
Functional Signatures and Pseudorandom Functions

Elette Boyle Shafi Goldwasser Ioana Ivan

June 28, 2013

Abstract

In this paper, we introduce functional digital signatures and pseudorandom functions.
In a functional signature scheme, in addition to a master signing key that can be used to sign any

message, there are signing keys for a function f , which allow one to sign any message in the range of
f . We show applications of functional signatures to construct succinct non-interactive arguments and
delegation schemes. We give several general constructions for this primitive based on different computa-
tional hardness assumptions, and describe the trade-offs between them in terms of the assumptions they
require and the size of the signatures.

In a functional pseudorandom function, in addition to a master secret key that can be used to evaluate
the pseudorandom function F on any point in the domain, there are additional secret keys for a function
f , which allow one to evaluate F on any y for which there exists an x such that f(x) = y. This implies
the ability to delegate keys per function f for computing a pseudorandom function F on points y for
which f(y) = 1. We define and provide a sample construction of a functional pseudorandom function
family for the prefix-fixing function family.

1 Introduction

We introduce new cryptographic primitives with a variety of accompanying constructions: functional
digital signatures (FDS), functional pseudorandom functions (FPRF), and psuedorandom functions with
selective access (PRFSA).

Functional Signatures

In digital signature schemes, as defined by Diffie and Hellman [DH76], a signature on a message provides
information which enables the receiver to verify that the message has been created by a proclaimed
sender. The sender has a secret signing key, used in the signing process, and there is a corresponding
verification key, which is public and can be used by anyone to verify that a signature is valid. Following
Goldwasser, Micali and Rackoff [GMR88], we require unforgeability against chosen message attack: an
adversary that runs in probabilistic polynomial time and is allowed to request signatures for a polynomial
number of messages of his choice, cannot produce a signature of any new message with non-negligible
probability.

In this work, we extend the classical digital signature notion to what we call functional signatures. In
a functional signature scheme, in addition to a master signing key that can be used to sign any message,
there are secondary signing keys for functions f (called skf), which allow one to sign any message in
the range of f . These additional keys are derived from the master signing key. The notion of security
we require such a signature scheme to satisfy is that any probabilistic polynomial time (PPT) adversary,
who can request signing keys for functions f1 . . . fl of his choice, and signatures for messages m1, . . .mq

of his choice, can only produce a signature of a message m with non-negligible probability, if m is equal
to one of the queried messages m1, . . .mq, or if m is in the range of one of the queried functions f1 . . . fl.

Historical Note: This work appeared in part as the Master Thesis of Ioana Ivan filed May 22 at MIT. We note that
independently (and unknown to the authors) the notion of pseudorandom functions with selective access that we introduce
here was considered by Boneh-Waters under the name of constrained pseudorandom functions and by Kiayias, Papadopou-
los,Triandopoulos and Zacharias under the name delegatable pseudorandom functions.

1

An application of functional signatures is in certifiable computation. In this setting, there is a client
and a server who performs computations for the client. The client gives out keys for a set of functions
{fi}, and wants to test whether the response from the server is indeed the output of one the fi on an
input. For a concrete example, suppose we have a digital camera that produces signatures of the photos
taken with the camera, which can be used to prove that a photo has not been altered. In this case, we
might want to allow minor modifications, like changing the color scale, but not allow more significant
changes such as merging two photos or cropping a picture. We can use functional signatures to solve this
problem, by giving out signing keys for the functions that capture the permissible modifications.

A desirable property from a functional signature scheme is function privacy : the signature should
reveal neither the function f that the secret key used in the signing process corresponds to, nor the
message m that f was applied to. For example, in the example with the signed photos, one might not
wish to reveal the original message, just that the final photographs was obtained by running one of the
allowed functions on some image taken with the camera.

An additional desirable property is succinctness: the size of the signature should only depend on the
size of the output f(m) and the security parameter (or just the security parameter), rather than, say,
the size of the circuit for computing f .

Functional Pseudorandomness

Pseudorandom functions, introduced by Goldreich, Goldwasser, and Micali [GGM86], are a family of
indexed functions F = {Fs} such that: (1) there exists a polynomial-time algorithm that given an index
s (which can be thought of as a secret key) can evaluate Fs(x) for every x in the function domain, but
(2) no probabilistic polynomial-time algorithm without s who can request and receive evaluations Fs(xi)
for inputs xi’s of its choice can distinguish (z, Fs(z)) from (z,R) with R random for any z 6= xi not
previously seen.

Pseudorandom functions are useful for numerous symmetric-key cryptographic applications, including
generating passwords, identify-friend-or-foe systems, and symmetric key encryption secure against chosen
ciphertext attacks. In the public key setting, the following paradigm can be followed: one may publish
a commitment to secret key s and henceforth be able to prove that y = Fs(x) for a pair (x, y) via a
non-interactive zero-knowledge (NIZK) proof. The latter had been used as a way to construct families
of digital signature in [BG89].

In this work, we extend pseudorandom functions to a primitive which we call functional pseudorandom
functions (FPRF). The idea is that in addition to a master secret key that can be used to evaluate the
pseudorandom function Fs on any point in the domain, there are additional secret keys skf per function
f , which allow one to evaluate Fs on any y for which there exists x such that f(x) = y (i.e y ∈ Range(f)).
An immediate application of such a construct is to specify succinctly the randomness to be used by parties
in a randomized distributed protocol with potentially faulty players, so as to force honest behavior as
follows. A centralized authority holds a description of an index s of a pseudorandom function Fs. One
may think of this authority as providing a service which dispenses pseudorandomness (alternatively the
secret s can be shared among players in an MPC). The authority provides each party id with a secret
key sid which enables party id to (1) evaluate Fs(y) whenever y = “id‖h”, where h corresponds to say
the public history of communication, and public committed input and (2) use y as her next sequence of
coins in the protocol. To prove that the appropriate randomness was used, id can utilize NIZK proofs.1

Note that in this example the function f(x) = y is simply the function which appends the string prefix id
to x. We note that there are many other ways to force the use of proper randomness in MPC protocols
by dishonest parties, starting with the classical paradigm [GM82, GMW86] where parties interact to
execute a “coin flip in the well” protocol forcing players to use the results of these coins, but we find the
use of FPRF appealing in its simplicity and efficiency.

The notion of functional pseudorandom functions has many variations. One natural variant which
immediately follows is pseudorandom functions with selective access: Start with a pseudorandom function
as defined in [GGM86], and add the ability to generate secondary keys skPi (per predicate Pi) which
enable computing Fs(x) whenever Pi(x) = 1. This is a special case of FPRF, as we can take the secret
key for predicate Pi to be skfi , where fi(x) = x if Pi(x) = 1 and ⊥ otherwise. Another variant is
hierarchical pseudorandom functions, with an additional property that parties with functional keys skf

1An interesting open question is how to achieve a verifiable FPRF, where there is additional information vks that can be
used to verify that a given pair(x, Fs(x)) is valid. This would eliminate the need for the NIZK proofs.

2

may also generate subordinate keys skg for functions g of the form g = f ◦ f ′ (i.e., first evaluate some
function f ′, then evaluate f). Note that the range of such composition g is necessarily contained within
the range of f .

1.1 Summary of Our Results on Functional Signature

We provide a construction of functional signatures which achieves function privacy and succinctness,
assuming the existence of succinct non-interactive arguments of knowledge (SNARKS) and (standard)
non-interactive zero-knowledge arguments of knowledge (NIZKAoKs) for NP languages.

Theorem 1 (Informal). Assuming the existence of succinct non interactive-arguments of knowledge
(SNARKs) and NIZKAoK for NP languages, there exists a succinct functional signature scheme that
supports signing keys for any function f computable by a polynomial-sized circuit. This scheme satisfies
the unforgeability requirement for functional signatures and function privacy. The size of the signature
only depends on the security parameter and the size of f(m).

Overview of the construction:
Assuming the existence of one-way functions, Rompel constructs a signature scheme that is existentially
unforgeable under chosen message attack in [Rom90].

In the setup algorithm for our functional signature scheme, we sample a key pair (msk,mvk) for the
standard signature scheme, and set the master signing key for the functional signature scheme to be msk,
and the master verification key to be mvk.

A SNARK system for an NP language L with corresponding relation R is an extractable proof
system where the size of a proof is sublinear in the size of the witness corresponding to an instance,
and the running time of the verifier is sublinear in the running time of R. SNARK schemes have been
constructed under various non-falsifiable assumptions. For example, Bitansky et al. [BCCT12] construct
zero-knowledge SNARKs where the length of the proof and the verifier’s running time are bounded by
a polynomial in the security parameter, the size of the instance, and the logarithm of the time it takes
to verify a valid witness for the instance assuming the existence of extractable collision resistance hash
functions and NIZKAoK. (They also show that any SNARK + NIZKAoK directly yield zero-knowledge
(ZK)-SNARK with analogous parameters). More details are given in Section 2.3.

To generate a signing key for a function f , we output a signature of f under mvk as the signing key
skf . To sign a message m∗ = f(m) using skf , we generate a zero-knowledge SNARK for the following
statement: ∃(σ, f,m) such that m∗ = f(m) and σ is a valid signature of f under mvk. To verify the
signature, we run the verification algorithm for the SNARK argument.

Resorting to non-falsifiable assumptions, albeit strong, seems necessary to obtain succinctness for
functional signatures. We see this as follows. Recall that in a succinct non-interactive arguments
(SNARG) for a language L, there is a verifier V , and a prover P who is attempting to convince the
verifier that an input x ∈ L. Let us require the proofs produced by prover to be sublinear in the size of
the input plus the size of the witness. Then, we show

Theorem 2 (Informal). If there exists a functional signature that supports key for any function f ,
and has short signatures (i.e of size poly(k) · o(|f(m)| + |m|), then there exists a SNARG scheme with
preprocessing for any language L ∈ NP with proof size poly(k) · o(|w|+ |x|), where w is the witness and
x is the instance.

As Gentry and Wichs show in [GW11] that SNARG schemes with proof size o(|w| + |x|) cannot be
obtained using black-box reductions to falsifiable assumptions, we can conclude that in order to obtain
a functional signature scheme with signature size o(|f(m)| + |m|) we must either rely on non-falsifiable
assumptions (as in our SNARK construction) or make use of non blackbox techniques.

