Function-Private Subspace-Membership Encryption and Its Applications

Dan Boneh* Ananth Raghunathan ${ }^{\dagger} \quad$ Gil Segev ${ }^{\ddagger}$

Abstract

Boneh, Raghunathan, and Segev (CRYPTO '13) have recently put forward the notion of function privacy and applied it to identity-based encryption, motivated by the need for providing predicate privacy in public-key searchable encryption. Intuitively, their notion asks that decryption keys reveal essentially no information on their corresponding identities, beyond the absolute minimum necessary. While Boneh et al. showed how to construct function-private identity-based encryption (which implies predicate-private encrypted keyword search), searchable encryption typically requires a richer set of predicates.

In this paper we significantly extend the function privacy framework. First, we introduce the new notion of subspace-membership encryption, a generalization of inner-product encryption, and formalize a meaningful and realistic notion for capturing its function privacy. Then, we present a generic construction of a function-private subspace-membership encryption scheme based on any inner-product encryption scheme. This is the first generic construction that yields a functionprivate encryption scheme based on a non-function-private one.

Finally, we present various applications of function-private subspace-membership encryption. Among our applications, we significantly improve the function privacy of the identity-based encryption schemes of Boneh et al.: whereas their schemes are function private only for identities that are highly unpredictable (with min-entropy of at least $\lambda+\omega(\log \lambda)$ bits, where λ is the security parameter), we obtain function-private schemes assuming only the minimal required unpredictability (i.e., min-entropy of only $\omega(\log \lambda)$ bits). This improvement offers a much more realistic function privacy guarantee.

Keywords: Function privacy, functional encryption.

[^0]
Contents

1 Introduction 1
1.1 Overview of Our Contributions 2
1.2 Related Work 4
1.3 Paper Organization 5
2 Preliminaries 5
2.1 Notation 5
2.2 Leftover Hash Lemma 5
2.3 Predicate Encryption 6
2.4 Identity-Based Encryption 7
3 Subspace-Membership Encryption and Its Function Privacy 8
4 A Generic Construction Based on Inner-Product Encryption 10
4.1 Large Attribute Space 10
4.2 Small Attribute Space 13
5 Applications of Function-Private Subspace-Membership Encryption 16
5.1 Roots of a Polynomial Equation 16
5.2 Function-Private IBE with Minimal Unpredictability 20
5.3 Disjunction and Conjunctions 22
6 Conclusions and Open Problems 22
References 23

1 Introduction

Predicate encryption systems [BW07, KSW08] are public-key schemes where a single public encryption key has many corresponding secret keys: every secret key corresponds to a predicate $p: \Sigma \rightarrow\{0,1\}$ where Σ is some pre-defined set of indices (or attributes). Plaintext messages are pairs (x, m) where $x \in \Sigma$ and m is in some message space. A secret key sk_{p} for a predicate p has the following semantics: if c is an encryption of the pair (x, m) then sk_{p} can be used to decrypt c only if the "index" x satisfies the predicate p. More precisely, attempting to decrypt c using sk p_{p} will output m if $p(x)=1$ and output \perp otherwise. A predicate encryption system is secure if it provides semantic security for the pair (x, m) even if the adversary has a few benign secret keys (see Section 2.3).

The simplest example of predicate encryption is a system supporting the set of equality predicates, that is, predicates $p_{\text {id }}: \Sigma \rightarrow\{0,1\}$ defined as $p_{\mathrm{id}}(x)=1 \mathrm{iff} x=\mathrm{id}$. In such a system there is a secret key $\mathrm{sk}_{\mathrm{id}}$ for every id $\in \Sigma$ and given the encryption c of a pair (x, m) the key sk ${ }_{\text {id }}$ can decrypt c and recover m only when $x=$ id. It is easy to see that predicate encryption for the set of equality predicates is the same thing as (anonymous) identity-based encryption $\left[\mathrm{BCO}^{+} 04, \mathrm{ABC}^{+} 08\right]$.

Currently the most expressive collusion-resistant predicate encryption systems [KSW08, AFV11] support the family of inner product predicates: for a vector space $\Sigma=\mathbb{F}_{q}^{\ell}$ this is the set of predicates $p_{v}: \Sigma \rightarrow\{0,1\}$ where $v \in \Sigma$ and $p_{v}(x)=1$ iff $x \perp v$. This family of predicates includes the set of equality predicates and others.

Searching on encrypted data. Predicate encryption systems provide a general framework for searching on encrypted data. Consider a mail gateway whose function is to route incoming user email based on characteristics of the email. For example, emails from "boss" that are marked "urgent" are routed to the user's cell phone as are all emails from "spouse." All other emails are routed to the user's desktop. When the emails are transmitted in the clear the gateway's job is straight forward. However, when the emails are encrypted with the user's public key the gateway cannot see data needed for the routing decision. The simplest solution is to give the gateway the user's secret key, but this enables the gateway to decrypt all emails and exposes more information than the gateway needs.

A better solution is to encrypt emails using predicate encryption. The email header functions as the index x and the the routing instructions are used as m. The gateway is given a secret key sk_{p} corresponding to the "route to cell phone" predicate. This secret key enables the gateway to learn the routing instructions for messages satisfying the predicate p, but learn nothing else about emails.

Function privacy. A limitation of many existing predicate encryption systems is that the secret key sk_{p} reveals information about the predicate p. As a result, the gateway, and anyone else who has access to sk_{p}, learns the predicate p. Since in many practical settings it is important to keep the predicate p secret, our goal is to provide function privacy: sk_{p} should reveal as little information about p as possible.

At first glance it seems that hiding p is impossible: given sk_{p} the gateway can itself encrypt messages (x, m) and then apply sk_{p} to the resulting ciphertext. In doing so the gateway learns if $p(x)=1$ which reveals some information about p. Nevertheless, despite this inherent limitation, function privacy can still be achieved.

Towards a solution. In recent work Boneh, Raghunathan, and Segev [BRS13] put forward a new notion of function privacy and applied it to identity-based encryption systems (i.e. to predicate encryption supporting equality predicates). They observe that if the identity id is chosen from a distribution with super-logarithmic min-entropy then the inherent limitation above is not a problem
since the attacker cannot learn id from sk $\mathrm{kid}_{\text {}}$ by a brute force search since there are too many potential identities to test. They define function privacy for IBE systems by requiring that when id has sufficient min-entropy then s_{id} is indistinguishable from a secret key derived for an independently and uniformly distributed identity. This enables function private keyword searching on encrypted data. They then construct several IBE systems supporting function-private keyword searching.

While Boneh et al. [BRS13] showed how to achieve function privacy for equality predicates, encrypted search typically requires a richer set of searching predicates, including conjunctions, disjunctions, and many others. The authors left open the important question of achieving function privacy for a larger family of predicates.

Our contributions. In this paper we extend the framework and techniques of Boneh et al. [BRS13] for constructing function-private encryption schemes. We put forward the new notion of subspace-membership encryption, a generalization of inner-product predicate encryption [KSW08, Fre10, AFV11], and present a definitional framework for capturing its function privacy. Our framework identifies the minimal restrictions under which a strong and meaningful notion of function privacy can be obtained for subspace-membership encryption schemes.

Then, we present a generic construction of a function-private subspace-membership encryption scheme based on any underlying inner-product encryption scheme (even when the underlying scheme is not function private). Our construction is efficient, and in addition to providing function privacy, it preserves the security properties of the underlying scheme. This is the first generic construction that yields a function-private encryption scheme based on a non-function-private one. Recall that even for the simpler case of identity-based encryption, Boneh et al. [BRS13] were not able to provide a generic construction, and had to individually modify various existing schemes.

Finally, we present various applications of function-private subspace-membership encryption (we refer the reader to Section 1.1 for an overview of these applications). Among our applications, we significantly improve the function privacy of the identity-based encryption schemes of Boneh et al. [BRS13]. Specifically, whereas their schemes guarantee function privacy only for identity distributions that are highly unpredictable (with min-entropy of at least $\lambda+\omega(\log \lambda)$ bits, where λ is the security parameter), we construct schemes that guarantee function privacy assuming only minimal unpredictability (i.e., min-entropy of $\omega(\log \lambda)$ bits). This improvement presents a much more realistic function privacy guarantee.

1.1 Overview of Our Contributions

A subspace-membership encryption scheme is a predicate encryption scheme supporting subspacemembership predicates. That is, an encryption of a message is associated with an attribute $\mathbf{x} \in$ \mathbb{S}^{ℓ}, and secret keys are derived for subspaces defined by all vectors in \mathbb{S}^{ℓ} orthogonal to a matrix $\mathbf{W} \in \mathbb{S}^{m \times \ell}$ (for integers $m, \ell \in \mathbb{N}$ and an additive group \mathbb{S}). ${ }^{1}$ Decryption recovers the message iff $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$. We refer the reader to Section 2.3 for the standard definitions of the functionality and data security of predicate encryption (following [KSW08, AFV11]).

Function privacy for subspace-membership encryption. Our goal is to design subspacemembership encryption schemes in which a secret key, skw, does not reveal any information, beyond the absolute minimum necessary, on the matrix \mathbf{W}. Formalizing a realistic notion of function privacy, however, is not straightforward due to the actual functionality of subspace-membership encryption encryption. Specifically, assuming that an adversary who is given a secret key sk $\mathbf{w}_{\mathbf{W}}$ has some apriori information that the matrix \mathbf{W} belongs to a small set of matrices (e.g., $\left\{\mathbf{W}_{0}, \mathbf{W}_{1}\right\}$), then

[^1]the adversary may be able to fully recover \mathbf{W} : The adversary simply needs to encrypt a (possibly random) message m for some attribute \mathbf{x} that is orthogonal to \mathbf{W}_{0} but not to \mathbf{W}_{1}, and then run the decryption algorithm on the given secret key skw and the resulting ciphertext to identify the one that decrypts correctly. In fact, as in [BRS13], as long as the adversary has some a-priori information according to which the matrix \mathbf{W} is sampled from a distribution whose min-entropy is at most logarithmic in the security parameter, there is a non-negligible probability for a full recovery.

In the setting of subspace-membership encryption (unlike that of identity-based encryption [BRS13]), however, the requirement that \mathbf{W} is sampled from a source of high min-entropy does not suffice for obtaining a meaningful notion of function privacy. In Section 3 we show that even if W has nearly full min-entropy, but two of its columns may be correlated, then a meaningful notion of function privacy is not within reach.

In this light, our notion of function privacy for subspace-encryption schemes focuses on secret key sk $\mathbf{w}_{\mathbf{W}}$ for which the columns of \mathbf{W} form a block source. That is, each column of \mathbf{W} should have a reasonable amount of min-entropy even given all previous columns. Our notion of function privacy requires that such a secret key sk $\mathbf{w}_{\mathbf{W}}$ (where \mathbf{W} is sampled from an adversarially-chosen distribution) be indistinguishable from a secret key for a subspace chosen uniformly at random.

A function-private construction from inner-product encryption. Given any underlying inner-product encryption scheme we construction a function-private subspace-membership encryption scheme quite naturally. We modify the key-generation algorithm as follows: for generating a secret key for a subspace described by \mathbf{W}, we first sample a uniform $\mathbf{s} \leftarrow \mathbb{S}^{m}$ and use the keygeneration algorithm of the underlying scheme for generating a secret key for the vector $\mathbf{v}=\mathbf{W}^{\top} \mathbf{s}$. Observe that as long as the columns of \mathbf{W} form a block source, then the leftover hash lemma for block sources guarantees that \mathbf{v} is statistically close to uniform. In particular, essentially no information on \mathbf{W} is revealed.

We also observe that extracting from the columns of \mathbf{W} using the same seed for the extractor $\langle\mathbf{s}, \cdot\rangle$ interacts nicely with the subspace-membership functionality. Indeed, if $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$, it holds that $\mathbf{v}^{\top} \mathbf{x}=0$ and vice-versa with high probability. We note that the case where the attribute set is small requires some additional refinement that we omit from this overview, and we refer the reader to Section 4 for more details.

Application 1: Function privacy when encrypting to roots of polynomials. We consider predicate encryption schemes supporting polynomial evaluation where secret keys correspond to polynomials $p \in \mathbb{S}[\mathrm{X}]$ and messages are encrypted to an attribute $x \in \mathbb{S}$. Given a secret key sk_{p} and a ciphertext with an attribute x, decryption recovers the message iff $p(x)$ evaluates to 0 . Our work constructs such schemes from any underlying subspace-membership scheme.

We also explore the notion of function privacy for such polynomial encryption schemes. We require that secret keys for degree- d polynomials $p(x)$ with coefficients $\left(p_{0}, p_{1}, \ldots, p_{d}\right) \in \mathbb{S}^{d+1}$ coming from a sufficiently unpredictable adversarially chosen (joint) distribution be indistinguishable from secret keys for degree- d polynomials where each coefficient is sampled uniformly from the underlying set. Unlike the case of subspace membership, we do not restrict our security to those distributions whose unpredictability holds even when conditioned on all previous (i.e., here we obtain security for any min-entropy source and not only for block sources).

Our function-private construction maps attributes x to Vandermonde vectors $\mathbf{x}=\left(1, x, x^{2}, \ldots\right)$ and a polynomial $p(x)$ to a subspace \mathbf{W} as follows. We sample $d+1$ polynomials $r_{1}(x), \ldots, r_{d+1}(x)$ in a particular manner (as a product of d uniformly random linear polynomials) and construct the subspace \mathbf{W} whose $i^{\text {th }}$ row comprises the coefficients of $p(x) \cdot r_{i}(x)$. In section 5.1, we elaborate on the details and prove that our choice of randomizing polynomials allows us to show that for
polynomials whose coefficients come from an unpredictable distribution, W's columns have conditional unpredictability. And similarly, for polynomials with uniformly distributed coefficients, W's columns are uniformly distributed. This allows us to infer the function privacy of the polynomial encryption scheme from the function privacy of the underlying subspace-membership encryption scheme.

Application 2: Function-private IBE with minimal unpredictability. As another interesting application of predicate encryption supporting polynomial evaluation, we consider the question of constructing function-private IBE schemes whose function privacy requires only the minimal necessary unpredictability assumption. It is easy to see (and as was shown in [BRS13]) that if the adversary has some a-priori information according to which identities are sampled from a distribution with only logarithmic bits of entropy, then a simple adversary recovers id from $\mathrm{sk}_{\mathrm{id}}$ with non-negligible probability by simply encrypting a messages to a guessed id and checking if decryption recovers the messages successfully.

Their constructions use a technique of preprocessing the id with a randomness extractor to recover $\mathrm{id}_{\mathrm{Ext}}$ that is statistically close to uniform and thus hides any information about the underlying distribution of identities. As the extracted identity is roughly λ bits long, the distribution of identities must have min-entropy at least $\lambda+\omega(\log \lambda)$ bits to guarantee that extraction works. The identity space is much larger and this is still a meaningful notion of function privacy but the question of designing schemes that require the minimal min-entropy of $\omega(\log \lambda)$ bits was left open.

