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Abstract

We introduce signatures where signers can only sign messages that conform to some policy, yet
privacy of the policy is maintained. We provide definitions and show that policy-based signatures
provide a framework which yields a unified view of many other existing types of signatures that now
appear as special cases. We also show how still other primitives are easily realized using policy-based
signatures as a building block. We provide generic constructions of policy-based signatures and then
show how to achieve them efficiently.
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1 Introduction

We introduce policy-based signatures (PBS), a (new) signing framework of both practical and theoretical
interest. On the practical side, PBS offers flexible, fine-grained privacy-respecting authentication that
is useful in a number of real-world applications. On the theoretical side, PBS unifies existing work,
capturing other kinds of signatures as special cases or allowing them to be easily derived. We develop
definitions, provide both generic and efficient constructions, and explore applications.

PBS in brief. In a standard digital signature scheme, a signer who has established a public verification
key vk and a matching secret signing key sk can sign any message that it wants. Policy-based signatures
offer more fine-grained authentication. A signer’s secret key skp is associated to a policy p that allows
the signer to produce a valid signature σ of a message m only if the message satisfies the policy, captured
formally by requiring that (p,m) belongs to a policy language L ⊆ {0, 1}∗ × {0, 1}∗ associated to the
scheme. This cannot be achieved if the signer creates her keys in a standalone way. In our model, a
signer is issued a signing key skp for a particular policy p by an authority, as a function of a master secret
key msk held by the authority. Verification that σ is a valid signature of m is then done with respect
to the authority’s public parameters pp. There are two security requirements. The first, unforgeability,
says that producing a valid signature for message m is infeasible unless one has a secret key skp for some
policy p such that (p,m) ∈ L. (You can only sign messages that you are allowed to sign.) The second,
privacy, says that signatures do not reveal the policy under which they were created. (As part of this,
we require signatures signed with the same key to be unlinkable.)

A trivial potential approach to achieving PBS is for the authority to certify the association of a
signer’s public key vk with its policy p via a signature of (p, vk) under msk, and have the signer include
this certificate in its own signatures. This will provide unforgeability, but it will not provide privacy,
because the policy must be revealed in the signature to allow for verification. Similarly, privacy in the
absence of unforgeability is also trivial. The combination of the two requirements, however, results in a
non-trivial goal.

PBS may be viewed as an authentication analogue of functional encryption [BSW11]. We may view
the latter as allowing decryption to be policy-restricted rather than total, an authority issuing decryption
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keys in a way that enforces the policy. Correspondingly, in PBS, signing capability is policy-restricted
rather than total, an authority issuing signing keys in a way that enforces the policy.

The setup of PBS is natural in a corporate or other hierarchical environment, where the manager
wants to restrict the signing capability of different member entities based on their positions and privileges.
However, the company policies underlying the restrictions need to be kept private.

We view PBS as a natural extension and generalization of a significant body of work on signatures
that have privacy features, including group signatures [Cv91, BMW03], proxy signatures [MUO96], ring
signatures [RST01, BKM06], mesh signatures [Boy07], anonymous proxy signatures [FP08], attribute-
based signatures [MPR11] and anonymous credentials [CL01, BCKL08]. Our framework will allow us to
unify or easily derive many previous signature variants.

Definitions. We allow the policy language to be any language in NP. This means that the policies
that can be expressed and enforced are restricted neither in form nor in type, the only condition being
that, given a witness, one can test in polynomial time whether a given policy allows a given message.
A special case is languages in P. The latter already captures many typical applications, where one can
directly test in polynomial time whether a given policy allows a given message.

We first provide a simple unforgeability definition and a natural, indistinguishability-based privacy
definition. The latter says that the verifier cannot tell under which of two keys a signature was created
assuming both policies associated to the keys permit the corresponding message. This already implies
that the verifier cannot even decide whether two signatures were created using the same key. Yet we
explain that applications call for even stronger notions. In response we provide simulatability and ex-
tractability notions. We show that their combination implies the simpler, more intuitive unforgeability
and indistinguishability notions. Simulation+extractability emerges as a powerful security notion that
enables a wide range of applications.

Constructions. Having created an ambitious target, namely PBS for languages in NP satisfying
simulation+extractability, the first question that emerges is whether this can be achieved at all. We
answer in the affirmative via two generic constructions based on standard primitives. The first uses
ordinary signatures, IND-CPA encryption and standard non-interactive zero-knowledge (NIZK) proofs.
The second uses only ordinary signatures and simulation-sound extractable NIZK proofs [Gro06].

While our generic constructions prove the theoretical feasibility of PBS, their use of general NIZKs
makes them inefficient. We ask whether more efficient solutions may be given without using the random-
oracle model [BR93]. We combine Groth-Sahai proofs [GS08] and structure-preserving signatures [AFG+10]
to design efficient PBS schemes for policy languages expressible via equations over a bilinear group. This
construction requires a twist over usual applications of Groth-Sahai proofs, namely, in order to hide the
policy, we swap the roles of constants and variables.

Applications. We illustrate applicability by showing how to derive a variety of other primitives from
PBS. We start with showing that PBS implies attribute-based signatures, as modelled by [MPR11], in
Section 5. In Section 7 we show that PBS even implies seemingly unrelated primitives like IND-CPA
encryption and simulation-sound extractable NIZK proofs [Gro06]. By [Sah99] this means PBS implies
IND-CCA encryption. We exploit this in Section 6 to show that PBS implies group signatures meeting
the strong CCA version of the definition of [BMW03]. Finally, in Appendix E we show that PBS also
implies signatures of knowledge [CL06]. These applications are illustrative rather than exhaustive, many
more being possible.