We remark that if one was willing to give up on the requirement of succinctness and function privacy
for a functional signature scheme, one could obtain constructions requiring only the existence of one-way
functions.

Theorem 3 (Informal). Assuming the existence of one-way functions, there exists a functional signature
scheme that supports signing keys for any function f computable by a polynomial-sized circuit. This
scheme satisfies the unforgeability requirement for functional signatures, but not function privacy or
succinctness.

3

Overview of the construction:
Assuming the existence of one-way functions, Rompel constructs a signature scheme that is existentially
unforgeable under chosen message attack in [Rom90].

In the setup algorithm for our functional signature scheme, we sample a key pair (msk,mvk) for the
standard signature scheme, and set the master signing key for the functional signature scheme to be msk,
and the master verification key to be mvk.

To generate a signing key for a function f , we sample a new signing and verification key pair (sk′, vk′),
and sign the concatenation of f and vk′, f |vk′ using msk. The signing key for f consists of this certificate
together with sk′. Given this signing key, a user can sign any message m∗ = f(m) by signing m using
sk′, and outputting this signature, together with the signature of f |vk′ under msk.

Finally, a scheme which satisfies functional privacy but where the size of a signature output by the
algorithm Sign(skf ,m) depends on the size of a circuit computing f , can be based on the existence of
non-interactive zero-knowledge arguments of knowledge (NIZKAoK) for NP.

Theorem 4 (Informal). Assuming the existence of non-interactive zero-knowledge arguments of knowl-
edge (NIZKAoK) for NP, there exists a functional signature scheme that supports signing keys for any
function f computable by a polynomial-sized circuit. This scheme satisfies both the unforgeability require-
ment for functional signatures and function privacy, but not succinctness. The size of the signature is
dependent on the size of f and m.

Overview of the construction:
The setup algorithm for the functional signature scheme is the same as in the SNARK-based scheme
above: we sample a key pair (msk,mvk) for the standard signature scheme, and set the master signing
key for the functional signature scheme to be msk, and the master verification key to be mvk.

In the key generation algorithm for a function f , we output the signature of f under mvk as the
signing key skf . To sign a message m∗ = f(m) using skf , we generate a NIZKAoK for the following
statement: ∃(σ, f,m) such that m∗ = f(m) and σ is a valid signature of f under mvk. To verify the
signature, we run the verification algorithm for the NIZKAoK argument system.

While this signature satisfies both unforgeability and function privacy, that size of a signature is still
polynomial in the security parameter, |m|, and |f |.

Relation to Delegation: As evident by the constructions above, functional signatures are highly related
to delegation schemes. Recall that a delegation scheme allows a client to outsource the evaluation of
a function F to a server, while allowing the client to verify the correctness of the computation so that
the the time to verify is more efficient than computing the function. Indeed, we show that given any
functional signature scheme supporting a class of functions F , with signature size s(k), and verification
time t(k) we can obtain a delegation scheme in the preprocessing model for functions in F , with proof
size s(k) and verification time t(k).

Theorem 5 (Informal). If there exists a functional signature scheme for function class F , with signature
size s(k), and verification time t(k), then there exists a one-round delegation scheme for functions in F ,
with server message size s(k) and client verification time t(k).

1.2 Summary of our Results on Functional Pseudorandom Functions
and Selective Pseudorandom Functions

We present formal definitions and constructions of functional pseudorandom functions (FPRF) and pseu-
dorandom functions with selective access (PRFSA). In particular, we present a construction based on
the existence of one-way functions of a functional pseudorandom function family supporting the class of
prefix -fixing functions, based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF construction
[GGM86].

Theorem 6 (Informal). Assuming the existence of OWF, there exists a functional PRF that supports
keys for the following class of functions related to prefix matching: Fpre = {fz|z ∈ {0, 1}m,m ≤ n},
where fz(x) = x if z is a prefix of x, and ⊥ otherwise. The pseudorandomness property holds against a
selective adversary, who declares the functions he will query before seeing the public parameters or any
of the functions.

4

We remark that one can directly obtain a fully secure FPRF for Fpre, in which security holds against
the adversary who adaptively requests key queries, from our selectively secure construction, with a loss
of 2−n in security for each functional secret key skfz queried by the adversary. This is achieved simply
by guessing the adversary’s query fz ∈ Fpre.

Overview of the construction. We show that the original Goldreich-Goldwasser-Micali (GGM86)
tree-based construction [GGM86] provides the desired functionality, where the functional key skf corre-
sponding to a prefix-fixing function fz(x) = z1z2 · · · zixi+1 · · ·xn will be given by the partial evaluation
of the PRF down the tree, at the node corresponding to prefix z1z2 · · · zi.

This partial evaluation clearly enables a user to compute all possible continuations in the evaluation
tree, corresponding to the output of the PRF on any input beginning possessing prefix z. Intuitively,
security holds since the other partial evaluations at this level i in the tree still appear random given the
evaluation skf (indeed, this corresponds to a truncated i-bit input GGM construction). In Section 5, we
prove that in fact security is maintained even when several secret keys skfz are queried.

Our construction has the additional beneficial property of hierarchical key generation: i.e., a party
with a functional key skf for a function f may generate valid “subordinate” functional keys skg for any
function g = f ′ ◦ f . That is, we prove the following additional statement.

Corollary 7 (Informal). Assuming the existence of OWF, there exists a hierarchical functional PRF for
the class of functions Fpre.

As an immediate corollary of the above, we achieve (hierarchical) functional PRFs with selective
access for the corresponding class of prefix-matching predicates:

Corollary 8 (Informal). Assuming the existence of OWF, there exists a (hierarchical) functional PRF
with selective access for the class of prefix-matching predicates Ppre = {Pz|z ∈ {0, 1}m,m ≤ n}, where
Pz(x) = 1 if z is a prefix of x, and 0 otherwise. The pseudorandomness property holds against a selective
adversary (or against an adaptive adversary, with a security loss of 2−n per key query).

1.3 Open Problems

Constructing functional signatures with short (sublinear in the size of the functions supported) signatures
and verification time under falsifiable assumptions remains an open problem. In Section 4, we show that,
for a functional signature scheme that supports signing keys for a function f , a signature of y = f(x)
cannot be sublinear in the size of y or x, unless the construction is either proven secure under a non-
falsifiable assumption or makes use of non blackbox techniques. No lower bound exists that relates the
size of the signature to the description of f .

An interesting problem left open by this work is to construct a functional PRF that is also verifiable.
A verifiable PRF, introduced by Micali, Rabin and Vadhan in [MRV99] has the property that, in addition
to the secret seed of the PRF, there is a corresponding public key and a way to generate a proof πx given
the secret seed, such that given the public key, x, y and πx one can check that y is indeed the output
of the PRF on x. The public parameters and the proof should not allow an adversary to distinguish
the outputs of the PRF from random on any point for which the adversary has not received a proof. A
construction of standard verifiable PRFs was given by Lysyanskaya based on the many-DH assumption
in bilinear groups in [Lys02].

One may extend the notion of verifiable PRFs to the setting of functional PRFs by enabling a user
with functional key skf to also generate verifiable proofs πx of correctness for evaluations of the PRF
on inputs x for which his key allows. We note that such a verifiable functional pseudorandom function
family supporting keys for a function class F , implies a functional signature scheme that supports signing
keys for the same function class, so the lower bound mentioned for functional signatures applies also to
the proofs output in the verifiable functional PRF context.

1.4 Other Related Work

Functional Encryption

This work is inspired by recent results on the problem of functional encryption. In the past few years
there has been significant progress on the problem of functional encryption (e.g., [GVW12, GKP+12,

5

GKP+13]). In this setting, a center with access to a master secret key can generate a secret key for
any function f , which allows a third party who has this secret key and an encryption of a message m to
learn f(m), but nothing else about m. In [GKP+12], Goldwasser et al. construct a functional encryption
scheme that can support general functions, where the ciphertext size grows with the maximum depth of
the functions for which keys are given. They improve this result in a follow-up work [GKP+13], which
constructs a functional encryption scheme that supports decryption keys for any Turing machine. Both
constructions are secure according to a simulation-based definition, as long as a single key is given out. In
[AGVW13], Agrawal et al. show that constructing functional encryption schemes achieving this notion
of security in the presence of an unbounded number of secret keys is impossible for general functions. In
contrast, no such impossibility results are known in the setting of functional signatures.

Connections to Obfuscation

The goal of program obfuscation is to construct a compiler O that takes as input a program P and
outputs a program O(P) that preserves the functionality of P , but hides all other information about the
original program. In [BGI+01] Barak et al. formalize this, requiring that, for every adversary having
access to an obfuscation of P that outputs a single bit, there exists a simulator that only has blackbox
access to P and whose output is statistically close to the adversary’s output:

Pr[A(O(P)) = 1]− Pr[SP (1|P |) = 1] = neg(|P |)

Barak et al. [BGI+01] construct a class of programs and an adversary for which no simulator can
exist, therefore showing that this definition is not achievable for general functions. Furthermore, in
[GK05], Goldwasser and Kalai give evidence that several natural cryptographic algorithms, including the
signing algorithm of any unforgeable signature scheme, are not obfuscatable with respect to this strong
definition.

Consider the function Sign◦f , where Sign is the signing algorithm of an unforgeable signature scheme,
f is an arbitrary function and ◦ denotes function composition. Based on the results in [GK05] we would
expect this function not to be obfuscatable according to the blackbox simulation definition. A meaningful
relaxation of the definition is that, while having access to an obfuscation of this function might not hide
all information about the signing algorithm, it does not completely reveal the secret key, and does not
allow one to sign messages that are not in the range of f . In our function signature scheme, the signing
key corresponding to a function f achieves exactly this definition of security, and we can think of it as an
obfuscation of Sign ◦ f according to this relaxed definition. Indeed it has recently come to our attention
that Barak in an unpublished manuscript has considered delegatable signatures, a highly related concept.