Starting from encryption schemes supporting polynomial evaluation (for our construction, linear polynomials suffice), this work shows how to construct function-private IBE schemes with the only restriction on identities being that they are unpredictable. We consider identities in a set \mathbb{S} and consider a polynomial $p_{\mathrm{id}}(x)=(x-\mathrm{id})$. By first randomizing the polynomial with uniformly chosen r in \mathbb{S}, we observe that if id has the minimal super-logarithmic unpredictability, then the coefficients of the polynomial $r \cdot(x-\mathrm{id})$ have sufficient unpredictability. Thus, considering polynomial encryption schemes where secret keys correspond to such polynomials and attributes correspond to $x=$ id, we construct IBE schemes that are function private against distributions that only have the minimum necessary unpredictability.

1.2 Related Work

As discussed above, the notion of function privacy was recently put forward by Boneh, Raghunathan, and Segev [BRS13]. One of the main motivations of Boneh et al. was that of designing public-key searchable encryption schemes $\left[\mathrm{BCO}^{+} 04\right.$, GSW04, $\mathrm{ABC}^{+} 08$, BW07, $\mathrm{SBC}^{+} 07$, KSW08, BSNS08, $\mathrm{CKR}^{+} 09$, ABN10, AFV11] that are keyword private. That is, public-key searchable encryption schemes in which search tokens hide, as much as possible, their corresponding predicates. They presented a framework for modeling function privacy, and constructed various function-private anonymous identity-based encryption schemes (which, in particular, imply public-key keyword-private searchable encryption schemes).

More generally, the work of Boneh et al. initiated the study of function privacy in functional encryption [BSW11, O'N10, BO12, GVW12, $\mathrm{AGV}^{+} 13, \mathrm{GKP}^{+} 13$], where a functional secret key sk $_{f}$ corresponding to a function f enables to compute $f(m)$ given an encryption $c=\operatorname{Enc}_{\mathrm{pk}}(m)$. Intuitively, in this setting function privacy guarantees that a functional secret key sk_{f} does not reveal information about f beyond what is already known and what can be obtained by running the decryption algorithm on test ciphertexts. In [BRS13], the authors also discuss connections of function privacy to program obfuscation.

Our notion of subspace-membership encryption generalizes that of inner-product encryption introduced by Katz, Sahai, and Waters [KSW08]. They defined and constructed predicate encryption
schemes for predicates corresponding to inner products over \mathbb{Z}_{N} (for some large N). Informally, this class of predicates corresponds to functions $f_{\mathbf{v}}$ where $f_{\mathbf{v}}(\mathbf{x})=1$ if and only if $\langle\mathbf{v}, \mathbf{x}\rangle=0$. Subsequently, Freeman [Fre10] modified their construction to inner products over groups of prime order p, and Agrawal, Freeman, and Vaikuntanathan [AFV11] constructed an inner-product encryption scheme over \mathbb{Z}_{p} for a small prime p.

Finally, we note that function privacy in the symmetric-key setting, where the encryptor and decryptor have a shared secret key, was studied by Shen, Shi, and Waters [SSW09]. They designed a function-private inner-product encryption scheme. As noted by Boneh et al. [BRS13], achieving function privacy in the public-key setting is a more subtle task due to the inherent conflict between privacy and functionality.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we introduce standard notation, definitions, and tools. In Section 3 we introduce the notions of subspace-membership encryption and function privacy for subspace-membership encryption. In Section 4 we present generic constructions of function-private subspace-membership encryption schemes based on any inner-product encryption scheme. In Section 5 we present various applications of function-private subspace-membership encryption. In Section 6 we discuss several open problems that arise from this work.

2 Preliminaries

2.1 Notation

For an integer $n \in \mathbb{N}$ we denote by $[n]$ the set $\{1, \ldots, n\}$, and by U_{n} the uniform distribution over the set $\{0,1\}^{n}$. For a random variable X we denote by $x \leftarrow X$ the process of sampling a value x according to the distribution of X. Similarly, for a finite set S we denote by $x \leftarrow S$ the process of sampling a value x according to the uniform distribution over S. We denote by \mathbf{x} (and sometimes \boldsymbol{x}) a vector $\left(x_{1}, \ldots, x_{|\mathbf{x}|}\right)$. We denote by $\mathbf{X}=\left(X_{1}, \ldots, X_{T}\right)$ a joint distribution of T random variables. A non-negative function $f: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if it vanishes faster than any inverse polynomial. A non-negative function $f: \mathbb{N} \rightarrow \mathbb{R}$ is super-polynomial if it grows faster than any polynomial.

The min-entropy of a random variable X is $\mathbf{H}_{\infty}(X)=-\log \left(\max _{x} \operatorname{Pr}[X=x]\right)$. A k-source is a random variable X with $\mathbf{H}_{\infty}(X) \geq k$. A (T, k)-block source is a random variable $\mathbf{X}=\left(X_{1}, \ldots, X_{T}\right)$ where for every $i \in[T]$ and x_{1}, \ldots, x_{i-1} it holds that $\mathbf{H}_{\infty}\left(X_{i} \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right) \geq k$. The statistical distance between two random variables X and Y over a finite domain Ω is $\mathbf{S D}(X, Y)=$ $\frac{1}{2} \sum_{\omega \in \Omega}|\operatorname{Pr}[X=\omega]-\operatorname{Pr}[Y=\omega]|$. Two random variables X and Y are δ-close if $\mathbf{S D}(X, Y) \leq \delta$. Two distribution ensembles $\left\{X_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and $\left\{Y_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ are statistically indistinguishable if it holds that $\mathbf{S D}\left(X_{\lambda}, Y_{\lambda}\right)$ is negligible in λ. They are computationally indistinguishable if for every probabilistic polynomial-time algorithm \mathcal{A} it holds that $\left|\operatorname{Pr}\left[\mathcal{A}\left(1^{\lambda}, x\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(1^{\lambda}, y\right)=1\right]\right|$ is negligible in λ, where $x \leftarrow X_{\lambda}$ and $y \leftarrow Y_{\lambda}$.

2.2 Leftover Hash Lemma

Definition 2.1. A collection \mathcal{H} of functions $H: U \rightarrow V$ is universal if for any $x_{1}, x_{2} \in U$ such that $x_{1} \neq x_{2}$ it holds that $\operatorname{Pr}_{H \leftarrow \mathcal{H}}\left[H\left(x_{1}\right)=H\left(x_{2}\right)\right]=1 /|V|$.

Lemma 2.2 (Leftover hash lemma for block sources [CG88, HIL+99, Zuc96, CV08]). Let \mathcal{H} be a universal collection of functions $H: U \rightarrow V$, and let $\mathbf{X}=\left(X_{1}, \ldots, X_{\ell}\right)$ be an (ℓ, k)-block-source where $k \geq \log |V|+2 \log (1 / \epsilon)+\Theta(1)$. Then, the distribution $\left(H, H\left(X_{1}\right), \ldots, H\left(X_{\ell}\right)\right)$, where $H \leftarrow \mathcal{H}$, is $\epsilon \ell$-close to the uniform distribution over $\mathcal{H} \times V^{\ell}$.

2.3 Predicate Encryption

We use the definition of Katz, Sahai, and Waters [KSW08], which is based on the definition of searchable encryption proposed in $\left[\mathrm{BCO}^{+} 04, \mathrm{BW} 07\right]$.
Definition 2.3 ([KSW08, Def. 2.1]). A (key-policy) predicate encryption scheme for the class of predicates \mathcal{F} over the set of attributes Σ consists of four randomized PPT algorithms Setup, KeyGen, Enc, and Dec such that:

1. Setup: Setup takes as input the security parameter 1^{λ} and outputs public parameters pp and a master secret key msk.
2. Key generation: KeyGen takes as input the master secret key msk and a predicate $f \in \mathcal{F}$ and outputs a key sk_{f}.
3. Encryption: Enc takes as input the public key pp, an attribute $I \in \Sigma$, and a message M in some associated message space \mathcal{M}. It returns a ciphertext $c \leftarrow \operatorname{Enc}(\mathrm{pp}, I, \mathrm{M})$.
4. Decryption: Dec takes as input a secret key sk_{f} and ciphertext c. It outputs either M or \perp.

Correctness requires that for all $\lambda \in \mathbb{N}$, for all ($\mathrm{pp}, \mathrm{msk}$) generated by $\operatorname{Setup}\left(1^{\lambda}\right)$, for all $f \in \mathcal{F}$, for all keys $\mathrm{sk}_{f} \leftarrow \operatorname{KeyGen}(\mathrm{msk}, f)$, for all $I \in \Sigma$:

- If $f(I)=1$, then $\operatorname{Dec}\left(\mathrm{sk}_{f}, \operatorname{Enc}(\mathrm{pp}, I, \mathrm{M})\right)=\mathrm{M}$.
- If $f(I)=0$, then $\operatorname{Dec}\left(\mathrm{sk}_{f}, \operatorname{Enc}(\mathrm{pp}, I, \mathrm{M})\right)=\perp$ with all but negligible probability in λ.

There are several notions of security for predicate encryption schemes. The most basic is payload hiding, which guarantees that no efficient adversary can obtain any information about the encrypted message, but allows information about the attributes to be revealed. A stronger notion is attribute hiding, which guarantees in addition that no efficient adversary can obtain information about the attribute associated with a ciphertext. We consider two definitions, attribute hiding and weak atribute hiding following the work of Katz, Sahai, and Waters [KSW08] and Agrawal, Freeman, and Vaikuntanathan [AFV11].

Definition 2.4 ([KSW08, AFV11]). A predicate encryption scheme Π for the class of predicates \mathcal{F} over the set of attributes Σ is attribute hiding if for all probabilistic polynomial-time adversaries \mathcal{A}, the advantage of \mathcal{A} in distinguishing the experiments $\operatorname{Expt}_{\mathrm{AH}, \Pi, \mathcal{A}}^{(0)}(\lambda)$ and $\operatorname{Expt}_{\mathrm{AH}, \Pi, \mathcal{A}}^{(1)}(\lambda)$ is negligible in the security parameter λ, where for each $b \in\{0,1\}$ the experiment $\operatorname{Expt}_{\mathrm{AH}, \Pi, \mathcal{A}}^{(b)}$ is defined as follows:

1. $\mathcal{A}\left(1^{\lambda}\right)$ outputs a pair $\left(I_{0}, I_{1}\right) \in \Sigma$.
2. $\operatorname{Setup}\left(1^{\lambda}\right)$ is run to generate ($\mathrm{pp}, \mathrm{msk}$) and the adversary is given pp .
3. \mathcal{A} (adaptively) requests keys for predicates $f_{1}, \ldots, f_{Q} \in \mathcal{F}$ subject to the restriction $f_{i}\left(I_{0}\right)=$ $f_{i}\left(I_{1}\right)$ for every $i \in[Q]$. In response to each query, \mathcal{A} receives $\mathrm{sk}_{f_{i}} \leftarrow \operatorname{KeyGen}$ (msk, f_{i}).
4. \mathcal{A} outputs two equal-length messages $\mathrm{M}_{0}, \mathrm{M}_{1} \in \mathcal{M}$. If there exists $i \in[Q]$ such that $f_{i}\left(I_{0}\right)=$ $f_{i}\left(I_{1}\right)=1$ then it must hold that $\mathrm{M}_{0}=\mathrm{M}_{1}$. The adversary \mathcal{A} receives ciphertext $c \leftarrow$ $\operatorname{Enc}\left(\mathrm{pp}, I_{b}, m_{b}\right)$.
5. \mathcal{A} (adaptively) requests additional keys subject to the same restrictions as before.
6. \mathcal{A} outputs a guess b^{\prime}. The experiment outputs this bit b^{\prime}.

The advantage of adversary \mathcal{A} is defined as follows:

$$
\operatorname{Adv}_{\Pi, \mathcal{A}}^{\mathrm{AH}}(\lambda) \stackrel{\text { def }}{=}\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{AH}, \Pi \mathcal{A}}^{(0)}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{AH}, \Pi, \mathcal{A}}^{(1)}=1\right]\right| .
$$

A predicate encryption scheme Π is said to be weakly attribute hiding if the adversary \mathcal{A}, in step (3) is restricted to query secret keys for predicates f_{i} with $f_{i}\left(I_{0}\right)=f_{i}\left(I_{1}\right)=0$. The experiments $\operatorname{Expt}_{\mathrm{wAH}, \Pi, \mathcal{A}}^{(b)}(\lambda)$ for $b \in\{0,1\}$ and advantage $\operatorname{Adv}_{\Pi, \mathcal{A}}^{\mathrm{wAH}}(\lambda)$ are defined in an analogous manner.

2.4 Identity-Based Encryption

An identity-based encryption (IBE) scheme [Sha84, BF03] is a quadruple $\Pi=$ (Setup, KeyGen, Enc, Dec) of probabilistic polynomial-time algorithms. The setup algorithm, Setup, takes as input the security parameter 1^{λ} and outputs the public parameters pp of the scheme together with a corresponding master secret key msk. The encryption algorithm, Enc, takes as input the public parameters pp , an identity id, and a message m, and outputs a ciphertext $c=\operatorname{Enc}(\mathrm{pp}, \mathrm{id}, m)$. The key-generation algorithm, KeyGen, takes as input the master secret key msk and an identity id, and outputs a secret key sk $\mathrm{id}_{\mathrm{id}}$ corresponding to id. The decryption algorithm, Dec, takes as input the public parameters pp , a ciphertext c, and a secret key $\mathrm{sk}_{\mathrm{id}}$, and outputs either a message m or the symbol \perp. For such a scheme we denote by $\mathcal{I D}=\left\{\mathcal{I} \mathcal{D}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and $\mathcal{M}=\left\{\mathcal{M}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ its identity space and message space, respectively.

Functionality. In terms of functionality, we require that the decryption algorithm is correct with all but a negligible probability. Specifically, for any security parameter $\lambda \in \mathbb{N}$, for any identity id $\in \mathcal{I} \mathcal{D}_{\lambda}$, and for any message $m \in \mathcal{M}_{\lambda}$ it holds that

$$
\operatorname{Dec}(\mathrm{pp}, \operatorname{KeyGen}(\mathrm{msk}, \mathrm{id}), \operatorname{Enc}(\mathrm{pp}, \mathrm{id}, m))=m
$$

with probably at least $1-\nu(\lambda)$ for a negligible function $\nu(\cdot)$, where the probability it taken over the internal randomness of the algorithm Setup, KeyGen, Enc, and Dec.

Data privacy. We consider the standard selective notion of anonymity and message indistinguishability under a chosen-identity adaptive-chosen-plaintext attack known as anon-IND-sID-CPA and abbreviated to sDP in the rest of the paper.

