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Abstract

Delegation of signing rights is a central problem in security. Whereas delegating by giving
power of attorney is well studied and digitally realized via delegatable anonymous credentials,
directly delegating signing possibilities without the need for an external logic, can be done via
malleable signature schemes. However, the existing schemes do not allow for privacy preserving,
fine-grained malleability and they do not allow for a controlled way of further delegating the
malleability. We bridge this gap by introducing delegatable functional signatures (DFS).

We present the first construction of a DFS scheme. This construction is based on stan-
dard cryptographic primitives and shows that our strong unforgeability and privacy notions are
achievable for arbitrary efficiently computable forms of malleability and delegatability.

1 Introduction

Delegation of signing rights is a central problem in security. Under delegation of signing rights we
understand that one entity grants the rights to sign new documents or to modify already existing
signatures in its own name to a second entity. This entity can in turn again delegate the rights
further and so on.

An approach to delegating signing capabilities that is commonly used in everyday life is to give
power of attorney. The signer authorizes a third person to sign or modify certain documents in his
name. This approach is digitally realized via the versatile and well studied notion of delegatable
(anonymous) credentials. Valid credentials attest that a given entity has the rights and capabilities it
claims to have. If credentials are anonymous, this means that only the levels and types of delegation
have to be revealed, but not the intermediate entities.

An orthogonal approach is to make signatures malleable. The signer gives a third person, a so
called evaluator, a number of tools to modify signed documents by evaluating functions on them
without voiding the signature. For coarse-grained capabilities one could give blank paper with
signatures to another person or leave blank spaces in contracts. However, fine-grained malleability
is only possible in the digital world, as the concept of being able to apply only specific functions,
e.g., to be able to fill a blank space with one name but not with another, cannot be enforced on
paper.

There are two main differences between issuing credentials and providing malleability. The first
one is the privacy guarantee that the respective approach can offer. Authorizing a third party via
credential (even anonymously) means revealing the structure of the authorization chain, whereas a
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malleable signature can be modified without revealing that anyone but the signer was involved. In
practice, this is of particular interest, because it hides the internal operations in a company.

The second difference is, that classically, malleability cannot be further delegated in a controlled
manner whereas the owner of a credential can delegate (parts of) his power to another person. This
is a true shortcoming of malleable signature schemes. A malleable signature scheme that allowed
not only for fine-grained malleability, but also for fine-grained delegation of power would be useful
in many scenarios.

Imagine that the signer of a message can specify for this signature, which evaluator is allowed
to apply which functions without voiding the validity of the signature (Malleability). Moreover, the
signer can specify for this signature how the malleability can be delegated (Delegatability). This
way, the signer would retain full control over the signature.

An appealing property of a signature primitive that allows for controlled malleability and dele-
gation is that it still is a signature primitive. Any system that already uses digital signatures can be
extended with such a scheme by simply replacing the primitives. This means that such a powerful
signature scheme can seamlessly be integrated into already existing architectures.

However, so far, there is no signature primitive that captures both fine-grained malleability and
a controlled form of delegation. In this paper we close this gap by introducing delegatable functional
signatures.

1.1 Applications

This primitive has many applications and we sketch only two simple ones that illustrate its broad
application spectrum.

Signed Code. Consider one of the mayor players in the development of enterprise software solu-
tions, such as Oracle or SAP. A simple methodology to guarantee the authenticity of their code, is
to let Oracle sign (at least critical parts of) its software. Although this idea intuitively makes sense,
it is not practical, not even conceptually. The reason is that the software is extremely general: it
can be applied to the business processes of banks, car industry, telecommunication and many more.
In fact, whenever a company decides to use such a system, it needs to be configured and customized
for each customer. Since this is often done by third party companies or freelancers that obtained
the right to deploy the system, we envision a malleable signature for which Oracle specifies how the
signed code may be changed. After the software is deployed, it has to be maintained (e.g. modi-
fied slightly, to cope with small changes in the company’s business process). In some cases, these
enterprise solutions provide interfaces where the customers can adapt specific parts of the system
on their own. Thus, a controlled part of the malleability has to be delegatable. A regular signature
scheme is simply not sufficient, because of the delegation steps and also because of the individual
adjustment of each system.

With our primitive, however, the authenticity of the software can be verified, even if third parties
deploy it and even if the customer changes dedicated parts on his own. Our primitive allows Oracle
to specify a delegation policy that dictates how the third party company is allowed to adjust their
software without losing the validity of the signature. Since the signing and delegation process is
completely opaque to the outside, any customer of the company (that uses the Oracle solution),
would only learn that they are working with a verified version of Oracle enterprise solutions.

Digital Coupons. Coupon websites, such as Groupon, are currently up-and-coming. The business
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model is that companies want to increase their visibility by issuing digitally signed coupons for
cheaper services. Here, we envision a scenario where these companies apply a malleable signature
scheme that allows Groupon to modify the coupons in a certain way such as, e.g., to apply their
corporate design or to turn non-valid certificates into valid certificates if a certain number of orders
has been reached. Furthermore, Groupon delegates a different malleability to each (new) customer
who then is allowed to modify this coupon even further without voiding the validity. For example,
the customer may wish to hide that he purchased the (cheap) coupon through a website and not
directly from the company (which might be more expensive) or the coupon may allow the customer
to personalize an item (e.g., modify text on a T-Shirt) or choose between some alternatives. For
example, the purchaser of a coupon for a hotel may get to choose between a wellness or sport
activity. The customer might also want to change the name on the coupon and send it to a friend as
a gift without revealing the alternatives to this friend. The challenge in this setting arises from the
highly dynamic content, as new products and possibilities are developed regularly that might allow
new options for personalization. In particular, the company wants a dynamic scheme in which they
can specify per coupon to which degree its signature should be malleable.

With our primitive, the company can specify for every coupon what Groupon is allowed to do
in terms of modification and how the customers can modify the coupon without losing the validity
of the signature.

1.2 Our Contribution

We introduce delegatable functional signatures (DFS) as a new primitive that supports highly con-
trolled, fine-grained delegation of signing capabilities to designated third parties. First we will
explain our primitive, then we will briefly present our contribution in terms of a new security model
for signatures and finally we will show that constructing a DFS that fulfills the definitions of our
security model is possible.

Delegatable Functional Signatures. The basic idea of delegatable functional signatures is that
the signer can specify for each message individually how a designated party can perform the following
two tasks.

Malleability. The signer defines how the evaluator can modify the message without voiding its valid-
ity. We formalize this intuition by defining a functionality F(f, α,m). We explain the parameters
with the following example.

Example 1. Suppose that Alice wants to allow Bob to censor parts of a message that she signs.
Her choice of f describes the subsets of the message that can be censored by Bob without harming
the validity of the signature. Bob chooses the parts of the message he wishes to censor by choosing
the corresponding value for α, and he derives a signature on m′ = F(f, α,m).

Delegatability. The signer defines how the evaluator can delegate signing capabilities to third parties.
This is formalized by a functionality G(g, β, pk, f) and we explain it by continuing the example from
above.

Example 2. Suppose that Alice wants to restrict an evaluator Bob in delegating his capabilities. The
evaluator Bob owns a secret key corresponding to some public key pkB and can apply the function
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f to censor parts parts of the message m without voiding the validity of its signature (see above).
Now, suppose that Alice wants to allow Bob to only delegate the possibility to censor the first or
second part of the message and let us describe the corresponding functions with f1st. and f2nd.. Alice
chooses a value g such that G(g, β, pk, f) = f1st. for a specific value β = β1 and G(g, β, pk, f) = f2nd.
otherwise, for all pk 6= pkB. Now Bob can choose β to either delegate f1st. or f2nd..

Note that we do not need to define explicitly how signing capabilities for fresh messages can be
delegated with this primitive. If Alice wants to give Bob the capability to sign certain messages
in her name, she can simply generate a new (empty) message and use f and g to specify which
capabilities Bob has.

Security Model for DFS. Defining a proper security model turns out to be highly non-trivial due
to the flexibility of our primitive. In this paper we suggest new definitions for unforgeability and
privacy. The basic idea behind our unforgeability notions is, that an adversary should not be able
to forge signatures for new messages, aside from those that have been allowed by the signer. The
basic idea behind our privacy notions is that it should be hard to distinguish if a message-signature
pair has been computed by the signer or derived from another signature by an evaluator.

In both cases we present three different security notions for DFS schemes: The weakest one,
unforgeability/privacy against outsider attackers, holds only for attackers that do not have access
to the private key of an evaluator. The second one, unforgeability/privacy against insider attackers,
assumes that an evaluator is malicious and possesses a honestly generated evaluator key. The third
one, unforgeability/privacy against strong insider attackers assumes a malicious evaluator that might
generate its own keys.

Constructing a DFS scheme. Finally, we provide the first construction of a DFS scheme.
This construction is based on standard cryptographic primitives, such as digital signature schemes,
public key encryption, and non-interactive zero-knowledge proofs. Our scheme shows that our strong
definitions for unforgeability and privacy are achievable for arbitrary, efficiently computable, choices
of F and G.

1.3 Related Work

(Delegatable) Anonymous Credentials. In anonymous credential systems users can prove the
possession of a credential (that may grant a power of attorney) without revealing their identity. We
view this very successful line of research as orthogonal to our work: Credentials can be applied on
top of a signature scheme in order to prove properties that are specified in an external logic. In
fact, one could combine delegatable functional signatures with credentials in order to partially leak
the delegation chain, while allowing to issue or modify credentials in an anonymous but controlled
way.

Anonymous credential systems have been investigated extensively, e.g., [12, 13, 17, 18, 6, 19, 30,
16, 21]. The main difference between delegatable anonymous credential schemes, such as [5, 1], and
our approach is that delegation is done by extending the proof chain (and thus leaking information
about the chain). Restricting the properties of the issuer in a credential system has been considered
in [4]. However, they only focus on access control proofs and their proof chain is necessarily visible,
whereas our primitive allows for privacy-preserving schemes.
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Malleable Signature Schemes. Allowing a small degree of malleability for digital signatures has
been considered in many different ways. First we give an overview over schemes that do not consider
a special secret key for modifying signatures, which means that everyone with access to the correct
public key and one or more valid message-signature pairs can derive new valid message-signature
pairs. There are schemes that allow for redacting signatures [29, 27, 28, 14] that allow for deriving
valid signatures on parts (or subsets) of the message m. There are schemes that allow for deriving
subset and union relations on signed sets [27], linearly homomorphic signature schemes [23, 11] and
schemes that allow for evaluating polynomial functions [10]. Another line of research considers a
general approach for computing on authenticated data [2].

However, all approaches mentioned above only consider static functions or predicates (one func-
tion or predicate for every scheme) and leave the signer little room for bounding a class of functions
to a specific message. As the signatures can be modified by everyone with access to public informa-
tion, they do not allow for a concept of controlled delegation.

Sanitizable signature schemes [3, 15] extend the concept of malleable signatures by a new secret
key skSan for the evaluator. Only a party in possession of this key can modify signatures. In
general, this primitive allows the signer to specify which blocks of the message can be changed,
without restricting the possible content. However, they do not consider delegation and they do not
allow for computing arbitrary functions on signed data.

Anonymous Proxy Signatures [24] consider delegation of signing rights in a specific context. For
example, the delegator may choose a subset of signing rights for the tasks of quoting. Their notion of
privacy makes sure that all delegators remain anonymous. The main difference with our work is that
they only allow delegation on the basis of the keys and that they do not support restricting further
delegation, whereas we support restricting delegation capabilities depending on each message.

Constructing delegatable anonymous credentials out of malleable signatures has very recently
been investigated by Chase et al. [20]. However, the authors only consider one fixed set of allowable
transformations per malleable signature scheme and do not allow the signer to restrict malleability
(per message) nor does their system allow any way to restrict delegation.

1.4 Outline

As a warm up we first present functional signature schemes (without delegation) in Section 2 and
introduce unforgeability and privacy notions for functional signature schemes. In Section 3 we
present a formal definition for delegatable functional signatures, together with slightly modified
notions of unforgeability and privacy. In Section 5 we give the first construction of a delegatable
functional signature scheme for n-times delegation and prove it to be secure and privacy friendly.

2 Functional Signatures

As a warm up for our main result, and also to make our definitions more accessible, we introduce
functional signature schemes (FSS). A functional signature scheme for a specific functionality F
allows the delegation of signing capabilities for arbitrary functions that belong to F to a designated
third party, called the evaluator. A functional signature scheme already suffices for instantiating
many known signature schemes like rerandomizable signatures, identity based signatures, and cer-
tain forms of malleable signatures like, e.g., sanitizable and redactable signatures (namely all that
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proc Initialize(λ) :

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

(pkF , skF )← KGenF (pp,msk)
store (pp,msk, sksig, pksig, skF , pkF )

set KC := {(skF , pkF )}
set KA := ∅,Q := ∅
output (pp, pksig, pkF )

proc Query[KGenS]() :

retrieve (skF , pkF )

set KA := KA ∪ {pkF}
output skF

proc Query[Sign](pk∗F , f,m) :

if pk∗F 6∈ KC output ⊥
retrieve (pp, sksig)
σ ← Sig(pp, sksig, pk∗F , f,m)

set Q := Q∪ (f,m, pk∗F , σ)

output σ

proc Query[Eval](α,m, σ) :

retrieve (pp, skF , pksig)

σ′ ← EvalF (pp, skF , pksig, α,m, σ)

if σ′ 6= ⊥
extract f from σ using skF
set Q := Q∪ {f,F(λ, f, α,m), pkF , σ

′}
output σ′

proc Finalize(m∗, σ∗, pk∗F ) :

if (·,m∗, ·, ·) ∈ Q output 0

if (f,m, pk′F , ·) ∈ Q s.t.
pk′F ∈ KA ∧m∗ ∈ F∗(λ, f,m)

output 0

retrieve (pp, pksig)

b← Vf(pp, pksig, pk
∗
F ,m

∗, σ∗)

output b

proc Query[RegKey](sk∗F , pk
∗
F ) :

set KC := KC ∪ {(sk∗F , pk∗F )}
set KA := KA ∪ {pk∗F}

Figure 1: The unforgeability game for functional signature schemes.

work on one signature). Because of space constraints we only sketch how to construct an identity
based signature scheme in Appendix ?? and omit the other implications. Intuitively, in a functional
signature scheme the signer signs a message m and defines the class of functions f ⊆ F that can be
evaluated on m. The evaluator holds a secret key skF and can compute valid signatures on messages
m′ = fα(m), where α defines the evaluator’s choice of a specific function fα ∈ f .