Related work. In the world of digital signatures, extensions of functionality typically involve some
form of delegation of signing rights: group signatures allow members to sign on behalf of a whole group,
(anonymous) proxy signatures model delegation explicitly, and in attribute-based signatures and types
of anonymous credentials, keys are also issued by an authority.

For most of these primitives, anonymity or privacy notions have been considered. A group signature,
for example, should not reveal which group member produced a signature on behalf of the group (while an
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authority can trace group signatures to their signer). In attribute-based signatures (ABS), users hold keys
corresponding to their attributes and can sign messages with respect to a policy, which is a predicate over
attributes. Users should only be able make signatures for policies that are satisfied by their attributes.
Privacy for ABS means that a signature should reveal nothing about the attributes related to the key
under which it was produced, other than the fact that it satisfies the policy.

In the models of primitives such as attribute-based signatures or mesh signatures, the policy itself is
always public, as is the warrant, which specifies the policy in (even anonymous) proxy signatures. We
ask whether this is a natural limitation of privacy notions, and whether it is inherently unavoidable that
objects like the policy (which specify why the message could be signed) need to be public.

Consider the example of a company implementing a scheme where each employee gets a signing key
and there is one public key which is used by outsiders to verify signatures in the name of the company.
A group-signature scheme would allow every employee holding a key to sign on behalf of the company,
but there is no fine-grained control over who is allowed to sign which documents. This can be achieved
using attribute-based signatures, where each user is assigned attributes, and a message is signed with
respect to a policy like (CEO or (board member and general manager)). However, it is questionable
whether a verifier needs to know the company-internal policy used to sign a specific message, and there
is no apparent reason he should know; all he needs to be assured of is that the message was signed by
someone entitled to, but not who this person is, what she is entitled to sign, nor whether two messages
were signed by the same person.

Another issue is that when using ABS we have to assume that the verifier can tell which messages
can be signed under which policies. An attribute-based signature which is valid under the policy (CEO
or intern) tells a verifier that it could have been produced by an intern, but it does not provide any
guarantees as to whether an intern would have been entitled to sign the message. We ask whether it is
possible to avoid having these types of public policies at all. PBS answers this in the affirmative.

The use of NIZKs for signatures begins with [BG90], who built an ordinary signature scheme from
a NIZK, a PRF and a committment scheme. Encryption and ordinary signatures were combined with
NIZKs to create group signatures in [BMW03]. Our first generic construction builds on these ideas. Our
second generic construction, inspired by [BMT13], exploits the power of simulation-sound extractable
NIZKs to give a conceptually simpler scheme that, in addition to the NIZK, uses only an ordinary
signature scheme.

2 Preliminaries

Notations and conventions. The empty string is denoted by ε. If x is a (binary) string then |x| is its
length, x[i] is its i-th bit and x[i, j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If S is a finite set then |S| denotes
its size and s←$ S denotes picking an element uniformly from S and assigning it to s. For i ∈ N we let
[i] = {1, . . . , i}. We denote by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial-time.” By
y ← A(x1, . . . ;R), we denote the operation of running algorithm A on inputs x1, . . . and coins R and
letting y denote the output. By y←$A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ;R)
with R chosen at random. We denote by [A(x1, . . .)] the set of points that have positive probability of
being output by A on inputs x1, . . .. Adversaries are algorithms or tuples of algorithms. In the latter
case, the running time of the adversary is the sum of the running times of all the algorithms in the tuple.

A map R : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is said to be an NP-relation if it is computable in time
polynomial in the length of its first input. For x ∈ {0, 1}∗ we let WSR(x) = {w : R(x,w) = 1} be the
witness set of x. We let L(R) = {x : WSR(x) 6= ∅} be the language associated to R. The fact that R is
an NP-relation means that L(R) ∈ NP.

Game-playing framework. For our security definitions and proofs we use the code-based game-playing
framework of [BR06]. A game Exp (Figure 1, for example) consists of a finite number of procedures. We
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proc Initialize ExpUF
PBS

(pp,msk)← Setup(1λ) ; j ← 0
Return pp

proc MakeSK(p)

j ← j + 1 ; Q[j][1]← p
Q[j][2]←$ KeyGen(pp,msk, p) ; Q[j][3]← ∅
proc RevealSK(i)

If i 6∈ [1 . . j] then return ⊥
sk← Q[i][2] ; Q[i][2]← ⊥ ; Return sk

proc Sign(i,m,w)

If i 6∈ [1 . . j] or Q[i][2] = ⊥ then return ⊥
Q[i][3]← Q[i][3] ∪ {m}
Return Sign(pp, Q[i][2],m,w)

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0 then return false
For i = 1, . . . , j do

If (Q[i][1],m) ∈ L(PC) then
If Q[i][2] = ⊥ or m ∈ Q[i][3]

then return false
Return true

ExpIND
PBS

proc Initialize

(pp,msk)← Setup(1λ) ; b←$ {0, 1}
Return (pp,msk)

proc LR(p0, p1,m,w0, w1)