Homomorphic Signatures

Another related problem is that of homomorphic signatures. In a homomorphic signature scheme, a
user signs several messages with his secret key. A third party can then perform arbitrary computations
over the signed data, and obtain a new signature that authenticates the resulting message with respect
to this computation. In [GW12], Gennaro and Wichs construct homomorphic message authenticators,
which satisfy a weaker unforgeability notion than homomorphic signatures, in that the verification is
done with respect to a secret key unknown to the adversary. They impose an additional restriction
on the adversary, who is not allowed to make verification queries. For homomorphic signature schemes
with public verification, the most general construction of Boneh and Freeman [BF11] only allows the
evaluation of multivariate polynomials on signed data.
Constructing homomorphic signature schemes for general functions remains an open problem.

Signatures of correct computation

Papamantou, Shi and Tamassia considered a notion of functional signatures under the name “signatures
of correct computation” in [PST13]. They give constructions for schemes that support operations over
multivariate polynomials, such as polynomial evaluation and differentiation. Their constructions are
secure in the random oracle model and allow efficient updates to the signing keys: the keys can be
updated in time proportional to the number of updated coefficients. In contrast, our constructions that
support signing keys for general functions, assuming the existence of succinct non-interactive arguments
of knowledge.

6

Independent Work

This work appeared in part as the Master Thesis of Ioana Ivan. We note that independently (and unknown
to the authors) the notion of pseudorandom functions with selective access was studied by Boneh-Waters
under the name of constrained pseudorandom functions and by Kiayias, Papadopoulos,Triandopoulos
and Zacharias under the name delegatable pseudorandom functions.

1.5 Overview of the paper

In Section 2, we describe several primitives which will be used in our constructions. In Section 3, we
give a formal definition of functional signature schemes, and present three constructions satisfying the
definition. In Section 4, we show how to construct delegation schemes and succinct non-interactive
arguments (SNARGs) from functional signatures schemes. In Section 5, we give a formal definition
of functional pseudorandom functions and pseudorandom functions with selective access, and present
constructions for several function families

2 Preliminaries

In this section we define several cryptographic primitives that are used in our constructions.

2.1 Signature Schemes

Definition 9. A signature scheme for a message space M is a tuple (Gen, Sign,Verify):

• Gen(1k) → (sk, vk): the key generation algorithm is a probabilistic, polynomial-time algorithm
which takes as input a security parameter 1k, and outputs a signing and verification key pair
(sk, vk).

• Sign(sk,m)→ σ: the signing algorithm is a probabilistic polynomial time algorithm which is given
the signing key sk and a message m ∈M and outputs a string σ which we call the signature of m.

• Verify(vk,m, σ)→ {0, 1}: the verification algorithm is a polynomial time algorithm which, given the
verification key vk, a message m, and signature σ, returns 1 or 0 indicating whether the signature
is valid.

A signature scheme should satisfy the following properties:
Correctness

∀σ ∈ Sign(sk,m),Verify(vk,m, σ) = 1

Unforgeability under chosen message attack
A signature scheme is unforgeable under chosen message attack if the winning probability of any proba-
bilistic polynomial time adversary in the following game is negligible in the security parameter:

• The challenger samples a signing, verification key pair (sk, vk) ← Gen(1k) and gives vk to the
adversary.

• The adversary requests a signature for message of his choice, and the challenger responds with a
signature. This is repeated a polynomial number of times. Each query can be chosen adaptively,
based on vk, and the signatures received for the previous queries.

• The adversary outputs a signature σ∗, and wins if there exists a messagem∗ such that Verify(vk,m∗, σ∗) =
1, and the adversary has not previously received a signature of m∗ from the challenger.

Lemma 10 ([Rom90]). Under the assumption that one-way functions exist, there exists a signature
scheme which is secure against existential forgery under adaptive chosen message attacks by polynomial-
time algorithms.

7

2.2 Non-Interactive Zero Knowledge

Definition 11. [FLS90, BFM88, BSMP91]: Π = (Gen,Prove,Verify,S = (Scrs,SProof)) is an efficient
adaptive NIZK argument system for a language L ∈ NP with witness relationR if Gen,Prove,Verify,Scrs,SProof

are all PPT algorithms, and there exists a negligible function µ such that for all k the following three
requirements hold.

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs)) = 1.

• Adaptive Soundness: For all PPT adversaries A, if crs ← Gen(1k) is sampled uniformly at
random, then the probability that A(crs) will output a pair (x, π) such that x 6∈ L and yet
Verify(crs, x, π) = 1, is at most µ(k).

• Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k) = 1]− Pr[ExpSA(k) = 1]
∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

We next define the notion of a NIZK argument of knowledge.

Definition 12. Let Π = (Gen,Prove,Verify,S = (Scrs,SProof)) be an efficient adaptive NIZK argument
system for an NP language L ∈ NP with a corresponding NP relation R. We say that Π is a argument-
of-knowledge if there exists a PPT algorithm E = (E1,E2) such that for every PPT adversary A,

|Pr[A(crs) = 1|crs← Gen(1k)]− Pr[A(crs) = 1|(crs, trap)← E1(1k)]| = negl(k),

and for every PPT adversary A,

Pr[A(crs) = (x, π) and E(crs, trap, x, π) = w∗ s.t. Verify(crs, x, π) = 1 and (x,w∗) /∈ R]

= negl(k),

where the probabilities are taken over (crs, trap) ← E1(1k), and over the random coin tosses of the
extractor algorithm E2.

Remark. There is a standard way to convert any NIZK argument system Π to a NIZK argument-of-
knowledge system Π′. The idea is to append to the crs a public key pk corresponding to any semantic
secure encryption scheme. Thus, the common reference string corresponding to Π′ is of the form crs′ =
(crs, pk). In order to prove that x ∈ L using a witness w, choose randomness r ← {0, 1}poly(k), compute
c = Encpk(w, r) and compute a NIZK proof π, using the underlying NIZK argument system Π, that
(pk, x, c) ∈ L′, where

L′ , {(pk, x, c) : ∃(w, r) s.t. (x,w) ∈ R and c = Encpk(w, r)}.

Let π′ = (π, c) be the proof.
The common reference string simulator E1 will generate a simulated crs′ by generating (crs, trap) using

the underlying simulator Scrs, and by generating a public key pk along with a corresponding secret key sk.
Thus, trap′ = (trap, sk). The extractor algorithm E2, will extract a witness for x from a proof π′ = (π, c)
by using sk to decrypt the ciphertext c.

Lemma 13 ([FLS90]). Assuming the existence of enhanced trapdoor permutations, there exists an effi-
cient adaptive NIZK argument of knowledge for all languages in NP.

8

2.3 Succinct Non-Interactive Arguments (SNARGs)

Definition 14. Π = (Gen,Prove,Verify) is a succinct non-interactive argument for a language L ∈ NP
with witness relation R if it satisfies the following properties:

• Completeness: For all x,w such that R(x,w) = 1, and for all strings crs← Gen(1k),

Verify(crs, x,Prove(x,w, crs)) = 1.

• Adaptive Soundness: For all PPT adversaries A, if crs ← Gen(1k) is sampled uniformly at
random, then the probability that A(crs) will output a pair (x, π) such that x 6∈ L and yet
Verify(crs, x, π) = 1, is at most µ(k).

• Succinctness: The length of a proof is given by |π| = poly(k) · o(|x| + |w|). In this work we will
refer to a SNARG as having proof length poly(k) · poly(|x| + logR), where R denotes the runtime
of the relation associated with language L.

Definition 15. A SNARG Π = (Gen,Prove,Verify) is a succinct non-interactive argument of knowl-
edge(SNARK) for a language L ∈ NP with witness relationR if f there exists a PPT algorithm E = (E1,E2)
such that for every PPT adversary A,

|Pr[A(crs) = 1|crs← Gen(1k)]− Pr[A(crs) = 1|(crs, trap)← E1(1k)]| = negl(k),

and for every PPT adversary A,

Pr[A(crs) = (x, π) and E(crs, trap, x, π) = w∗ s.t. Verify(crs, x, π) = 1 and (x,w∗) /∈ R]

= negl(k).

Definition 16. A SNARK Π = (Gen,Prove,Verify,E) is a zero-knowledge SNARK for a language L ∈ NP
with witness relation R if there exist PPT algorithmsS = (Scrs,SProof) satisfing the following property:
Adaptive Zero-Knowledge: For all PPT adversaries A,∣∣Pr[ExpA(k) = 1]− Pr[ExpSA(k) = 1]

∣∣ ≤ µ(k),

where the experiment ExpA(k) is defined by:

crs← Gen(1k)

Return AProve(crs,·,·)(crs)

and the experiment ExpSA(k) is defined by:

(crs, trap)← Scrs(1k)

Return AS
′(crs,trap,·,·)(crs),

where S′(crs, trap, x, w) = SProof(crs, trap, x).

There are several constructions of SNARKs known, all based on non-falsifiable assumptions. A falsi-
fiable assumption is an assumption that can be modeled as a game between an efficient challenger and
an adversary. Most standard cryptographic assumptions are falsifiable. This includes both general as-
sumptions like the existence of OWFs, trapdoor predicates, and specific assumptions (discrete logarithm,
RSA, LWE, hardness of factoring).

For example, in [BCCT12] Bitansky et al. give a construction of SNARKs assuming the existence of
extractable collision-resistant hash functions.

Lemma 17 ([BCCT12]). If there exist ECRHs and then there exist SNARKs for all languages in NP.

Lemma 18 ([BCCT12]). If there exist SNARKs and NIZKAoK for NP, then there exist zero-knowledge
SNARKs for all languages in NP.

In [GW11] Gentry and Wichs show that no construction of SNARGs can be proved secure under a
black-box reduction to a falsifiable assumption. A black-box reduction is one that only uses oracle access
to an attacker, and does not use that adversary’s code in any other way.

9

2.4 Delegation Schemes

A delegation scheme allows a client to outsource the evaluation of a function F to a server, while allowing
the client to verify the correctness of the computation. The verification process should be more efficient
than computing the function. We formalize these requirements below.

Definition 19. A delegation scheme for a function F consists of a tuple of algorithms (KeyGen, Encode,
Compute, Verify)

• KeyGen(1k, F) → (enc, evk, vk): The key generation algorithm takes as input a security parameter
k and a function F , and outputs a key enc that is used to encode the input, an evaluation key evk
that is used for the evaluation of the function F , and a verification key vk that is used to verify
that the output was computed correctly.

• Encode(enc, x) → σx: The encoding algorithm uses the encoding key enc to encode the function
input x as a public value σx, which is given to the server to compute with.