2.1 Formal Definition

A functionality F : N × Pf × Pα ×M → M∪ {⊥} is a deterministic polynomial-time algorithm
that takes as input a security parameter λ, a function parameter f , a parameter α, and a payload
m. When signing a message m via an algorithm Sig, the signer can choose the public key of an
evaluator and a function parameter f . Thereafter the chosen evaluator can choose a value for α
and call an algorithm EvalF to compute valid signatures on messages F(λ, f, α,m).

Definition 1 (Functional Signature). A functional signature scheme FSS is a tuple of efficient
algorithms FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) with the following interfaces:

Setup(λ): The setup algorithm Setup outputs some public parameters pp and a master secret key
msk.

KGensig(pp,msk): The signature key generation algorithm outputs a secret signing key sksig and a
public signing key pksig.

KGenF (pp,msk): The evaluation key generation algorithm KGenF outputs a secret evaluator key
skF and a public evaluator key pkF .

Sig(pp, sksig,pkF , f,m): The signing algorithm Sig outputs a signature σ on m, to which the owner
of they secret key skF corresponding to pkF can apply functions from the class f (or an error
symbol ⊥).
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EvalF (pp, skF ,pksig, α,m, σ): The evaluation algorithm EvalF outputs a derived signature on the
message F(λ, f, α,m) (or an error symbol ⊥).

Vf(pp,pksig,pkF ,m, σ): The verification algorithm Vf outputs a bit b ∈ {0, 1} depending on the
validity of the signature.

We consider a functional signature scheme to be correct for a functionality F if the verification
succeeds for all honestly generated signatures and for all valid modifications of honestly generated
signatures.

Definition 2. (Correctness). We say that a functional signature scheme FSS = (Setup,KGensig,KGenF , Sig,
EvalF ,Vf) is F-correct for a functionality F , if for all λ ∈ N, all m ∈ M, α ∈ Pα and for all
(pp,msk) ∈ [Setup(λ)] and all (sksig, pksig) ∈ [KGensig(pp,msk)], and all (skF , pkF ) ∈ [KGenF (pp,msk)],
the following two properties hold:

1) Vf(pp, pksig, pkF ,m, Sig(pp, sksig, pkF , f,m)) = 1

2) F(λ, f, α,m) 6= ⊥ ∧ σ ← Sig(pp, sksig, pkF , f,m) ∧
σ′ ← EvalF (pp, skF , pksig, α,m, σ)⇒ Vf(pp, pksig, pkF ,F(λ, f, α,m), σ′) = 1.

2.2 Security of Functional Signature Schemes

In this section, we define unforgeability and sketch privacy. In the case of unforgeability we distin-
guish between outsider and insider attacks: In an outsider attack, the adversary only knows both
public keys, whereas an adversary launching an insider attack knows the private key of the evalua-
tor. Informally we say that a functional signature scheme provides privacy if it is computationally
hard to distinguish whether a signature was created by the signer or whether it was modified by
the evaluator. In the following subsections we discuss the intuition behind each definition in more
detail and provide formal definitions.

For the following security definitions we follow the concept of Bellare and Rogaway in defining
the security notions as a game G(FSS,F ,A, λ) [9]. Each game G behaves as follows: First, it invokes
an algorithm Initialize with the security parameter and sends its output to the algorithm A. Then
it simulates A with oracle access to all specified algorithms Query[x] that are defined for G. It also
allows A to call the algorithm Finalize once and ends as soon as Finalize is called. The output of
Finalize is a boolean value and is also the output of G. Note that G is allowed to maintain state.
We say that A “wins” the game if G(FSS,F ,A, λ) = 1.

2.2.1 Unforgeability

Intuitively, a functional signature scheme is unforgeable, if no adversary A is able to compute a
fresh message-signature pair that is not trivially deducible from the knowledge of A. In the case
of regular signature schemes this means that the attacker needs to compute a signature on a fresh
message. The situation here is more complex, because our signatures are malleable. Therefore, we
present three different unforgeability notions:

Unforgeability against outsider attacks. We model the outsider as an active adversary that
knows the public keys (pksig, pkF ) and has oracle access to both the Sig method and the EvalF
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algorithms. Our definition of unforgeability against outsider attacks resembles the traditional def-
inition of unforgeability for signature schemes [25], where the adversary knows the public-key and
has access to a signing oracle.

Unforgeability against (weak/strong) insider attacks. Our second definition considers the
case where the evaluator is malicious. We define two different notions depending on the capabilities
of the adversary. That is, our first definition that we call unforgeability against weak insider attacks
(or just insider attacks), gives the attacker access to a honestly generated private key skF . The
second notion allows the adversary to choose its own private key(s) maliciously. We refer to this
notion as unforgeability against strong insider attacks.

An insider that receives a signature σ on m that is delegated to him, can trivially deduce some
signatures. If σ allows the capability f , this insider can trivially produce signatures on all messages
that he can produce by (repeatedly) applying F on f and m with (possibly different) values for α.
We call the set of all messages that can be derived from m via the functionality F and the capability
f the transitive closure.

Definition 3. (Transitive closure of functionality F). Given a functionality F , we define the n-
transitive closure Fn of F on parameters (λ, f,m) recursively as follows:

• For n = 0, F0(λ, f,m) := {m}.

• For n > 0, Fn(λ, f,m) := {m}
⋃
α
Fn−1(λ, f,F(λ, f, α,m)).

We define the transitive closure F∗ of F on parameters (λ, f,m) as F∗(λ, f,m) :=
⋃∞
i=0F i(λ, f,m).

Note that the transitive closure F∗ on (λ, f,m) might not be efficiently computable (and thus a
challenger for Unf might not be efficient). However, this does not influence the security or efficiency
of a FSS. If necessary for a specific construction, one can require every functional signature scheme to
provide an efficient algorithm Check−F such that Check−F(λ, f,m,m∗) = 1 iff m∗ ∈ F∗(λ, f,m).

Remark: We assume that whenever EvalF is called on a signature σ with a key skF and does
not return ⊥, then it is possible to extract f from σ using skF . This is reasonable, because the
evaluator that transforms a signature should learn the value f , as it describes the capabilities of the
evaluator.

Definition 4. (Unforgeability Against X ∈ {Outsider, Insider, S-Insider} Attacks). Let FSS =
(Setup,KGensig,KGenF , Sig,EvalF ,Vf) be a functional signature scheme. The definition uses the
game Unf(FSS,F ,A, λ) defined in Figure 1. The functional signature scheme FSS is existential
unforgeable against X-attacks (EU-X-A) for a functionality F , if for all PPT adversaries AX

AdvEU-X-A
FSS,F ,AX = Prob[Unf(FSS,F ,AX , λ) = 1]

is negligible in λ. In this definition, AOutsider does not query Query[KGenS] or Query[RegKey], the
attacker AInsider does not invoke Query[RegKey], and AS-Insider may use any oracle.

Strong unforgeability, where the adversary already succeeds if it computes a new signature on a
(eventually previously signed) message, can be easily defined by letting the Finalize algorithm check
if (·,m∗, σ∗) ∈ Q (instead of checking whether (·,m∗, ·) ∈ Q). We discuss the relation between the
different types of adversaries in the context of delegatable FSS in Section 4.2, and the same relation
holds here as well.
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2.2.2 Privacy

proc Initialize(λ) :

b← {0, 1}
(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

(pkF , skF )← KGenF (pp,msk)
store (b, pp, sksig, skF , pksig, pkF )

output (pp, pksig, pkF )

proc Finalize(b∗) :

retrieve b
if b = b∗ then
output 1

else
output 0

proc Query[Sign](f,m, pk∗F ) :

retrieve (pp, sksig)
σ ← Sig(pp, sksig, pk∗F , f,m)

output σ

proc Query[Eval](pk∗sig, α,m, σ) :

retrieve (pp, skF )

σ′ ← EvalF (pp, skF , pk∗sig, α,m, σ)

output σ

proc Query[Sign-F ](f, [α]t1,m0) :

retrieve (b, pp, sksig, skF , pksig, pkF )

σ ← Sig(pp, sksig, pkF , f,m0)

for i ∈ {1, . . . , t}
σi ← EvalF (pp, skF , pksig, α,mi−1, σi−1)

mi := F(λ, f, αi,mi−1)

if b = 0 ∧ σt 6= ⊥ then
σ ← Sig(pp, sksig, pkF , f,mt)

else
σ := σt

output σ

Figure 2: Privacy under Chosen Functionality Attacks CFA.

Our privacy notion captures the privacy of the evaluator with respect to the signer. The basic
idea behind this notion is that it should be hard to distinguish if a message-signature pair has been
computed by the signer or by the evaluator via the evaluation algorithm. Our definition of privacy
demands that even if multiple evaluations are applied to a signature successively, no polynomially
bounded adversary can distinguish the resulting signature from a fresh signature on the underlying
message.

More formally, we define indistinguishability under chosen function attack for a functional sig-
nature scheme FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) and a functionality F as follows:

Definition 5. (Privacy under chosen functionality attacks (CFA)). Let FSS = (Setup,KGensig,
KGenF , Sig,EvalF ,Vf) be a functional signature scheme. The definition uses CFA(FSS,F ,A, λ) de-
fined in Figure 2. The scheme FSS is privacy preserving under chosen function attacks (PP-X-CFA)
for a functionality F , if for all PPT adversaries A

AdvPP-X-CFA
FSS,F ,A =

∣∣∣∣Prob[CFA(FSS,F ,A, λ) = 1]− 1

2

∣∣∣∣
is negligible in λ.

3 Delegatable Functional Signatures

To move from a functional signature scheme as defined above to a delegatable functional signature
scheme requires us to consider a more flexible notion of delegation: Before, we only considered the
possibility of the signer for allowing one fixed evaluator to modify a given signature according to
a functionality f . An evaluator could only “delegate” its power by giving away its secret key skF
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to another party. We extend the primitive by adding the possibility of delegating (a subset of)
capabilities from one evaluator to another without leaking its own secret key.

In this section we present a formal description of a delegatable functional signature (DFS) scheme
and update our notions of security and privacy. Although the delegation gives more capabilities to
the evaluator, we still want to give the signer of a message as much control as possible over the
resulting signature and the capabilities of changing this signature. Thus, we allow the signer to
additionally restrict which capabilities can be delegated (and optionally to whom) by specifying a
derivation function g on the applicable function f : intuitively, g describes how f can be changed.

Our notions of unforgeability make disrespecting the choices of the signer impossible. On the
other hand, the notions of privacy hide whether or not and how many transformations have been
performed on a signature and by whom.

3.1 Formal Description of a DFS scheme

A delegatable functional signature (DFS) scheme over a message space M, a key space K and
parameter spaces Pf , Pg, Pα, Pβ is a functional signature (FS) scheme that additionally supports
a controlled form of delegation. We now require two functionalities instead of one:

• A functionality F : N×Pf ×Pα×M→M∪{⊥} as in Section 2 that specifies how messages
can be changed.

• A functionality G : N×Pg ×Pβ ×K × Pf → Pf ∪ {⊥} that specifies how capabilities can be
delegated.

In particular, each evaluator that has the capability to compute signatures on messages of its choice
can delegate (a modified version of) these capabilities to another evaluator. We model this property
by replacing EvalF by an algorithm TransFG . To explain the functionality of this algorithm, let
σ be a signature on a message m, on which an evaluator that owns skF can apply modifications
specified with the capability f . Now, like EvalF , TransFG computes a signature σ′ on F(λ, f, α,m).
However, this new signature σ′ can be changed by an evaluator that owns a (possibly different) key
skF ′ and this evaluator can transform it further with the new capability f ′ := G(λ, g, β, pk′F , f).
The following example illustrates the algorithm.

Example 3. Suppose that the functionalities F and G support the following scenario: Alice wants
to make sure that an evaluator Bob can only rerandomize signatures on a specific message m1.
She choses an appropriate fID, such that F(λ, fID, α,m1) = m1 for all α. Such a functionality
models the case of a regular signature scheme. Now, suppose that Alice grants Bob the right to
compute signatures on some function f on a different message m2, but at the same time, she
wants to restrict the delegation capabilities to subset f ′ of f . To do so, she chooses a gB such that
G(λ, gB, β, pk′F , f) = f ′ for all pk′F 6= pkB.

Now we formally define the key primitive of this paper: delegatable functional signature schemes.

Definition 6. (Delegatable functional signatures). A delegatable functional signature scheme DFSS
is a tuple of efficient algorithms DFSS = (Setup,KGensig,KGenF , Sig,TransFG ,Vf). The algorithms
Setup,KGensig,KGenF and Vf have the same interface as for functional signature schemes (see Def-
inition 1). Thus, we concentrate on the new interfaces for Sig and TransFG here.
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Sig(pp, sksig,pkF , f, g,m): The signing algorithm Sig outputs a signature σ on m, on which func-
tions from the class f can be applied, and on which functions from g(f, ·, ·) can be delegated
(or an error symbol ⊥).

TransFG(pp, skF ,pksig, α, β,m,pk
′
F , σ): The transformation algorithm TransFG outputs a derived

signature for the functionality F(λ, f, α,m) (or an error symbol ⊥), that can be modified using
the evaluator key skF ′ associated with pk′F on the capability f ′ := G(λ, g, β, pk′F , f).

Intuitively, we consider a delegatable functional signature scheme DFSS to be correct if the
verification algorithm outputs 1 for all honestly generated signatures and for all valid transformations
of honestly generated signatures.

To formally state our notion of correctness, we define a correctness set S for which Vf should
output 1.

Definition 7. ((F ,G)-Correctness). Let the correctness set S be a set such that:

∀f ∈ Pf , g ∈ Pg, α ∈ Pα, β ∈ Pβ,m ∈M, (msk, pp) ∈ [Setup(λ)], (sksig, pksig) ∈ [KGensig(pp,msk)],
(skF , pkF ), (skF ′, pk′F ) ∈ [KGenF (pp,msk)]

1) (pp,m, f, g, σ, pksig, pkF ) ∈ S for all σ ∈ [Sig(pp, sksig, pkF , f, g,m)].

2) If (pp,m, f, g, σ, pksig, pkF ) ∈ S, F(λ, f, α,m) = m̂, G(λ, g, β, pk′F , f) = f̂ with m̂ ∈ M,
f̂ ∈ Pf , then (pp, m̂, f̂ , g, σ̂, pksig, pk

′
F ) ∈ S for all σ̂ ∈ [TransFG(pp, skF , pksig, α, β,m, pk

′
F , σ)]

A delegatable functional signature scheme DFSS = (Setup, KGensig,KGenF , Sig,TransFG ,Vf) is
(F ,G)-correct for functionalities F , G, if for all elements (pp,m, f, g, σ, pksig, pkF ) ∈ S it holds that

Vf(pp, pksig, pkF ,m, σ) = 1.