If PC((p0,m), w0) = 0 or PC((p1,m), w1) = 0
then return ⊥

sk0 ← KeyGen(msk, p0)
sk1 ← KeyGen(msk, p1)
σb ← Sign(skb,m,wb)
Return (σb, sk0, sk1)

proc Finalize(b′)

Return (b = b′)

Figure 1: Games defining unforgeability and indistinguishability for PBS.

execute a game with an adversary A and security parameter λ ∈ N as follows. The adversary gets 1λ as
input. It can then query game procedures. Its first query must be to Initialize with argument 1λ, and
its last to Finalize, and these must be the only queries to these oracles. In between it can query the
other oracles as it wishes. The output of the execution, denoted ExpA(λ) is the output of Finalize. We
denote by ExpA(λ)⇒ y the event that this output is y. In code, boolean flags are assumed initialized to
false, sets to ∅, integers to 0 and array entries to ⊥. The running time of the adversary A is a function
of λ in which oracle calls are assumed to take unit time.

3 Policy-Based Signatures

We now formally define policy-based signatures. A policy checker is an NP-relation PC : {0, 1}∗ ×
{0, 1}∗ → {0, 1}. The first input is a pair (p,m) representing a policy p ∈ {0, 1}∗ and a message
m ∈ {0, 1}∗, while the second input is a witness w ∈ {0, 1}∗. The associated language L(PC) = {(p,m) :
WSPC((p,m)) 6= ∅} is called the policy language associated to PC. That (p,m) ∈ L(PC) means that
signing m is permitted under policy p. We say that (p,m,w) is PC-valid if PC((p,m), w) = 1.

A policy-based signature scheme PBS = (Setup,KeyGen, Sign,Verify) is a 4-tupe of PT algorithms:
(1) Setup : On input the unary-encoded security parameter 1λ, setup algorithm Setup returns public

parameters pp and a master secret key msk.

(2) KeyGen : On input msk, p, where p ∈ {0, 1}∗ is a policy, key-generation algorithm KeyGen outputs a
signing key sk for p.

(3) Sign : On input sk,m,w, where m ∈ {0, 1}∗ is a message and w ∈ {0, 1}∗ is a witness, signing
algorithm Sign outputs a signature σ.

(4) Verify : On input pp,m, σ, verification algorithm Verify outputs a bit.
We say that the scheme is correct relative to policy checker PC if for all λ ∈ N, all PC-valid (p,m,w), all
(pp,msk) ∈ [Setup(1λ)] and all σ ∈ [Sign(KeyGen(msk, p),m,w)] we have Verify(pp,m, σ) = 1.
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Unforgeability. Our basic unforgeability requirement is that it is hard to create a valid signature
of m without holding a key for some policy p such that (p,m) ∈ L(PC). The formalization is based
on game ExpUF

PBS of Figure 1. For λ ∈ N we let AdvUF
PBS,A(λ) = Pr[ExpUF

PBS,A ⇒ true]. We say that

PBS is unforgeable, or UF-secure, if AdvUF
PBS,A(·) is negligible for every PT A. Via a MakeSK query,

the adversary can have the game create a key for a policy p. Then, via Sign, it can obtain a signature
under this key for any message of its choice. (This models a chosen-message attack.) It may also, via its
RevealSK oracle, obtain the key itself. (This models corruption of users or the formation of collusions
of users who pool their keys.) These queries naturally give the adversary the capability of creating
signatures for certain messages, namely messages m such that for some p with (p,m) ∈ L(PC), it either
obtained a key for p or obtained a signature for m. Unforgeability asks that it cannot sign any other
messages. Note that we did not explicitly specify how Sign behaves when run on a key for p, and m,w
with PC((p,m), w) = 0. However, if it outputs a valid signature, this can be used to break UF-security.

Indistinguishability. Privacy for policy-based signatures requires that a signature not reveal the policy
associated to the key and neither the witness that was used to create the signature. A first idea would
be the following formalization: an adversary outputs a message m, two policies p0, p1, and two witnesses
w0, w1, such that both (p0,m,w0) and (p1,m,w1) are PC-valid. For either p0 or p1 the experiment
computes a secret key and uses it to produce a signature on m and gives it to the adversary, who wins if
he can guess which policy was used. It turns out that this notion is too weak, as it does not guarantee
that two signatures produced under the same secret key do not link, as seen as follows. Consider a scheme
satisfying the security notion just sketched and modify it by attaching to each secret key a random string
during key generation and alter Sign to append to the signature the random string contained in the secret
key. Clearly, two signatures under the same key are linkable, but yet the scheme satisfies the definition.
We therefore give the adversary the secret keys for both policies and a signature under one of them.

Let ExpIND
PBS,A be the game defined on the right of Figure 1. we say that PBS has indistinguishability

if for all PT adversaries A we have that AdvIND
PBS,A(λ) = Pr[ExpIND

PBS,A(λ)⇒ true]− 1
2 is negligible in λ.

We assume that either all policy descriptions p are of equal length, or we require that A output p0 and
p1 with |p0| = |p1|.

Unlinkability could be formalized via a game where an adversary is given two signatures and must
decide whether they were created using the same key. Indistinguishability implies unlinkability, as an
adversary against the latter could be used to build another one against indistinguishability, who can
simulate the unlinkability game by using the received signing keys to produce signatures.