• Compute(evk, σx) → (y, πy): Using the public evaluation key, evk and the encoded input σx, the
server computes the function output y = F(x), and a proof πy that y is the correct output.

• Verify(vk, x, y, πy)→ {0, 1}: The verification algorithm checks the proof πy and outputs 1(indicating
that the proof is correct), or 0 otherwise.

We require a delegation scheme to satisfy the following requirements:

Correctness
For all vk, x, y, πy such that (y, πy)← Compute(evk, σx), σx ← Encode(enc, x), (enc, evk, vk)← KeyGen(1k, F),

Verify(vk, x, y, πy) = 1

Authentication
For all PPT adversaries, the probability that the adversary is successful in the following game is negligible:

• The challenger runs KeyGen(1k, F)→ (enc, evk, vk), and gives (evk, vk) to the adversary.

• The adversary gets access to an encoding oracle, Oenc(·) = Encode(enc, ·).
• The adversary is successful if it can produce a tuple (x, y, πy) such that y 6= F (x) and Verify(vk, x, y, πy) =

1.

Efficient verification
Let T (n) be the running time of the verification algorithm on inputs of size n. Let TF (n) be the running
time of F on inputs of size n. We require the worst-case running time of the verification algorithm to be
sub linear in the worst case running time of F ,

T (n) ∈ o(TF (n))

2.5 Pseudorandom Generators and Functions

Definition 20. A pseudorandom generator (PRG) is a length expanding function prg : {0, 1}k → {0, 1}n
(for n > k) such that prg(Uk) and Un are computationally indistinguishable, where Uk is a uniformly
distributed k-bit string and Un is a uniformly distributed n-bit string.

Definition 21. [GGM86] A family of functions F = {Fs}s∈S , indexed by a set S, and where Fs : D → R
for all s, is a pseudorandom function (PRF) family if for a randomly chosen s, and all PPT A, the
distinguishing advantage Prs←S [Afs(·) = 1] − Prf←(D→R)[Aρ(·) = 1] is negligible, where (D → R)
denotes the set of all functions from D to R.

10

3 Functional Signatures: Definition and Constructions

3.1 Formal Definition

We now give a formal definition of a functional signature scheme, and explain in more detail the unforge-
ability and function privacy properties a functional signature scheme satisfies.

Definition 22. A functional signature scheme for a message spaceM consists of algorithms (FS.Setup,
FS.KeyGen, FS.Sign, FS.Verify):

• FS.Setup(1k)→ (msk,mvk): the setup algorithm takes as input the security parameter and outputs
the master signing key and master verification key.

• FS.KeyGen(msk, f) → skf : the KeyGen algorithm takes as input the master signing key and a
function f (represented as a circuit), and outputs a signing key for f .

• FS.Sign(skf ,m)→ (f(m), σ): the signing algorithm takes as input the signing key for a function f
and an input m, and outputs f(m) and a signature of f(m).

• FS.Verify(mvk,m∗, σ)→ {0, 1}: the verification algorithm takes as input the master verification key
mvk, a message m and a signature σ, and outputs 1 if the signature is valid.

We require the following conditions to hold:

Corectness:
∀m, f, (msk,mvk)← FS.Setup(1k), skf ← FS.KeyGen(msk, f), (m∗, σ)← FS.Sign(skf ,m),

FS.Verify(mvk,m∗, σ) = 1.

Unforgeability:
The scheme is unforgeable if the advantage of any PPT algorithm A in the following game is negligible:

• The challenger generates (msk,mvk)← FS.Setup(1k), and gives mvk to A

• The adversary is allowed to query a key generation oracle Okey(f) = FS.KeyGen(msk, f), and a
signing oracle Osign(f,m) = FS.Sign(skf ,m), where skf ← FS.KeyGen(msk, f).

• The adversary wins if it can produce (m∗, σ) such that

– FS.Verify(mvk,m∗, σ) = 1.

– there does not exist m such that m∗ = f(m) for any f which was sent as a query to the Okey

oracle.

– there does not exist a (f,m) pair such that (f,m) was a query to the Osign oracle and m∗ =
f(m).

Function privacy:
The advantage of any PPT adversary in the following game is negligible:

• The adversary is given mvk and access to the Okey and Osign oracles, as in the unforgeability game.

• After the query phase, the adversary chooses m0,m1, f0, f1 such that f0(m0) = f1(m1) and sends
them to the challenger.

• The challenger chooses b ∈ {0, 1} and gives the adversary FS.Sign(skfb ,mb), where skfb ← FS.KeyGen(msk, fb).

• The adversary wins the game if he guesses the bit b correctly.

Succinctness:
The size of a signature σ ← FS.Sign(skf ,m) is bounded by a polynomial in the security parameter k, and
the size of the output |f(m)|. In particular, it is independent of |m|, the size of the input to the function,
and |f |, the size of a description of the function f .

11

3.2 Construction

In this section, we present a construction of a (succinct) functional signature scheme, based on succinct
non-interactive proofs of knowledge (SNARKs).

Theorem 23. Assuming the existence of SNARKs for NP, there exists a function-private functional
signature scheme for the class of all polynoial-size circuits, such that both the size of a signature corre-
sponding to function f and input m, and the running time of the verification algorithm, are poly(k, |f(m)|)
(where k is the security parameter).

We obtain two other constructions, which satisfy weaker properties, but are based on lighter assump-
tions. If we do not require the signatures to be succinct, we give a construction based on non-interactive
zero-knowledge arguments of knowledge (NIZKAoKs). Finally, in the third section, we obtain a con-
struction based on any one-way function that achieves basic correctness and unforgeability but yields
non-succinct signatures and does not provide function privacy.

We present these three constructions in the following three subsections.

3.2.1 SNARK-Based Construction

In this section, we discuss our main construction: a functional signature scheme that is secure under
less standard assumptions, but achieves the desired unforgeability, function privacy, and succinctness
requirements. In particular, the size of a signature associated with function f and input m, and the
running time of the verification algorithm, are now polynomial in the security parameter and |f(m)|,
instead of |m|+ |f |. Our construction is based on SNARKs.

Theorem 24 ([BCCT12]). If there exist extractable collision resistant hash function, there exist SNARKs.
If there exist SNARKs and (standard) NIZKAoKs, there exist zero-knowledge SNARKs.

Let Sig = (Sig.Setup, Sig.Sign,Sig.Verify) be a signature scheme that is existentially unforgeable under
chosen message attack. Let Π = (Gen, Prove, Verify, S = (Scrs,SProof), E = E1,E2) be an efficient adaptive
zero-knowledge SNARK system for the following NP language L:
x = (m∗,mvk) ∈ L if ∃(f,m, σ) such that:

• f(m) = m∗

• Sig.Verify(mvk, f, σ) = 1

Given the signature scheme Sig and the zero-knowledge SNARK Π, we construct a functional signature
scheme (FS1.Setup,FS1.Keygen,FS1.Sign,FS1.Verify) as follows:

• FS1.Setup(1k):

– choose a new signing, verification key pair for the regular signature scheme (sk, vk)← Sig.Setup(1k).

– choose a new crs for the zero-knowledge SNARK, crs← Π.Gen(1k).

– set the master secret key msk = sk, and the master verification key mvk = (vk, crs).

• FS1.KeyGen(msk, f):

– create a certificate consisting of f , and a signature of f under the master verification key:
c = (f,Sig.Sign(msk, f)).

– output skf = c

• FS1.Sign(skf ,m):

– let π = Π.Prove((f(m),mvk), (f,m, skf), crs) be a zero-knowledge SNARK that (f(m),mvk) ∈
L, where L is defined as above. Informally, π is a proof that the signer knows a pair (f,m)
such that f(m) = m∗, and also knows a signature of f under the master verification key.

– output (m∗ = f(m), σ = π)

• FS1.Verify(mvk,m∗, σ):

– output Π.Verify(crs,m∗, σ): verify that σ is a valid proof of knowledge of a pair (f,m) such
that f(m) = m∗, and a signature of f under the master verification key.

12

Theorem 25. If the signature scheme (Sig.Setup, Sig.Sign, Sig.Verify) is existentially unforgeable under
chosen message attack, and Π = (Gen, Prove, Verify, S = (Scrs,SProof), E = E1,E2) is a zero-knowledge
(ZK) SNARK for the NP language L, then the scheme (FS1.Setup, FS1.KeyGen, FS1.Sign, FS1.Verify) as
specified above satisfies the unforgeability, function privacy, and succinctness requirements for functional
signatures.

Proof. Proof of unforgeability
Suppose there exists an adversary AFS that produces a forgery in the functional signature scheme with
non-negligible probability. We show how to construct an adversary Asig that uses AFS to produce a forgery
in the underlying signature scheme.

In the security game for the standard (existentially unforgeable under chosen message attack) signa-
ture scheme, Asig is given the verification key vk, and access to a signing oracle ORegsig . He is considered
to be successful in producing a forgery if he outputs a valid signature for a message that was not queried
from ORegsig .

We now construct the adversary Asig. Asig interacts with AFS, playing the role of the challenger in the
security game for the functional signature scheme. Asig generates (crs, trap) ← E1(1k), a simulated CRS
for the ZK-SNARK, together with a trapdoor, and forwards (vk, crs) as the master verification key in
the functional signature scheme to AFS.
AFS makes two types of queries:

• Okey(f), which Asig answers (honestly) by forwarding f to its signing oracle.

• Osign(f,m), in which case Asig forwards to the signing oracle the function f ′, which is the constant
function that outputs f(m) on any input, and receives a signature σ ← ORegsig(f

′). It then outputs
π ← Π.Prove((f(m)mvk), (f ′, f(m), σ), crs) as its signature of f(m).

Note that this is not the honest response, which would have answered with respect to the queried
function f (which may contain additional values in its range) instead of the constant function f ′

(whose range consists of only f(m)).

After querying the oracles, AFS will output an alleged forgery in the functional signature scheme, π∗, on
some message m∗. Asig runs the extractor E2(crs, trap, (m∗, vk), π) to recover a witness w = (f,m, σ) such
that m∗ = f(m) and Sig.Verify(vk, f, σ) = 1. Asig then submits σ as a forgery in the unforgeability game
for the regular signature scheme.