4 Security Notions for DFSS

As for a functional signature schemes, we propose definitions for unforgeability and privacy for
delegatable functional signature schemes.

4.1 Unforgeability

Our definition of unforgeability is similar to the one for FSS (Definition 4), as we handle security
against outsider and (strong) insider. We model this by giving the adversary access to three different
KGen oracles. An adversary that only uses Query[KGenP] for public keys is considered an outsider,
an adversary that additionally can query Query[KGenS] to retrieve one or more secret evaluator keys
is considered an insider, and an adversary that additionally can use the oracle Query[RegKey] to
register its own (possibly malicious) evaluator keys is considered a S-Insider. All adversaries have
access to the honestly generated public signer key pksig.

The notion of unforgeability against an outsider for DFSS is similar to our definition for FSS
with the difference being that the adversary has access to the Sig and the TransFG oracle.

Checking whether a message/signature pair is a valid forgery w.r.t. insiders is more complicated.
To handle the information that an adversary can trivially deduce from its queries, we define the
transitive closure for functionalities.
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proc Initialize (λ):

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (pp,msk, sksig, pksig)

set KC := ∅,KA := ∅,Q := ∅
output (pp, pksig)

proc Finalize(m∗, σ∗, pk∗F ) :

if ∃(f, g,m, pkF , ·) ∈ Q, s.t.
pkF ∈ KA ∧m∗ ∈ F∗G(λ, f, g,m)

output 0

else
if (·, ·,m∗, ·, ·) ∈ Q
output 0

else
retrieve (pp, pksig)

b← Vf(pp, pksig, pk
∗
F ,m

∗, σ∗)

output b

proc Query[KGenP]() :

retrieve (pp,msk)
(skF , pkF )← KGenF (pp,msk)
set KC := KC ∪ (skF , pkF )

output (pkF )

proc Query[KGenS]() :

retrieve (pp,msk)
(skF , pkF )← KGenF (pp,msk)
set KC := KC ∪ {(skF , pkF )}
set KA := KA ∪ {pkF}
output (skF , pkF )

proc Query[RegKey](sk∗F , pk
∗
F ) :

set KC := KC ∪ {(sk∗F , pk∗F )}
set KA := KA ∪ {pk∗F}

proc Query[Sign](pk∗F , f, g,m) :

retrieve (pp, sksig)
if (·, pk∗F ) ∈ KC
σ ← Sig(pp, sksig, pk∗F , f, g,m)

set Q := Q∪ {(f, g,m, pk∗F , σ)}
output σ

else output⊥

proc Query[Trans](pk∗F , α, β,m, pk
′
F , σ) :

retrieve (pp, pksig)

if (sk∗F , pk
∗
F ) ∈ KC ∧ (·, pk′F ) ∈ KC

σ′ ← TransFG(pp, sk∗F , pksig, α, β,m, pk
′
F , σ)

if σ′ 6= ⊥
extract (f, g) from σ using sk∗F
let f ′ := G(λ, g, β, pk′F , f)

set Q := Q∪ {f ′, g,F(λ, f, α,m), pk′F , σ
′}

output σ′

else output ⊥

Figure 3: Unforgeability for delegatable functional signature schemes.

Definition 8. (Transitive closure of functionality F under functionality G). Given functionalities
F and G, we define the n-transitive closure FnG of F under functionality G on parameters (λ, f, g,m)
recursively as follows:

• For n = 0, F0
G(λ, f, g,m) := {m}.

• For n > 0, FnG (λ, f, g,m) := {m}
⋃

α,β,pk′F

Fn−1G (λ,G(λ, g, β, pk′F , f), g,F(λ, f, α,m))

We define the transitive closure F∗G of F under functionality G on parameters (λ, f, g,m) as

F∗G(λ, f, g,m) :=
∞⋃
i=0

F iG(λ, f, g,m).

Again, the transitive closure might not be efficiently computable. However, for the security of
our construction (see Section 5) we do not need to compute the closure explicitly. If necessary for
another construction, one can require a DFSS to provide an efficient algorithm Check−FG such that
Check−FG(λ, f, g,m,m∗) = 1 iff m ∈ F∗G(λ, f, g,m).

Remark: We assume that whenever TransFG is called on a signature σ with a key skF and does
not return ⊥, then it is possible to extract (f, g) from σ using skF . This is reasonable, because the
evaluator that transforms a signature should learn both values, as they describe its capabilities. In
fact, our construction (Section 5) also has this property.
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Definition 9. (Unforgeability Against X ∈ {Outsider, Insider, S-Insider} Attacks). Let DFSS be a
delegatable functional signature scheme defined by the following efficient algorithms (Setup,KGensig,
KGenF , Sig,TransFG ,Vf). The definition uses the game Unf(DFSS,F ,G,A, λ) defined in Figure 3.
We say that DFSS is existential unforgeable against X-attacks (EU-X-A) for functionalities F and
G if for all PPT adversaries AX

AdvEU-X-A
DFSS,F ,G,AX = Pr [Unf(DFSS,F ,G,AX , λ) = 1]

is negligible in λ, where AOutsider does neither invoke the oracles Query[KGenS] nor Query[RegKey];
the attacker AInsider does not make use of Query[RegKey] and the adversary AS-Insider is not restricted
in its queries.

Remark on measuring the success of A: The success of the adversary is determined by
the challenger and measured in the Finalize algorithm. Although not stated explicitly, Finalize
distinguishes between outsiders and insiders. Within the oracles Query[Sign] and Query[Trans], the
challenger only allows to delegate to keys that are “known” to it, which is formalized with the set KC .
The oracle Query[Trans] only allows the delegation to keys that are known to the challenger. Note
that his does not restrict the adversary, but allows the challenger to distinguish between weak insider
and strong insider. Whenever a message has been signed either by Query[Sign] or Query[Trans],
this message is included in Q, together with the public key of the evaluator to whom the message
was delegated and together with the parameters that state what this evaluator can trivially deduce
from the signature.

The set KA is the set of all public evaluator keys pkF for which the adversary knows the secret key
skF . Consequently, KA is initially empty and is only extended by Query[KGenS] and Query[RegKey].
Whenever A delegates a signature to a key pk′F ∈ KA, the finalize algorithm will later discard all
message-signature pairs that are trivially deducible from this signature.

For both outsiders (KA = ∅) and insiders (KA 6= ∅), we require that the forgery message m∗

is a fresh message, i.e., it has not been signed by the challenger, which is formally expressed by
(·, ·,m∗, ·, ·) 6= Q.

Observe that a different public key pkF might have been used when signing a message as com-
pared to when verifying the resulting signature. We leave it up to the signature scheme to decide
whether a signature can verify under different evaluator keys. As a matter of fact: There can be
schemes where Vf does not need to receive pkF at all.

4.2 Relations between the security notions depending on the strength of the
adversary

The three notions of unforgeability describe a hierarchy of adversaries. It is intuitive, that security
against outsider attacks does not imply security against insider attacks, as the key skF of the
evaluator can indeed leak enough information to construct the signature key sksig out of it.

However, although an insider adversary is stronger than an outsider adversary, making use
of the additional oracle can weaken an adversary. Consider a scheme with only one valid public
evaluator key pkF , that allows an insider to change messages inside signatures to arbitrary values,
but that also leaks the secret signing key sksig with every signature. An insider that received sksig
can not create a forgery, since every message he creates after receiving at least one signature is
not considered a forgery: he could have computed them trivially using TransFG . Without invoking
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Query[KGenS], the adversary can request a signature and subsequently forge signatures for arbitrary
messages, using the key sksig he received with the signature.

An S-Insider is again stronger than an insider or an outsider. A scheme can become insecure if
a certain key pair (skF , pkF ) is used that is highly unlikely to be an output of KGenF (e.g., one of
them is 0λ).

Proposition 1 (EU-X-A-Implications). Let DFSS be a functional signature scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.

AdvEU-IA
DFSS,F ,G,AInsider

≥ AdvEU-OA
DFSS,F ,G,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider s.t.

AdvEU-SIA
DFSS,F ,G,AS-Insider

≥ AdvEU-IA
DFSS,F ,G,AInsider

4.3 Privacy

proc Initialize (λ):

b← {0, 1}
(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (b, pp,msk, sksig, pksig)

set KC := ∅,KX := ∅
set KA := ∅
output (pp, pksig)

proc Finalize(b∗) :

retrieve b
if b = b∗ ∧ KX ∩ KA = ∅ then output 1

else output 0

proc Query[Trans](pk∗F , α, β,m, pk
′
F , σ) :

retrieve (pp, pksig)

if (sk∗F , pk
∗
F ) ∈ KC ∧ (pk′F , ·) ∈ KC

σ′ ← TransFG(pp, sk∗F , pksig, α, β,m, pk
′
F , σ)

output σ′

proc Query[KGenP]() :

retrieve (pp,msk)
(skF , pkF )← KGenF (pp,msk)
set KC := KC ∪ (skF , pkF )

output (pkF )

proc Query[KGenS]() :

retrieve (pp,msk)
(skF , pkF )← KGenF (pp,msk)
set KC := KC ∪ {(skF , pkF )}
set KA := KA ∪ {pkF}
output (skF , pkF )

proc Query[Sign](pk∗F , f, g,m) :

retrieve (pp, sksig)
if (·, pk∗F ) ∈ KC
σ ← Sig(pp, sksig, pk∗F , f, g,m)

output σ

proc Query[RegKey](sk∗F , pk
∗
F ) :

set KC := KC ∪ {(sk∗F , pk∗F )}
set KA := KA ∪ {pk∗F}

proc Query[Sign-F ](f0, g, [pkF , α, β]t0, t,m0) :

retrieve (b, pp, sksig, pksig)

if (·, pkF [0]) /∈ KC ∨ (·, pkF [t]) /∈ KC output ⊥
σ0 ← Sig(pp, sksig, pkF [0], f0, g,m0)

for i ∈ {1, . . . , t}
if ¬∃sk∗F . (sk∗F , pkF [i− 1]) ∈ KC
output ⊥

fi := G(λ, g, β[i], pkF [i], fi−1)

mi := F(λ, fi−1, α[i],mi−1)

qi := (pp, sk∗F , pksig, α[i], β[i],mi−1, pkF [i], σi−1)

σi ← TransFG(qi)

set KX := KX ∪ {pkF [t]}
if b = 0 ∧ σt 6= ⊥
σ ← Sig(pp, sksig, pkF [t], ft, g,mt)

else
σ := σt

output σ

Figure 4: Privacy under chosen functionality attacks CFA for delegatable functional signature
schemes.

Our privacy notion for delegatable functional signatures captures the idea that it should be hard
to distinguish the following two signatures:

• a signature on a message m′ that has been derived from a signature on a challenge message
m by one or more applications of TransFG .
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• a signature on m′ that was output of Sig.

This indistinguishability should hold even against an adversary with oracle access to KGenF , Sig
and TransFG that can choose which transformations are to be applied to which challenge message m
and under which evaluator keys (even if they are known to the adversary), as long as the resulting
signature is not delegated to the adversary.

Analogously to our definitions of unforgeability, we distinguish between three different types of
adversaries, depending on their strength: outsiders, insiders and strong insiders. We model this
by giving the adversary access to three different KGen oracles. An adversary that only can invoke
Query[KGenP] for public keys is considered an outsider, an adversary that additionally can query
Query[KGenS] for retrieving one or more secret evaluator keys is considered an insider, and an
adversary that Query[RegKey] to register its own possibly malicious evaluator keys is considered a
S-Insider. All adversaries have access to the honestly generated public signer key pksig.

Definition 10. (Privacy under chosen function attacks (CFA)) against X ∈ {Outsider, Insider, S-
Insider}. Let DFSS = (Setup,KGensig,KGenF , Sig,TransFG ,Vf) be a delegatable functional signature
scheme. The definition uses the game CFA(DFSS,F ,G,A, λ) defined in Figure 4. We say that DFSS
is privacy-preserving under chosen function attacks (X-CFA) for functionalities F and G if for all
PPT adversaries AX

AdvPP-X-CFA
DFSS,F ,G,AX =

∣∣∣∣Pr [CFA(DFSS,F ,G,A, λ) = 1]− 1

2

∣∣∣∣
is negligible in λ, where AOutsider does neither invoke the oracles Query[KGenS] nor Query[RegKey];
the attacker AInsider does not make use of Query[RegKey] and the adversary AS-Insider is not restricted
in its queries.

Remark on measuring the success of A: The adversary may choose an arbitrary challenge
message m0, together with a capability f0 and a value g to define the delegatability. The challenger
constructs a respective signature σ0. Furthermore the challenger repeatedly applies TransFG to σ0
and allows the adversary to choose the parameters αi and βi that are input to TransFG and the key
pkF[i] to which the signature is delegated. However, A may not choose keys that are not known to
the challenger. By this restriction we distinguish between outsiders, insiders and strong insiders.

Whenever the challenger applies TransFG within the query Query[Sign-F ], it additionally com-
putes the new values for m and f for the resulting signature. Thus, it finally produces a signature
σt, on a message mt on which the owner of pkF [t] can apply the capability ft. The challenger adds
the key pkF [t] to which a challenge has been issued, to the set KX .

If one of the transformations failed and the resulting signature is not a valid signature (σt = ⊥),
Query[Sign-F ] outputs ⊥ independently from the value of b. The reason is, that we only want to
give guarantees for valid signatures and not extend the notion of correctness from Definition 7.

Otherwise, depending on the value of b, the challenger outputs σt or creates a new signature on
mt with capability ft and delegatability g.

The success of A is computed by checking whether A guessed the correct value for b. However, if
A delegated a challenge signature to a key pkF [t] to whichA knows the secret key (pkF [t] ∈ KA∩KX),
the challenger outputs 0. This way we allow a scheme to leak some information to the evaluator to
which a signature is delegated. However, only “local” information is allowed. After one delegation,
this information has to vanish, since A has access to a TransFG oracle and can delegate the signature
σt to a key pk∗F ∈ KA.
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4.4 Relations between the security notions depending on the strength of the
adversary

For privacy, we have the same hierarchy: A scheme that is secure against outsiders may be insecure
against insiders, as the key skF of an evaluator can help to distinguish between delegated and fresh
signatures. Again, calling Query[KGenS] might weaken the adversary. Consider a scheme that does
not preserve privacy against outsiders and that only has one valid evaluator key. An insider that
calls both Query[KGenS] and Query[Sign-F ] is discarded, because it knows the only valid evaluator
key (and thus KX ∩ KA 6= ∅).

As for unforgeability, an S-Insider, is stronger than outsider or against an insider. A scheme can
leak information about delegation if a certain key pair (skF , pkF ) is used that is highly unlikely to
be an output of KGenF (e.g., one of them is 0λ).