Definition 2.5 (Selective data privacy - anon-IND-sID-CPA). An identity-based encryption scheme $\Pi=$ (Setup, KeyGen, Enc, Dec) over a identity space $\mathcal{I D}=\left\{\mathcal{I} \mathcal{D}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ and a message space $\mathcal{M}=$ $\left\{\mathcal{M}_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ is selective data private if for any probabilistic polynomial-time adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that

$$
\operatorname{Adv}_{\Pi, \mathcal{A}}^{\mathrm{sDP}}(\lambda) \stackrel{\text { def }}{=}\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{sDP}, \Pi, \mathcal{A}}^{(0)}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{sDP}, \Pi, \mathcal{A}}^{(1)}(\lambda)=1\right]\right| \leq \nu(\lambda),
$$

where for each $b \in\{0,1\}$ and $\lambda \in \mathbb{N}$ the experiment $\operatorname{Expt}_{\mathrm{sDP}, \Pi, \mathcal{A}}^{(b)}(\lambda)$ is defined as follows:

1. $\left(\mathrm{id}_{0}^{*}, \mathrm{id}_{1}^{*}\right.$, state $\left._{1}\right) \leftarrow \mathcal{A}\left(1^{\lambda}\right)$, where id_{0}^{*}, $\mathrm{id}_{1}^{*} \in \mathcal{I} \mathcal{D}_{\lambda}$.
2. $(\mathrm{pp}, \mathrm{msk}) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$.
3. $\left(m_{0}^{*}, m_{1}^{*}\right.$, state $\left._{2}\right) \leftarrow \mathcal{A}\left(\right.$ state $\left._{1}\right)$, where $m_{0}^{*}, m_{1}^{*} \in \mathcal{M}_{\lambda}$.
4. $c^{*} \leftarrow \operatorname{Enc}\left(\mathrm{pp}, \mathrm{id}_{b}^{*}, m_{b}^{*}\right)$.
5. $b^{\prime} \leftarrow \mathcal{A}^{\text {KeyGen(msk,.) }}\left(c^{*}\right.$, state 2), where $b^{\prime} \in\{0,1\}$.
6. Denote by \mathcal{S} the set of identities with which \mathcal{A} queried KeyGen(msk, $\cdot)$.
7. If $\mathcal{S} \cap\left\{\mathrm{id}_{0}^{*}, \mathrm{id}_{1}^{*}\right\}=\emptyset$ then output b^{\prime}, and otherwise output \perp.

Function Privacy. We consider the notion of function privacy introduced by Boneh, Raghunathan, and Segev [BRS13]. A function-private IBE scheme informally requires that no adversary learn anything about id from the secret key sk $\mathrm{id}_{\mathrm{id}}$ beyond the absolute minimum necessary.

Definition 2.6 (Real-or-random function-privacy oracle). The real-or-random function-privacy oracle RoR ${ }^{F P}$ takes as input triplets of the form (mode, msk, ID), where mode $\in\{$ real, rand $\}$, msk is
a master secret key, and $\mathbf{I D}=\left(I D_{1}, \ldots, I D_{T}\right) \in \mathcal{I D}^{T}$ is a circuit representing a joint distribution over $\mathcal{I D}^{T}$. If mode $=$ real then the oracle samples $\left(\mathrm{id}_{1}, \ldots, \mathrm{id}_{T}\right) \leftarrow \mathbf{I D}$ and if mode $=$ rand then the oracle samples $\left(\mathrm{id}_{1}, \ldots, \mathrm{id}_{T}\right) \leftarrow \mathcal{I D} \mathcal{D}^{T}$ uniformly. It then invokes the algorithm KeyGen(msk, \cdot) on each of $\mathrm{id}_{1}, \ldots, \mathrm{id}_{T}$ and outputs a vector of secret keys ($\mathrm{sk}_{\mathrm{id}_{1}}, \ldots, \mathrm{sk}_{\mathrm{id}_{T}}$).

Definition 2.7 (Function-privacy adversary). A (T, k)-block-source function-privacy adversary \mathcal{A} is an algorithm that is given as input a pair ($1^{\lambda}, \mathrm{pp}$) and oracle access to $\operatorname{RoR}^{\mathrm{FP}}$ (mode, msk, \cdot) for some mode $\in\{$ real, rand $\}$, and to $\operatorname{KeyGen}($ msk, $\cdot)$, and each of its queries to $\operatorname{RoR}^{\mathrm{FP}}$ is a (T, k)-block-source.

Definition 2.8 (IBE Function privacy). An identity-based encryption scheme $\Pi=$ (Setup, KeyGen, Enc, Dec) is (T, k)-source function private if for any probabilistic polynomial-time (T, k)-source function-privacy adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that
where for each mode $\in\{$ real, rand $\}$ and $\lambda \in \mathbb{N}$ the experiment $\operatorname{Expt}_{\underset{F P}{\text { mode }}, \mathcal{A}, \mathcal{A}}(\lambda)$ is defined as follows:

1. $(\mathrm{pp}, \mathrm{msk}) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$.
2. $b \leftarrow \mathcal{A}^{\left.\text {RoR }^{\text {FP-IBE }}(\text { mode, msk,. }), \text { KeyGen(msk, }\right)}\left(1^{\lambda}, \mathrm{pp}\right)$.
3. Output b.

In addition, such a scheme is statistically (T, k)-source function private if the above holds for any computationally-unbounded (T, k)-source enhanced function-privacy adversary making a polynomial number of queries to the RoR $\mathrm{R}^{\mathrm{FP}-\mathrm{IBE}}$ oracle.

3 Subspace-Membership Encryption and Its Function Privacy

In this section we formalize the notion of subspace-membership encryption and its function privacy within the framework of Boneh, Raghunathan and Segev [BRS13]. A subspace-membership encryption scheme is a predicate encryption scheme [KSW08] supporting the class of predicates \mathcal{F}, over an attribute space $\Sigma=\mathbb{S}^{\ell}$, defined as

$$
\mathcal{F}=\left\{f_{\mathbf{W}}: \mathbf{W} \in \mathbb{S}^{m \times \ell}\right\} \quad \text { with } \quad f_{\mathbf{W}}(\mathbf{x})= \begin{cases}1 & \mathbf{W} \cdot \mathbf{x}=\mathbf{0} \in \mathbb{S}^{m} \\ 0 & \text { otherwise }\end{cases}
$$

for integers $m, \ell \in \mathbb{N}$, and an additive group \mathbb{S}. Informally, in a subspace-membership encryption, an encryption of a message is associated with an attribute $\mathbf{x} \in \mathbb{S}^{\ell}$, and secret keys are derived for subspaces defined by all vectors in \mathbb{S}^{ℓ} orthogonal to a matrix $\mathbf{W} \in \mathbb{S}^{m \times \ell}$. Decryption recovers the message if and only if $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$. We refer the reader to Section 2.3 for the standard definitions of the functionality and data security of predicate encryption (following [KSW08, AFV11]).

Based on the framework introduced by Boneh, Raghunathan, and Segev [BRS13], our notion of function privacy for subspace-membership encryption considers adversaries that are given the public parameters of the scheme and can interact with a "real-or-random" function-privacy oracle RoR ${ }^{\text {FP }}$ defined as follows, and with a key-generation oracle.

Definition 3.1 (Real-or-random function-privacy oracle). The real-or-random function-privacy oracle $\operatorname{RoR}{ }^{\mathrm{FP}}$ takes as input triplets of the form (mode, msk, V), where mode $\in\{$ real, rand $\}$, msk is a master secret key, and $V=\left(V_{1}, \ldots, V_{\ell}\right) \in \mathbb{S}^{m \times \ell}$ is a circuit representing a joint distribution over $\mathbb{S}^{m \times \ell}$ (i.e., each V_{i} is a distribution over \mathbb{S}^{m}). If mode $=$ real then the oracle samples $\mathbf{W} \leftarrow V$ and if mode $=$ rand then the oracle samples $\mathbf{W} \leftarrow \mathbb{S}^{m \times \ell}$ uniformly. It then invokes the algorithm KeyGen(msk, \cdot) on \mathbf{W} for outputting a secret key $\mathbf{s k}_{\mathbf{W}}$.

Definition 3.2 (Function-privacy adversary). An (ℓ, k)-block-source function-privacy adversary \mathcal{A} is an algorithm that is given as input a pair ($1^{\lambda}, \mathrm{pp}$) and oracle access to $\operatorname{RoR}^{\mathrm{FP}}$ (mode, msk, \cdot) for some mode $\in\{$ real, rand $\}$, and to $\operatorname{KeyGen}(\mathrm{msk}, \cdot \cdot)$. It is required that each of \mathcal{A} 's queries to $\mathrm{RoR}^{\mathrm{FP}}$ be an (ℓ, k)-block-source.

Definition 3.3 (Function-private subspace-membership encryption). A subspace-membership encryption scheme $\Pi=$ (Setup, KeyGen, Enc, Dec) is (ℓ, k)-block-source function private if for any probabilistic polynomial-time (ℓ, k)-block-source function-privacy adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that

$$
\operatorname{Adv}_{\Pi, \mathcal{A}}^{\mathrm{FP}}(\lambda) \stackrel{\text { def }}{=}\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{FP}, \Pi, \mathcal{A}}^{\text {real }}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{FP}, \Pi, \mathcal{A}}^{\text {rand }}(\lambda)=1\right]\right| \leq \nu(\lambda)
$$

where for each mode $\in\{$ real, rand $\}$ and $\lambda \in \mathbb{N}$ the experiment $\operatorname{Expt}_{\mathrm{FP}, \Pi, \mathcal{A}}^{\text {mode }}(\lambda)$ is defined as follows:

1. $(\mathrm{pp}, \mathrm{msk}) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$.
2. $b \leftarrow \mathcal{A}^{\text {RoR } R^{\mathrm{FP}}(\text { mode, msk,.), KeyGen(msk,.) }}\left(1^{\lambda}, \mathrm{pp}\right)$.
3. Output b.

In addition, such a scheme is statistically (ℓ, k)-block-source function private if the above holds for any computationally-unbounded (ℓ, k)-block-source function-privacy adversary making a polynomial number of queries to the $\operatorname{RoR}{ }^{F P}$ oracle.

Multi-shot vs. single-shot adversaries. Note that Definition 3.3 considers adversaries that query the function-privacy oracle for any polynomial number of times. In fact, as adversaries are also given access to the key-generation oracle, this "multi-shot" definition is polynomially equivalent to its "single-shot" variant in which adversaries query the real-or-random function-privacy oracle RoR ${ }^{\text {FP }}$ at most once. This is proved via a straightforward hybrid argument, where the hybrids are constructed such that only one query is forwarded to the function-privacy oracle, and all other queries are answered using the key-generation oracle.

The block-source requirement on the columns of \mathbf{W}. Our definition of function privacy for subspace-membership encryption requires that a secret key $\mathbf{s k}_{\mathbf{W}}$ reveals no unnecessary information about \mathbf{W} as long as the columns of \mathbf{W} form a block source (i.e., each column is unpredictable even given the previous columns). One might consider a stronger definition, in which the columns of \mathbf{W} may be arbitrarily correlated, as long as each column of \mathbf{W} is sufficiently unpredictable. Such a definition, however, is impossible to satisfy.

Specifically, consider the special case of inner-product encryption (i.e., $m=1$), and an adversary that queries the real-or-random oracle with a distribution over vectors $\mathbf{w} \in \mathbb{S}^{\ell}$ defined as follows: sample $\ell-1$ independent and uniform values $u_{1}, \ldots, u_{\ell-1} \leftarrow \mathbb{S}$ and output $\mathbf{w}=$ $\left(u_{1}, 2 u_{1}, u_{2}, \ldots, u_{\ell-1}\right)$. Such a distribution clearly has high min-entropy (specifically, $(\ell-1) \log |\mathbb{S}|$ bits), and each coordinate of whas min-entropy $\log |\mathbb{S}|$ bits. However, secret keys for vectors drawn from this distribution can be easily distinguished from secret keys for vectors drawn from the uniform distribution over \mathbb{S}^{ℓ} : encrypt a message M to the attribute $\mathbf{x}=(-2,1,0, \ldots, 0) \in \mathbb{S}^{\ell}$ and check to see if decryption succeeds in recovering M. For a random vector $\mathbf{w} \in \mathbb{S}^{\ell}$ the decryption succeeds only with probability $1 /|\mathbb{S}|$ giving the adversary an overwhelming advantage.

Therefore, restricting function privacy adversaries to query the RoR $\mathrm{RP}^{\mathrm{FP}}$ oracle only with sources whose columns form block sources is essential for achieving a meaningful notion of function privacy.

On correlated RoR ${ }^{\text {FP }}$ queries. In Definition 3.2 we consider adversaries that receives only a single secret key $s k_{w}$ for each query to the $R_{0} R^{F P}$ oracle. Our definition easily generalizes to include adversaries that are allowed to query the RoR R^{FP} oracle with correlated queries. More specifically, an adversary can receive secret keys $\mathbf{s k}_{\mathbf{W}_{1}}, \ldots, \mathbf{s k}_{\mathbf{W}_{T}}$ for any parameter T that is polynomial in the security parameter. The RoR ${ }^{\mathrm{FP}}$ oracle samples subspaces $\mathbf{W}_{1}, \ldots, \mathbf{W}_{T}$ from an adversarially chosen joint distribution over $\left(\mathbb{S}^{m \times \ell}\right)^{T}$ with the restriction that for every $1 \leq i \leq T$, the columns of \mathbf{W}_{i} come from a (ℓ, k)-block-source even conditioned on any fixed values for $\mathbf{W}_{1}, \ldots, \mathbf{W}_{i-1} .{ }^{2}$

Function privacy of existing inner-product encryption schemes. The inner-product predicate encryption scheme from lattices [AFV11] is trivially not function private as the secret key includes the corresponding function f_{v} as part of it (this is necessary for the decryption algorithm to work correctly). The scheme constructed from bilinear groups with composite order [KSW08] however presents no such obvious attack, but we were not able to prove its function privacy based on any standard cryptographic assumption.

4 A Generic Construction Based on Inner-Product Encryption

In this section we present a generic construction of a function-private subspace-membership encryption scheme starting from any inner-product encryption scheme. In Section 4.1 we consider the case of a large attribute space \mathbb{S} (of size super-polynomial in the security parameter), and in Section 4.2 we extend our construction to the case of a smaller attribute space \mathbb{S}.

4.1 Large Attribute Space

Our construction. Let $\mathcal{I P}=($ IP.Setup, IP.KeyGen, IP.Enc, IP.Dec) be an inner-product encryption scheme with attribute set $\Sigma=\mathbb{S}^{\ell}$. We construct a subspace-membership encryption scheme $\mathcal{S M}=$ (SM.Setup, SM.KeyGen, SM.Enc, SM.Dec) as follows.