3.1 Simulatability and Extractability

We now argue why the intuitively appealing notions of unforgeability and indistinguishability are unsat-
isfactory, in that they do not provide the level of security one hopes for. Moreover, it cannot be effi-
ciently verified whether an adversary has won the unforgeability game, as this involves checking whether
(p,m) ∈ L(PC) for all p queried to MakeSK and m from the adversary’s final output. We thus replace
unforgeability by an efficiently verifiable notion: extractability requires that from a valid signature, using
a trapdoor one can extract a policy and a valid witness. To satisfy this notion, a signature must contain
information on the policy and can thus not hide its length. For simplicity, we assume from now on that
all policies are of the same length.

Simulatability. It turns out that even our strengthened notion of indistinguishability is too weak, in
that it does not provide any security when the policy checker PC is such that for a message m there is only
one p with (p,m) ∈ L(PC). (See our construction of group signatures in Section 6 for an example of such a
PC.) To see why, consider a scheme which satisfies indistinguishability. Now modify the scheme so that the
signing algorithm appends the policy to the signature. This scheme does evidently not hide the policy, yet
still satisfies indistinguishability: In ExpIND

PBS , in order to satisfy PC((p0,m), w0) = 1 = PC((p1,m), w1),
the adversary must return p0 = p1. If the signatures in the original scheme have not revealed the bit b
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proc Initialize ExpSIM
PBS

b←$ {0, 1} ; j ← 0
(pp0,msk0, tr)←$ SimSetup(1λ)
(pp1,msk1)←$ Setup(1λ)
Return (ppb,mskb)

proc Key(p)

j ← j + 1
sk0←$ SimKeyGen(tr, p)
sk1←$ KeyGen(msk1, p)
Q[j][1]← p ; Q[j][2]← sk1
Return skb

proc Signature(i,m,w)

If i 6∈ [1 . . j] then return ⊥
If PC((Q[i][1],m), w) = 1 then
σ0←$ SimSign(tr,m)

Else σ0 ← ⊥
σ1←$ Sign(Q[i][2],m,w)
Return σb

proc Finalize(b′)

Return (b = b′)

proc Initialize ExpEXT
PBS

(pp,msk, tr)←$ SimSetup(1λ)
QK ← ∅ ; QS ← ∅
Return pp

proc SKeyGen(p)

sk←$ SimKeyGen(tr, p)
QK ← QK ∪ {p}
Return sk

proc SimSign(m)

σ←$ SimSign(tr,m)
QS ← QS ∪ {(m,σ)}
Return σ

proc Finalize(m,σ)

If Verify(pp,m, σ) = 0 then return false
If (m,σ) ∈ QS then return false
(p, w)← Extr(tr,m, σ)
If p /∈ QK or PC((p,m), w) = 0

then return true
Return false

Figure 2: Games defining simulatability and extractability for PBS

then attaching the same policy to both will not do so either. (Note however, that a scheme appending
sk to a signature would not satisfy the notion.)

This issue can be overcome using a simulation-based definition: there is a simulator which can cre-
ate simulated signatures without having access to any signing key or witness; and these signatures are
indistinguishable from real signatures. We formalize simulatability by requiring that there exist the fol-
lowing algorithms: SimSetup, which outputs parameters and a master key that are indistinguishable from
those output by Setup and a trapdoor; SKeyGen, which outputs keys indistinguishable from those output
by KeyGen; and SimSign, which on input the trapdoor and a message (but no signing key nor witness)
produces signatures that are indistinguishable from regular signatures.

In particular, with ExpSIM
PBS defined on the left in Figure 2, we require that for every PT adversary A

we have AdvSIM
PBS,A(λ) = Pr[ExpSIM

PBS,A(λ)⇒ true]− 1
2 is negligible in λ. Note that in all our instantiations,

tr will contain msk and SKeyGen will be defined as KeyGen. We included SKeyGen to make the definition
more general.

Extractability. The notion of soundness for a NIZK proof system for an NP-relation R asks that
it be impossible to produce a proof π which is valid for a statement x, although x /∈ L(R). This
has been strengthened to simulation soundness by Sahai [Sah99], stating that this even holds after the
adversary has seen simulated proofs on statements of his choice. Since membership in L(R) may not be
efficiently verifiable, it might not be efficiently decidable whether an adversary has broken soundness or
not. The same holds for our notion of unforgeability, where Finalize checks whether (Q[i][1],m) ∈ L(PC).
Although not a problem in itself, it can become one, for example when using the notion in a proof by
game hopping, as a distinguisher between two games must efficiently determine whether an adversary
has won the game. (See Appendix A for a proof that relies on this fact.)

For zero-knowledge proofs, the efficiently verifiable notion of extractability has been put forth [DMP88]
to replace soundness: there exists an efficient extractor, which from a valid proof must extract a valid
witness. If it fails to do so, the adversary wins. (Since there is no witness for an invalid statement, an
adversary breaking soundness necessarily breaks extractability.) Extractability has been combined with
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simulation soundness by Groth [Gro06]. We define our notion in the same spirit (which is also that of
“sim-ext” security for signatures of knowledge [CL06]).