Proposition 2 (PP-X-CFA-Implications). Let DFSS be a functional signature scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.

AdvPP-I-CFA
DFSS,F ,G,AInsider

≥ AdvPP-O-CFA
DFSS,F ,G,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider s.t.

AdvPP-SI-CFA
DFSS,F ,G,AS-Insider

≥ AdvPP-I-CFA
DFSS,F ,G,AInsider

Proof. The proposition follows trivially. Observe:

(i) The adversary AInsider runs a black-box simulation of AOutsider and makes no use of the addi-
tional oracle.

(ii) The adversary AS-Insider runs a black-box simulation of AInsider and makes no use of the addi-
tional oracle.

5 Constructing DFSS

In this section we construct a delegatable functional signature scheme DFSS as defined in Sec-
tion 3.1. Our construction is based on (regular) unforgeable signature schemes, a public-key encryp-
tion scheme, and a non-interactive zero-knowledge proof system. Before presenting the construction
we give a brief overview over these underlying primitives. We will omit the (standard) definitions
for correctness and security.

5.1 Cryptographic Primitives

Digital Signatures. A (regular) signature scheme is a tuple of efficient algorithms S = (SetupS ,
KGenS , SigS ,VfS), where SetupS returns some public parameters pp and a master secret key msk,
KGenS(pp,msk) outputs a secret signing key sk and a public verification key pk, SigS signs messages
using a key sk and VfS checks whether a signature is valid for a given message and a given verification
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Initialize(λ) :

(pp,msk)← Setup(λ)

(sk, pk)← KGenS(pp,msk)

store (pp, sk, pk)

setM := ∅
output (pp, pk)

Initialize(λ) :

b
R← {0, 1}

(pp,msk)← SetupE(λ)

(dk, ek)← KGenE(pp,msk)

store (pp, ek, b)
output (pp, ek)

Query[Sign](m) :

retrieve (pp, sk, pk)

σ ← SigS(pp, sk,m)

setM :=M∪ {m}
output σ

Query[Challenge](m0,m1) :

(only once)
retrieve (pp, ek, b)
c← EncE(pp, ek,mb)

output c

Finalize(m∗, σ∗) :

if m∗ ∈M then
output 0

else
retrieve (pp, sk, pk)

b← VfS(pp, pk,m∗, σ∗)
output b

Finalize(b∗) :

if b∗ = b

output 1

else
output 0

Figure 5: (u.) Unforgeability for (regular) signature schemes (Unf) and (d.) security under chosen
plaintext attacks (CPA)

key pk. A signature scheme is length preserving, if for a fixed key-pair, the signing algorithm
outputs signatures of equal length, if the messages have the same length, i.e., if |m1| = |m2|, then
|σ1 ← SigS(pp, sk,m1)| = |σ2 ← SigS(pp, sk,m2)|

Definition 11. (Correctness of a signature scheme). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)
is correct, if for all λ ∈ N, all m ∈ M and for all (pp,msk) ∈ [SetupS(λ)] and all (sk, pk) ∈
[KGenS(pp,msk)] the following property holds:

VfS(pp, pk,m, (SigS(pp, sk,m))) = 1

A signature is unforgeable, if it is computationally hard to forge signatures for new messages
without access to the signing key, even if arbitrary messages have been signed before.

Definition 12. (Unforgeability). A signature scheme S = (SetupS ,KGenS , SigS ,VfS) is unforgeable
if for all PPT adversaries A the probability

Pr[Unf(S,A, λ) = 1].

is negligible in λ. The definition uses Unf(S,A, λ) defined in Figure 5.

The definition can easily be strengthened to strong unforegability by adding the requirement
that the pair (m,σ) has never been learned from the queries/answer pair to the signing oracle.
Obviously, this definition is stronger because an attacker succeeds even if he outputs a new signature
for a message he has sent to the signing oracle before.

For our construction we need to make two additional assumption about the signature scheme.
The first property says that no master key is necessary in order to generate a key-pair and the
second property demands that signatures on message of equal length have the same size. More
precisely, a signature scheme S has a simple key generation algorithm if the key generation does
not depend on a master secret key.
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Definition 13. (Simple Key Generation). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)) has
a simple key generation algorithm if there exists an ε such that for ll (pp,msk) ∈ [SetupS ] it holds
that msk = ε.

A signature scheme S has length preserving signatures if the length of a signature does only
depend on public parameters and on the length of the underlying message.

Definition 14. (Length Preservation). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)) has
length preserving signatures if for all m1,m2 ∈M, for all (pp,msk) ∈ [SetupS ], and for all (sk, vk) ∈
[KGenS(pp,msk)] it holds that

|σ1 ← SigS(pp, sk,m1)| = |σ2 ← SigS(pp, sk,m2)|.

Encryption. A public key encryption scheme E is a tuple of efficient algorithms E = (SetupE ,KGenE ,EncE ,DecE),
where SetupE(λ) returns some public parameters pp and a master secret key msk, KGenE(pp,msk)
outputs a secret decryption key dk and a public encryption key ek, EncE encrypts messages using
ek and DecE decrypts cipher texts using dk.

Definition 15. (Correctness of a public key encryption scheme). A public-key encryption scheme
E = (SetupE ,KGenE ,EncE ,DecE) correct, if for all λ ∈ N, all m ∈ {0, 1}`m(λ), and for all (pp,msk) ∈
[SetupE(λ)] and all (dk, ek) ∈ [KGenE(pp,msk)] the following property holds: DecE(pp, dk, (EncE(pp, ek,m))) =
m.

A public key encryption scheme is secure against chosen plaintext attack (CPA) if no adversary
with access to the public parameters pp and the public (encryption) key ek is able to distinguish
between the encryptions of two messages of its own choice.

Definition 16. (Security against chosen plaintext attacks (CPA)). A public-key encryption scheme
E = (Setup,KGen,EncE ,DecE) is secure against chosen plaintext attacks (CPA), if for all PPT
adversaries A

AdvCPA
E,A =

∣∣∣∣Pr [CPA(E ,A, λ) = 1]− 1

2

∣∣∣∣ ,
is negligible in λ, where CPA(E ,A, λ) is defined in Figure 5.

Non-interactive zero-knowledge (NIZK). A non-interactive zero-knowledge proof system for
a relation R is a tuple of efficient algorithms NIZK = (KGen, P,Vf), where the key generation
algorithm KGen produces a common reference string CRS, the prover P on a CRS, a statement x
and a witness ω returns a proof Π that x ∈ LR := {x|∃ω. (x, ω) ∈ R} (or an error symbol ⊥) and
the verifier Vf on a CRS, a statement x and a proof Π outputs 1 if Π is a correct proof that x ∈ LR
and 0 otherwise [22, 26].

Definition 17. (Correctness of a non-interactive zero knowledge scheme). A non-interactive zero
knowledge scheme NIZK = (Setup,KGen, P,Vf) for a relation R is correct, if for all λ ∈ N, all
x ∈ LR, all ω s.t. (x, ω) ∈ R, and for all CRS ∈ [KGen(1λ)] the following property holds:
Vf(CRS, P, (CRS, x, ω)) = 1.

A non-interactive zero-knowledge proof system for a relation R is sound if no malicious prover
can construct a proof for a wrong statement (x /∈ LR) for which the verification succeeds.

18



Definition 18. (Soundness of a NIZK scheme). Let NIZK = (KGen, P,Vf) be a non-interactive
zero knowledge scheme for a relation R. NIZK is sound, if for all λ ∈ N, all x /∈ LR, and for all ppt
A, the following probability is negligible in λ.

Pr[Vf(CRS, x,Π∗) = 1 | CRS← KGen(1λ),Π∗ ← A(CRS, x)]

A non-interactive zero-knowledge proof system for a relation R is zero knowledge if a proof leaks
no information other than the fact that the statement is correct. This is formalized via a simulator
that may choose the common reference string CRS itself such that this simulator can produce proofs
for arbitrary statements x ∈ LR without knowledge of a witness. If those (simulated) proofs are
indistinguishable from real proofs, the real proofs can not leak information.

Definition 19. (Zero knowledge). Let NIZK = (Setup,KGen, P,Vf) be a proof scheme for a relation
R. NIZK is zero knowledge, if for all x ∈ LR with |x| = λ, and any witness w for x, there exists
a (possibly stateful) efficient simulator S = (S0,S1) such that the following two experiments are
computationally indistinguishable for any (possibly stateful) algorithm D = (D0, D1):

Game REAL

CRS← KGenNIZK(1λ)

(x,w)← D0(CRS)

π ← P(CRS, x, w)

b← D1(CRS, x, π)

Game Sim

CRS← S0(1λ)

(x,w)← D0(CRS)

π ← S1(x)

b← D1(CRS, x, π)

5.2 Our scheme

Our scheme constitutes a delegatable functional signature scheme as defined in Section 3.1. It is
completely general with respect to F and G (as long as they are efficiently computable) with the
exception that G may allow only for up to n applications of TransFG . We let the signer choose how
many applications he allows by defining f as a tuple (f ′, k) ∈ Pf × {0, . . . n}.

For our construction to provide the strong notion of privacy under chosen function attack (CFA)
for delegatable functional signature schemes (Definition 10), we apply the following trick: If the
signer choses a number of k possible applications of TransFG , we still create n+ 1 encryptions, but
place the encryption a signature on m at the k+1th position (and only encryptions of zero-strings at
the other positions). The evaluators fill up the the encryptions from the kth position to the first one.
Although each evaluator receives information from his predecessor in the chain of delegations (the
first evaluator will know, that the signature originates from the signer), even the second evaluator
in the chain will be unable to find out more than its predecessor and the number of applications of
TransFG that are still allowed. Figure 6 shows the construction in more detail.

Given a signature scheme S = (SetupS ,KGenS , SigS ,VfS) with a simple key generation algorithm
and with signatures of equal length, an encryption scheme E = (SetupE ,KGenE ,EncE ,DecE) and
a zero-knowledge scheme NIZK = (KGenNIZK, PNIZK,VfNIZK) for languages in NP we construct a
delegatable functional signature scheme DFSS as follows:

We define a recursive class of languages Li.
Ln: x = (ppS , ppE , pksig, pkF , S,m,CRS, f, g, σ) ∈ Ln means that there exists a witness ω = (r, k)
such that

pksig = (vkS , ẽk)
∧

sk = EncE(ppE , ẽk, (σ, (f, g,m, pkF , k)); r)
∧

VfS(ppS , vkS , (f, g,m, pkF , k), σ) = 1
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Li for 0 ≤ i < n: x = (ppS , ppE , pksig, pkF , S,m,CRS, f, g, σ) ∈ Li if there exists a witness ω = (r,Π,
pk′F ,m′, f ′, α, β) s.t.

pksig = (vkS , ẽk)∧
si = EncE(ppE , ẽk, (σ, (f, g,m, pkF , k)); r)∧
VfS(ppS , vk

′, (f, g,m, pkF , k), σ) = 1∧
x′ := (ppS , ppE , pksig, pk

′
F , S

′,m′,CRS, f ′, g)∧
S = S′

{
s′i := si

}∧
pk′F = (vk′, ·)∧

m = F(λ, f ′, α,m′)
∧
f = G(λ, g, β, f ′)∧ (

VfNIZKi+1
(CRS, x′) = 1 ∨ VfNIZKn(CRS, x′) = 1

)
The signer proves that x = (pp = (CRS, ppS , ppE), pksig, pkF = (vkF , ek), S, d,m) ∈ L, where L
contains tuples for which there exists a witness ω = (f, g, i, rd) such that

VfNIZKi(CRS, (ppS , ppE , pksig, pkF , S,m,CRS, f, g, σ)) = 1∧
d← EncE(ppE , ek, (f, g, i, σ); rd)

5.2.1 Security

Concerning security, we prove the following theorems.

Theorem 1. If E is a correct public key encryption scheme, S a length preserving unforgeable
signature scheme with a simple key generation, and NIZK is a sound non-interactive proof scheme
(Definition 18), then the construction DFSS presented in this section is unforgeable against outsider
and (strong) insider attacks according to Definition 9.

We will show the theorem via a reduction proof. Given an adversary A that can break our
construction we will show that there must be an adversary B that breaks the underlying signature
scheme (with a smaller, but non-negligible probability) — or the encryption scheme was not correct
or NIZK was not sound.

Proof for Theorem 1. By Proposition 1 it suffices to show unforgeability against a S-Insider adver-
sary. Assume towards contradiction that DFSS is not unforgeable against strong insider attacks.
Then there exists an efficient adversary AS-Insider that makes at most p(λ) many steps for a poly-
nomial p and that wins the game Unf(DFSS,F ,G,AS-Insider, λ), formalized in Definition 9, with
non-negligible probability.

For simplicity we will write A for AS-Insider in this proof. Since Amakes at most p(λ) many steps,
A invokes the oracle Query[KgenP] at most p(λ) many times. We show how to build an adversary
B that runs A in a black-box way in order to break the unforgeability of S with non-negligible
probability. In the following we denote the values and the oracles that the challenger C from the
game Unf(S,B, λ) provides to B with the index C.

The algorithm B, upon receiving as input a tuple (ppC , vkC) from InitializeC , simulates a challenger
for the game Unf(DFSS,F ,G,A, λ). First, the algorithm B generates the public parameters and the
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master public/private key-pair, computing (ppE ,mskE) ← SetupE(1λ),CRS ← KGenNIZK(1λ)and
setting pp := (CRS, ppC , ppE),msk := (ε,mskE).

Subsequently, B computes (d̃k, ẽk) ← KGenE(ppE ,mskE), (skS , vkS) ← KGenS(ppC , ε) and sets
pksig := vkS .

The algorithm B embeds its own challenge key vkC in a randomly chosen position z ∈ {0, . . . , p(λ)};
if z = 0, then B replaces vkS by vkC . Finally, B runs a black-box simulation of A on input
(pp, pksig), where pksig = vkS or pksig = vkC , depending on z and B simulates the oracles Query[Sign],
Query[Trans],Query[KGenP] and Query[Finalize]. The algorithm B handles the oracle queries from A
as follows:

KGenP(): The algorithm B answers the ith invocation of Query[KgenP] as follows. First, B gener-
ates a key pair for encryption and decryption (dk, ek) ← KGenE(ppE ,mskE). Then it behaves
differently depending on i:

If i = z, then B sends vkC to A. Otherwise, B generates a new key-pair (skF , pkF ) ←
KGenS(ppC , ε), stores this pair, and sends pkF to A.