- Setup: SM.Setup is identical to IP.Setup. On input the security parameter it outputs public parameters pp and the master secret key msk by running IP.Setup $\left(1^{\lambda}\right)$.
- Key generation: SM.KeyGen takes as input the master secret key msk and a function f_{W} where $\mathbf{W} \in \mathbb{S}^{m \times \ell}$ and proceeds as follows. It samples uniform $\mathbf{s} \leftarrow \mathbb{S}^{m}$ and computes $\mathbf{v}=$ $\mathbf{W}^{\top} \mathbf{s} \in \mathbb{S}^{\ell}$. Next, it computes $\mathbf{s k}_{\mathbf{v}} \leftarrow \mathbb{I P}$. KeyGen (msk, $\left.\mathbf{v}\right)$ and outputs $\mathbf{s k}_{\mathbf{W}} \stackrel{\text { def }}{=} \mathrm{sk}_{\mathbf{v}}$.
- Encryption: SM.Enc is identical to IP.Enc. On input the public parameters, an attribute $\mathbf{x} \in \mathbb{S}^{\ell}$, and a message M, it outputs a ciphertext $c \leftarrow \operatorname{IP} . \operatorname{Enc}(\mathrm{pp}, \mathrm{x}, \mathrm{M})$.
- Decryption: SM.Dec is identical to IP.Dec. On input the public parameters pp, a secret key $\mathbf{s k}_{\mathbf{W}}$, and a ciphertext c, the algorithm outputs $\mathrm{M} \leftarrow \mathrm{IP} \cdot \operatorname{Dec}\left(\mathrm{pp}, \mathrm{sk}_{\mathbf{W}}, c\right)$.

Correctness. Correctness of the construction follows from the correctness of the underlying innerproduct encryption scheme. For every $\mathbf{W} \in \mathbb{S}^{m \times \ell}$ and every $\mathbf{x} \in \mathbb{S}^{\ell}$, it suffices to show the following:

- If $f(I)=1$, then it holds that $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$. This implies $\mathbf{x}^{\top} \mathbf{v}=\mathbf{x}^{\boldsymbol{\top}}\left(\mathbf{W}^{\top} \mathbf{s}\right)=0$ and therefore SM.Dec correctly outputs M as required.
- If $f(I)=0$, then it holds that $\mathbf{e} \stackrel{\text { def }}{=} \mathbf{W} \cdot \mathbf{x} \neq \mathbf{0} \in \mathbb{S}^{m}$. As $\mathbf{x}^{\top} \mathbf{v}=\mathbf{x}^{\top}\left(\mathbf{W}^{\top} \mathbf{s}\right)=\mathbf{e}^{\top} \mathbf{s}$, for any $\mathbf{e} \neq \mathbf{0}$ the quantity $\mathbf{x}^{\top} \mathbf{v}$ is zero with probability $1 /|\mathbb{S}|$ over choices of \mathbf{s}. As $1 /|\mathbb{S}|$ is negligible in λ whenever $|\mathbb{S}|$ is super-polynomial in λ, the proof of correctness follows.

[^2]Security. We state the following theorem about the security of our construction.
Theorem 4.1. If $\mathcal{I P}$ is an attribute hiding (resp. weakly attribute hiding) inner-product encryption scheme for an attribute set \mathbb{S} of size super-polynomial in the security parameter, then it holds that:

1. The scheme $\mathcal{S M}$ is an attribute hiding (resp. weakly attribute hiding) subspace-membership encryption scheme under the same assumption as the security of the underlying inner-product encryption scheme.
2. The scheme $\mathcal{S} \mathcal{M}$ when $m \geq 2$ is statistically function private for (ℓ, k)-block-sources for any $\ell=\operatorname{poly}(\lambda)$ and $k \geq \log |\mathbb{S}|+\omega(\log \lambda)$.

Proof. We first prove the attribute-hiding property of the scheme, and then prove its function privacy.

Attribute hiding. Attribute-hiding property of $\mathcal{S M}$ follows from the attribute-hiding property of $\mathcal{I P}$ in a rather straightforward manner. Given a challenger for the attribute-hiding property of $\mathcal{I P}$, an $\mathcal{S} \mathcal{M}$ adversary \mathcal{A} can be simulated by algorithm \mathcal{B} as follows: \mathcal{A} 's challenge attributes are forwarded to the $\mathcal{I} \mathcal{P}$-challenger and the resulting public parameterers are published. Secret key queries can be simulated by first sampling uniform $\mathbf{s} \leftarrow \mathbb{S}^{m}$, then computing $\mathbf{v}=\mathbf{W}^{\top} \mathbf{s}$ and forwarding \mathbf{v} to the $\mathcal{I P}$ key generation oracle. Similarly, the challenge messages from the adversary are answered by forwarding them to the challenger. The details are as follows.

Let $\mathrm{X} \in\{\mathrm{AH}, \mathrm{wAH}\}$. Given an adversary \mathcal{A} that makes Q secret key queries in total and has a non-negligible advantage $\mathbf{A d v}_{\mathcal{S} \mathcal{M}, \mathcal{A}}^{X}(\lambda)$ (see Definition 2.3) we construct an adversary \mathcal{B} that interacts with an inner-product encryption attribute hiding challenger with advantage $\mathbf{A d} \mathbf{v}_{\mathcal{I} \mathcal{P}, \mathcal{B}}^{\mathrm{X}}(\lambda) \approx$ $\mathbf{A d v}_{\mathcal{S M}, \mathcal{A}}^{\mathrm{X}}(\lambda)$ as follows.

Adversary \mathcal{A} outputs a pair of attributes \mathbf{x}_{0} and \mathbf{x}_{1} and \mathcal{B} forwards them to the $\mathcal{I} \mathcal{P}$-challenger. \mathcal{B} receives pp (but not msk) and forwards pp to the adversary. For $i \in[Q]$, on the $i^{\text {th }}$ KeyGen query \mathbf{W}_{i} from \mathcal{A}, algorithm \mathcal{B} samples a random $\mathbf{s}_{i} \leftarrow \mathbb{S}^{m}$ and computes $\mathbf{v}_{i}=\mathbf{W}_{i}{ }^{\top} \mathbf{s}_{i}$. It forwards \mathbf{v}_{i} to the KeyGen oracle provided by the $\mathcal{I} \mathcal{P}$-challenger and receives $\mathrm{sk}_{\mathbf{v}_{i}}=\mathrm{sk}_{\mathbf{w}_{i}}$. The algorithm \mathcal{B} answers \mathcal{A} 's KeyGen query with $\mathrm{sk}_{\mathbf{w}_{i}}$.
\mathcal{A} outputs two messages M_{0} and M_{1}. If there exists an $i \in[Q]$ such that $\mathbf{v}_{i}{ }^{\top} \mathbf{x}_{0}=0$ or $\mathbf{v}_{i}{ }^{\top} \mathbf{x}_{1}=0$, the algorithm \mathcal{B} aborts and outputs a uniform bit. Otherwise, it forwards M_{0} and M_{1} to the $\mathcal{I P}$ challenger and receives a challenge ciphertext c which it forwards to \mathcal{A}. Finally, \mathcal{B} receives a guess b from \mathcal{A} and outputs the bit b.

Observe that the algorithm \mathcal{B} simulates the adversary queries honestly. For $b \in\{0,1\}$, let $\mathbf{E}_{\mathcal{I} \mathcal{P}}^{(b)}$ denote the event $\left[\operatorname{Expt}_{X, \mathcal{I P}, \mathcal{B}}^{(b)}(\lambda)=1\right]$ and let $E_{\mathcal{S M}}^{(b)}$ denote the event $\left[\operatorname{Expt}_{X, \mathcal{S M}, \mathcal{A}}^{(b)}(\lambda)=1\right]$. Let Abort denote the event that \mathcal{B} aborts (for either $b \in\{0,1\}$, as the abort condition is independent of the bit b) and outputs a uniform bit. Therefore,

$$
\begin{align*}
\operatorname{Adv}_{\mathcal{I P}, \mathcal{B}}^{\mathrm{X}}(\lambda) & \stackrel{\text { def }}{=}\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{X}, \mathcal{I P}, \mathcal{B}}^{(0)}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{X}, \mathcal{I P}, \mathcal{B}}^{(1)}=1\right]\right| \\
& =\left|\operatorname{Pr}\left[\mathrm{E}_{\mathcal{I} \mathcal{P}}^{(0)}\right]-\operatorname{Pr}\left[\mathrm{E}_{\mathcal{I P})}^{(1)}\right]\right| \\
& \geq\left|\operatorname{Pr}\left[\mathrm{E}_{\mathcal{I P}}^{(0)} \mid \overline{\text { Abort }}\right]-\operatorname{Pr}\left[\mathrm{E}_{\mathcal{I P}}^{(1)} \mid \overline{\text { Abort }}\right]\right|-\operatorname{Pr}[\text { Abort }] \tag{4.1}\\
& \geq\left|\operatorname{Pr}\left[\mathrm{E}_{\mathcal{S} \mathcal{M}}^{(0)}\right]-\operatorname{Pr}\left[\mathrm{E}_{\mathcal{S} \mathcal{M}}^{(1)}\right]\right|-\operatorname{Pr}[\text { Abort }] \tag{4.2}\\
& \geq \operatorname{Adv}_{\mathcal{S} \mathcal{M}, \mathcal{A}}^{\mathrm{X}}(\lambda)-\frac{2 Q}{|\mathbb{S}|} \tag{4.3}
\end{align*}
$$

Here, Equation (4.1) follows from a standard probability argument.Equation (4.2) follows from the fact that if \mathcal{B} does not abort, the events $\mathrm{E}_{\mathcal{I} \mathcal{P}}^{(b)}$ and $\mathrm{E}_{\mathcal{S} \mathcal{M}}^{(b)}$ are identical. Equation (4.3) follows by bounding the probability that \mathcal{B} aborts. $\operatorname{Pr}[A b o r t]$ can be derived using the same argument used to show correctness: for every $i \in[Q]$, if $\mathbf{W}_{i} \cdot \mathbf{x}_{0} \neq \mathbf{0}$, then $\mathbf{x}_{0}{ }^{\top} \mathbf{v}_{i}=0$ with probability at most $1 /|\mathbb{S}|$ (and similarly with \mathbf{x}_{1}). The abort probability therefore follows from a straightforward union bound. As Q is polynomial in $\lambda, \operatorname{Adv}_{\mathcal{I} \mathcal{P}, \mathcal{B}}^{\mathrm{X}}(\lambda)$ remains non-negligible if $\operatorname{Adv}_{\mathcal{S} \mathcal{M}, \mathcal{A}}^{\times}(\lambda)$ is non-negligible, completing the proof.

Function privacy. Let \mathcal{A} be a computationally unbounded (ℓ, k)-block-source function-privacy adversary that makes a polynomial number $Q=Q(\lambda)$ of queries to the RoR ${ }^{\mathrm{FP}}$ oracle. We prove that the distribution of \mathcal{A} 's view in the experiment Expt ${ }_{F P, \mathcal{S}, \mathcal{A}}^{\text {real }}$ is statistically close to the distribution of \mathcal{A} 's view in the experiment Exptrer rand $, \mathcal{M}, \mathcal{A}$ (we refer the reader to Definition 3.3 for the descriptions of these experiments). We denote these two distributions by View real and View $_{\text {rand }}$, respectively.

As the adversary \mathcal{A} is computationally unbounded, we assume without loss of generality that \mathcal{A} does not query the KeyGen(msk, \cdot) oracle - such queries can be internally simulated by \mathcal{A}. Moreover, as discussed in Section 3, it suffices to focus on adversaries \mathcal{A} that query the $\mathrm{Ro} \mathrm{R}^{\mathrm{FP}}$ oracle exactly once. From this point on we fix the public parameters pp chosen by the setup algorithm, and show that the two distributions $\mathrm{View}_{\text {real }}$ and $\mathrm{View}_{\text {rand }}$ are statistically close for any such pp.

Denote by $V=\left(V_{1}, \ldots, V_{\ell}\right)$ the random variable corresponding to the (ℓ, k)-source with which \mathcal{A} queries the $\operatorname{RoR}^{\mathrm{FP}}$ oracle. For each $i \in[\ell]$, let $\left(w_{i, 1}, \ldots, w_{i, m}\right)$ denote a sample from V_{i}. Also, let $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{S}^{m}$. As \mathcal{A} is computationally unbounded, and having fixed the public parameters, we can in fact assume that

$$
\begin{equation*}
\operatorname{View}_{\text {mode }}=\left(\left(\sum_{i=1}^{m} s_{i} \cdot w_{i, 1}\right), \ldots,\left(\sum_{i=1}^{m} s_{i} \cdot w_{i, \ell}\right)\right) \tag{4.4}
\end{equation*}
$$

for mode $\in\{$ real, rand $\}$, where $\mathbf{W}=\left\{w_{i, j}\right\}_{i \in[m], j \in[\ell]}$ is drawn from V for mode $=$ real, \mathbf{W} is uniformly distributed over $\mathbb{S}^{m \times \ell}$ for mode $=$ rand, and $s_{i} \leftarrow \mathbb{S}$ for every $i \in[\ell]$. For mode $\in\{$ real, rand $\}$ we prove that the distribution View mode is statistically close to a uniform distribution over \mathbb{S}^{m}.

Note that the collection of functions $\left\{g_{s_{1}, \ldots, s_{m}}: \mathbb{S}^{m} \rightarrow \mathbb{S}\right\}_{s_{1}, \ldots, s_{m} \in \mathbb{S}}$ defined by $g_{s_{1}, \ldots, s_{m}}\left(w_{1}, \ldots, w_{m}\right)$ $=\sum_{j=1}^{m} s_{j} \cdot w_{j}$ is universal. This enables us to directly apply the Leftover Hash Lemma for blocksources (Lemma 2.2) implying that for our choice of parameters m, ℓ and k the statistical distance between View ${ }_{\text {real }}$ and the uniform distribution is negligible in $\lambda .{ }^{3}$ The same clearly holds also for $V_{i e w}$ rand , as the uniform distribution over $\mathbb{S}^{m \times \ell}$ is, in particular, a (ℓ, k)-block-source. This completes the proof of function privacy.

Theorem 4.1 for correlated RoR ${ }^{\text {FP }}$ queries. Recollect that the definition of function privacy for subspace membership (Definition 3.3) extends to adversaries that query the RoR ${ }^{\mathrm{FP}}$ oracle with secret keys for T correlated subspaces $\mathbf{W}_{1}, \ldots, \mathbf{W}_{T}$ for any $T=\operatorname{poly}(\lambda)$. If the columns of the jointly sampled subspaces $\left[\mathbf{W}_{1}\left|\mathbf{W}_{2}\right| \cdots \mid \mathbf{W}_{T}\right]$ form a block source, we can extend the proof of function privacy to consider such correlated queries. The adversaries view comprises T terms as in Equation (4.4) with randomly sampled vectrs $\mathbf{s}_{1}, \ldots, \mathbf{s}_{T}$ in place of \mathbf{s}. The collection of functions g remains universal and a simple variant of Lemma 2.2 implies that for our choice of parameters, the statistical distance between View real and the uniform distribution is negligible in λ (and similarly for View rand).