We now prove that if AFS forges with noticeable probability in the functional signature scheme then
this constructed adversary Asig produces a successful forgery in the underlying signature scheme with
noticeable probability. We do so by considering a sequence of hybrid experiments:

Hybrid 0. The real-world functional signature challenge experiment. Namely, the CRS is generated
in the honest fashion crs ← Gen(1k), and the adversary’s signing queries Osign(f,m) are answered
honestly, by first generating a certificate for the queried function f (instead of the constant function
f ′ ≡ f(m)) and continuing appropriately. Denote the probability of the adversary producing a valid
forgery in the functional signature scheme within this experiment by Forge0.

Hybrid 1. Similar to Hybrid 0, except that the adversary’s signature queries Osign(f,m) are now an-
swered with respect to the constant function f ′ ≡ f(m), as described above. Namely, for each
signing query Osign(f,m) made by the adversary, a signature σf ′ ← Sig.Sign(msk, f ′) is gen-
erated on f ′ (not f) in the underlying signature scheme, a ZK-SNARK proof is generated as
π ← Π.Prove((f(m),mvk), (f,m, σf ′), crs), and then π is returned as the query response. All
key queries Okey(f) made by the adversary are still answered honestly, by generating a signature
σf ← Sig.Sign(msk, f) and returning σf .

Denote the probability of the adversary producing a valid forgery in the functional signature scheme
within this experiment by Forge1.

Hybrid 2. The same experiment as Hybrid 1, except the CRS is generated using the extraction-enabling
procedure, (crs, trap)← E1(1k). The remainder of the experiment continues as before with respect
to crs. Denote the probability of the adversary producing a valid forgery in the functional signature
scheme within this experiment by Forge2.

Hybrid 3. The interaction with the adversary is the same as in Hybrid 2. Denote by M the set of all
messages signed with msk in the underlying signature scheme during the course of the experiment,

13

as a result of the adversary’s key and signing oracle queries. At the experiment conclusion, the
ZK-SNARK extraction algorithm is executed on the adversary’s alleged forgery π∗ (on message
m∗) in the functional signature scheme: i.e., (f∗,m, σ∗)← E2(crs, trap, (m∗, vk), π∗).

Denote by Extract3 the probability that σ∗ is a valid signature on a function f∗ such that f∗ /∈
M . Note that this corresponds to the probability of Asig successfully producing a forgery in the
underlying signature scheme.

Unforgeability of the functional signature scheme follows from the following sequence of lemmas.

Lemma 26. Forge0 ≤ Forge1 + negl(k).

Proof. This witness indistinguishability property is implied by the zero knowledge property of the ZK-
SNARK system. Namely, denoting the queried values as (fi,mi) and the corresponding constant func-
tions as f ′i ≡ fi(mi), the zero knowledge property (Definition 16) implies that both distributions of valid
proofs with different witnesses{

(crs, π1, . . . , π`) : crs← Gen1(1k), σi ← Sig.Sign(msk, fi), πi ← Prove
(
(fi(mi),mvk), (fi,mi, σi), crs

)}
,{

(crs, π1, . . . , π`) : crs← Gen1(1k), σ′i ← Sig.Sign(msk, f ′i), πi ← Prove
(
(fi(mi),mvk), (f ′i , fi(mi), σ

′
i), crs

)}
are computationally indistinguishable from a third, simulated distribution{

(crs, π1, . . . , π`) : (crs, trapsim)← Scrs(1k), πi ← Sproof((fi(mi),mvk), trapsim, crs
)}
,

and thus indistinguishable from each other. Thus, since the event of successfully forging in the functional
signature challenge is publicly testable, the lemma must hold.

Lemma 27. Forge1 ≤ Forge2 + negl(k).

Proof. Follows directly by the indistinguishability of CRS values generated via the standard algorithm
Gen and the extraction-enabling algorithm E1, as per Definition 15.

More formally, suppose there exists a PPT adversary A for which Forge2 < Forge1 − ε for some
ε. Then the following adversary Acrs distinguishes between CRS values with advantage ε. In the CRS
challenge, Acrs is given a value crs (generated by either the standard algorithm or the extraction-enabling
algorithm). First, Acrs generates a key pair (sk, vk)← Sig.Setup(1k) for the underlying signature scheme,
and sends mvk = (vk, crs) to A. He answers A’s queries as in Hybrid 1, generating signatures and proofs
as required (note that A holds the master secret key msk = sk for the functional signature scheme). At
the conclusion of A’s queries, he outputs an alleged forgery π∗ in the functional signature scheme. The
adversary Acrs tests whether π∗ is indeed a forgery (note that this is publicly testable). If so, Acrs outputs
“standard crs”; otherwise, he outputs “extractable crs”. His advantage in the CRS distinguishing game
is precisely Forge2 − Forge1, as desired.

Lemma 28. Forge2 ≤ Extract3 + negl(k).

Proof. This holds by the extraction property of the ZK-SNARK system (Definition 15).
Namely, if there exists a PPT adversary A for which Forge2 > Extract3 + ε for some ε, then the

following adversary AExt successfully produces a properly-verifying proof π for which extraction fails
with probability ε (which must be negligible by the SNARK extraction property).
AExt receives a CRS value crs generated via (crs, trap) ← E1(1k). He samples a key pair (sk, vk) ←

Sig.Sign(1k) for the underlying signature scheme, sends mvk = (vk, crs) to the adversary A, and answers
all of A’s key and signing oracle queries as in Hybrid 2. In particular, for each key query Okey, the
adversary AExt responds with a signature σf ← Sig.Sign(sk, f); for each signature query Osign(f,m), the
adversary AExt samples a signature σf ′ ← Sig.Sign(sk, f ′) on the constant function f ′ ≡ f(m) (as in
Hybrid 2) and honestly generates a proof π ← Π.Prove((f(m), vk), (f,m, σf), crs), which he returns to
A. At the conclusion of interaction, A outputs an alleged forgery (m∗, π∗). The adversary AExt outputs
the proof π∗ as his response in the SNARK extraction challenge.

Now, let M the collection of all messages f which were signed by AExt during the course of the
interaction with A. Suppose that π∗ is a valid forgery on m∗ in the functional signature scheme; in
particular, π∗ is a valid proof that (m∗, vk) ∈ L. We argue that if extraction succeeds on π∗ (i.e. if

14

(f∗,m, σ∗) ← E2(crs, trap, (m∗, vk), π∗) yields a valid witness for (m∗, vk) ∈ L), then it must be that
the extracted σ∗ is a valid signature on a message g /∈ M , so that we are in the event corresponding to
Extract3. That is, we show Forge2 − Extract3 is bounded above by the probability that extraction fails.

Since π∗ is a valid forgery in the functional signature scheme, it must be that m∗ /∈ Range(g) for all
key queries Okey(g) made by A, and that m∗ 6= g(x) for all signing queries Osign(g, x) made by A. Now, if
the extracted tuple (f∗,m, σ∗)← E2(crs, trap, (m∗, vk), π∗) is a valid witness for (m∗, vk) ∈ L, then from
the definition of the language L it means that m∗ = f∗(m) and that σ∗ is a valid signature on f∗ with
respect to the master signing key sk (i.e., Verify(vk, σ∗, f∗) = 1). Recall that the set M consists exactly
of the functions g for which A made a key query, and the collection of constant functions g′ ≡ g(x) for
which A make a signing query (g, x). But since m∗ ∈ Range(f∗) and m∗ /∈ Range(g) for all g ∈ M , it
must be that f∗ /∈M , as desired.

Therefore, with probability at least Forge2 − Extract3 = ε, it must hold that π∗ is a valid proof but
that the extraction algorithm fails to extract a valid witness from π∗. By the extraction property of the
SNARK system, it must be that ε is negligible.

Lemma 29. Extract3 < negl(k).

Proof. This holds by the unforgeability of the underlying signature scheme. Namely, Extract is precisely
the probability that adversary Asig constructed above produces a successful forgery in the standard
unforgeability signature game.

Proof of function privacy
For an adversary to win the function privacy game, it must be able to distinguish between π1 ←
Π.Prove((m,mvk), (f1,m1, σ1), crs) and π2 ← Π.Prove((m,mvk), (f2,m2, σ2), crs), where m = f1(m1) =
f2(m2) and σ1is a valid signature of f1, and σ2is a valid signature of f2. Such an adversary would then
directly break the zero-knowledge property of the proof system, since it can distinguish between proofs
generated using different witnesses. Hence, function privacy must hold.

Succinctness
The succinctness of our signature scheme follows directly from the succinctness property of the SNARK
system. Namely, the size of a functional signature produced by FS1.Sign(skf ,m) is exactly the proof
length of a SNARK for the language L. Since a statement in L is (f(m), vk) and the relation test-
ing runtime is |f | + poly(k), by Definition 14 the corresponding proof length is bounded by poly(k) ·
poly(|f(m)|+ |vk|+ log(|f |+ poly(k))). We may assume |f | = poly(k), which implies the signature size
is poly(k) · poly(|f(m)|), as desired.

3.2.2 NIZK-based construction

In order to obtain a functional signature scheme that only satisfies unforgeability and function privacy
under more general assumptions, we modify the previous construction to use standard non-interactive
zero-knowledge proofs of knowledge (NIZKAoK). We remark that our construction hides the function f ,
but it reveals the size of a circuit computing f .

Let (FS2.Setup, FS2.Keygen, FS2.Sign, FS2.Verify) be a functional signature scheme which is identical
to our previous construction FS1, except that we use a NIZKAoK Π′, instead of the zero-knowledge
SNARK system Π.

Theorem 30. If (Sig.Setup, Sig.Sign, Sig. Verify) is an existentially unforgeable signature scheme, and Π′

is a NIZKAoK, our new functional signature construction (FS2.Setup, FS2.Keygen, FS2.Sign, FS2.Verify)
satisfies both unforgeability and function privacy.

We can use the proof from the previous section, since a zero-knowledge SNARK and a NIZK satisfy
the same zero-kowledge and extractability properties that are used in the proof. The only difference
is that a SNARK has a more efficient verification algorithm, and shorter proofs, while a NIZK can be
constructed under more general assumptions.

15

3.2.3 OWF-based construction

In this section we give a construction of a functional signature scheme from any standard signature
scheme (i.e. existentially unforgeable under chosen message attack). Our functional signature scheme
satisfies the unforgeability property given in Definition 22, but not function privacy or succinctness. Since
we can build standard signature schemes based on one-way functions (OWF) [Rom90], this shows that
we can also construct functional signature schemes under the assumption that OWFs exist.