Sign(pk∗F , f, g,m): If z 6= 0, the algorithm B computes all necessary values locally exactly as a
challenger for Unf(DFSS,F ,G,A, λ) would. For computing the values locally, B needs to know
pp (publicly known), sksig = (sskS , vkS) (generated by B since z 6= 0) and the values pk∗F , f, g
and m (provided to B by A.
If z = 0, this local computation is not possible since B replaced vkS with vkC . Thus, the
algorithm B sets hk := (f, g,m, pkF , k) and invokes Query[Sig]C(hk). It sets σk to the output
of the challenger and otherwise proceeds as above.

Trans(pk∗F , α, β,m,pk
′
F , σ): Parse pk∗F = (vk, ek). B behaves differently depending on the value

of vk.

If vk 6= vkC , B computes all necessary values locally exactly as a challenger for Unf(DFSS,F ,G,A, λ)
would. For computing the values locally, B needs to know pp (publicly known), a value for sk∗F
corresponding to pk∗F (discussed below), pksig (known to B) and the values for α, β,m, pk′F
and σ (provided by A). There are four cases for sk∗F . If pk∗F was output by Query[KGenP]
(and since vk 6= vkC , this was not the zth invocation of Query[KGenP]), B has generated the
value sk∗F = (sskF , dk) itself. The same applies if pk∗F was output by Query[KGenS]. If pk∗F
was registered by A via Query[RegKey], B uses the corresponding (registered) key sk∗F . If none
of the three cases applies, then the key pk∗F is unknown and B returns ⊥ instead.

If vk = vkC , a corresponding value sskF (the first part of the secret key sk∗F corresponding to
pk∗F ) is not known to B. This key is necessary to sign the value h = (f̂ , g, m̂, pk′F , k−1). Thus,
instead of computing a signature with some key sskF , B calls its own oracle Query[Sig]C(h)
and otherwise proceeds as above.

Finalize(m∗, σ∗,pk∗F ): Eventually, A invokes Finalize on a tuple (m∗, σ∗, pk∗F ), then B parses
σ∗ = (S, d, π) with S = (s0, . . . , sn+1). Now, the algorithm B checks the validity of the
signature computing Vf(pp, pksig, pk

∗
F ,m

∗, σ∗). If the verification algorithm outputs 0, then B
stops. Otherwise B decrypts all signatures (σi, hi) := DecE(ppE , d̃k, si). B tries to find a pair
(σx, hx) that verifies under the key vkC and that has not been sent to Query[Sign]C by B, ,
then B sends (hx, σx) to its own FinalizeC oracle. Otherwise it halts.

21



Claim 1. The algorithm B is efficient.

Proof for Claim 1. The algorithm B simulates a challenger for Unf(DFSS,F ,G,A, λ) that consists
of efficient algorithms (except for the algorithm Finalize).
B performs local computations to initialize the game. All algorithms of the underlying schemes

that are used in a black-box manner are efficient (key generation, signature creation and verifica-
tion, encryption and decryption, proof and verify). B also performs a black-box simulation of the
(polynomially bounded) algorithm A and answers A’s queries. Both the simulation of A and all of
the (polynomially many) computations of answers to oracle calls are efficient.

The only part of the simulation of a challenger for Unf(DFSS,F ,G,A, λ) that might not be
efficiently possible is the Finalize algorithm. However, if eventually A calls Finalize, then B diverges
from the simulation of a challenger in that B does not check whether the supposed forgery is in the
transitive hull of a specific signature. Thus, B is an efficient algorithm.

Claim 2. The algorithm B perfectly simulates a challenger for Unf(DFSS,F ,G,A, λ).

Proof for Claim 2. We investigate the simulation of all oracles and local computations.

Simulation of Initialize: Observe that by construction and by the fact that S has a simple key
generation as in Definition 13 the values pp and msk are identically distributed to values for
pp and msk generated by a challenger for Unf(DFSS,F ,G,A, λ). Thus, the keys generated out
of them are also identically distributed. If z 6= 0 then B uses only pp and msk to compute the
keys (sksig, pksig) and thus they are identically distributed as keys (sksig, pksig) generated by
Unf(DFSS,F ,G,A, λ).

If z = 0, then B replaces the verification vkS of the signer with the verification key vkC of
the challenger. However, since S has a simple key generation algorithm (Definition 13), the
key vkC is identically distributed as the key vkS . Moreover, B does not use the corresponding
signing key sskS in any way and queries its own signing oracle instead.

Simulation of Query[KGenP]: On any but the zth invocation, B perfectly simulates a challenger
for Unf(DFSS,F ,G,A, λ) and computes a new key pair based on pp and msk. As pp and msk
are identically distributed as for a challenger, the resulting keys are also identically distributed.

On the zth invocation, however, B replaces the verification key vkF with the verification key
vkC of the challenger. However, since S has a simple key generation algorithm (Definition
13), the key vkC is identically distributed as the key vkS . Moreover, B does not use the
corresponding signing key sskF in any way and queries its own signing oracle instead.

Simulation of Query[KGenS]: B uses the values pp and msk that are identically distributed to
the corresponding values of a challenger for Unf(DFSS,F ,G,A, λ). On them it performs a
perfect simulation of Query[KGenS]. Thus, the resulting keys have the same distribution as
the keys output by Query[KGenS] of the challenger.

Simulation of Query[RegKey]: This oracle does not return an answer.

Simulation of Query[Sign] and Query[Trans]: B perfectly simulates these oracles as long as it
does not have to create a signature with the key corresponding to vkC . However, in these
cases B calls its own signature oracle. Since the keys are identically distributed, this still is a
perfect simulation.
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Since all messages that B sends toA are identically distributed to the messages that Unf(DFSS,F ,G,A, λ)
sends to A, the algorithm B perfectly simulates a challenger for Unf(DFSS,F ,G,A, λ).

Claim 3. Whenever A produces a forgery, then with probability at least 1
p(λ)+1 B also produces a

forgery.

Proof of Claim 3. First we show the following statement: WheneverA produces a forgery (m∗, σ∗, pk∗F ),
then σ∗ = (S, d, π) and S contains the encryption of a signature σx that verifies under a key vk∗

that either equals pksig or that has been sent to A as an answer to an oracle query Query[KGenP],
for a message that has not been sent to Query[Sign] or achieved as result of Query[Trans].

Assume that A invokes Finalize with (m∗, σ∗, pk∗F ) such that (m∗, σ∗, pk∗F ) constitutes a forgery
for DFSS. Technically: If our algorithm B would simulate the Finalize algorithm (as in Figure 7), it
would output 1.1

If Finalize would output 1, (·, ·,m∗, ·, ·) /∈ Q. This especially means that σ∗ can not be output
of Query[Sign] or Query[Trans]. Moreover, there was no query to Query[Sign](pk′F , f, g,m) for an
adversary key pk′F such that m∗ is in the transitive hull F∗G(λ, f, g,m). Also, there was no query to
Query[Trans](pkF , α, β,m, pk

′
F , σ

′) for an adversary key pk′F such that (f, g) were extracted from σ′

and such that m∗ is in the transitive hull F∗G(λ,G(λ, g, β, pk′F , f), g,F(λ, f, α,m)).
If the NIZK Π verifies then there is a signature that verifies under pksig and that marks the start

of the delegation chain. Let σk be this signature for a value hk = (f, g,m, pkF , k). The NIZK makes
sure that m∗ is in the transitive hull F∗G(λ, f, g,m) and that all transformations are legitimized by
the previous ones (depending on the intermediate β’s).

We distinguish the following cases:

i = 0: There was no call to Query[Sig] with parameters (pkF , (f, k), g,m). Thus, B never sent hk to
Query[Sig]C . and thus, S contains a signature σx = σk that verifies with pksig for the message
hk.

0 < i < k: There was a call to Query[Sig] with parameters (pkF , (f, k), g,m). And for all 0 < j ≤
i there was a call to Query[Trans] with parameters (pkF j , αj , βj ,mj , pk′F j , σ

′
j), such that

hk−j = (fj , g,mj , pk′F j , k − j) with fj = G(λ, g, βj , pk′F j , fj−1), mj = F(λ, fj−1, g,mj−1),
but there was no call to Query[Trans] with parameters (pkF i, αi, βi,mi, pk′F i, σ

′
i), such that

hk−i = (fi, g,mi, pk′F i, k − i) with fi = G(λ, g, βi, pk′F i, fi−1), mi = F(λ, fi−1, g,mi−1), where
f0 = f and m0 = m.

Thus, B never sent hi to Query[Sig]C and thus, σi and hi fulfill our claim.

i = k: There was a call to Query[Sig] with parameters (pkF , (f, k), g,m). And for all 0 < j ≤ k
there was a call to Query[Trans] with parameters (pkF j , αj , βj ,mj , pk′F j , σ

′
j), such that hk−j =

(fj , g,mj , pk′F j , k − j) with fj = G(λ, g, βj , pk′F j , fj−1), mj = F(λ, fj−1, g,mj−1). The NIZK
makes sure that at most k transformations of the original message exist. Thus, all transfor-
mations have been done via calls to Query[Trans], which means that (m∗, σ∗, pk∗F ) is not a
forgery.

Thus, each forgery of A constitutes a forgery of a signature σx that verifies with a key vk∗ that
either equals pksig or a key that has been given to A as answer to an oracle query Query[KGenP].

1Note that simulating Finalize is not necessarily possible in polynomial time, which is of no concern, since B does
not simulate Finalize.
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Note that if, by chance, vk∗ = vkC , then σx is a valid forgery for the message hx. By Claim 2, B
performs a perfect simulation of a challenger for Unf(DFSS,F ,G,A, λ) (from A’s point of view),
independent of the value z that B has chosen in the beginning. As vkC is randomly placed in the
set of possible honest keys (p(λ) many), B produces a forgery for vkC with probability at least

1
p(λ)+1 .

For the analysis of the success of B let us assume that A produces a forgery with a non-negligible
probability. However, by Claim 3, whenever A produces a forgery, there is a chance of 1

p(λ)+1 that
B will produce a forgery. Since A is assumed to succeed with a non-negligible probability, B will
also succeed with a non-negligible probability, losing a polynomial factor of p(λ) + 1. By Claim 1,
B is an efficient algorithm. This concludes the proof.

Theorem 2. If E is a public key encryption scheme that is secure against chosen plaintext attacks
(CPA), and the interactive proof scheme NIZK is zero knowledge (Definition 19), then the construc-
tion DFSS presented in this section is secure against chosen function attacks (CFA) as in Definition
10.

For showing this theorem we will first give a game-based proof for an adversary that only uses
the oracle Query[Sign-F ] once. We proceed using a hybrid argument that shows that the existence
of a successful adversary that makes polynomially many calls to Query[Sign-F ] implies the existence
of a successful adversary that only makes one call.

Proof. Let DFSS = (Setup,KGensig,KGenF , Sig,TransFG ,Vf) be our construction for functionalities
F and G. Assume towards contradiction that DFSS is not secure against chosen function attacks
against a strong insider. Then there exists an efficient adversary AS-Insider that wins the game
CFA(DFSS,F ,G,AS-Insider, λ) from Definition 10 with non negligible advantage. For simplicity we
will write A for AS-Insider in this proof.

Claim 4. If A invokes the challenge oracle Query[Sign-F ] at most once, then the advantage of A is
negligible.

Proof for Claim 4. The challenger uses the uniformly distributed value b only when Query[Sign-F ]
is called. Thus, if A does not call Query[Sign-F ], the advantage of A is 0.

For the case that A calls Query[Sign-F ] exactly once, we show the claim via a series of indistin-
guishable games that start with a game where b = 0 and end with a game b = 1. Our proof shows
that all intermediate games are indistinguishable.

Let Game G0 be the original game from Definition 10 where b = 0. As by our claim A calls
Query[Sign-F ] only once we will simplify the notation of the game by making the call to Query[Sign-F ]
explicit. Moreover we make the invokation of Initialize explicit as we will modify it in the following
games. The oracles that A can access (aside from Query[Sign-F ]) are as they are formalized in
Definition 10.

Notation: We use the following notation for describing the games. We assign a number to
each line where the first digit marks the game and the remaining digits the line in this game. Thus,
234 marks the 34th line of game 2. Moreover we do not write down all lines explicitly. All lines
that are not explicitly stated are as they were defined in the last game that defined them. If, e.g.,
we write for Game G1 the line

536XY Z
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this means that Game G5 differs from Game G4 in line 36 which is replaced by XY Z for Game G5.
Game G0
−−Initialize −−
001 b := 0

− Setup −
002 CRS← KGenNIZK(1λ)

003 (mskS , ppS)← SetupS(1λ)

004 (mskE , ppE)← SetupE(1
λ)

005 (d̃k, ẽk)← KGenE(ppE ,mskE)

006 pp := (CRS, ppS , ppE , ẽk)
007 msk := (mskS ,mskE)
− KGensig −
008 (sskS , vkS)← KGenS(ppS ,mskS)

009 pksig := vkS
010 sksig := (sskS , pksig)

− output of (pp, pksig) to A−

011 c← AOpp,msk,ssks
1 (pp, pksig)

−−Query[Sign-F ] −−
012 parse c = (f0, g, k, [pkF , α, β]t0, t,m0)

013 if pkF [t] ∈ KA ∨ k < t

014 out := ⊥
015 if (·, pkF [0]) /∈ KF out := ⊥
016 σ0 ← Sig(pp, sksig, pkF [0], f0, g, k,m0)

017 for i ∈ {1, . . . , t}
018 if ¬∃sk∗F = (sskF , dk). (sk∗F , pkF [i]) ∈ KF
019 out := ⊥
020 fi := G(λ, g, β[i], pkF [i], fi−1)

021 mi := F(λ, fi−1, α[i],mi−1)

022 qi := (pp, sk∗F , pksig, α[i], β[i],mi−1, pkF [i], σi−1)

023 parse pkF [i] = (vk′F , ek
′)

024 parse σi−1 = (S, d,Π)

025 (f, g, i, ςi)← DecE(ppE , dk, d)

026 x = (pp, pksig, pkF i−1, S, d,m)

027 if pkF = (vkF , ek) belongs to sk∗F
028 ∧ VfNIZK;Zi(CRS, x,Π) = 1

029 mi := F(λi−1, f, α[i],m)

030 f̂ := G(λi−1, g, β[i], pkF [i], f)

031 hi−1 := (f̂ , g,mi−1, pkF [i], i− 1)

032 ς̂i−1 ← SigS(ppS , sskF , hi−1; rS)

033 si−1 ← EncE(ppE , ẽk, (ς̂i−1, hi−1); rs)

034 d̂← EncE(ppE , ek
′, (f, g, i− 1, ςi−1); rd)

035 x̂ = (pp, pksig, pkF [i], S, d̂,mi)

036 ω = (f, g, i− 1, rd)

037 with ωi−1 = (ςi−1, rS ,Π, pkF i−1,mi−1, f, α[i], β[i])

038 Π̂← PNIZK(CRS, x, ω)

