

37.
[6] M. J. Coster, A. Joux, B. A. LaMacchia etc, Improved Low-Density Subset Sum Algorithms, Computational Complexity,

v2(2), 1992, pp. 111-128.
[7] R. C. Merkle and M. E. Hellman, Hiding information and Signatures in Trapdoor Knapsacks, IEEE Transactions on

Information Theory, v24(5), 1978, pp. 525-530.
[8] S. Y. Yan, Number Theory for Computing (2nd ed.), Springer-Verlag, Berlin, 2002, ch. 1.
[9] L. Fibíková and J. Vyskoč, Practical Cryptography - The Key Size Problem: PGP after Years, http://www.vaf.sk/

download/keysize.pdf, Dec. 2001.
[10] T. W. Hungerford, Algebra, New York: Springer-Verlag, 1998, ch. 1-3.
[11] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, London, UK, 2001, ch.

2, 3, 8.
[12] D. Naccache and J. Stern, A new public key cryptosystem, Proceedings of Advances in Cryptology: EUROCRYPT ′97,

Springer-Verlag, 1997, pp. 27-36.
[13] T. ElGamal, A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Transactions on

Information Theory, vol. 31, no. 4, 1985, pp. 469-472.
[14] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge University Press, Cambridge, UK,

1999.
[15] M. Davis, The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions,

Dover Publications, Mineola, 2004.
[16] A. Shamir, A Polynomial Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem, Proc. of the 23th IEEE

Symposium on the Foundations of Computer Science, IEEE, 1982, pp. 145-152.
[17] D. Bleichenbacher, Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1, Proc. of

Advance in Cryptology: Crypto ′98, Springer-Verlag, 1998, pp. 1-12.
[18] R. Cramer and V. Shoup, A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext

Attack, Proc. of Advance in Cryptology: Crypto ′98, Springer-Verlag, 1998, pp. 13-25.
[19] V. Shoup, OAEP Reconsidered, Proc. of Advance in Cryptology: Crypto ′01, Springer-Verlag, 2001, pp. 239-259.
[20] W. Diffie and M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryption Standard, Computer, v10 (6), 1977,

pp. 74-84.
[21] S. Su and S. Lü, REESSE1+ · Reward · Proof by Experiment on 80-bit Moduli, http://arxiv.org/pdf/0908.0482, Aug. 2009

(revised Dec. 2012).