[^3]
4.2 Small Attribute Space

We also consider constructing subspace-membership encryption schemes where we do not place any restrictions on the size of the underlying attribute space \mathbb{S}. In our generic construction, observe that correctness requires that $1 /|\mathbb{S}|$ be negligible in λ. If $|\mathbb{S}|$ is not super-polynomial in the security parameter, then correctness fails with a non-negligible probability. Additionally, this breaks the proof of attribute-hiding security in Theorem 4.1: In Equation (4.3), if the quantity $2 Q /|\mathbb{S}|$ is nonnegligible, then a non-negligible advantage of an adversary \mathcal{A} does not translate to a non-negligible advantage for the reduction algorithm \mathcal{B} against the inner-product encryption scheme.

To overcome this difficulty, we refine the construction as follows using a parameter $\tau=\tau(\lambda) \in \mathbb{N}$. We split the message into τ secret shares and apply parallel repetition of τ copies of the underlying inner-product encryption scheme, where each copy uses independent public parameters and master secret keys. For the proof of security, it suffices to have τ such that the quantity $\tau /|\mathbb{S}|^{\tau}$ is negligible in λ. The details of the construction are as follows.

Our construction. Let $\mathcal{I P}=(I P . S e t u p, I P . K e y G e n, I P . E n c, I P . D e c)$ be an inner-product encryption scheme with attribute set $\Sigma=\mathbb{S}^{\ell}$. We construct a subspace-membership encryption scheme $\mathcal{S} \mathcal{M}_{\tau}=($ SM.Setup, SM.KeyGen, SM.Enc, SM.Dec) parameterized by a parameter $\tau=\tau(\lambda)$ as follows.

- Setup: On input the security parameter 1^{λ}, SM.Setup runs algorithm IP.Setup $\left(1^{\lambda}\right) \tau$ times independently. It outputs public parameters $\mathrm{pp}=\left(\mathrm{pp}_{1}, \ldots, \mathrm{pp}_{\tau}\right)$ and the master secret key msk $=\left(\right.$ msk $_{1}, \ldots$, msk $\left._{\tau}\right)$.
- Key generation: SM.KeyGen takes as input the master secret key msk and a function f_{W} where $\mathbf{W} \in \mathbb{S}^{m \times \ell}$ and proceeds as follows. It samples uniform and independent $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\tau} \leftarrow \mathbb{S}^{m}$ and computes $\mathbf{v}_{i}=\mathbf{W}^{\top} \mathbf{s}_{i} \in \mathbb{S}^{\ell}$ for $i \in[\tau]$. Next, it computes $\mathrm{sk}_{i} \leftarrow I \mathrm{IP}$.KeyGen $\left(\mathrm{msk}_{i}, \mathbf{v}_{i}\right)$ and outputs $\mathbf{s k}_{\mathbf{W}} \stackrel{\text { def }}{=}\left(\mathrm{sk}_{1}, \ldots, \mathbf{s k}_{\tau}\right)$.
- Encryption: On input the public parameters, an attribute $\mathbf{x} \in \mathbb{S}^{\ell}$, and a message M, the algorithm $S M$.Enc samples $\mathrm{M}_{1}, \ldots, \mathrm{M}_{\tau} \leftarrow \mathcal{M}$ uniformly at random subject to $\mathrm{M}=\mathrm{M}_{1} \oplus \cdots \oplus$ M_{τ}. Next, it computes ciphertexts $c_{i}=\operatorname{IP} . \operatorname{Enc}\left(\mathrm{pp}_{i}, \mathbf{x}, \mathrm{M}_{i}\right)$. It outputs ciphertext $\left(c_{1}, \ldots, c_{\tau}\right)$.
- Decryption: On input the public parameters $\mathrm{pp}=\left(\mathrm{pp}_{1}, \ldots, \mathrm{pp}_{\tau}\right)$, a secret key $\mathrm{sk}_{\mathrm{W}}=$ $\left(\mathrm{sk}_{1}, \ldots, \mathrm{sk}_{\tau}\right)$, and a ciphertext $c=\left(c_{1}, \ldots, c_{\tau}\right)$, the algorithm first SM.Dec computes $\mathrm{M}_{i} \leftarrow$ $\operatorname{IP} . \operatorname{Dec}\left(\mathrm{pp}_{i}, \mathrm{sk}_{i}, c_{i}\right)$. If $\mathrm{M}_{i}=\perp$ for any $i \in[\tau]$, the decryption algorithm outputs \perp. Else, it outputs $\mathrm{M}_{1} \oplus \cdots \oplus \mathrm{M}_{\tau}$.

Correctness. Correctness of the scheme follows from correctness of the underlying inner-product encryption scheme. For every $\mathbf{W} \in \mathbb{S}^{m \times \ell}$ and $\mathbf{x} \in \mathbb{S}^{\ell}$, it sfufices to show the following:

- If $f(I)=1$, then it holds that $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$. This implies that for every $i \in[\tau], \mathbf{x}^{\top} \mathbf{v}_{i}=$ $\mathbf{x}^{\boldsymbol{\top}}\left(\mathbf{W}^{\boldsymbol{\top}} \mathbf{s}_{i}\right)=0$. The correctness of the underlying inner-product encryption implies that M_{i} is successfully recovered from c_{i}. Thus it follows that if $f(I)=1$, then SM.Dec outputs M as required.
- If $f(I)=0$, then it holds that $\mathbf{e} \stackrel{\text { def }}{=} \mathbf{W} \cdot \mathbf{x} \neq \mathbf{0}$. As $\mathbf{x}^{\top} \mathbf{v}_{i}=\mathbf{x}^{\boldsymbol{\top}}\left(\mathbf{W}^{\top} \mathbf{s}_{i}\right)=\mathbf{e}^{\top} \mathbf{s}_{i}$, for any $\mathbf{e} \neq \mathbf{0}$ the quantity $\mathbf{x}^{\top} \mathbf{v}_{i}$ is zero with probability $1 /|\mathbb{S}|$ over choices of \mathbf{s}. The decryption algorithm fails to output \perp only if $\mathbf{x}^{\top} \mathbf{v}_{i}=0$ for every $i \in[\tau]$. As vectors \mathbf{s}_{i} are sampled independently of \mathbf{e} the error probability is at most $(1 / \mathbb{S} \mid)^{\tau}$ which is negligible for our choice of parameters.

We state the following theorem about the security of our construction.

Theorem 4.2. If $\mathcal{I P}$ is an attribute hiding (resp. weakly attribute hiding) inner-product encryption scheme, then it holds that:

1. For any τ such that $\tau /|\mathbb{S}|^{\tau}=2^{-\omega(\log \lambda)}$, the scheme $\mathcal{S} \mathcal{M}_{\tau}$ is an attribute hiding (resp. weakly attribute hiding) subspace-membership encryption scheme under the same assumption as the security of the underlying inner-product encryption scheme.
2. For any τ such that $\tau /|\mathbb{S}|^{\tau}=2^{-\omega(\log \lambda)}$ and $m>\tau$, the scheme $\mathcal{S} \mathcal{M}_{\tau}$ is statistically function private for (ℓ, k)-block-sources for any $\ell=\operatorname{poly}(\lambda)$ and $k \geq \tau \cdot \log |\mathbb{S}|+\omega(\log \lambda)$.

Proof. The proof of Theorem 4.2 follows the proof outline of Theorem 4.1 with the following important differences. In the proof that $\mathcal{S} \mathcal{M}_{\tau}$ is attribute hiding, the proof follows from considering τ hybrid experiments. Starting with $\operatorname{Expt}_{\mathrm{X}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{B}}^{(0)}(\lambda)$ (for $\mathrm{X} \in\{\mathrm{AH}, \mathrm{wAH}\}$), each successive experiment replaces one more component of the ciphertext $\left(c_{1}, \ldots, c_{\tau}\right)$ with an encryption of M_{1} under \mathbf{x}_{1}. The final experiment is therefore $\operatorname{Expt}_{\mathrm{X}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{B}}^{(1)}(\lambda)$. The proof that any two successive experiments are indistinguishable follows directly from the proof of the attribute hiding property of $\mathcal{S M}$ in Theorem 4.1.

In the proof of function privacy, observe that the difference between the two schemes is that the adversary has τ repetitions of the same view with independent vectors \mathbf{s}_{i}. We can still apply the Leftover Hash Lemma for block-sources (Lemma 2.2) to show that for sources with slightly larger min-entropy (at least $\tau \cdot|\mathbb{S}|+\omega(\log \lambda)$) there is still enough entropy "leftover" to allow for τ parallel repetitions.

Attribute hiding. Let $X \in\{A H, w A H\}$. Consider the following experiments interacting with an adversary \mathcal{A}. Experiment Expt ${ }_{0}$ is identical to $\operatorname{Expt}_{\mathrm{x}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{A}}^{(0)}$. Let $\mathrm{M}^{(0)}$ and $\mathrm{M}^{(1)}$ be the two challenge messages constructed by \mathcal{A} and let $\mathrm{M}_{1}^{(b)}, \ldots, \mathrm{M}_{\tau}^{(b)}$ denote the additive shares of $\mathrm{M}^{(0)}$ constructed during encryption.

For $i \in[\tau]$, experiment Expt_{i} is derived from $\operatorname{Expt}_{i-1}$ by replacing c_{i} in \mathcal{A} 's challenge ciphertext with Enc $\left(\mathrm{pp}_{i}, \mathbf{x}_{1}, \mathrm{M}_{i}^{(1)}\right)$ instead of $\operatorname{Enc}\left(\mathrm{pp}_{i}, \mathbf{x}_{0}, \mathrm{M}_{i}^{(0)}\right)$. It follows that experiment Expt ${ }_{\tau}$ is identical to $\operatorname{Expt}_{\mathrm{X}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{A}}^{(1)}$.

For every $i \in[\tau]$, given an adversary \mathcal{A} such that $\left|\operatorname{Pr}\left[\operatorname{Expt}_{i-1}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{i}(\lambda)=1\right]\right|$ is nonnegligible, we construct an adversary \mathcal{B} that interacts with an inner-product encryption attribute hiding challenger with non-negligible advantage

$$
\operatorname{Adv}_{\mathcal{I} \mathcal{P}, \mathcal{B}}^{\mathrm{X}}(\lambda) \approx\left|\operatorname{Pr}\left[\operatorname{Expt}_{i-1}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{i}(\lambda)=1\right]\right|
$$

as follows.
Fix an $i \in[\tau]$. As in the proof of Theorem 4.1, \mathcal{A} outputs a pair of attributes \mathbf{x}_{0} and \mathbf{x}_{1} and \mathcal{B} forwards them to the $\mathcal{I P}$-challenger. Upon receiving pp, it samples independent $\left(\mathrm{pp}_{j}, \mathrm{msk}_{j}\right) \leftarrow$ $\operatorname{Setup}\left(1^{\lambda}\right)$ for $j \in[\tau] \backslash\{i\}$ and sets $\mathrm{pp}_{i}=\mathrm{pp}$. Algorithm \mathcal{A} receives public parameters $\left(\mathrm{pp}_{1}, \ldots, \mathrm{pp}_{\tau}\right)$. To answer secret key queries, secret keys $\left\{\text { sk }_{j}\right\}_{j \in[\tau] \backslash\{i\}}$ are computed honestly using their respective master secret keys, and sk_{i} is simulated using the $\mathcal{I P}$-challenger as in the proof of Theorem 4.1. Algorithm \mathcal{B} answers the adversary's secret key query with the tuple ($\mathrm{sk}_{1}, \ldots, \mathrm{sk}_{\tau}$). For secret key query $\gamma \in[Q]$, we let $\left(\mathbf{v}_{\gamma, 1}, \mathbf{v}_{\gamma, 2}, \ldots, \mathbf{v}_{\gamma, \tau}\right)$ denote the components constructed by \mathcal{B} as in the key generation algorithm.
\mathcal{A} outputs two messages $\mathrm{M}^{(0)}$ and $\mathrm{M}^{(1)}$. If there exists an $\gamma \in[Q]$ such that for at least one $b \in\{0,1\}$, for every $j \in[\tau], \mathbf{v}_{\gamma, j}{ }^{\top} \mathbf{x}_{b}=0$, then \mathcal{B} aborts and outputs a uniform bit. Otherwise, it samples $M_{2}, \ldots, M_{\tau} \leftarrow \mathcal{M}$ and then computes $M_{0}^{*}=M_{0} \oplus\left(M_{2} \oplus \cdots \oplus M_{\tau}\right)$ and $M_{1}^{*}=M_{1} \oplus$
$\left(\mathrm{M}_{2} \oplus \cdots \oplus \mathrm{M}_{\tau}\right)$. Intuitively, for $j \neq i$, message-shares M_{j} are independent of M_{b} and provide no information to \mathcal{A}. Thus, they play the role of both shares $\mathrm{M}_{j}^{(0)}$ and $\mathrm{M}_{j}^{(1)}$. Algorithm \mathcal{B} forwards M_{0}^{*} and M_{1}^{*} to the $\mathcal{I} \mathcal{P}$-challenger to receive a challenge ciphertext c. It honestly computes the remaining ciphertext components: for $1 \leq j \leq i-1, c_{j} \leftarrow \operatorname{IP} . \operatorname{Enc}\left(\mathrm{pp}_{j}, \mathrm{x}_{0}, \mathrm{M}_{j}\right)$ and for $i+1 \leq j \leq \tau$, $c_{j} \leftarrow \operatorname{IP} . \operatorname{Enc}\left(\mathrm{pp}_{j}, \mathbf{x}_{1}, \mathrm{M}_{j}\right)$. Finally, it sets $c_{i}=c$ that it received from the $\mathcal{I P}$-challenger. It returns a challenge ciphertext $\left(c_{1}, \ldots, c_{\tau}\right)$. After answering further key-generation queries, \mathcal{B} receives a guess b from \mathcal{A} and outputs the bit b.

Observe that the algorithm \mathcal{B} simulates the adversary honestly. As in the derivation of Equation (4.3), for every $i \in[\tau]$, it holds that:

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\operatorname{Expt}_{i-1}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{i}(\lambda)=1\right]\right| \leq \operatorname{Adv}_{\mathcal{I} \mathcal{P}, \mathcal{B}}(\lambda)+\frac{2 Q}{|\mathbb{S}| \tau}, \tag{4.5}
\end{equation*}
$$

where the term $2 Q /|\mathbb{S}|^{\tau}$ is the probability \mathcal{B} aborts and is derived exactly as in the proof of correctness of the scheme $\mathcal{S} \mathcal{M}_{\tau}$.

Using a straightforward triangle inequality and τ applications of Equation (4.5), it holds that

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{S} \mathcal{M}_{\tau}, \mathcal{A}}^{\mathrm{A}}(\lambda) & =\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{X}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{A}}^{(0)}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{X}, \mathcal{S} \mathcal{M}_{\tau}, \mathcal{A}}^{(1)}(\lambda)=1\right]\right| \\
& =\left|\operatorname{Pr}\left[\operatorname{Expt}_{0}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\tau}(\lambda)=1\right]\right| \\
& \leq \sum_{i=1}^{\tau}\left|\operatorname{Pr}\left[\operatorname{Expt}_{i-1}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{i}(\lambda)=1\right]\right| \\
& \leq \tau \cdot \operatorname{Adv}_{\mathcal{I} \mathcal{P}, \mathcal{B}}^{\times}(\lambda)+\frac{2 \tau Q}{|\mathbb{S}|^{\tau}},
\end{aligned}
$$

which is negligible from our choice of parameters and the fact that $\mathcal{I P}$ is attribute hiding.