039 σi := (S, d̂, Π̂)

040 else
041 σi := ⊥

042 if σt 6= ⊥
043 hk−t := (ft, g,mt, pkF [t], k − t)
044 ςk−t ← SigS(ppS , sskS , hk−t; rS)

045 sk−t ← EncE(ppE , ẽk, (ςk−t, hk−t); rsk−t)
046 For j ∈ {0, . . . , n} \ {k − t}
047 ςj := 0|ςk−t|

048 hj := (0`p(λ), 0`p(λ), 0`m(λ), 0|pkF [t]|, 0)

049 sj ← EncE(ppE , ẽk, (ςj , hj); rsi)
050 d← EncE(ppE , ek, (ft, g, k − t, ςk−t; rd))
051 S := (s0, . . . , sn)

052 x := (pp, pksig, pkF [t], S, d,mt)

053 ω := (f, g, n, rd)

054 with ωk−t := (σk−t, rS , k)

055 Π← P(CRS, x, ω)

056 σ := (S, d,Π)

057 else
058 σ := σt

059 if out 6= ⊥ then out := σ

060 b∗ ← A2(out)
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Game G1
102 CRS← S0(1λ)

137 Π← S1(x)

Game G2
228 for j ∈ {0, . . . , n}

Game G3
301 b := 1

316 for j ∈ {1, . . . , t− 1}
324 if ¬∃skF∗. (skF∗, pkF [t]) ∈ KF out := ⊥
325 ft := G(λ, g, β[t], pkF [t], ft−1)

mt := F(λ, ft−1, α[t],mt−1)

qt := (pp, skF∗, pksig, α[t], β[t],mt−1, pkF [t], σt−1)

parse skF∗ = (sskF , dk)
parse pkF [t] = (vk′F , ek

′)

parse σt−1 = (S′, d′,Π′)

(f, g, i, ςi)← DecE(ppE , dk, d
′)

x′ = (pp, pksig, pkF , S
′, d′,mt−1)

if VfNIZK;Zi(CRS, x
′,Π) 6= 1 then out := ⊥

hi−1 := (ft, g,mt, pkF [t]i− 1)

ς̂i−1 ← SigS(ppS , sskF , hi−1; rS)

326 si−1 ← EncE(ppE , ẽk, (ς̂i−1, hi−1); rs)
334 ω = (f, g, i− 1, rd)

335 with ωi−1 = (ςi−1, rS ,Π
′, pkF ,mt−1, f, α, β)

336 Π← PNIZK(CRS, ξ, x)

337 σ := (S, d,Π)

Game G4
428 for j ∈ ∅
432 d← EncE(ppE , ek

′, (f, g, i− 1, ςi−1); rd)

Game G5
501 CRS← KGenNIZK(1λ)

536 Π← P(CRS, x, ω)

Game G0 ⇒Game G1: Since NIZK is zero knowledge, there exists a (possibly stateful) efficient
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simulator S = (S0,S1). In Game G1, Initialize calls this simulator S0 to compute the common
reference string CRS, instead of the algorithm SetupNIZK. Moreover, in Query[Sign-F ] we call
S1 to simulate the proof Π instead of computing it by calling the prover P.

Claim 5. Game G0 and Game G1 are computationally indistinguishable.

Proof. The indistinguishability follows from the fact that NIZK is zero knowledge (Definition 19).
If a PPT distinguisher could distinguish between Game G0 and Game G1, we could construct an
efficient distinguisher for NIZK.

Game G1 ⇒Game G2: The game Game G2 is identical to Game G1 except for the fact that now
S contains only descriptions of zero-strings: we put encryptions of zero strings in all sj for
j ∈ {0, . . . , n} instead of leaving an encryption of a signature σk together with its message hk
at position k.

Claim 6. Game G1 and Game G2 are computationally indistinguishable.

Proof. If the games could be distinguished, then we could break the CPA security of E . We distin-
guish two cases:

• The simulator S = (S0,S1) behaves differently. Although the simulatability of the NIZK only
is defined for valid statements x ∈ LR, a simulator that can distinguish with a non-negligible
probability between a “normal” S (as in Game G1) and an S that consists only of encryptions
of zero-strings (as in Game G2) can also be used to break the CPA security of E .

• The adversary distinguishes the games. If the adversary is able to distinguish Game G1 and
Game G2 with a non-negligible probability, it can be used to break the CPA security of E .

Thus, Game G1 and Game G2 are computationally indistinguishable.

Game G2 ⇒Game G3: The difference in the games is that in the beginning, the bit b is set to 1
instead of 0. However, b is never used explicitly in the game.

Claim 7. Game G2 and Game G3 are computationally indistinguishable.

Proof.

Game G3 ⇒Game G4:

Claim 8. Game G3 and Game G4 are computationally indistinguishable.

Proof.

Game G4 ⇒Game G5:

Claim 9. Game G4 and Game G5 are computationally indistinguishable.

Proof.
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A Preliminaries

Definition 20. (Strong Unforgeability). A Signature Scheme S is Strongly Unforgeable if for all
PPT adversaries A the probability

Pr[SUnf(S,A, λ) = 1].

is negligible in λ.

B Relation to Other Primitives

In the following section we show that functional signature schemes imply several seemingly different
signature primitives. Using only black-box access to a given functional signature scheme FSS, we
construct (among others) identity based signature schemes, sanitizable signature, and redactable
signature schemes. To simplify the exposition and to avoid redundancy, we assume that for every
primitive Π, there is an algorithm Setup(λ) that outputs some public components pp and (poten-
tially) some secret components msk for key generation. This setup algorithm is implemented by
calling the Setup(λ) of FSS.

B.1 Signature Schemes

As a warm-up, we show that functional signature schemes imply the notion of standard signature
schemes that are clearly non-malleable: Only the signer in possession of the secret signing key can
generate signatures on message of its choice. In fact, it is (computationally) hard to construct
a signature on another message, or (in the case of strong unforgeability) to construct a different
signature for the same message. Thus, in the language of functional signatures, a regular signature
scheme realizes the empty functionality F⊥. The easiest idea to build a signature scheme from a
functional signature scheme for an arbitrary functionality F is to withhold the evaluation key skF
such that evaluation algorithm cannot be executed.

More formally, let FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) be a functional signature scheme.
A regular signature scheme is a tuple of algorithms S = (SetupS ,KGenS , SigS ,VfS). We implement
the SetupS algorithm by the Setup algorithm of FSS. The other algorithms are defined in Figure 8.
We set FS to an arbitrary functionality F and require FSS to be FS correct. If FSS is unforgeable
against outsider attacks for functionality FS , then S is unforgeable in the classical sense, i.e., a
polynomially bounded adversary is not able to generate new signatures by using only the public key
pk.
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Proposition 3. Given a functional signature scheme FSS that is both unforgeable against outsider
attacks (UnfO) and correct for any functionality F , the (regular) signature scheme S as constructed
above is unforgeable.

Proof. Assume towards contradiction that S is not unforgeable. Then, there exists an efficient
adversary A that has access to a signing oracle and outputs a valid forgery on a fresh message of
its choice. We show how to build an algorithm B that breaks the unforgeability against outsider
attacks for F . The algorithm B receives as input a tuple (pp, pksig, pkF ) from InitializeUnfO, it
sets (pp, pk := (pksig, pkF )) and runs a black-box simulation of A on (pp, pk). Whenever A invokes
Query[Sign]Unf on a message m, then B forwards the message to its own signing oracle setting f = 0λ

and it returns the answer σ ← Sig(pp, sksig, pkF , 0λ,m) to A. At some point, the algorithm B get
FinalizeUnf(m

∗, σ∗) that it forwards to its own challenger.
For the analysis assume that A succeeds with non-negligible probability. Observe that B per-

forms a perfect simulation from A’s point of view and that it runs in polynomial-time because A
is an efficient algorithm. But then, B forges a functional signature whenever A does contradicting
our initial assumption that FSS is unforgeable.

Note that if the underlying scheme is strongly unforgeable against outsider attacks, then the
(regular) signature scheme is also strongly unforgeable.

B.2 Rerandomizable Signature Schemes

In difference to the (regular) signature scheme, a rerandomizable signature scheme allows for chang-
ing the underlying randomness of a signature, but not changing the message that is signed. This
comes very close to a (regular) scheme that is unforgeable but not strongly unforgeable. The al-
gorithms for a rerandomizable signature scheme are almost identical to the ones of the functional
signature scheme. The main difference is, that we restrict the functionality F such that the signed
messages m can not be changed.

More formally, let FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) be a functional signature scheme.
A rerandomizable signature scheme is a tuple of algorithmsR = (SetupR,KGenR, SigR,VfR,RerandomizeR).
We implement the SetupR algorithm by the Setup algorithm of FSS.

Since we want R to allow for rerandomization without allowing to change signed messages, we
set FI to be the identity function FI := (λ, f, α,m) := m and require FSS to be FI correct. if FSS
is also unforgeable against insider attacks for FI , the rerandomizable scheme is unforgeable as well.

Proposition 4. Given a functional signature scheme FSS that is unforgeable against Insider attacks
(UnfI) for the functionality F with F(λ, f, α,m) := m, the rerandomizable signature scheme R as
constructed above is unforgeable.

Proof. Given an adversary A that breaks the unforgeability of R, we construct a new adversary A’
that breaks the unforgeability against insider attacks against FSS. Given an adversary A that breaks
the unforgeability of R, we construct an adversary A’ against FSS that breaks the unforgeability
against insider attacks for F :

• Upon receiving (pp, skF , pksig, pkF ) from InitializeUnfI, we send (pp, pk := (skF , pksig, pkF )) to
A. By construction, this behavior is exactly the same as the InitializeUnf algorithm for R.
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• Upon receiving a query Query[Sign]Unf fromA, we just forward the query to the UnfI challenger
with f = 0λ. This leads our challenger to generate σ ← Sig(pp, sksig, pkF , 0λ,m) and by
forwarding σ to A, we give the same answer, that an honest challenger would have given.

• Upon receiving FinalizeUnf(m
∗, σ∗) we simply forward the message (as FinalizeUnfI(m∗, σ∗)) to

our challenger for UnfI.

Since we correctly model an Unf challenger for R, A will win against us with a non negligible
probability. We now lever this probability to our own success probability:

Pr[UnfI(FSS,F ,A′, λ) = 1]

= Pr[FinalizeUnfI(m∗, σ∗) = 1|(m∗, σ∗)← A′Query[Sign]UnfI(pp, skF , pksig, pkF ); (pp, skF , pksig, pkF )← InitializeUnfI(λ)]

= Pr[FinalizeUnfI(m∗, σ∗) = 1|(m∗, σ∗)← AQuery[A’](pp, (skF , pksig, pkF )); (pp, skF , pksig, pkF )← InitializeUnfI(λ)]

= Pr[FinalizeUnf(m
∗, σ∗) = 1|(m∗, σ∗)← AQuery[A’](pp, pk); (pp, pk)← InitializeUnf(λ)]

= Pr[FinalizeUnf(m
∗, σ∗) = 1|(m∗, σ∗)← AQuery[Sign]Unf (pp, pk); (pp, pk)← InitializeUnf(λ)]

= Pr[Unf(R,A, λ) = 1]

B.3 Identity Based Signatures

An identity based signature scheme allows for using commonly known bit strings ID to serve as
(public) verification keys for signatures that were generated by the respective party associated with
the ID. We follow the general construction of [8], in which a trusted party generates a master secret
key msk and for each party extracts a signing key skID from msk and the ID of the respective party.

The basic idea for constructing an identity based signature scheme out of a functional signature
scheme is that we first derive a secret signing key sksig that is never given to any party except for
the trusted one. With this signing key, we generate the participants’ secret keys by signing the
individual participants’ ID. This signature σID constitutes the secret that a participant can use in
order to sign their own messages. Signing is done by modifying the respective signing secret σID:
We add the (real) message to the (signed) ID and obtain a new signature.

Formally, let FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) be a functional signature scheme
that is FIBS-correct for FIBS(λ, f, α, I) := (I, α) 2. An identity based signature scheme is a tuple
IBS = (SetupIBS,ExtractIBS, SigIBS,VfIBS) of probabilistic algorithms. We implement the SetupIBS
algorithm by calling the Setup algorithm of FSS. When a participants key is extracted from the
master secret key and the participant’s ID, we do not send them the signing key, but instead we give
out a signature σID = Sig(pp, sksig, pkF , ID) on the ID and a evaluator key, by which messages can
be added to the signed ID. If we want to sign a message m, we use the signature σID and combine
it with m using EvalF .

2Actually,FIBS is required to be of type {0, 1}`p(λ) × {0, 1}`p(λ) × {0, 1}`m(λ)+|ID| s.t. FIBS(λ, f, α, (I, 0
`m(λ))) :=

(I, α). Whenever the second component of the message is not 0`m(λ), FIBS outputs ⊥. However, for readability
reasons, we do not enforce this type in the notation of the definitions or the proof.
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The security of the scheme comes from the fact that σID is secure and can not be generated by
another participant. Even if a signature σ = Sig(pp, sksig, pkF , (ID,m)) is known for some message
m, one can not generate a forgery for another message m′ because then the first component of the
signed message would differ from the identity ID (it would be the pair (ID,m)).

So, if FSS is secure against insider attacks and against outsider attacks for F , then the identity
based signature scheme IBS is unforgeable as well.

The algorithms KGensig and KGenF can even be deterministic and produce the same evaluator
key every time. The important secret for signing is the signature σID of the ID.

Proposition 5 (Security of identity based signatures). Given a functional signature scheme FSS
that is unforgeable against Insider attacks (UnfI) for functionality the functionality F with F(λ, f, α, I) :=
(I, α), the identity based signature scheme IBS as constructed above is unforgeable (UnfIBS) as in
Definition 22.

Proof. We assume that identities have a certain, fixed length. Furthermore, assume towards con-
tradiction that IBS is not unforgeable. Then there exists an efficient adversary A that has access to
a signing oracle and outputs a valid forgery on a fresh message or on a fresh identity of its choice.
We show how to build an adversary B that breaks the unforgeability against insider attacks for F .
The algorithm B receives as input a tuple (pp, pksig, pkF ) from InitializeUnfI, calls Query[KGenS]()
and receives skF . Then it runs a black-box simulation of A on pp′ := (pp, pksig, pkF ). When-
ever A invokes Query[Init]UnfIBS on an identity ID, then B returns 1 to A. Whenever A invokes
Query[Corrupt]UnfIBS(ID), B sends Query[Sign]UnfI(pkF , 0

λ, ID) to its signing oracle, receives a signa-
ture σID, sets skID := (skF , σID, ID) and returns skID to A. Whenever A invokes Query[Sign] on a
message m for an identity ID, B sends Query[Sign]UnfI(pkF , 0

λ, (ID,m)) to its signature oracle and
forwards its answer σ to A. At some point, the algorithm B gets FinalizeUnfIBS(m∗, ID∗, σ∗) and
forwards ((m∗, ID∗), σ∗) to its own challenger.