The main idea in this construction is that, as part of the signing key for a function f , the signer
receives from the central authority a signature of f together with a new verification key (under the
master verification key). We can think of this signature as a certificate proving that the signer has
received permission to sign messages that are in the range of f .

We describe the construction below:

Let (Sig.Setup, Sig.Sign,Sig.Verify) be a signature scheme that is existentially unforgeable under chosen
message attack. We construct a functional signature scheme (FS1.Setup,FS1.KeyGen,FS1.Sign,FS1.Verify)
as follows:

• FS3.Setup(1k):

– Sample a signing and verification key pair for the standard signature scheme (msk,mvk) ←
Sig.Setup(1k), and set the master signing key to be msk, and the master verification key to be
mvk.

• FS3.KeyGen(msk, f):

– choose a new signing and verification key pair for the original signature scheme: (sk′f , vk′f) ←
Sig.Setup(1k).

– using msk, compute σ′′ ← Sig.Sign(msk, f |vk′f), a signature of f concatenated with the new
signing key vk′f .

– create the certificate c = (f, vk′f , σ
′′).

– output skf = (sk′f , c).

• FS3.Sign(skf ,m):

– parse skf as (sk′f , c), where sk′f is a signing key for the existentially unforgeable signature scheme,
and c is a certificate as described in the KeyGen algorithm.

– sign m using sk′f : Sig.Sign(sk′f ,m)→ σ′.

– let σ = (m, c, σ′)

– output (f(m), σ)

• FS3.Verify(mvk,m∗, σ):

– parse σ = (m, c = (f, vk′f , σ
′′), σ′) and check that:

1. m∗ = f(m).

2. Sig.Verify(vk′f ,m, σ
′) = 1: σ′ is a valid signature of m under the verification key vk′f .

3. Sig.Verify(mvk, vk′f |f, σ′′) = 1: σ′′ is a valid signature of f |vk′f under the verification key
mvk.

Theorem 31. If the signature scheme (Sig.Setup, Sig.Sign, Sig.Verify) is existentially unforgeable under
chosen message attack, the functional signature scheme (FS3.Setup, FS3.KeyGen, FS3.Sign, FS3.Verify)
as specified above satisfies the unforgeability requirement for functional signatures.

Proof. Suppose there exists an adversary AFS that makes at most Q(k) queries to the Okey and Osign

oracles, and wins the unforgeability game for functional signatures with non-negligible probability, 1
P (k)

,
where P and Q are polynomials. We will use him to construct an adversary Asig that breaks the under-
laying signature scheme, which is assumed to be secure against chosen message attack.

For AFS to wins the unforgeability game, it must produce a message signature pair, (m∗, σ), where
σ = (m, (f, vk′f , σ

′′), σ′) such that:

• σ′ is a valid signature of m under the verification key vk′f .

• σ′′ is a valid signature of f |vk′f under mvk.

16

• f(m) = m∗.

• AFS has not sent the query Okey(f̃) to the signing key generation oracle for any f̃ that has m∗ in its
range.

• AFS hasn’t sent the query Osign(f̃ , m̃) to the signing oracle for any f̃ , m̃ such that f̃(m̃) = m∗

There are two ways AFS can produce a forgery:

• Type I forgery: AFS produces a signature σ′′ of (f |vk′f) under mvk, for a function f not queried
from the Okey oracle.

• Type II forgery: AFS obtains Sig.Sign(msk, f |vk′f), and Sig.Sign(sk′f ,m) as part of a query Osign(f,m)
to the signing oracle, and then forges Sig.Sign(sk′f ,m

′), for a different message m′.

In the security game for the standard (existentially unforgeable under chosen message attack) signature
scheme, Asig is given the verification key vk, and access to a signing oracle ORegsig . He is considered to be
successful in producing a forgery if he outputs a valid signature for a message that was not queried from
ORegsig .

We now describe the constructed signature adversary, Asig. Asig interacts with AFS, playing the role
of the challenger in the security game for the functional signature scheme. This means that Asig must
simulate the Okey and Osign oracles. AFS flips a coin b, indicating his guess for the type of forgery AFS will
produce, and places his challenge accordingly.

Case 1: b = 1: Asig guesses that AFS will produce a Type I forgery:

• first Asig gives vk to AFS as the master verification key.

• to answer a key generation query for a function f , Asig generates a new key pair for the regular
signature scheme, (sk′f , vk′f) ← Sig.Setup(1k), forwards (f |vk′f) to its signing oracle, obtains σ′′ ←
ORegsig(f |vk′f) and returns skf = (sk′f , σ

′′) to AFS.

• to answer a signing query for (f,m), Asig chooses a new signing, verification key pair (sk′f , vk′f),
obtains a signature of f |vkf from its signing oracle σ′′ ← ORegsig(f |vk

′
f), signs m using sk′f himself,

σ′ ← Sig.Sign(sk′f ,m), and outputs (f(m), σ), where σ = (m, c = (f, vk′f , σ
′), σ′′).

If Asig guessed correctly, eventually AFS will output a Type I forgery, which must include a forgery with
respect to to vk, and Asig can use this forgery as its own forged signature in the unforgeability game for
the standard signature scheme.

Case 2: b = 0: Asig guesses that AFS will produce a Type II forgery:

• Asig generated a new key pair (msk,mathsfmvm) himself, and forwards mvk to AFS.

• when AFS makes a Okey query for a function f , Asig generates a new key pair (sk′f , vk′f)← Sig.Setup(1k),
generates a signature σ′′ ← Sign(msk, f |vk′f) and outputs skf = (sk′f , c = (f, vk′f , σ

′′)).

• to answer the signing queries for (f,m)

– Asig chooses a random i ∈ [1, Q(k)] corresponding to the query in which he will embed the
challenge.

– for all signing queries other than the ith one, Asig chooses a new signing, verification key pair
(sk′f , vk′f), generates a signature σ′′ ← Sig.Sign(msk, f |vk′f), and a signature σ′ ← Sign(sk′f ,m),
and outputs σ = (f(m), (m, c = (f, vk′f , σ

′′), σ′).

– Asig plants his challenge verification key in the ith query. It queries its oracle for a signature
of m under vk, σ′ ← ORegsig(m), computes σ′′ ← Sig.Sign(msk, f |vk)), and outputs (f(m), σ),
where σ = (m, c = (f, vk, σ′′), σ′).

Eventually, if Asig guessed correctly, AFS will output a forgery that Asig can use that as its forgery in the
unforgeability game for the regular signature scheme.

Asig is successful in the unforgeability game if:

• he guesses b correctly

• in the case that b = 0, he guesses the query i correctly

17

• AFS outputs a forgery

His success probability is therefore:

1

2

1

Q(k)

1

P (k)
=

1

2Q(k)P (k)

This contradicts the unforgeability guarantee for the regular signature scheme, and therefore, assuming
the original signature scheme satisfied unforgeability, the functional signature scheme in the construction
above must also be unforgeable.

While this construction is secure under very general assumptions (the existence of one-way functions),
its efficiency can be greatly improved. The size of σ ← FS.Sign(skf ,m) in this scheme is proportional
to the size of |f |+ |m| plus the size of a signature of the standard signature scheme. This is in contrast
to our SNARK-based construction, in which the signature size was proportional to |f(m)|, instead of
|f |+ |m|. In addition, the verification process is inefficient: the verifier has to compute f(m) on its own.
And, as mentioned before, it does not achieve any function privacy guarantees.

4 Applications of Functional Signatures

In this section we discuss applications of functional signatures to other cryptographic problems, such as
constructing delegation scheme and succinct non-interactive arguments.

4.1 SNARGs from Functional Signatures

Recall that in a SNARG protocol for a language L, there is a verifier V , and a prover P who is supposed
to convince the verifier that an input x is in L. We require the proofs produced by prover to be sublinear
in the size of the input plus the size of the witness.

We show how to use a functional signature that supports key for any function f , and has short signa-
tures (i.e of size poly(k) · o(|f(m)|+ |m|)) can be used to construct a SNARG scheme with preprocessing
for any language L ∈ NP with proof size poly(k)·o(|w|+|x|), where w is the witness and x is the instance.

Let L be an NP complete language, and R the corresponding relation. The main idea in the con-
struction is for the verifier to give out a single signing key for a function whose range consists of exactly
those strings that are in L. Then, with skf , the prover will be able to sign only those messages that are in
the language L and uses that as his proof. The proof is succinct and publicly verifiable. The construction
is as follows:

• Π.Gen(1k):

– run the setup for the functional signature scheme, and get (mvk,msk)← FE.Setup(1k)

– generate a signing key skf ← FS.KeyGen(msk, f) where f is the following function:

f(x|w) :=

{
x if R(x,w) = 1

⊥ otherwise
.

– output crs = (mvk, skf)

• Π.Prove(x,w, crs)

– output FS.Sign(skf , x|w)

• Π.Verify(crs, x, π)

– output FS.Verify(mvk, x, π)

Theorem 32. If (FE.Setup,Π.Prove,FS.Sign,FS.Verify) is a functional signature scheme, (Π.Gen,Π.Prove,Π.Verify)
is a succinct argument of knowledge.

18

Correctness
The correctness property of the SNARG follows immediately from correctness property of the functional
signature scheme.
Soundness
The soundness of the proof system follows from the unforgeability property of the signature scheme:
since the prover is not given keys for any function except f , he can only sign messages that are in the
range of f , and therefore in L.
Succinctness
The size of a proof is equal to the size of a signature in the functional signature scheme, poly(k)·o(|f(m)|+
|m|) = poly(k) · o(|x|+ |w|).
We remark that Gentry and Wichs show in [GW11] that SNARG schemes with proof size o(|w|+ |x|) can
not be obtained using black-box reductions to falsifiable assumptions, and therefore, in order to obtain
a functional signature scheme with signature size o(|f(m)| + |m|) we must either rely on non-falsifiable
assumptions (as in our SNARK construction) or make use of non blackbox techniques.

4.2 Connection between functional signatures and delegation

Recall that a delegation scheme allows a client to outsource the evaluation of a function f to a server,
while allowing the client to verify the correctness of the computation. The verification process should be
more efficient than computing the function.