Let AdvEXT
PBS,A(λ) = Pr[ExpEXT

PBS,A(λ)⇒ true] with ExpEXT
PBS defined on the right of Figure 2. We say

that PBS has extractability if there exists an algorithm Extr, which taking a trapdoor, a message and a
signature outputs a pair (p, w) ∈ {0, 1}∗, such that AdvEXT

PBS,A(·) is negligible for every PT A.
Although the definition might not seem completely intuitive at first, it implies that, as long as the

adversary outputs a valid message/signature pair and does not simply copy a SimSign query/response
pair, the only signed messages it can output are those that satisfy the policy of one of the queried
keys: assume A outputs (m∗, σ∗) such that (∗) for all p ∈ QK : (p,m∗) /∈ L(PC). Then let (p∗, w∗) ←
Extr(tr,m, σ). If PC((p∗,m∗), w∗) = 0, the adversary wins ExpEXT

PBS . On the other hand, if PC((p∗,m∗),
w∗) = 1 then (p∗,m∗) ∈ L(PC), thus by (∗) we have p∗ /∈ QK and it wins too. Note that this notion
corresponds to strong unforgeability for signature schemes.

Sim-Ext security implies indistinguishability and unforgeability. In Appendix A we show
that our two latter security notions are indeed strengthenings of the former two:

Theorem 1. Any policy-based signature scheme which satisfies simulatability satisfies indistinguishability.
Any PBS scheme which satisfies simulatability and extractability satisfies unforgeability.

4 Instantiations of Policy-Based Signatures

4.1 Generic Instantiation

We now show how to instantiate policy-based signatures satisfying simulatability and extractability (and,
by Theorem 1, indistinguishability and unforgeability) for any NP-relation PC. A first approach could
be the following, similar to the generic construction of group signatures in [BMW03]: The issuer creates
a signature key pair (mvk,msk) and publishes mvk as pp; each user creates a key pair (vkU , skU ). When
a user is issued a key for a policy p, the issuer signs p‖vkU and sends this certificate to the user. Now
in order to sign a message m, the user first signs it using his personal key skU , establishing thus a
chain mvk → vkU → m via the certificate and the signature. In order to remain anonymous, the actual
signature is a (zero-knowledge) proof of knowledge of such a chain and the fact that the message satisfies
the policy signed in the certificate.

While this approach would yield a scheme satisfying indistinguishability and unforgeability, it would
fail to achieve extractability. We thus choose a different approach: The user’s key is simply a signature
from the issuer on the policy. Now to sign a message, the user first picks a key pair (ovk, osk) for a
strongly unforgeable one-time signature scheme1 and makes a zero-knowledge proof π that he knows
either (I) an issuer signature on a policy p such that (p,m) ∈ L(PC) or (II) an issuer signature on ovk.
Finally, he adds a signature on both the message and the proof of knowledge under ovk. As we will see,
this construction satisfies both SIM (where the simulator can make a signature on ovk and use clause
(II) for the proof) and EXT (as π is a proof of knowledge).

We formalize the above: Let Sig = (KeyGensig, Signsig,Verifysig) be a digital signature scheme, OtSig =
(KeyGenots,Signots,Verifyots) a strongly unforgeable one-time signature scheme and let PKE = (KeyGenpke,
Enc,Dec) be an IND-CPA-secure public-key encryption scheme. For a policy checker PC, we define the
following NP-relation:(

(pk,mvk, Cp, Cs, Cw, ovk,m), (p, s, w, ρp, ρs, ρw)
)
∈ RNP

⇐⇒ Cp = Enc(pk, p; ρp) ∧ Cs = Enc(pk, s; ρs) ∧ Cw = Enc(pk, w; ρw) ∧ (1)[(
Verifysig(mvk, 1‖p, s) = 1 ∧ PC((p,m), w) = 1

)
∨ Verifysig(mvk, 0‖ovk, s) = 1

]
1In such a scheme it must be infeasible for an adversary, after receiving a verification key ovk and after obtaining a

signature σ on one message m of his choice, to output a signature σ∗ on a message m∗, such that (m,σ) 6= (m∗, σ∗).
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Setup(1λ)

crs←$ Setupnizk(1λ)
(pk,dk)←$ KeyGenpke(1

λ)
(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,pk,mvk) and msk

KeyGen(msk, p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

Sign(skp,m,w)

Parse ((crs,pk,mvk), p, s)← skp
If PC((p,m), w) = 0 then return ⊥
(ovk, osk)←$ KeyGenots(1

λ)
ρp, ρs, ρw←$ {0, 1}λ; Cp ← Enc(pk, p; ρp)
Cs ← Enc(pk, s; ρs); Cw ← Enc(pk, w; ρw)
π←$ Prove(crs, (pk,mvk, Cp, Cs, Cw,

ovk,m), (p, s, w, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Verify(pp,m, σ)

Parse (crs,pk,mvk)← pp ; (ovk, Cp, Cs, Cw, π, τ)← σ
Return 1 iff
Verifynizk(crs, (pk,mvk, Cp, Cs, Cw, ovk,m), π) = 1
and Verifyots(ovk, (m,Cp, Cs, Cw, π), τ) = 1

SimSetup(1λ)

crs←$ Setupnizk(1λ)
(pk,dk)←$ KeyGenpke(1

λ)
(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,pk,mvk), msk

and tr← (msk,dk)

SimKeyGen((msk,dk), p)

s←$ Signsig(msk, 1‖p)
Return skp ← (pp, p, s)

SimSign((msk,dk),m)