For the analysis assume that A succeeds with non-negligible probability. Observe that B per-
forms a perfect simulation from A’s point of view and that it runs in polynomial-time because A is
an efficient algorithm.
A wins against UnfIBS if it didn’t send Query[Corrupt](ID∗) or Query[Sign](ID∗,m∗) before and

if ID∗ is a known identity. This corresponds to the condition of the verification of UnfI: Assume
for contradiction that (ID∗,m∗, σ′) is a forgery for UnfIBS but ((ID∗,m∗), σ∗) is not a forgery for
UnfI. If the verification algorithm VfIBS(pp′ = (pp, pksig, pkF ), ID∗,m∗, σ∗) = 1, by construction
Vf(pp, pksig, pkF , (ID

∗,m∗), σ∗) = 1.
B succeeds against UnfI, whenever A succeeds: B uses the key pkF in FinalizeUnfI and pkF ∈ KC .

If (·, (ID∗,m∗), ·, ·) ∈ MUnfI, then B made a call to its signature oracle with the message (ID∗,m∗),
but then there has been a Query[Sign] on m∗ for identity ID∗ by A and in this case A does not win.

If ∃x, f, α s.t. F(λ, f, α, x) = (ID∗,m∗) and x ∈ MUnfI, then by definition of F , x = ID∗. Then
B made a query to its signature oracle for the message ID∗. B only queries its signature oracle in
the following two cases:

• A Query[Corrupt]UnfIBS(ID∗) by A, but then ID∗ ∈ UUnfIBS and thus ID∗,m∗, σ∗ is not a forgery
for UnfIBS.

• A Query[Sign]UnfIBS(ID+,m+) by A with ID∗ = (ID+,m+). However, since identities have a
fixed length, ID∗ is not a valid identity and thus ID∗,m∗, σ∗ is not a forgery for UnfIBS.
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B.4 Sanitizable Signatures

We show how to construct a sanitizable signature scheme as in [15] out of a functional signature
scheme. However, we deviate from their definition on purpose in order to simplify the construction.

Intuitively, we express the possible sanitization options as a predicate P and implement the
predicate by a functionality F . Please note that we construct a “weaker form” of a sanitizable
signature scheme that does not have a notion of accountability. However, extending the scheme to
an accountable sanitizable signature scheme is an interesting future work.

More formally, let FSS = (Setup,KGensig,KGenF , Sig,EvalF ,Vf) anf set `p(λ) = `m(λ) for all λ.
A sanitizable signature scheme is a tuple SanS = (SetupSanS,KGensi,KGensa, SigSanS, SanitSanS,VfSanS).
We implement the SetupSanS algorithm by calling the Setup algorithm of FSS, KGensi by calling
KGensig, KGensa by calling KGenF , SigSanS by calling Sig, SanitSanS by calling EvalFand VfSanS by
calling Vf.3

For a desired predicate P : {0, 1}`p(λ) × {0, 1}`p(λ) × {0, 1}`m(λ) → {0, 1} we construct a func-

tionality FP as FP (λ, f, α,m) :=

{
α if P (m, f, α) = 1

⊥ otherwise

Proposition 6. If FSS is unforgeable against outsider attacks for F (Definition 4), then SanS is
unforgeable (Definition 21).

Proof sketch. As we simply instantiate our scheme with a specific functionality, it follows directly
that an adversary A that breaks the unforgeability of SanS also breaks the unforgeability against
outsider attacks of FSS for F .

Note that our predicate based definition implies other common definitions for sanitizable signa-
tures (e.g. the MOD/ADM version of [15]) as they can be expressed by a predicate.

B.5 Redactable Signatures

Here we show how to construct redactable signatures as in [14] from functional signatures. Intuitively
we can construct a redactable signature scheme RSS from a functional signature scheme by making
the secret evaluator key skF public. This allows everyone to modify signatures according to a
functionality F that implements the desired redaction predicate P . As for the case of sanitizable
signatures we require that the length of `p(λ) and `m(λ) are equal.

More formally, let P : {0, 1}`m(λ)×{0, 1}`m(λ) → {0, 1} be a predicate and FSS = (Setup,KGensig,KGenF ,
Sig,EvalF ,Vf) be a functional signature scheme that is FP correct for a functionality.

FP (λ, f, α,m) :=

{
α if P (m,α)
⊥ otherwise

We implement the SetupRSS algorithm by calling the Setup algorithm of FSS. We implement the
other algorithms as follows:

Proposition 7. If FSS is unforgeable against insider attacks for F , then RSS is unforgeable.

Proof sketch. An adversary A that breaks the unforgeability of RSS also breaks the unforgeability
against insider attacks of FSS for F .

3We require that ∀λ.`p(λ) = `m(λ)
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C Appendix (Security Notions)

In this section, we review the security notions for the basic cryptographic primitives.

C.1 Sanitizable signature schemes

A sanitizable signature scheme is called unforgeable, if it is computationally hard to forge signatures
for new messages without access to the signing key, even if arbitrary messages have been signed be-
fore. More formally, we define unforgeability for a signature scheme SanS = (SetupSanS,KGenSanS, SigSanS,VfSanS))
as a game UnfSan (SanS,A,λ) with the following game algorithms:

Definition 21 (Unforgeability for Sanitizable Signature Schemes). A Sanitizable Signature Scheme
S is Unforgeable if for all PPT adversaries A the probability

Pr[Unf(S,A, λ) = 1].

is negligible in λ.

Unforgeability for identity based signature schemes We follow the definition of [8, 7], where
an identity based signature scheme is called unforgeable, if it is computationally hard to forge sig-
natures for new messages of honest (not corrupted) participants, even if arbitrary messages have
been signed for arbitrary participants before and if arbitrary participants were adaptively corrupted.
More formally, we define unforgeability for a signature scheme IBS = (SetupIBS,ExtractIBS, SigIBS,
VfIBS) as a game UnfIBS (IBS,A,λ) as in Figure 11.

Definition 22 (Unforgeability for identity based signatures). Let IBS = (SetupIBS,ExtractIBS, SigIBS,
VfIBS) be an identity based signature scheme. The definition uses UnfIBS(IBS,A, λ) defined in Fig-
ure 11. IBS is existential unforgeable (EU-IBS) if for all PPT adversaries A

AdvEU-IBS
IBS,A = Pr [UnfIBS(IBS,A, λ) = 1]

is negligible in λ,

D Postponed proofs

In this section we present the omitted proofs from the body of the paper.

D.1 Proofs for Section 3

sketch for Theorem 1. We assume that the key generator of the underlying signature scheme KGenS
does not require a master secret key, as is the case for most signature schemes. Technically we assume
that SetupS always outputs an empty mskS = ε

Assume towards contradiction that DFSS is not unforgeable against outsider attacks. Then
there exists an efficient adversary A that has access to a public key oracle, a signing oracle and a
transformation oracle and outputs a valid forgery on a fresh message of its choice. We show how
to build an adversary B that breaks the unforgeability of S. The algorithm B receives as input a
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tuple (ppC , vkC) from InitializeUnf and computes (ppE ,mskE) ← SetupE(1λ), CRS ← KGenNIZK(1λ).
B then sets pp := (CRS, ppC , ppE) msk := (ε,mskE). B generates (d̃k, ẽk)← KGenE(ppE ,mskE). If A
is bounded by the polynomial p(λ), B guesses a number z ∈ {0, . . . , p(λ)}. Then B generates a new
key pair (sksig, pksig)← KGensig(pp,msk). If z = 0, B replaces vkS by vkC . B then runs a black-box
simulation of A on pp and pksig.

Whenever A invokes Query[KgenP], B generates a new key pair (skF , pkF )← KGensig(pp,msk),
stores it and sends pksig to A. On the z’th invocation, however, B replaces vkS by vkC before sending
pksig to A.

Whenever A invokes Query[Sign] or Query[Trans], B computes the required signature locally and
forwards its answer σ to A. However, if vkS = vkC , a local computation of the underlying signature is
not possible. In this case, B sends a query to its signature oracle instead of computing the signature
locally.

Whenever A produces a forgery (m∗, σ∗), B proceeds as follows: It parses σ∗ = (S, d,Π) and
decrypts the signatures (σi, hi) = Dec(ppE , d̃k, si). Then it parses the hi = (fi, g,mi, pkF i, i). If one
of the signatures validates with vkC and B has not queried hi to its oracle, B sends (hi, σi) as a
forgery.

For the analysis assume that A succeeds with non-negligible probability. Observe that B runs in
polynomial-time because A is an efficient algorithm and that it performs a perfect simulation from
A’s point of view.

Claim 1: Whenever A produces a forgery, then this forgery contains the encryption of a
signature that verifies for some key vk∗ that either equals pksig or for which A has made a call
Query[KgenP]. The last signature in the chain (the one signing m∗) can not have been produced
by Query[Sign] or Query[Trans], as otherwise (m∗, σ∗, pkF

∗) would not be a valid forgery. As the
NIZK does not check which entity generated the keys, the last signature σl in the chain does not
necessarily validate under a key that has been honestly generated. However, neither Query[Sign]
nor Query[Trans] allow for delegation to entities with unknown keys and as A is an outsider, it will
never call Query[KgenS] or Query[RegisterKey] to obtain secret keys to known public keys. Thus,
in this case the previous signature σl+1 must have been forged by A as well. This argument can
be applied recursively. However, the NIZK makes sure that the first message in the chain has been
signed with sksig, so at some point there has to be a signature that was forged by A and that verifies
with either vk∗ = pksig or another vk∗ for which A has made a call to Query[KgenP].

Note that if, by chance, vk∗ = vkC , then (hi, σi) is a valid forgery for B. Recall that B performs
a perfect simulation from A’s point of view independent of the choice of z. This especially means
that the choice of z does not influence the behavior of A. As by claim 1 A produces a forgery for
an honest key and vkC is randomly placed in the set of possible honest keys (p(λ) many, as A makes
at most p(λ) many steps), A produces a forgery for vkC with probability at least 1

p(λ)+1 . Since A
is assumed to succeed with a non-negligible probability, B will also succeed with a non-negligible
probability, losing a polynomial factor of p(λ) + 1.

Against a (strong) insider B reacts to the calls to Query[KGenS] and Query[RegisterKey] as a
challenger for Unf would. Otherwise B behaves as before. In the analysis, the argumentation
for claim 1 changes slightly: The NIZK makes sure that whatever A computes from an honestly
generated signature that is included in S has been allowed in this signature: The trace of m’s and
f ’s can not be broken without either violating the soundness of the NIZK, or forging a signature for
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a key that was output by Query[KGenP]. For the construction presented here, a strong insider does
not have more capabilities.

sketch for Theorem 2. We begin with a conceptually simpler case where the adversary A against the
CFA-security only invokes the challenge oracle Query[Sign-F ] once. In the following proof, we start
with the game where b := 0 and via a hop of indistinguishable games we will end up with a game
where b := 1. Our proof shows that all intermediate games are either indistinguishable such that
A’s success probability remains the same (except for a negligible amount). Thus, we conclude that
A’s advantage was negligible at the very beginning. Finally, we apply a standard hybrid argument
to cover the more general case where A queries the challenge oracle Query[Sign-F ] multiple times.

More formally, let Game Game G0 as shown in Figure 12 be the original game in which A
plays against a challenger for CFA and where b = 0 holds. For simplicity we will write down
Initialize and give A orcle access to Query[Sign] (the number of queries to this oracle are only
polynomially bounded). To improve the exposition of the proof, we assume that A is a stateful
algorithm consisting of two procedures. The first one, that we denote by A1, creates a query for
the Query[Sign-F ] oracle. The second algorithm, denoted by A2, obtains the response and outputs
its guess b.

Game G0 ⇒ Game G1. We define Game G1 as the game in which instead of a (real) prover
P we use the simulator SimNIZK to compute the CRS and also to generate the proofs Π that are
requested by A in all Query[Sign-F ] queries. This modification is defined in Figure 12.

Claim 10. Game G0 ≈ Game G1.

sketch. The games Game G0 and Game G1 are indistinguishable by the zero knowledge property of
the NIZK scheme: If an probabilistic poly time adversary distinguished between both games with a
non-negligible probability, we could easily construct an efficient distinguisher, that can distinguish
between a real proof and simulation with the same probability. Since this proof is fairly standard,
we omit a full reduction.

Game G1 ⇒ Game G2. The next games Game G2 is identical to the previous game, with the
difference being that we replace the encryptions s0, . . . sn by all 0-string encryptions. The game is
depicted in Figure 12.

Claim 11. Game G1 ≈ Game G2.

sketch. Since neither A nor SimNIZK receive decryptions keys or information about the randomness4

that has been used for encrypting, the CPA property of the encryption scheme implies that the
games Game G1 and Game G2 are indistinguishable.

Game G2 ⇒ Game G3. Now, in Game G3 we change the computation of the signature we
generate. If σt 6= ⊥, then we still generate σt as before and use it. In the case that σt = ⊥, B did
already set σ := σt.

Claim 12. Game G2 ≈ Game G3.
4Since we use a simulator here that has no access to this information, it can not pass it on to the adversary
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sketch. However, the signatures are not used in the current game, since we only encrypt zero-
strings in S and d and use a simulator that has no access to secret information. Thus, Game G2
and Game G3 are perfectly indistinguishable for A.

Game G3 ⇒Game G4.

Claim 13. Game G4 ≈ Game G5.

sketch. For the game Game G4 we again replace the fake encryptions by encryptions of the si.
Using the same argumentation as above we see that the CPA property of the encryption implies
that the games Game G3 and Game G4 are indistinguishable.

Game G4 ⇒Game G5.

Claim 14. Game G4 ≈ Game G5.

sketch. Finally, we define Game G5 as the original game in which A plays against a challenger for
CFA but where b = 1 holds. The only difference to Game G4 is, that we replace the simulator
by a real prover again, that uses a new witness ω̂ to show that the statement holds. Again, if one
could distinguish Game G4 and Game G5 with non negligible probability, we could construct a PPT
distinguisher, that can distinguish between a real proof and simulation with the same probability.