Given a functional signature scheme with with signature size δ(k), and verification time t(k) we can
get a delegation scheme in the preprocessing model with proof size δ(k) and verification time t(k).
We construct a delegation scheme as follows:

• KeyGen(1k, f):

– run the setup for the functional signature scheme and generate (mvm,msk)← FS.Setup(1k).

– let f ′(x) = (x, f(x)), and get a signing key for f ′, skf′ ← FS.KeyGen(msk, f ′).

– output enc = ⊥, evk = skf′ , vk = mvk.

• Encode(enc, x) = x : no processing needs to be done on the input.

• Compute(evk, σx):

– let skf′ = evk, x = σx

– get a signature of (x, f(x)), σ ← FS.Sign(skf′ , x)

– output (f(x), π = σ)

• Verify(vk, x, y, πy):

– output FS.Verify(vk, y, πy)

Theorem 33. If (FE.Setup,Π.Prove,FS.Sign,FS.Verify) is a functional signature scheme, (KeyGen,Encode,
Compute,Verify) is a delegation scheme.

Correctness
The correctness of the delegation scheme follows from the correctness of the functional signature scheme.

Authenticity
By the unforgeability property of the functional signature scheme, the server will only be able to produce
a signature of (x, y) that is in the range of f ′, that is if y = f(x). So the server won’t be able to sign a
pair (x, y) with non-negligible probability, unless, y = f(x).

5 Functional Pseudorandom Functions

In this section we present a formal definition and construction of functional pseudorandom functions
(FPRF), pseudorandom functions with selective access (PRFSA), and hierarchical functional pseudo-
random functions for function and predicate classes. We present a construction based on the existence
of one-way functions of a functional pseudorandom function family supporting the class of prefix-fixing
functions, based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF construction [GGM86].
This construction directly yields a PRF with selective access, and additionally supports hierarchical key
generation.,

19

5.1 Definition of Functional PRF

In a standard pseudorandom function family, knowledge of evaluation is either all-or-nothing: a party
who holds the secret seed s can compute Fs(x) on all inputs x, whereas a party without knowledge of
s cannot distinguish evaluations Fs(x) on requested inputs x from random. We propose the notion of a
functional pseudorandom function (FPRF) family, which partly fills this gap between evaluation powers.
The idea is that in addition to a master secret key that can be used to evaluate the pseudorandom
function F on any point in the domain, there are additional secret keys per function f , which allow one
to evaluate F on y for any y for which there exists an x such that f(x) = y (i.e., y is in the range of f).

Definition 34 (Functional PRF). We say that a PRF family F = {Fs : D → R}s∈S is a functional
pseudorandom function (FPRF) if there exist additional algorithms

KeyGen(s, f) : On input a seed s ∈ S and function description f : A → D from some domain A to D,
the algorithm KeyGen outputs a key skf .

Eval(skf , y) : On input key skf and input y ∈ D, if it holds that there exists an x ∈ A such that f(x) = y
then Eval outputs the PRF evaluation Fs(y).

which satisfy the following properties:

• Correctness: For every (efficiently computable) function f , ∀y ∈ D s.t. ∃x for which f(x) = 1, it
holds that

∀s← S, ∀skf ← KeyGen(s, f), Eval(skf , y) = Fs(y).

• Pseudorandomness: Given a set of keys skf1 . . . skfl for functions f1 . . . fl, the evaluation of
Fs(y) should remain pseudorandom on all inputs y that are not in the range of any of the functions
f1 . . . fl. That is, for any PPT adversary A, the advantage of A in distinguishing between the
following two experiments is negligible (for any polynomial l = l(k)):

Experiment Rand Experiment PRand

Key query Phase Key query Phase

(pp, s)← Gen(1k) (pp, s)← Gen(1k)
f1 ← A(pp) f1 ← A(pp)
skf1 ← KeyGen(s, f1) skP ← KeyGen(s, f1)
...

...
fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1) fl ← A(pp, f1, skf1 , . . . , fl−1, skfl−1)
skfl ← KeyGen(s, fl) skfl ← KeyGen(s, fl)
Challenge Phase Challenge Phase

H ← FD→R
b← AO

{fi}
s,H

(·)(f1, skf1 , . . . , fl, skfl) b← AFs(·)(f1, skf1 , . . . , fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [1, l], Pi(x) = y

H(y) otherwise
.

We also consider a weaker security definition, where the adversary has to reveal which functions he
will request keys for before seeing the public parameters or any of the keys. We refer to this as selective
pseudorandomness.

Definition 35 (Selectively Secure FPRF). We say a PRF family is a selectively secure functional pseu-
dorandom function if there exist additional algorithms KeyGen,Eval satisfying the correctness property
as above, in addition to the following selective pseudorandomness property.

• Selective Pseudorandomness: For any PPT adversary A, the advantage of A in distinguishing
between the following two experiments is negligible:

20

Experiment Sel-Rand Experiment Sel-PRand

Key query Phase Key query Phase

f1, . . . , fl ← A f1, . . . , fl ← A
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
skf1 . . . skfl ← KeyGen(s, f1, . . . fl) skf1 . . . skfl ← KeyGen(s, f1, . . . fl)
Challenge Phase Challenge Phase

H ← FD→R
b← AO

{fi}
s,H

(·)(f1, skf1 , . . . fl, skfl) b← AFs(·)(f1, skf1 , . . . fl, skfl)

where O{fi}s,H (y) :=

{
Fs(y) if ∃i ∈ [1, l], Pi(x) = y

H(y) otherwise
.

Definition 36 (PRF with Selective access). We say that a PRF family F = {Fs : D → R}s∈S is
a pseudorandom function family with selective access for a class of predicates P on D if there exist
additional efficient algorithms

KeyGen(s, P) : On input a seed s ∈ S and predicate P ∈ P, KeyGen outputs a key skP .

Eval(skP , x) : On input key skP and input x ∈ D, if it holds that P (x) = 1 then Eval outputs the PRF
evaluation Fs(x).

which satisfy the following properties:

• Correctness: For each predicate P ∈ P, ∀x ∈ D s.t. P (x) = 1, it holds that

∀s← S,∀skP ← KeyGen(s, P), Eval(skP , x) = Fs(x)

• Pseudorandomness: Given a set of keys skP1 . . . skPl for predicate P1 . . . Pl, the evaluation of
Fs(x) should remain pseudorandom on all inputs x for which P1(x) = 0 ∧ · · · ∧ Pl(x) = 0. That
is, for any PPT adversary A, the advantage of A in distinguishing between the following two
experiments is negligible:

Experiment Rand Experiment PRand

Query Phase Query Phase

(pp, s)← Gen(1k) (pp, s)← Gen(1k)
P1 ← A(pp) P ← A(pp)
skP1 ← KeyGen(s, P1) skP ← KeyGen(s, P)
...

...
Pl ← A(pp, P1, skP1 . . . Pl−1, skPl−1) Pl ← A(pp, P1, skP1 . . . Pl−1, skPl−1)
skPl ← KeyGen(s, Pl) skPl ← KeyGen(s, Pl)
Challenge Phase Challenge Phase

H ← FD→R s← S

b← AO
P
s,H (·)(P1, skP1 , . . . Pl, skPl) b← AFs(·)(P1, skP1 , . . . Pl, skPl)

where OPs,H(x) :=

{
Fs(x) if ∃i ∈ [1, l], Pi(x) = 1

H(x) otherwise
.

We also consider PRFSA that satisfy the selective pseudo randomness requirement.

Definition 37 (Selectively Secure PRFSA). We say a PRF family with selective access is a selectively
secure pseudorandom function with selective access if there exist additional algorithms KeyGen,Eval
satisfying the correctness property as above, in addition to the following selective pseudorandomness
property.

• Selective Pseudorandomness: For any PPT adversary A, the advantage of A in distinguishing
between the following two experiments is negligible:

21

Experiment Rand Experiment PRand

Query Phase Query Phase

P1, . . . , Pl ← A P1, . . . , Pl ← A
(pp, s)← Gen(1k) (pp, s)← Gen(1k)
skP1 . . . skPl ← KeyGen(s, P1, . . . Pl) skP1 . . . skPl ← KeyGen(s, P1, . . . Pl)
Challenge Phase Challenge Phase

H ← FD→R
b← AO

P
s,H (·)(P1, skP1 , . . . Pl, skPl) b← AFs(·)(P1, skP1 , . . . Pl, skPl)

where OPs,H(x) :=

{
Fs(x) if ∃i ∈ [1, l], Pi(x) = 1

H(x) otherwise
.

Definition 38 (Hierarchical FPRF). We say that an FPRF family ({Fs}s,KeyGen,Eval) is hierarchical
if the algorithm KeyGen is replaced by a more general algorithm:

SubkeyGen(skf , g): On input a functional secret key skf for function f : B → C (where the master secret
key is considered to be sk1 for the identity function f(x) = x), and function description g : A→ B
for some domain A, SubkeyGen outputs a secret subkey skf◦g for the composition f ◦ g.

satisfying the following properties:

• Correctness: Any key skg generated via a sequence of SubkeyGen executions will correctly evaluate
Fs(y) on each value y for which there exists a preimage x with g(x) = y. Formally, for every
sequence of (efficiently computable) functions f1, . . . , f` with fi : Ai → Ai−1, ∀y ∈ A s.t. ∃x for
which f` ◦ · · · ◦ f1(x) = y, it holds that

∀sk1 ← S, ∀skfi◦···◦f1 ← SubkeyGen(skfi−1◦···◦f1 , fi) for i = 0, . . . , `,

Eval(skf`◦···◦f1 , y) = Fsk1(y).

• Pseudorandomness: The pseudorandomness property of Definition 34 holds, with the slight
modification that the adversary may adaptively make queries of the following kind, corresponding
to receiving subkeys skg generated from unknown functional keys skf . The query phase begins with
a master secret key s← S being sampled and assigned identity id = 1.

HonestKey(id, g): If no key exists with identity id then output ⊥ and terminate; otherwise denote
this key by skf . The challenger generates a g-subkey from skf as skg◦f ← SubkeyGen(skf , g),
and assigns this key a unique identity id′. The resulting key skg◦f is kept secret.