(ovk, osk)←$ KeyGenots(1
λ)

s←$ Signsig(msk, 0‖ovk)
ρp, ρs, ρw←$ {0, 1}λ; Cp ← Enc(pk, 0; ρp)
Cs ← Enc(pk, s; ρs); Cw ← Enc(pk, 0; ρw)
π←$ Prove(crs, (pk,mvk, Cp, Cs, Cw,

ovk,m), (0, s, 0, ρp, ρs, ρw))
τ ←$ Signots(osk, (m,Cp, Cs, Cw, π))
Return σ ← (ovk, Cp, Cs, Cw, π, τ)

Extr((msk,dk),m, σ)

Parse (ovk, Cp, Cs, Cw, π, τ)← σ
p← Dec(dk, Cp) ; w ← Dec(dk, Cw)
Return (p, w)

Figure 3: Generic instantiation of PBS

Let NIZK = (Setupnizk,Prove,Verifynizk) be a non-interactive zero-knowledge (NIZK) proof system for
L(RNP). Our instantiation PBS for a policy checker PC is detailed in Figure 3, and in Appendix B we
prove the following:

Theorem 2. If PKE satisfies IND-CPA, Sig is unforgeable under chosen-message attack, OtSig is a
strongly unforgeable one-time signature scheme and NIZK is a NIZK proof system for L(RNP) then
PBS[PKE ,Sig ,OtSig ,NIZK], defined in Figure 3, satisfies simulatability and extractability.

We now present a much simpler construction of PBS by relying on a more advanced cryptographic
primitive: simulation-sound extractable (SSE) NIZK proofs [Gro06] (see Appendix E for the definition).
Let Sig = (KeyGensig,Signsig,Verifysig) be a signature scheme and for a policy checker PC let NIZK =
(Setupzk,Provezk,Verifyzk, SimSetupzk,SimProvezk,Extrzk) be an SSE-NIZK for the following NP-relation,
whose statements are of the form X = (vk,m) with witnesses W = (p, c, w) and

((vk,m), (p, c, w)) ∈ RNP ⇐⇒ ((p,m), w) ∈ PC ∧ Verifysig(vk, p, c) = 1

Then the scheme in Figure 4 is a PBS for PC which satisfies simulatability and extractability.

4.2 Efficient Instantiation via Groth-Sahai Proofs

Our efficient instantiation will be defined over a bilinear group. This is a tuple (p,G,H,T, G,H), where
G, H and T are groups of prime order p, generated by G and H, respectively, and e : G × H → T is a
bilinear map such that e(G,H) generates T. We denote the group operation multiplicatively and let 1G
and 1H denote the neutral elements of G and H. Groth-Sahai proofs [GS08] let us prove that there exists
a set of elements (X1, . . . , Xn, Y1, . . . , Y`) ∈ Gn ×H` which satisfy equations E( ~X, ~Y ) of the form
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Setup(1λ)

crs←$ Setupnizk(1λ)
(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,mvk), msk

KeyGen(msk, p)

c←$ Signsig(msk, p)
Return sk← (pp, p, c)

Sign(sk = ((crs,mvk), p, c),m,w)

Return σ←$ Provenizk(crs, (mvk,m), (p, c, w))

Verify(pp = (crs,mvk),m, σ)

Return Verifynizk(crs, (mvk,m), σ)

SimSetup(1λ)

(crs, tr)←$ SimSetupnizk(1λ)
(mvk,msk)←$ KeyGensig(1λ)
Return pp← (crs,mvk), msk, trpbs ← (pp,msk, tr)

SimKeyGen((pp,msk, tr), p)

c←$ Signsig(msk, p)
Return sk← (pp, p, c)

SimSign(((crs,mvk),msk, tr),m)

Return σ←$ SimProvenizk(crs, tr, (mvk,m))

Extr(((crs,mvk),msk, tr),m, σ)

(p, c, w)← Extrnizk(tr, (mvk,m), σ); Return (p, w)

Figure 4: PBS based on SSE NIZKs.

k∏
i=1

e(Pi, Qi)
∏̀
j=1

e(Aj , Yj)
n∏
i=1

e(Xi, Bi)
n∏
i=1

∏̀
j=1

e(Xi, Yj)
γij = 1 (2)

Such an equation E is called a pairing-product equation2 (PPE) and is uniquely defined by its constants
~P , ~Q, ~A, ~B and Γ := (γij)i∈[n],j∈[`]. These equations have already found many uses in cryptography, of
which the following two are relevant in our context: they can define the verification predicate of a digital
signature (see [AFG+10] and the discussion therein), or witness the fact that a ciphertext encrypts a
certain value (see Appendix F).

Groth and Sahai define a setup algorithm which on input a bilinear group outputs a common-reference
string crs and an extraction key xk. On input crs, an equation E and a satisfying witness ( ~X, ~Y ), algorithm
Provegs outputs a proof π. Proofs are verified by Verifygs(crs,E(·, ·), π). Under the SXDH assumption (see
[GS08] for the definition), Groth-Sahai proofs are witness-indistinguishable [FS90], that is, proofs for an
equation using different witnesses are computationally indistinguishable. Moreover, they are extractable:
From every valid proof π, Extrgs(xk,E(·, ·), π) extracts a witness ( ~X, ~Y ) such that E( ~X, ~Y ) = 1, which
means proofs are sound proofs of knowledge [DMP88].