Function privacy. The proof of function privacy of $\mathcal{S} \mathcal{M}_{\tau}$ is almost identical to the proof of function privacy of $\mathcal{S M}$ (see proof of Theorem 4.1). If we let $V=\left(V_{1}, \ldots, V_{\ell}\right)$ the random variable corresponding to the (ℓ, k)-source with which \mathcal{A} queries the $\operatorname{RoR}^{\mathrm{FP}}$ oracle, for each $i \in[\ell]$, let $\left(w_{i, 1}, \ldots, w_{i, m}\right)$ denote a sample from V_{i}, for each $j \in[\tau]$, let $\mathbf{s}_{j}=\left(s_{j, 1}, \ldots, s_{j, m}\right) \in \mathbb{S}^{m}$, as \mathcal{A} is computationally unbounded, and having fixed the public parameters, we can in fact assume that (as in the previous proof),

$$
\begin{aligned}
& \text { View }_{\text {mode }}=(\\
&\left(\sum_{i=1}^{m} s_{1, i} \cdot w_{i, 1}\right), \ldots,\left(\sum_{i=1}^{m} s_{1, i} \cdot w_{i, \ell}\right) \\
&\left(\sum_{i=1}^{m} s_{2, i} \cdot w_{i, 1}\right), \ldots,\left(\sum_{i=1}^{m} s_{2, i} \cdot w_{i, \ell}\right) \\
& \vdots \\
&\left.\left(\sum_{i=1}^{m} s_{\tau, i} \cdot w_{i, 1}\right), \ldots,\left(\sum_{i=1}^{m} s_{\tau, i} \cdot w_{i, \ell}\right)\right)
\end{aligned}
$$

for mode $\in\{$ real, rand $\}$, where $\mathbf{W}=\left\{w_{i, j}\right\}_{i \in[m], j \in[\ell]}$ is drawn from V for mode $=$ real, \mathbf{W} is uniformly distributed over $\mathbb{S}^{m \times \ell}$ for mode $=$ rand, and $s_{j, i} \leftarrow \mathbb{S}$ for every $i \in[\ell]$ and $j \in[\tau]$. For mode \in $\{$ real, rand $\}$ we prove that the distribution $V_{i e w}^{\text {mode }}$ is statistically-close to uniform.

Note that the collection of functions $\mathcal{G} \stackrel{\text { def }}{=}\left\{g_{s_{1}, \ldots, s_{m}}: \mathbb{S}^{m} \rightarrow \mathbb{S}\right\}_{s_{1}, \ldots, s_{m} \in \mathbb{S}}$ defined by $g_{s_{1}, \ldots, s_{m}}\left(w_{1}\right.$, $\left.\ldots, w_{m}\right)=\sum_{j=1}^{m} s_{j} \cdot w_{j}$ is universal. Additionally, if $\left(g_{1}, \ldots, g_{\tau}\right) \leftarrow \mathcal{G}^{\tau}$ be τ independent and uniform samples from the family \mathcal{G}, for any distinct $\left(w_{1}, \ldots, w_{m}\right)$ and $\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)$ in \mathbb{S}^{m}, it holds that

$$
\begin{aligned}
\operatorname{Pr}_{\left(g_{1}, \ldots, g_{\tau}\right) \leftarrow \mathcal{G}^{\mathcal{G}}}\left[\bigwedge_{i=1}^{\tau} g_{i}\left(w_{1}, \ldots, w_{m}\right)=g_{i}\left(w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right)\right] & =\prod_{i=1}^{\tau} \operatorname{Pr}_{i} \leftarrow \mathcal{G} \\
& =\left(\frac{1}{|\mathbb{S}|}\right)^{\tau} .
\end{aligned}
$$

Here, the first equality follows from the independence of the functions g_{1}, \ldots, g_{τ}. Therefore, the collection $\mathcal{G}^{\tau} \stackrel{\text { def }}{=}\left\{g_{1}, \ldots, g_{\tau}: \mathbb{S}^{m} \rightarrow \mathbb{S}^{\tau}\right\}_{g_{1}, \ldots, g_{\tau} \leftarrow \mathcal{G}}$ is also a universal collection.

Thus allows us to apply Lemma 2.2 implying that for our choice of parameters m, ℓ, and k the statistical distance between View $_{\text {real }}$ and the uniform distribution is negligible in $\lambda .{ }^{4}$ The same clearly holds also for View ${ }_{\text {rand }}$, as the uniform distribution over $\mathbb{S}^{m \times \ell}$ is, in particular, an (ℓ, k)-block-source. This completes the proof of function privacy.

5 Applications of Function-Private Subspace-Membership Encryption

In this section we present applications of function-private subspace-membership encryption schemes.

5.1 Roots of a Polynomial Equation

We can construct a predicate encryption scheme for predicates corresponding to polynomial evaluation. Let $\Phi_{<d}^{\text {poly }} \stackrel{\text { def }}{=}\left\{f_{p}: p \in \mathbb{S}[\mathrm{X}], \operatorname{deg}(p)<d\right\}$, where

$$
f_{p}(x)=\left\{\begin{array}{cc}
1 & \text { if } p(x)=0 \in \mathbb{S} \\
0 & \text { otherwise }
\end{array} \quad \text { for } x \in \mathbb{S}\right.
$$

Correctness and attribute hiding properties of the predicate encryption scheme for the class of predicates $\Phi_{<d}^{\text {poly }}$ are defined as in the case of a generic predicate encryption scheme in a natural manner (see Definition 2.3).

Function-private polynomial encryption. For the class $\Phi_{<d}^{\text {poly }}$, consider a real-or-random function privacy oracle RoR ${ }^{\mathrm{FP}-\Phi}$ (along the lines of Definition 3.1) that takes as input triplets of the form (mode, msk, \mathbf{P}), where mode $\in\{$ real, rand $\}$, msk is a master secret key, and $\mathbf{P}=\left(P_{0}, \ldots, P_{d-1}\right) \in \mathbb{S}^{d}$ is a circuit representing a joint distribution over coefficients of polynomials p with $\operatorname{deg}(p)<d$. If mode $=$ real then the oracle samples $p \leftarrow \mathbf{P}$ and if mode $=$ rand then the oracle samples $p \leftarrow \mathbb{S}^{d}$ uniformly. It then invokes the algorithm KeyGen(msk, \cdot) on p and outputs secret key sk_{p}.

Along the lines of Definition 3.2, we consider a k-source $\Phi_{<d}^{\text {poly }}$ function-privacy adversary \mathcal{A}. Such an adversary is given inputs ($1^{\lambda}, \mathrm{pp}$) and oracle access to $\mathrm{RoR}^{\mathrm{FP}-\Phi}$ and each query to the oracle is a k-source (over the coefficients of the polynomial).
Definition 5.1 ($\Phi_{<d}^{\text {poly }}$ Function privacy). A predicate encryption scheme for the class of predicates $\Phi_{<d}^{\text {poly }}$ denoted $\Pi=$ (Setup, KeyGen, Enc, Dec) is k-source function-private if for any probabilistic polynomial-time k-source $\Phi_{<d}^{\text {poly }}$ function-privacy adversary \mathcal{A}, there exists a negligible function $\nu(\lambda)$ such that

$$
\operatorname{Adv}_{\Pi, \mathcal{A}}^{\mathrm{FP}-\Phi}(\lambda) \stackrel{\text { def }}{=}\left|\operatorname{Pr}\left[\operatorname{Expt}_{F P-\Phi, \Pi, \mathcal{A}}^{\mathrm{real}}(\lambda)=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{F \mathrm{P}-\Phi, \Pi, \mathcal{A}}^{\text {rand }}(\lambda)=1\right]\right| \leq \nu(\lambda),
$$

[^4]where for each mode $\in\{$ real, rand $\}$ and $\lambda \in \mathbb{N}$ the experiment $\operatorname{Expt}_{F P-\Phi, \Pi, \mathcal{A}}^{\text {mode }}(\lambda)$ is defined as follows:

1. $(\mathrm{pp}, \mathrm{msk}) \leftarrow \operatorname{Setup}\left(1^{\lambda}\right)$.

2. Output b.

In addition, such a scheme is statistically k-source function private if the above holds for any computationally-unbounded k-source $\Phi_{<d}^{\text {poly }}$ function privacy adversary making a polynomial number of queries to the RoR ${ }^{\mathrm{FP}-\Phi}$ oracle.

Correlated RoR ${ }^{\text {FP- } \Phi}$ queries. Definition 5.1 extends to adversaries that query the RoR ${ }^{\text {FP- } \Phi}$ oracle on T correlated queries. A scheme Π is said to be (T, k)-source (resp. (T, k)-block-source) function private if each query $\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{T}\right)$ of a joint distribution over T polynomials is a (T, k)-source (resp. (T, k)-block-source).

Constructing function-private predicate encryption schemes supporting polynomial evaluation. Given a subspace membership encryption scheme (Setup, KeyGen, Enc, Dec) with parameters $m=d$ and $\ell=2 d-1$, we can construct a predicate encryption scheme for $\Phi_{<d}^{\text {poly }}$ as follows (for simplicity, we consider the instructive case $d=3$ and subsequently explain how our technique generalizes):

- Setup: The Setup algorithm remains unchanged.
- Encryption: To encrypt a message M for the attribute $x \in \mathbb{S}$, the encryption algorithm sets $\mathbf{x}=\left(x^{4}, x^{3}, x^{2}, x, 1\right)^{\top}$ and outputs the ciphertext $\operatorname{Enc}(\mathrm{pp}, \mathbf{x}, \mathrm{M})$.
- Key generation: To generate a secret key corresponding to the polynomial $p=p_{2} \cdot x^{2}+$ $p_{1} \cdot x+p_{0}$, the key-generation algorithm constructs a vector $\mathbf{p}=\left(p_{2}, p_{1}, p_{0}\right)^{\top} \in \mathbb{S}^{3}$. Next, it "blinds" the polynomial $p(x)$ with two linear polynomials $r(x)=r_{1} \cdot x+r_{0}$ and $s(x)=s_{1} \cdot x+s_{0}$ and computes the coefficients of the polynomial $p(x) \cdot r(x) \cdot s(x)$. The coefficients $r_{1}, r_{0}, s_{1}, s_{0}$ are sampled independently and uniformly at random from \mathbb{S}. The key generation algorithm repeats this step with two more sets of polynomials (we refer to them as "randomizing" polynomials) $r^{\prime}(x), s^{\prime}(x)$ and $r^{\prime \prime}(x), s^{\prime \prime}(x)$ whose coefficients are also sampled uniformly at random. It constructs

$$
\begin{align*}
& \mathbf{W}=\left[\begin{array}{c}
\text { - coefficients of } p(x) \cdot r(x) \cdot s(x) \text { - } \\
\text { - coefficients of } p(x) \cdot r^{\prime}(x) \cdot s^{\prime}(x) \text { - } \\
\text { - coefficients of } p(x) \cdot r^{\prime \prime}(x) \cdot s^{\prime \prime}(x) \text { - }
\end{array}\right] \in \mathbb{S}^{3 \times 5} . \tag{5.1}\\
& =\left[\begin{array}{ccccc}
p_{2} r_{1} s_{1} & p_{2} r_{1} s_{0}+p_{2} r_{0} s_{1} & p_{2} r_{0} s_{0}+p_{1} r_{1} s_{0} & p_{1} r_{0} s_{0}+p_{0} r_{0} s_{1} & p_{0} r_{0} s_{0} \\
& +p_{1} r_{1} s_{1} & +p_{1} r_{0} s_{1}+p_{0} r_{1} s_{1} & +p_{0} r_{1} s_{0} & \\
& & & & \\
p_{2} r_{1}^{\prime} s_{1}^{\prime} & p_{2} r_{1}^{\prime} s_{0}^{\prime}+p_{2} r_{0}^{\prime} s_{1}^{\prime} & p_{2} r_{0}^{\prime} s_{0}^{\prime}+p_{1} r_{1}^{\prime} s_{0}^{\prime} & p_{1} r_{0}^{\prime} s_{0}^{\prime}+p_{0} r_{0}^{\prime} s_{1}^{\prime} & p_{0} r_{0}^{\prime} s_{0}^{\prime} \\
& +p_{1} r_{1}^{\prime} s_{1}^{\prime} & +p_{1} r_{0}^{\prime} s_{1}^{\prime}+p_{0} r_{1}^{\prime} s_{1}^{\prime} & +p_{0} r_{1}^{\prime} s_{0}^{\prime} & \\
& & & \\
p_{2} r_{1}^{\prime \prime} s_{1} & p_{2} r_{1}^{\prime \prime} s_{0}+p_{2} r_{0}^{\prime \prime} s_{1} & p_{2} r_{0}^{\prime \prime} s_{0}+p_{1} r_{1}^{\prime \prime} s_{0} & p_{1} r_{0}^{\prime \prime} s_{0}+p_{0} r_{0}^{\prime \prime} s_{1} & p_{0} r_{0}^{\prime \prime} s_{0}
\end{array}\right] .
\end{align*}
$$

The algorithm then runs KeyGen(msk, W) and outputs skw.

- Decryption: The decryption algorithm remains unchanged.

Correctness and attribute hiding. Given a ciphertext c for attribute x and a secret key for polynomial p, if $p(x)=0$ then it follows that $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$. If $\mathbf{W} \cdot \mathbf{x}=\mathbf{0}$, then x is a root of polynomials $p \cdot r \cdot s, p \cdot r^{\prime} \cdot s^{\prime}$, and $p \cdot r^{\prime \prime} \cdot s^{\prime \prime}$ which implies that x is a root of $p(x)$ with overwhelming probability over the choices of polynomials $r, r^{\prime}, r^{\prime \prime}, s, s^{\prime}, s^{\prime \prime} \in \mathbb{S}[\mathrm{X}] .{ }^{5}$ The attribute hiding property of the scheme follows in a fairly straightforward manner from the attribute hiding property of the subspace membership encryption scheme.

Function privacy. We show that with overwhelming probability over the choices of the randomizing polynomials: (a) if the coefficients of p, namely (p_{2}, p_{1}, p_{0}) are sampled from a k-source, then \mathbf{W} is distributed according to a $(5, k)$-block source, and (b) if the coefficients of p are sampled uniformly at random from \mathbb{S}^{3}, then \mathbf{W} is distributed uniformly over $\mathbb{S}^{3 \times 5}$. Given the above two claims, a straightforward reduction allows us to simulate a RoR ${ }^{\mathrm{FP}-\Phi}$ oracle given access to a RoR oracle for the subspace membership predicate with parameters $m=3$ and $\ell=5$. Thus, we can state the following theorem.