E Appendix (Figures)
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Setup(1λ) :

CRS← KGenNIZK(1λ)

(mskS , ppS)← SetupS(1λ)

(mskE , ppE)← SetupE(1
λ)

(d̃k, ẽk)← KGenE(ppE ,mskE)

pp := (CRS, ppS , ppE , ẽk)
msk := (mskS ,mskE)
output (pp,msk)

KGensig(pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)
parse msk = (mskS ,mskE)
(sskS , vkS)← KGenS(ppS ,mskS)

pksig := vkS
sksig := (sskS , pksig)

output (sksig, pksig)

KGenF (pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)
parse msk = (mskS ,mskE)
(sskF , vkF )← KGenS(ppS ,mskS)

(dk, ek)← KGenE(ppE ,mskE)
skF := (sskF , dk)
pkF := (vkF , ek)
output (skF , pkF )

Sig(pp, sksig, pkF , (f, k), g,m) :

parse pp = (CRS, ppS , ppE , ẽk)
parse pkF = (vkF , ek)
parse sksig = (sskS , pksig))

hk := (f, g,m, pkF , k)

σk ← SigS(ppS , sskS , hk; rS)

sk ← EncE(ppE , ẽk, (σk, hk); rsk)

For i ∈ {0, . . . , n} \ {k}
σi := 0|σk|

hi := (0`f (λ), 0`g(λ), 0`m(λ), 0|pkF |, 0)

si ← EncE(ppE , ẽk, (σi, hi); rsi)
d← EncE(ppE , ek, (f, g, k, σk); rd)
S := (s0, . . . , sn)

x = (pp, pksig, pkF , S, d,m)

ω = (f, g, n, rd)

with ωk = (σk, rS , k)

Π← PNIZK(CRS, x, ω)

σ := (S, d,Π)

output σ

Vf(pp, pksig, pkF ,m, σ) :

parse pp = (CRS, ppS , ppE , ẽk)

parse pksig = (vkS , ẽk)

parse pkF = (vkF , ek)
parse σ = (S, d,Π)

x := (ppS , ppE , pksig, pkF , S, d,m,CRS)

b← VfNIZK(CRS, x,Π)

output b

TransFG(pp, skF , pksig, α, β,m, pk
′
F , σ) :

parse pp = (CRS, ppS , ppE , ẽk)
parse skF = (sskF , dk)
parse pk′F = (vk′F , ek

′)

parse σ = (S, d,Π)

(f, g, i, σi)← DecE(ppE , dk, d)

x = (pp, pksig, pkF , S, d,m)

if pkF = (vkF , ek) belongs to skF
∧ VfNIZK;Zi(CRS, x,Π) = 1

m̂ := F(λ, f, α,m)

f̂ := G(λ, g, β, pk′F , f)

hi−1 := (f̂ , g, m̂, pk′F , i− 1)

σ̂i−1 ← SigS(ppS , sskF , hi−1; rS)

si−1 ← EncE(ppE , ẽk, (σ̂i−1, hi−1); rs)
d← EncE(ppE , ek

′, (f, g, i− 1, σi−1); rd)

x̂ = (pp, pksig, pk
′
F , S, d, m̂)

ω = (f, g, i− 1, rd)

with ωi−1 = (σi−1, rS ,Π, pkF ,m, f, α, β)

Π̂← PNIZK(CRS, x, ω)

σ̂ := (S, d,Π)

output σ̂
else
output ⊥

Figure 6: Construction of a DFSS
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proc Finalize(m∗, σ∗, pk∗F ) :

if ∃(f, g,m, pkF , ·) ∈ Q, s.t.
pkF ∈ KA ∧m∗ ∈ F∗G(λ, f, g,m)

output 0

else
if (·, ·,m∗, ·, ·) ∈ Q
output 0

else
retrieve (pp, pksig)

parse pp = (CRS, ppS , ppE , ẽk)

parse pksig = (vkS , ẽk)

parse pk∗F = (vkF , ek)
parse σ∗ = (S, d,Π)

x := (ppS , ppE , pksig, pk
∗
F , S, d,m

∗,CRS)

b← VfNIZK(CRS, x,Π)

output b

Figure 7: A simulated version of Finalize for our construction DFSS

KGenS(pp,msk) :

(sksig, pksig)← KGensig(pp,msk)

(skF , pkF )← KGenF (pp,msk)
set sk := (sksig, pkF )

set pk := (pksig, pkF )

output (sk, pk)

SigS(pp, sk,m) :

parse sk = (sksig, pkF )

σ ← Sig(pp, sksig, pkF , 0
λ,m)

output σ

VfS(pp, pk,m, σ) :

parse pk = (pksig, pkF )

b← Vf(pp, pksig, pkF ,m, σ)

output b

Figure 8: Construction of a signature scheme from an FSS.
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KGenR(pp,msk) :

(sksig, pksig)← KGensig(pp,msk)

(skF , pkF )← KGenF (pp,msk)
set sk := (sksig, pkF )

set pk := (skF , pksig, pkF )

output (sk, pk)

SigR(pp, sk,m) :

parse sk = (sksig, pkF )

σ ← Sig(pp, sksig, pkF , 0
λ,m)

output σ

VfR(pp, pk,m, σ) :

parse pk = (pksig, pkF )

b← Vf(pp, pksig, pkF ,m, σ)

output b

RerandomizeR(pp, pk,m, σ) :

parse pk = (skF , pksig, pkF )

σ′ ← EvalF (pp, skF , pksig,m,m, σ)

output σ′

ExtractIBS(pp,msk, ID) :

parse pp = (ppF , pksig, pkF )

parse msk = (mskF , sksig, skF )

σID ← Sig(ppF , sksig, pkF , 0
`p(λ), ID)

set sk := (skF , σID, ID)

output skID

SigIBS(pp, sk,m) :

parse pp = (ppF , pksig, pkF )

parse sk = (skF , σID, ID)

σ ← EvalF (ppF , skF , pksig,m, ID, σID)

output σ

VfIBS(pp, ID,m, σ) :

parse pp = (ppF , pksig, pkF )

b← Vf(ppF , pksig, pkF , (ID,m), σ)

output b

SetupIBS(λ) :

(ppF ,mskF )← Setup
(sksig, pksig)← KGensig(ppF ,mskF )

(skF , pkF )← KGenF (ppF ,mskF )

set pp := (ppF , pksig, pkF )

set msk := (mskF , sksig, skF )

output (msk, pp)

Figure 9: Construction of an IBS out of an FSS

KGenRSS(pp,msk) :

(sksig, pksig)← KGensig(pp,msk)

(pkF , skF )← KGenF (pp,msk)
set pk := (skF , pksig, pkF )

set sk := (sksig, pkF )

output (pk, sk)

SigRSS(pp, sk,m) :

parse sk = (sksig, pkF )

σ ← Sig(pp, sksig, pkF ,m)

output σ

VfRSS(pp, pk, σ,m) :

parse pk = (skF , pksig, pkF )

b← Vf(pp, pksig, pkF ,m)

output b

RedactRSS(pp, pk,m, σ,m′) :

parse pk = (skF , pksig, pkF )

σ′ ← EvalF (pp, skF , pksig,m
′,m, σ)

output σ′
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Initialize(λ) :

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensigSanS(pp,msk)

(skF , pkF )← KGenFSanS(pp,msk)
store (pp, sksig, skF , pksig, pkF )

setM := ∅
output (pp, pk)

Query[Sign](pki, ?,mi) :

retrieve (pp, sksig, skF , pksig, pkF )

σ ← SigSanS(pp, sk,m)

setM :=M∪ {m}
output σ

Finalize(m∗, σ∗) :

if m∗ ∈M then
output 0

else
retrieve (pp, sk, pk)
b← VfSanS(pp, pk,m∗, σ∗)
output b

Figure 10: Unforgeability for sanitizable signature schemes

Initialize(λ) :

(pp,msk)← Setup(λ)

store (pp,msk)
setM := ∅,U := ∅,H := ∅
output (pp)

Query[Init](ID) :

retrieve (pp,msk)
skID ← Extract(pp,msk, ID)

set H := H ∪ {(ID, skID)}
output 1

Query[Corrupt](ID) :

if (ID, skID) ∈ H
set U := U ∪ {ID}
output skID

else
output ⊥

Query[Sign](ID,m) :

retrieve (pp,msk)
if (ID, skID) ∈ H
σ ← Sig(pp, skID,m)

setM :=M∪ {(ID,m)}
output σ

else
output ⊥

Finalize(ID∗,m∗, σ∗) :

if (ID∗,m∗) ∈M
or ID∗ ∈ U
or (ID∗, ·) /∈ H then
output 0

else
retrieve (pp,msk)
b← VfIBS(pp, ID∗,m∗, σ∗)
output b

Figure 11: Unforgeability for identity based signature schemes
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Oracle Opp=(CRS,ppS ,ppE ,ẽk),msk,ssks

Query[Sign](pk∗F , f, g, k,m) :

hk := (f, g,m, pk∗F , k)

σk ← SigS(ppS , sskS , hk; rS)

sk ← Enc(ppE , ẽk, (σk, hk); rsk)

For i ∈ {0, . . . , n} \ {k}
σi := 0|σk|

hi := (0`p(λ), 0`p(λ), 0`m(λ), 0|pk
∗
F |, 0)

si ← Enc(ppE , ẽk, (σi, hi); rsi)
d← Enc(ppE , ek, (f, g, k, σk; rd))
S := (s0, . . . , sn)

x := (pp, pksig, pk
∗
F , S, d,m)

ω := (f, g, n, rd)

with ωk := (σk, rS , k)

Π← P(CRS, x, ω)

σ := (S, d,Π)

output σ

Query[Trans](pk∗F , α, β,m, pkF
′, σ) :

find skF = (sskF , dk) with (pk∗F , skF ) ∈ KC
find pkF

′ = (vkF , ek′) with pkF
′ ∈ KC

abort otherwise
parse σ = (S, d,Π)

(f, g, i, σi)← Dec(ppE , dk, d)

x = (pp, pksig, pkF
∗, S, d,m)

abort if VfNIZK(CRS, x,Π) 6= 1

m̂ := F(λ, f, α,m)

f̂ := g(f, β)

hi−1 := (f̂ , g, m̂, pkF
′, i− 1)

σ̂i−1 ← SigS(ppS , sskF , ĥi−1; r̂S)

ŝi−1 ← Enc(ppE , ẽk, (σ̂i−1, hi−1); r̂si−1)

x = (pp, pksig, pkF
′, S, d,m)

ω = (f, g, i− 1, rd)

with ωi−1 = (σ̂i−1, rŝi−1
,Π, vkF , pkF

′,m, f, α, β)

Π̂← P(CRS, x, ω)

σ̂ := (S, d, Π̂)

output σ̂

Query[KGenP]() :

(skF , pkF )← KGenF (pp,msk)
output pkF

Query[KGenS]() :

(skF , pkF )← KGenF (pp,msk)
output (skF , pkF )

Query[RegisterKey](skF∗, pkF
∗) :

Game G0
001 CRS← KGenNIZK(1λ)

002 (mskS , ppS)← SetupS(1λ)

003 (mskE , ppE)← SetupE(1
λ)

004 (d̃k, ẽk)← KGenE(ppE ,mskE)

005 pp := (CRS, ppS , ppE , ẽk)
006 msk := (mskS ,mskE)
007 (sskS , vkS)← KGenS(ppS ,mskS)

008 pksig := vkS
009 sksig := (sskS , pksig)

010 c← AOpp,msk,ssks
1 (pp, pksig, pkF )

011 parse c = (f0, g, k, [pkF , α, β]t0, t,m0)

012 if pkF [t] ∈ KA ∨ k < t

013 out := ⊥
014 if (·, pkF [0]) /∈ KF out := ⊥
015 σ0 ← Sig(pp, sksig, pkF [0], f0, g, k,m0)

016 for i ∈ {1, . . . , t}
017 if ¬∃skF∗. (skF∗, pkF [i]) ∈ KF
018 out := ⊥
019 fi := g(fi−1, β[i])

020 mi := F(λ, fi−1, α[i],mi−1)

021 qi := (pp, skF∗, pksig, α[i], β[i],mi−1, pkF [i], σi−1)

022 σi ← TransFG(qi)

023 if σt 6= ⊥
024 hk−t := (f, g,mt, pkF [t], k − t)
025 σk−t ← SigS(ppS , sskS , hk−t; rS)

026 sk−t ← Enc(ppE , ẽk, (σk−t, hk−t); rsk−t)
027 For j ∈ {0, . . . , n} \ {k}
028 σj := 0|σk−t|

029 hj := (0`p(λ), 0`p(λ), 0`m(λ), 0|pkF [t]|, 0)

030 sj ← Enc(ppE , ẽk, (σj , hj); rsi)
031 d← Enc(ppE , ek, (f, g, k, σk−t; rd))
032 S := (s0, . . . , sn)

033 x := (pp, pksig, pkF [t], S, d,mt)

034 ω := (f, g, n, rd)

035 with ωk−t := (σk−t, rS , k)

036 Π← P(CRS, x, ω)

037 σ := (S, d,Π)

038 else
039 σ := σt

040 if out 6= ⊥ then out := σ

041 b∗ ← A2(out)

Game G1
101 (CRS, ξ)← SimNIZK(1λ)

136 Π← SimNIZK(CRS, ξ, x)

Game G2
227 for j ∈ {0, . . . , n}
231 δ := (0`p(λ), 0`p(λ), 0, 0|σk−t|)

d← Enc(ppE , ek, δ; rd))

Game G3
316 for j ∈ {1, . . . , t− 1}
324 if ¬∃skF∗. (skF∗, pkF [t]) ∈ KF
out := ⊥

325 ft := g(ft−1, β[t])

mt := F(λ, ft−1, α[t],mt−1)

qt := (pp, skF∗, pksig, α[t], β[t],mt−1, pkF [t], σt−1)

parse skF∗ = (sskF , dk)
parse pkF [t] = (vk′F , ek

′)

parse σt−1 = (S′, d′,Π′)

(f, g, i, ςi)← Dec(ppE , dk, d
′)

x′ = (pp, pksig, pkF , S
′, d′,mt−1)

if VfNIZK;Zi(CRS, x
′,Π) 6= 1 then out := ⊥

hi−1 := (ft, g,mt, pkF [t]i− 1)

ς̂i−1 ← SigS(ppS , sskF , hi−1; rS)

326 si−1 ← Enc(ppE , ẽk, (ς̂i−1, hi−1); rs)
334 ω = (f, g, i− 1, rd)

335 with ωi−1 = (ςi−1, rS ,Π
′, pkF ,mt−1, f, α, β)

336 Π← PNIZK(CRS, ξ, x)

337 σ := (S, d,Π)

Game G4
227 for j ∈ ∅
431 d← Enc(ppE , ek

′, (f, g, i− 1, ςi−1); rd)

Game G5
501 CRS← KGenNIZK(1λ)

536 Π← P(CRS, x, ω)

Figure 12: Games for CFA proof of DFSS (Theorem 2)
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