When using Groth-Sahai proofs, we can define the following type of policy checker: the policy p
defines an equation Ep as in (2) and PC((p,m), w) = 1 iff Ep(m,w) = 1, where m ∈ Gnm × H`m and
w ∈ Gnw × H`w . Now in order to hide the policy, we swap the roles of constants and variables, as this
will enable us to hide the policy defined by the constants. Since Groth-Sahai proofs only allow us to
prove knowledge of group elements, we first need to transform equations of the above form into a set of
equivalent equations that do not contain exponents. To do so, we introduce auxiliary variables Ŷij , add
i · j new equations and define the set E(no-c) as follows:∏

e(Pi, Qi)
∏

e(Aj , Yj)
∏

e(Xi, Bi)
∏∏

e(Xi, Ŷij) = 1 ∧
∧

i,j
e(G, Ŷij) = e(Gγij , Yj) (3)

A witness ( ~X, ~Y ) satisfies E in (2) iff ( ~X, ~Y , (Ŷij := Y
γij
j )i,j) satisfies the set of equations E(no-c) in (3).

Now we can swap the roles of constants and variables; that is, show that a (clear) message ( ~M, ~N) satisfies
a “hidden” policy defined by equation E, witnessed by elements (~V , ~W ), as we detail below.

Our second building block are structure-preserving signatures [AFG+10], which were designed to be
combined with Groth-Sahai proofs: their keys, messages and signatures consist only of elements from
G and H and signatures are verified by evaluating PPEs. Groth-Sahai proofs let us prove knowledge of
keys, messages, and/or signatures such that these values satisfy signature verification, without revealing
anything beyond this fact.

2This is a simulatable pairing-product equation, that is, one for which Groth-Sahai proofs can be made zero-knowledge.
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Instantiation with Groth-Sahai proofs and structure-preserving signatures. To instan-
tiate PBS, we let (Setupgs,Provegs,Verifygs,Extrgs) denote the Groth-Sahai proof system for PPEs, and
let (KeyGensp,Signsp,Verifysp) be a structure-preserving signature scheme that can sign vectors of group
elements (e.g. one from [AFG+10]), for which we let V(vk,m, σ) denote the set of equations representing
Verifysp(vk,m, σ). Moreover, we let (KeyGenots,Signots,Verifyots) be a strongly unforgeable one-time sig-
nature scheme whose verification keys are group elements (e.g. one from [AFG+10]). In the following we
define a policy-based-signature scheme which follows closely the generic construction and whose security
is proved analogously. Since Groth-Sahai proofs are proofs of knowledge, we do not need to encrypt the
witnesses as in the generic construction.

One technically is that we need to express disjunctions as (the conjunction of) sets of equations.
We do so by following Groth’s approach in [Gro06]. We have to express the relation RNP defined in
Equation (1) in Section 4.1 as a set of PPEs. We start with showing how to express a disjunction. For an
equation E( ~X, ~Y ) as defined in (2) above, we define the set E(sim)( ~X, ~Y )(T ) having additional variables
Q′1, . . . Q

′
k, T as∏
e(Pi, Q

′
i)
∏
e(Aj , Yj)

∏
e(Xi, Bi)

∏∏n
j=1 e(Xi, Yj)

γij = 1 ∧
∧
i e(T ,Q

′
i ·Q

−1
i ) = 1 (4)

When T = 1G then setting Xi ← 1G and Q′i, Yj ← 1H, for all i, j satisfies E(sim). However, if T 6= 1G then

the only satisfying assignment to Q′i is Qi and thus ~X, ~Y must satisfy the original equation E. In order

to express a disjunction of two equations E1(~V , ~W ) and E2( ~X, ~Y ), we convert them to E
(sim)
1 (~V , ~W )(T1)

and E
(sim)
2 ( ~X, ~Y )(T2), respectively, and add the following equation ET : e(T1 · T2 · G−1, H) = 1. Now if

we have a witness (~V , ~W ) for E1, we can set T1 ← G and T2,← 1G (and ~X ← ~1G and ~Y ← ~1H); whereas
if we have a witness for E2, we set T1 ← 1G and T2 ← G. In both cases we get a witness for the set

(ET ,E
(sim)
1 ,E

(sim)
2 ). However, ET prevents us from setting both T1 ← 1G and T2 ← 1G, which means we

must have a witness for either E1 or E2. Note that this only works if the equations do not share any
variables.

The transform E(sim) of a set of equations E(no-c) defined in (3) can be simplified by merely replacing
the equations e(G, Ŷij) = e(Gγij , Yj) by e(T , Ŷij) = e(Gγij , Yj). If T = G then we are back in the

situation of E(no-c). However, if T = 1G then setting all variables to 1G or 1H, respectively, is a satisfying
assignment for the transform.