CorruptKey(id, g): If no key exists with identity id then output ⊥ and terminate; otherwise denote
this key by skf . The challenger generates a g-subkey from skf as skg◦f ← SubkeyGen(skf , g),
and assigns this key a unique identity id′. The resulting key skg◦f is given to the adversary.

In the challenge phase, the adversary’s evaluation queries are answered either (1) consistently pseudo-
random, or (2) pseudorandom for all inputs y for which the adversary was given a key skf in a CorruptKey
query with y ∈ Range(f), and random for all other inputs.

5.2 Construction Based on OWF

We now construct a functional pseudorandom function family Fs : {0, 1}n → {0, 1}n supporting the class
of prefix-fixing functions, based on the Goldreich-Goldwasser-Micali (GGM) tree-based PRF construc-
tion [GGM86]. More precisely, the class of functions our construction supports is

Fpre =
{
fz(x) : {0, 1}n → {0, 1}n

∣∣∣ z ∈ {0, 1}m for m ≤ n
}
,

where fz(x) :=

{
x if (x1 = z1) ∧ · · · ∧ (xm = zm)

⊥ otherwise
.

Recall that the GGM construction makes use of a length-doubling pseudorandom generator G : {0, 1}k →
{0, 1}2k (which can be constructed from any one-way function). Denoting the two halves of the output
of G as G(y) = G0(y)G1(y), the PRF with seed s is defined as Fs(y) = Gyk (· · ·Gy2(Gy1(s))).

22

We show that we can obtain a functional PRF for Fpre by adding the following two algorithms on top of
the GGM PRF construction. Intuitively, in these algorithms the functional secret key skfz corresponding
to a queried function fz ∈ Fpre will be the partial evaluation of the GGM prefix corresponding to prefix
z: i.e., the label of the node corresponding to node z in the GGM evaluation tree, at level |z|. Given
this partial evaluation, a party will be able to compute the completion for any input x which has z as a
prefix. However, as we will argue, the evaluation on all other inputs will remain pseudorandom.

KeyGen(s, fz) : output Gzm(· · ·Gz2(Gz1(s))), where m = |z|

Eval(skfz , y) : output

{
Gyn(· · ·Gym+2(Gym+1(skfz))) if y1 = z1 ∧ · · · ∧ ym = zm

⊥ otherwise

Theorem 39. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the
class of functions Fpre, as per Definition 35.

Proof. We will reduce the pseudorandom property of our functional PRF scheme to the security of the
underlying PRG. Let f1, . . . fl ∈ Fpre be the functions queried by the adversary. Let P1, . . . Pl be the
corresponding prefixes. We consider the following experiments:

• In Exp I, in the key query phase, the key for each function fi corresponding to prefix Pi is obtained
by following the corresponding path in the GGM tree. In the challenge phase, the adversary’s
evaluation queries are answered with the corresponding pseudorandom values. This is exactly the
experiment Sel-PRand in Definition 35.

• In Exp II, in the key query phase, the key for each function fi corresponding to prefix Pi is computed
as follows:

– if no prefix of Pi is also queried by the adversary as one of the Pjs, then skfi is assigned a
random value.

– otherwise, let Pj be the shortest such prefix that is also queried (so that skfj has already been
defined by the previous case). Then skfi is computed by applying to skfj the sequence of
PRG’s determined by the bits of Pi following Pj .

In the challenge phase, the adversary’s (unique) evaluation queries are answered with random values.

• In Exp III, in the key query phase, the key for each function fi corresponding to prefix Pi is obtained
by following the corresponding path in GGM tree, and in the challenge phase the adversary’s
(unique) evaluation queries are answered with random values. This is the experiment Sel-Rand in
Definition 35.

Note that Exp I is Experiment Sel-PRand in the Functional PRF definition, and Exp III is Exper-
iment Sel-Rand. We will show that they are both computationally indistinguishable from Exp II as
defined above, and therefore computationally indistinguishable from each other.

Suppose there exists an adversary APRF, who can distinguish between Exp I and Exp II with non-
negligible advantage ε(n). We claim that we can use him to construct an adversary APRG that breaks
the security of the underlying pseudorandom generator. The input to APRG is a polynomial-sized set of
values, which are either random or random outputs of the PRG.

We use a hybrid argument, and define Expi for i ∈ [1, n]. The value i corresponds to the level of the
tree where APRG will place his challenge values when interacting with APRF.

In Expi, in the key query phase, the key for each function fi corresponding to prefix Pj of length
|Pj | = m is computed as follows:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set the label of Pj ’s ancestor on the ith

level to a randomly sampled n-bit string, and then apply the pseudorandom generators to it as in
the GGM construction according to the remaining bits of Pj until the mth level, and return the
resulting string of size n.

23

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the
GGM construction according to the remaining bits of Pj , up to the mth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries x are computed as follows: - let
x(i) denote the i-bit prefix of the queried input x. If the node corresponding to x(i) in the tree has not
yet been labeled, then a random value is chosen and set as this label. The response to the adversary’s
query is then computed by applying the PRGs to this string, as determined by the (i + 1) to n bits of
the queried input x.

Since APRF can distinguish between Exp I and Exp II with probability ε(n), there must exist an i for

which APRF distinguishes between Expi and Expi+1 with probability ε(n)
n

.
Our constructed PRG adversary APRG plays the role of the challenger in the game with APRF, chooses

a random i ∈ [1, n] and places his PRG challenges there. That is, in the key query phase, APRG computes
the keys for functions fi corresponding to prefix Pj , of length |Pj | = m as follows:

• if no other queried prefix is a prefix of Pj and m < i, return a a random string of size n.

• if no other queried prefix is a prefix of Pj and m = i, return one of APRG’s challenge values.

• if no other queried prefix is a prefix of Pj and m > i, set a challenge string as the ancestor of Pj on
the ith level, and then apply the pseudorandom generators to it as in the GGM construction until
the kth level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest such
queried prefix, Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as in the
GGM construction, up to the kth level of the tree.

In the challenge phase, the answers to the adversary’s evaluation queries are computed as follows:
- at each point in which Expi would fill an ith-level node with a random string, one of APRG’s challenge

values is embedded in its place; then the PRGs are applied to this value as determined by the (i+ 1) to
n bits of the input.

Comparing the experiment above to Expi and Expi+1, we can see that, if the inputs to APRG were
random, APRG behaves as the challenger in Expi, and if they were the output of a PRG, he behaves as
the challenger in Expi+1.

At the end APRG outputs the same answer as APRF in its own security game.
APRG will be correct if it guessed i correctly, and if APRF distinguishes between Expi and Expi+1.

APRG will therefore distinguish between random values and outputs of a pseudorandom generator with
probability ε(n)

n2 , which is non-negligible. This completes the proof that Exp I and Exp II are computa-
tionally indistinguishable.

We can use a very similar hybrid argument to show that Exp III and Exp II are computationally
indistinguishable: In Expi, in the key query phase, the key for the functions corresponding to prefix Pj ,
of length |Pj | = m is computed as before:

• if no other queried prefix is a prefix of Pj and m ≤ i, return a random string of size n.

• if no other queried prefix is a prefix of Pj and m > i, set a random string as the parent of Pj on
the ith level, and then apply the pseudorandom generators to it as in the GGM construction until
the mth level and return the resulting string of size n.

• if some other queried prefix is a prefix of Pj , let skfh be the key corresponding to the shortest
queried prefix of Pj , Ph. To obtain the key for Pj , apply the pseudorandom generators to skfh as
in the GGM construction, up to the mth level of the tree.

In the challenge phase, the adversary gets random values.
Then Exp I and Exp II, and Exp II and Exp III are computationally indistinguishable, Exp I and

Exp III are also computationally indistinguishable, and therefore our construction satisfies the selective
pseudo randomness definition for functionals PRFs.

24

Remark 40. We remark that one can directly obtain a fully secure FPRF for Fpre (as in Definition 34)
from our selectively secure construction, with a loss of 1

2n
in security for each functional secret key skfz

queried by the adversary. This is achieved simply by guessing the adversary’s query fz ∈ Fpre.

As an immediate corollary of Theorem 39, we obtain a PRF with selective access for the class of prefix-
matching predicates Ppre = {Pz : {0, 1}n → {0, 1}|z ∈ {0, 1}m for m ≤ n}, where Pz(x) := 1 if x1 =
z1 ∧ · · · ∧ xm = zm and 0 otherwise.

Corollary 41. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a selectively secure functional PRF for the
class of predicates Ppre, as per Definition 37.

Our FPRF construction has the additional benefit of being hierarchical. That is, given a secret key
skfz for a prefix z ∈ {0, 1}m, a party can generate subordinate secret keys skfz′ for any z′ ∈ {0, 1}m

′
,

m′ > m agreeing with z on the first m bits. This secondary key generation process is accomplished
simply by applying the PRGs to skfz , traversing the GGM tree according to the additional bits of z′.
We thus achieve the following corollary.

Corollary 42. Based on the existence of one-way functions, the GGM pseudorandom function family
together with algorithms KeyGen and Eval defined as above, is a hierarchical functional PRF for the class
of predicates Ppre.

The fact the our construction satisfies the correctness property for hierarchical functional PRFs follows
from the definition of the GGM pseudorandom function family.

The pseudorandomness property can be easily proved using the same techniques as in the proof of
Theorem 39.

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption: New perspectives and lower bounds. In CRYPTO, 2013.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS,
pages 326–349, 2012.

[BF11] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions.
In EUROCRYPT, pages 149–168, 2011.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In STOC, pages 103–112, 1988.

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In CRYPTO, pages 194–211,
1989.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages
1–18, 2001.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In FOCS, pages 308–317, 1990.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with auxiliary
input. In FOCS, pages 553–562, 2005.

25

[GKP+12] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Succinct functional encryption and applications: Reusable garbled circuits and
beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Overcoming the worst-case curse for cryptographic constructions. In CRYPTO,
2013.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In STOC, pages 365–377, 1982.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-statements in
zero-knowledge, and a methodology of cryptographic protocol design. In CRYPTO, pages
171–185, 1986.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In STOC, pages 99–108, 2011.

[GW12] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. IACR
Cryptology ePrint Archive, 2012:290, 2012.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh
separation. In CRYPTO, pages 597–612, 2002.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct com-
putation. In TCC, pages 222–242, 2013.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394, 1990.

26