Theorem 5.2. If $\mathcal{S M}$ is a subspace membership encryption scheme with parameters $m=3$ and $\ell=$ 5 that satisfies function privacy against ($5, k$)-block-source adversaries, then the predicate encryption scheme for the class of predicates $\Phi_{<3}^{\text {poly }}$ constructed above is statistically function private against k source adversaries.

Applying Theorem 4.1 for adversaries that query the RoR ${ }^{\text {FP }}$ oracle with T correlated queries immediately gives us the following corollary.

Corollary 5.3. Given any large attribute space inner-product encryption scheme with $\ell=3$, there exists a predicate encryption scheme for the class of predicates $\Phi_{<3}^{\mathrm{poly}}$ that is statistically functionprivate against (T, k)-block-sources for any $T=\operatorname{poly}(\lambda)$ and $k \geq \log |\mathbb{S}|+\omega(\log \lambda)$.

Proof of claims (a) and (b). Consider the first column $\mathbf{w}_{1}=\left(p_{2} r_{1} s_{1}, p_{2} r_{1}^{\prime} s_{1}^{\prime}, p_{2} r_{1}^{\prime \prime} s_{1}^{\prime \prime}\right)^{\top}$. We observe that over choices of s_{1}, s_{1}^{\prime}, and $s_{1}^{\prime \prime}$, the column \mathbf{w}_{1} is distributed uniformly over \mathbb{S}^{3}. The second column \mathbf{w}_{2} is also distributed uniformly at random by noting that the elements $p_{2} r_{1} s_{0}$, $p_{2} r_{1}^{\prime} s_{0}^{\prime}$, and $p_{2} r_{1}^{\prime \prime} s_{0}^{\prime \prime}$ are distributed uniformly in \mathbb{S}^{3} over choices of r_{1}, r_{1}^{\prime}, and $r_{1}^{\prime \prime}$ (which are themselves information theoretically hidden in \mathbf{w}_{1}). An identical argument shows that over choices of r_{0}, r_{0}^{\prime}, and $r_{0}^{\prime \prime}$, and s_{0}, s_{0}^{\prime}, and $s_{0}^{\prime \prime}$, the fourth and fifth columns, \mathbf{w}_{4} and \mathbf{w}_{5}, are distributed uniformly in \mathbb{S}^{3}. This is true even conditioned on all the other columns. It suffices to show that conditioned on $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}$, and \mathbf{w}_{5}, column \mathbf{w}_{3} has entropy at least $\log |\mathbb{S}|+\omega(\log \lambda)$.

We re-write \mathbf{w}_{3} as $\mathbf{R} \cdot \mathbf{p}$ where

$$
\mathbf{R}=\left[\begin{array}{ccc}
r_{0} s_{0} & r_{1} s_{0}+r_{0} s_{1} & r_{1} s_{1} \tag{5.2}\\
r_{0}^{\prime} s_{0}^{\prime} & r_{1}^{\prime} s_{0}^{\prime}+r_{0}^{\prime} s_{1}^{\prime} & r_{1}^{\prime} s_{1}^{\prime} \\
r_{0}^{\prime \prime} s_{0}^{\prime \prime} & r_{1}^{\prime \prime} s_{0}^{\prime \prime}+r_{0}^{\prime \prime} s_{1}^{\prime \prime} & r_{1}^{\prime \prime} s_{1}^{\prime \prime}
\end{array}\right] \in \mathbb{S}^{3 \times 3} .
$$

With overwhelming probability over random choices of all the coefficients in the polynomials r, $s, r^{\prime}, s^{\prime}, r^{\prime \prime}$, and $s^{\prime \prime}$, the matrix \mathbf{R} is full-rank over \mathbb{S}. Therefore, the distribution of \mathbf{w}_{3} has a one-one correspondence with the distribution of \mathbf{p}. Therefore, \mathbf{w}_{3} has entropy at least k even given \mathbf{R} if p is sampled from a k-source and \mathbf{w}_{3} is uniform over \mathbb{S}^{3} even given \mathbf{R} if p is sampled uniformly from \mathbb{S}^{3}. This concludes the proof of claims (a) and (b).

[^5]A general technique for $\boldsymbol{\Phi}_{<d}^{\text {poly }}$. As stated earlier, we can construct predicate encryption for the class of predicates $\Phi_{<d}^{\text {poly }}$ starting with a subspace membership encryption scheme with parameters $m=d$ and $\ell=2 d-1$. The main idea in extending beyond $d=3$ is to construct d randomized "blindings" of $p(x)$. For $i \in[d]$, the $i^{\text {th }}$ row of \mathbf{W} now comprises coefficients of a polynomial $p(x) \cdot r_{i, 1}(x) \cdots r_{i, d-1}(x)$ where each of the $r_{i, j}(x)$'s are random linear polynomials sampled as $r(x)$ and $s(x)$ are sampled in the $d=3$ construction. The details of our construction are as follows.

- Setup: The Setup algorithm remains unchanged.
- Encryption: To encrypt a message M for the attribute $x \in \mathbb{S}$, the encryption algorithm sets $\mathbf{x}=\left(x^{2 d-1}, x^{2 d-2}, \ldots, x, 1\right)^{\top}$ and outputs the ciphertext $\operatorname{Enc}(\mathrm{pp}, \mathbf{x}, \mathrm{M})$.
- Key generation: To generate a secret key corresponding to the polynomial $p=p_{d-1} x^{d-1}+$ $\cdots+p_{1} x+p_{0}$, the key-generation algorithm constructs a vector $\mathbf{p}=\left(p_{d-1}, \ldots, p_{1}, p_{0}\right) \in \mathbb{S}^{d}$. Next, it samples $d(d-1)$ linear polynomials $r_{i, j}(x)=r_{i, j, 1} \cdot x+r_{i, j, 0}$ where each $\left(r_{i, j, 0}, r_{i, j, 1}\right) \leftarrow \mathbb{S}^{2}$ for $i \in[d]$ and $j \in[d-1]$. It constructs the $i^{\text {th }}$ row of $\mathbf{W} \in \mathbb{S}^{d \times(2 d-1)}$ as the $2 d-1$ coefficients of $p(x) \cdot r_{i, 1}(x) \cdots r_{i, d-1}(x)$. In other words,

$$
\mathbf{W}=\left[\begin{array}{c}
-p(x) \cdot r_{1,1}(x) \cdots r_{1, d-1}(x)- \tag{5.3}\\
-p(x) \cdot r_{2,1}(x) \cdots r_{2, d-1}(x)- \\
\vdots \\
-p(x) \cdot r_{d, 1}(x) \cdots r_{d, d-1}(x)-
\end{array}\right] \in \mathbb{S}^{d \times(2 d-1)} .
$$

The algorithm then runs KeyGen(msk, W) and outputs skw.

- Decryption: The decryption algorithm remains unchanged.

Correctness and attribute hiding follow in a straightforward fashion. To satisfy corresponding claims (a) and (b) as in the $d=3$ case above, we note that $2(d-1)$ freshly random elements $r_{i, j, 0}$ and $r_{i, j, 1}$ (for $j \in[d-1]$) implies that columns \mathbf{w}_{1} through \mathbf{w}_{d-1} and \mathbf{w}_{d+1} through $\mathbf{w}_{2 d-1}$ are each uniformly and independently distributed in \mathbb{S}^{d}. As in the $d=3$ case above, the final column \mathbf{w}_{d} can be written as $\mathbf{R} \cdot \mathbf{p}$ for an appropriate matrix $\mathbf{R} \in \mathbb{S}^{d \times d}$ which is full-rank over \mathbb{S} with overwhelming probability over the choices of $r_{i, j, 0}$'s and $r_{i, j, 1}$'s (along the lines of the matrix in Equation (5.2)). Therefore, we conclude that the distribution of \mathbf{w}_{d} has a one-one correspondence with the distribution of \mathbf{p} completing the proof of the claims. Thus we can state the following corollary for the more general case.

Corollary 5.4. For degree $d \in \mathbb{N}$, given any large attribute space inner-product encryption scheme with $\ell=2 d-1$, there exists a predicate encryption scheme for the class of predicates $\Phi_{<d}^{\text {poly }}$ that is function private against (T, k)-block-sources for any $T=\operatorname{poly}(\lambda)$ and $k \geq \log |\mathbb{S}|+\omega(\log \lambda)$.

Comparing entropy requirements. In Definition 5.1, Corollary 5.3, and Corollary 5.4, it suffices to consider function-privacy adversaries that query the "real-or-random" oracle with polynomials whose coefficients come from a k-source. We do not require the sources have conditional min-entropy in contrast to subspace membership function privacy (see Definition 3.3 and the discussion in Section 3). The reason this weaker restriction on $\Phi_{<d}^{\text {poly }}$ function-privacy adversaries suffices when it does not suffice against subspace membership function-privacy adversaries is that the class of predicates $\Phi_{<d}^{\text {poly }}$ offers a weaker functionality than is offered by subspace membership. In particular, if the adversary evaluates ciphertexts with attributes corresponding to "ill-formed" non-Vandermonde vectors, i.e., vectors not of the form ($1, x, x^{2}, \ldots$), correctness of decryption is
not guaranteed and the particular attack outlined in Section 3 fails. It is easy to see this in our construction as well-the randomizing polynomials ensure correctness only holds when the subspace membership predicate is evaluated on Vandermonde vectors.

5.2 Function-Private IBE with Minimal Unpredictability

As discussed in Section 1.1, the IBE schemes of Boneh et al. [BRS13] are function private only for identity distributions with min-entropy at least $\lambda+\omega(\log \lambda)$. However, the only inherent restriction required for a meaningful notion of security is that identity distributions have min-entropy $\omega(\log \lambda)$. In this section, starting with predicate encryption schemes for polynomial evaluation constructed in Section 5.1, we construct an IBE scheme satisfying function privacy with only a super-logarithmic min-entropy restriction on identity distributions.

Scheme. Consider a predicate encryption scheme for the class of linear predicates $\Phi_{<2}^{\text {poly }}$ comprising algorithms (Setup, KeyGen, Enc, Dec). From Section 5.1, such a predicate encryption scheme can be built from any underlying subspace membership scheme for parameters $m=2$ and $\ell=3$. Given such a scheme, we construct an IBE scheme $\mathcal{I B E}{ }^{\text {OPT }}$ for the space of identities \mathbb{S} as follows.

- Setup: On input 1^{λ}, the IBE setup algorithm runs Setup $\left(1^{\lambda}\right)$ to receive (pp, msk) and publishes pp.
- Key generation: On input msk and an identity id $\in \mathbb{S}$, the key generation algorithm constructs a (randomized) polynomial $p_{\mathrm{id}}(x)$ such that $p_{\mathrm{id}}(x)=0$ if and only if $x=$ id as follows. The algorithm samples uniform $r \leftarrow \mathbb{S}$ and computes $p_{\text {id }}(x)=r(x-\mathrm{id})$. It then runs the underlying KeyGen algorithm to output skid $\leftarrow \operatorname{KeyGen}\left(m s k, p_{\text {id }}\right)$.
- Encryption: On input pp, an identity id, and a message M, the encryption algorithm computes Enc(pp, id, M).
- Decryption: On input pp, a ciphertext c, and a secret key sk, the decryption algorithm simply computes the underlying decryption algorithm to output $\mathrm{M} \leftarrow \operatorname{Dec}(\mathrm{pp}, \mathrm{sk}, c)$.

Correctness of the IBE scheme follows from the correctness of the underlying $\Phi_{<2}^{\text {poly }}$-predicate encryption scheme. Data privacy and anonymity of the IBE scheme (see Definition 2.5) follows directly from the attribute hiding property of the underlying $\Phi_{<2}^{\text {poly }}$-predicate encryption scheme. In the theorem that follows, we prove that $\mathcal{I B E}{ }^{\mathrm{OPT}}$ is function-private against minimally unpredictable sources.

Theorem 5.5. Given any large attribute space inner-product encryption scheme for dimension $\ell=3$, there exists an IBE scheme function private against (T, k)-block-sources for any $T=\operatorname{poly}(\lambda)$ and $k \geq \omega(\log \lambda)$.

Proof outline. For simplicity, consider adversaries that query the real-or-random oracle with k sources (i.e., $T=1$). As outlined in Section 5.1 we first construct a predicate encryption scheme for $\Phi_{<2}^{\text {poly }}$ that is function private against k^{\prime}-sources for $k^{\prime} \geq \log |\mathbb{S}|+\omega(\log \lambda)$. We instantiate $\mathcal{I B E} \mathcal{B P T}^{\text {OPT }}$ described above with this predicate encryption scheme.

The proof proceeds by showing that RoR ${ }^{\text {FP-IBE }}$ queries (see Definition 2.6) ID can be compiled to distributions over coefficients of linear polynomials $\mathbf{P}=\left(P_{1}, P_{0}\right)$ such that if $\mathbf{H}_{\infty}(I D)=k$, then $\mathbf{H}_{\infty}(\mathbf{P})=k+\log |\mathbb{S}|$. This allows us to simulate a RoR ${ }^{\text {FP-IBE }}$ oracle given an oracle RoR ${ }^{\mathrm{FP}-\Phi}$ for linear polynomials thus showing that $\mathcal{I B E}{ }^{\mathrm{OPT}}$ is function-private against k-sources if the encryption scheme for $\Phi_{<2}^{\text {poly }}$ is function-private against k^{\prime}-sources.

Proof. We prove Theorem 5.5 first for k-source adversaries and show that our ideas extend to (T, k)-block-sources in a straightforward fashion.

From Corollary 5.4 (for $T=1$), given an inner-product encryption scheme for $\ell=3$, we can construct a predicate encryption scheme for the class of predicates $\Phi_{<2}^{\text {poly }}$ that is function private against k^{\prime}-sources for $k^{\prime} \geq \log |\mathbb{S}|+\omega(\log \lambda)$. We instantiate the IBE scheme $\mathcal{I B E}{ }^{\text {OPT }}$ with this predicate encryption scheme for $\Phi_{<2}^{\text {poly }}$. To prove Theorem 5.5, it suffices to show that if the predicate encryption scheme is function private against k^{\prime}-sources, then $\mathcal{I B E}{ }^{\mathrm{OPT}}$ is function private against k-sources.

Given a k-source function privacy adversary \mathcal{A} against $\mathcal{I B E}{ }^{\mathrm{OPT}}$, we construct a k^{\prime}-source function privacy adversary \mathcal{B} against the $\Phi_{<2}^{\text {poly }}$-predicate encryption scheme as follows. The algorithm \mathcal{B} receives pp from the predicate encryption challenger and forwards the public parameters to \mathcal{A}. To answer KeyGen queries from \mathcal{A}, on input id, the algorithm samples uniform $r \leftarrow \mathbb{S}$ and constructs $p_{\text {id }}=r(x-\mathrm{id})$ honestly as in the real scheme. It queries the key generation oracle of the predicate encryption challenger with $p_{i d}$ to receive $\mathrm{sk}_{p_{\mathrm{id}}}=\mathrm{sk} \mathrm{k}_{\mathrm{id}}$. It answers key generation queries with $\mathrm{sk} \mathrm{k}_{\mathrm{id}}$.

Queries to the RoR ${ }^{\text {FP-IBE }}$ oracle are answered as follows. Given as a query a distribution $I D$ over the identity space, algorithm \mathcal{B} constructs the following (joint) distribution $\mathbf{P}=\left(P_{1}, P_{0}\right)$ over \mathbb{S}^{2}. P_{1} samples a uniform $r \leftarrow \mathbb{S}$ and P_{0} samples id $\leftarrow I D$ and outputs r. id. Algorithm \mathcal{B} forwards \mathbf{P} to the RoR ${ }^{\mathrm{FP}-\Phi}$ oracle and receives sk. It forwards sk to the adversary. This completes the description of how \mathcal{B} simulates the adversary.

Observe that the public parameters are distributed correctly and key generation queries of \mathcal{A} are answered honestly. To complete the proof, it suffices to show that if $I D$ is a k-source over $\mathcal{I D}$, then \mathbf{P} is a k^{\prime}-source over \mathbb{S}^{2} and if $I D$ is uniform over $\mathcal{I D}$, then \mathbf{P} is also uniform over \mathbb{S}^{2}.

To see the former, note that P_{1} samples r uniformly and independently of $I D$. Therefore $\mathbf{H}_{\infty}\left(P_{1}\right)=\log |\mathbb{S}|$. Also, $\mathbf{H}_{\infty}\left(P_{0} \mid P_{1}\right)=\mathbf{H}_{\infty}(I D)=k \geq \omega(\log \lambda)$. Thus, the min-entropy $k^{\prime}=$ $\mathbf{H}_{\infty}(\mathbf{P})=\mathbf{H}_{\infty}\left(P_{1}\right)+\mathbf{H}_{\infty}\left(P_{0} \mid P_{1}\right) \geq \log |\mathbb{S}|+\omega(\log \lambda)$ as required. The latter result, when $I D$ is uniform over $\mathcal{I D}$ also follows in an identical manner.

Therefore, we conclude that if \mathcal{B} is interacting with $\operatorname{RoR}^{\mathrm{FP}-\Phi}$ in mode $=$ real, then it simulates \mathcal{A} 's interaction with RoR ${ }^{\text {FP-IBE }}$ in mode $=$ real. And correspondingly with mode $=$ rand. Thus, it holds that the function-privacy advantages of algorithms \mathcal{A} and \mathcal{B} in their respective games are identical. This completes the proof of Theorem 5.5 for k-sources.

The proof presented here extends easily to consider (T, k)-block-sources. Now queries to the RoR ${ }^{\text {FP-IBE }}$ oracle are joint distributions $\boldsymbol{I} \boldsymbol{D}$ over T identities (see Definitions 2.6-2.8) and as above, algorithm \mathcal{B} constructs a distribution over T polynomials $\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{T}\right)$ with independent and uniform r 's. Along the lines discussed above, from Corollary 5.4, it suffices to show that if $\boldsymbol{I} \boldsymbol{D}$ is a (T, k)-block-source over $\mathcal{I D}{ }^{T}$, then $\left(\mathbf{P}_{1}, \ldots, \mathbf{P}_{T}\right)$ is a (T, k)-block-source over $\left(\mathbb{S}^{2}\right)^{T}$. This follows in a straightforward fashion via the same argument presented above for k-sources and completes the proof of Theorem 5.5.

Fully-secure function-private IBE. Current constructions of inner-product encryption schemes [KSW08, AFV11] satisfy a selective notion of security where the challenge attributes are chosen by the adversary before seeing the public parameters. Our transformation of inner-product encryption schemes to function-private IBE schemes with minimal unpredictability is not limited to selective security. Starting from an inner-product encryption scheme satisfying an adaptive version of attribute hiding, we can construct fully-secure IBE schemes. We also note that the standard complexity leveraging approach (see [BB11, Section 7.1]) gives a generic transformation from selectively-secure IBE to fully-secure IBE. This approach does not modify the key generation algorithm and therefore preserves function privacy.

5.3 Disjunction and Conjunctions

Disjunctions. For elements $a_{1}, \ldots, a_{d} \in \mathbb{S}$, a disjunction of equality predicates

$$
\begin{equation*}
\mathrm{D}(x)=\left(x=a_{1}\right) \vee\left(x=a_{2}\right) \vee \cdots \vee\left(x=a_{d}\right) \tag{5.4}
\end{equation*}
$$

can be written as a polynomial-evaluation scheme for the degree d polynomial

$$
p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{d}\right),
$$

which evaluates to 0 if and only if the disjuction of predicates evaluates to true. We can therefore implement disjunctions of d predicates using a predicate encryption scheme for $\Phi_{<d+1}^{\text {poly }}$. A meaningful notion of function privacy (along the lines of Definition 5.1) that can be satisfied by our construction requires that secret keys corresponding to disjunctions $\left(x=a_{1}\right) \vee\left(x=a_{2}\right) \vee \cdots \vee\left(x=a_{d}\right)$ are indistinguishable from secret keys corresponding to uniformly chosen degree d polynomials as long as the vector of coefficients in $p(x)$

$$
\mathbf{p}=\left(\begin{array}{llll}
1, & a_{1}+\cdots+a_{d}, & \sum_{i \neq j} a_{i} a_{j}, & \cdots, \\
\prod_{i=1}^{d} a_{i}
\end{array}\right) \in \mathbb{S}^{d+1}
$$

comes from a distribution with (joint) min-entropy at least $\log |\mathbb{S}|+\omega(\log \lambda)$.
Conjunctions of polynomials. Subspace membership encryption schemes also allow us to construct predicate encryption schemes where the predicates comprise N conjunctions and are of the form $\mathrm{D}_{1}(x) \wedge \mathrm{D}_{2}(x) \wedge \cdots \wedge \mathrm{D}_{N}(x)$. Here, for $i \in N$, each D_{i} is a disjunction as in Equation (5.4).

We first construct N degree- d polynomials $p_{1}(x), \ldots, p_{N}(x)$ as in the case for disjunctions. The setup and encryption algorithms remain as before. The key generation algorithm is modified slightly. For every $i \in[N]$, it constructs a matrix $\mathbf{W}_{i} \in \mathbb{S}^{d \times(2 d-1)}$ as in Equation (5.3) and sets

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\vdots \\
\mathbf{W}_{N}
\end{array}\right]
$$

The algorithm then runs KeyGen(msk, W) to output skw.
Working through an argument identical to the ones presented in Section 5.1, a meaningful notion of function privacy that is satisfied by this construction requires that secret keys corresponding to conjunctions are indistinguishable from secret keys corresponding to uniformly chosen matrices \mathbf{W} as long as the vector of coefficients in

$$
\left(p_{1,0}, \ldots, p_{1, d-1}, p_{2,1}, \ldots, p_{2, d-1}, \ldots, p_{N, 1}, \ldots, p_{N, d-1}\right)
$$

come from a distribution with (joint) min-entropy at least $\log |\mathbb{S}|+\omega(\log \lambda)$. Here for $i \in[N]$ and $j \in\{0, \ldots, d-1\}, p_{i, j}$ are the coefficients of the polynomial $p_{i}(x)$ corresponding to the disjunction $\mathrm{D}_{i}(x)$.

6 Conclusions and Open Problems

Our work proposes subspace-membership encryption and constructs the first such function-private schemes from any inner-product encryption scheme. We also show its application to constructing function-private polynomial encryption schemes and function-private IBE schemes with minimal unpredictability. In this section, we discuss a few extensions and open problems that arise from this work.

Function privacy from computational assumptions. In this work we construct subspacemembership schemes that are statistically function private. Although the construction of innerproduct encryption schemes from lattices [AFV11] presents an immediate function-privacy attack, we were unable to find such attacks for the construction from composite-order groups [KSW08] (or its prime order variant [Fre10]). We conjecture that suitable "min-entropy" variants of the decisional Diffie-Hellman assumption [Can97] have a potential for yielding a proof of computational function privacy for these schemes.

Other predicates. A pre-cursor to the work on predicate encryption supporting inner-products was work on predicate encryption supporting comparison and range queries by Boneh and Waters [BW07]. They achieve this by constructing predicate encryption supporting an interesting primitive, denoted Hidden-Vector Encryption (HVE). Briefly, in HVE, attributes correspond to vectors over an alphabet Σ and secret keys correspond to vectors over the augmented alphabet $\Sigma \cup\{\star\}$. Decryption works if the attributes and secret key match for every coordinate that is not a \star.

HVE can be implemented using inner-product encryption schemes [KSW08] but it breaks function privacy in a rather trivial manner. Formalizing function privacy for HVE does not immediately follow from the notion of function privacy for inner-products because of the role played by \star. The questions of formalizing function privacy (which in turn will imply realistic notions also for encryption supporting range and comparison queries) and designing function-private HVE schemes are left as open problems. It is also open to formalize security and design function-private encryption schemes that support multivariate polynomial evaluation.

Enhanced function privacy. A stronger notion of function privacy, denoted enhanced function privacy [BRS13], asks that an adversary learn nothing more than the minimum necessary from a secret key even given corresponding ciphertexts with attributes that allow successful decryption. Constructing enhanced function-private schemes for subspace membership and inner products is an interesting line of research that may require new ideas and techniques.

Acknowledgements

This work was supported by NSF, the DARPA PROCEED program, an AFO SR MURI award, a grant from ONR, an IARPA project provided via DoI/NBC, and by Samsung. Opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA or IARPA. Distrib. Statement "A:" Approved for Public Release, Distribution Unlimited.

References

[$\left.\mathrm{ABC}^{+} 08\right]$ M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. Journal of Cryptology, 21(3):350-391, 2008.
[ABN10] M. Abdalla, M. Bellare, and G. Neven. Robust encryption. In Proceedings of the 7th Theory of Cryptography Conference, pages 480-497, 2010.
[AFV11] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from learning with errors. In Advances in Cryptology - ASIACRYPT '11, pages 21-40, 2011.
$\left[\mathrm{AGV}^{+} 13\right]$ S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives and lower bounds. To appear in Advances in Cryptology - CRYPTO '13. Available as Cryptology ePrint Archive, Report 2012/468, 2013.
[BB11] D. Boneh and X. Boyen. Efficient selective identity-based encryption without random oracles. Journal of Cryptology, 24(4):659-693, 2011.
$\left[\mathrm{BCO}^{+} 04\right]$ D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In Advances in Cryptology-EUROCRYPT '04, pages 506-522, 2004.
[BF03] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM Journal on Computing, 32(3):586-615, 2003. Preliminary version in Advances in Cryptology - CRYPTO '01, pages 213-229, 2001.
[BO12] M. Bellare and A. O'Neill. Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition. Cryptology ePrint Archive, Report 2012/515, 2012.
[BRS13] D. Boneh, A. Raghunathan, and G. Segev. Function-private identity-based encryption: Hiding the function in functional encryption. To appear in Advances in Cryptology CRYPTO '13. Available as Cryptology ePrint Archive, Report 2013/283, 2013.
[BSNS08] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search revisited. In Proceedings on the International Conference Computational Science and Its Applications, pages 1249-1259, 2008.
[BSW11] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Proceedings of the 8th Theory of Cryptography Conference, pages 253-273, 2011.
[BW07] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In Proceedings of the 4 th Theory of Cryptography Conference, pages 535-554, 2007.
[Can97] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information. In Advances in Cryptology - CRYPTO '97, pages 455-469, 1997.
[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM Journal on Computing, 17(2):230-261, 1988.
[CKR $\left.{ }^{+} 09\right]$ J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and anonymous identitybased encryption and authorised private searches on public key encrypted data. In Proceedings of the 12th International Conference on Practice and Theory in Public Key Cryptography, pages 196-214, 2009.
[CV08] K.-M. Chung and S. P. Vadhan. Tight bounds for hashing block sources. In APPROXRANDOM, pages 357-370, 2008.
[Fre10] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In Advances in Cryptology - EUROCRYPT '10, pages 44-61, 2010.
[GKP ${ }^{+}$13] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Succinct functional encryption and applications: Reusable garbled circuits and beyond. To appear in Proceedings of the 45 th Annual ACM Symposium on the Theory of Computing. Available as Cryptology ePrint Archive, Report 2012/733, 2013.
[GSW04] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword search over encrypted data. In Proceedings of the 2nd International Conference on Applied Cryptography and Network Security, pages 31-45, 2004.
[GVW12] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption with bounded collusions via multi-party computation. In Advances in Cryptology - CRYPTO '12, pages 162-179, 2012.
[HIL $\left.{ }^{+} 99\right]$ J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364-1396, 1999.
[KSW08] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In Advances in Cryptology - EUROCRYPT '08, pages 146-162, 2008.
[O'N10] A. O'Neill. Definitional issues in functional encryption. IACR Cryptology ePrint Archive, Report 2010/556, 2010.
[$\left.\mathrm{SBC}^{+} 07\right]$ E. Shi, J. Bethencourt, H. T.-H. Chan, D. Song, and A. Perrig. Multi-dimensional range query over encrypted data. In IEEE Symposium on Security and Privacy, pages 350-364, 2007.
[Sha84] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology - CRYPTO '84, pages 47-53, 1984.
[SSW09] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In Proceedings of the 6th Theory of Cryptography Conference, pages 457-473, 2009.
[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica, 16(4/5):367-391, 1996.

[^0]: *Stanford University, Stanford, CA 94305, USA. Email: dabo@cs.stanford.edu.
 ${ }^{\dagger}$ Stanford University, Stanford, CA 94305, USA. Email: ananthr@stanford.edu.
 ${ }^{\ddagger}$ Stanford University, Stanford, CA 94305, USA. Email: segev@stanford.edu.

[^1]: ${ }^{1}$ Note that by setting $m=1$ one obtains the notion of an inner-product encryption scheme [KSW08, Fre10, AFV11].

[^2]: ${ }^{2}$ Or equivalently, the columns of [$\left.\mathbf{W}_{1}\left|\mathbf{W}_{2}\right| \cdots \mid \mathbf{W}_{T}\right]$ are distributed according to a ($T \ell, k$)-block-source.

[^3]: ${ }^{3}$ We note here that a weaker version of Lemma 2.2 will suffice as the adversary's view does not include $\left(s_{1}, \ldots, s_{m}\right)$.

[^4]: ${ }^{4}$ We note here that a weaker version of Lemma 2.2 will suffice as the adversary's view does not include $s_{j, i}$ for $i \in[\ell]$ and $j \in[\tau]$.

[^5]: ${ }^{5}$ From a simple union bound over the events where three linear polynomials share a root, this probability works out to be $\geq 1-8 /|\mathbb{S}|^{2}$ which is indeed overwhelming.