Policy checkers for PPEs. Our policy checker PC for a policy p = (~P , ~Q, ~A, ~B, ~K, ~L,Γ = (γij),∆ =

(δij),Φ = (φij),Ψ = (ψij)), a message m = ( ~M, ~N) ∈ Gnm×H`m and a witness w = (~V , ~W ) ∈ Gnw ×H`w

is defined as follows:

PC((p,m), w) = 1 ⇐⇒
∏
e(Pi, Qi)

∏
e(Aj , Nj)

∏
e(Mi, Bi)

∏
e(Kj ,Wj)

∏
e(Vi, Li)∏∏

e(Mi, Nj)
γij
∏∏

e(Mi,Wj)
δij
∏∏

e(Vi, Nj)
φij
∏∏

e(Vi,Wj)
ψij = 1 , (5)

which is the most general form of a PPE over variables ~M, ~N, ~V and ~W . Note that we assume that
all policies are of a fixed length, since we cannot hide the form of the set of equations they define.
Analogously to the transformation of E→ E(no-c) in (3), we express the exponents γij , δij , φij , ψij (which
are part of the policy) as group elements and make the equations simulatable by introducing variables T ,

N̂
(1)
ij , N̂

(2)
ij , Ŵ

(1)
ij , Ŵ

(2)
ij , and corresponding equations. We define:

PC(sim)((p,m), w)(T ) = 1 ⇐⇒
∏
e(Pi, Qi)

∏
e(Aj , Nj)

∏
e(Mi, Bi)

∏
e(Kj ,Wj)

∏
e(Vi, Li)∏∏

e(Mi, N
(1)
ij )

∏∏
e(Mi,W

(1)
ij )

∏∏
e(Vi , N

(2)
ij )

∏∏
e(Vi ,W

(2)
ij ) = 1

∧
∧
i,j e(T , N̂

(1)
ij ) = e(G

γij , Nj) ∧
∧
i,j e(T , Ŵ

(1)
ij ) = e(G

δij ,Wj)

∧
∧
i,j e(T , N̂

(2)
ij ) = e(G

φij , Nj) ∧
∧
i,j e(T , Ŵ

(2)
ij ) = e(G

ψij ,Wj) (6)
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Setup(1λ)

(crs, xk)←$ Setupgs(1
λ)

(mvk,msk)←$ KeyGensp(1λ)
Return pp← (crs,mvk) and msk

KeyGen(msk, p)

S←$ Signsp(msk, (G1, p))
Return skp ← (pp, p, S)

Sign(skp,m,w)

Parse ((crs,mvk), p, S)← skp
If PC((p,m), w) = 0 then return ⊥
(ovk, osk)←$ KeyGenots(1

λ)

π←$ Provegs(crs,E
(disj)(mvk, p, S,~1,

w, ovk,m,G, 1G))
τ ←$ Signots(osk, (m,π))
Return σ ← (ovk, π, τ)

Verify(pp,m, σ)

Parse (crs,mvk)← pp ; (ovk, π, τ)← σ
Return 1 iff
Verifygs(crs, (crs,E

(disj)(mvk, ·, ·, ·,
·, ovk,m, ·, ·)), π) = 1

and Verifyots(ovk, (m,π), τ) = 1

SimSetup(1λ)

(crs, xk)←$ Setupgs(1
λ)

(mvk,msk)←$ KeyGen(1λ)
Return pp← (crs,mvk), msk, tr← (msk, xk)

SimKeyGen((msk, xk), p)

S←$ Signsp(msk, (G1, p))
Return skp ← (pp, p, s)

SimSign((msk, xk),m)

(ovk, osk)←$ KeyGenots(1
λ)

S←$ Signsp(msk, (G0, ovk))

π←$ Provegs(crs,E
(disj)(mvk,~1,~1, S,

~1, ovk,m, 1G, G))
τ ←$ Signots(osk, (m,π))
Return σ ← (ovk, π, τ)

Extr((msk, xk),m, σ)

Parse (ovk, π, τ)← σ
(p, S1, S2, w, T1, T2)← Extrgs(xk, π)
Return (p, w)

Figure 5: Instantiation of PBS with Groth-Sahai proofs and structure-preserving signatures

If T = G then N̂
(1)
ij ← N

γij
j , N̂

(2)
ij ← N

φij
j , Ŵ

(1)
ij ←W

δij
j , Ŵ

(2)
ij ←W

ψij

j is the only satisfying assignment,
and thus p and w need to satisfy the original equation. However, when T = 1G then we can set all other
variables to 1G or 1H as well.

Finally, in order to sign a policy (which contains the matrices Γ,∆,Φ,Ψ with entries in Zp), for any
Ξ = (ξij)ij , we define the projection onto G as Ξ(prj) := (Gξij )ij . Henceforth, we assume that policies are
given with their exponents projected to G. We are now ready to express the generic equation in (1) as
a set of pairing-product equations E(disj) as follows. (Since the clauses of the disjunction must not have
common variables, we use S1 and S2 for the signatures by the issuer.)

E(disj)(mvk, p, S1, S2, w, ovk,m, T1, T2) :

e(T1 · T2 ·G−1, H) = 1

V(sim)(mvk, (G1, ~P , ~Q, ~A, ~B, ~K, ~L,Γ,∆,Φ,Ψ), S1)(T1) = 1

PC(sim)
(
(~P , ~Q, ~A, ~B, ~K, ~L,Γ,∆,Φ,Ψ), ( ~M, ~N), (~V , ~W )

)
(T1) = 1

V(sim)(mvk, (G0, ovk), S2)(T2) = 1

Now that we have defined all the required concepts, our instantiation of PBS using Groth-Sahai proofs
and structure-preserving signatures is quite straightforward. We present it in Figure 5.

Security is proven analogously to that of the scheme in Figure 3. Extractability follows from un-
forgeability of Sigsp and strong unforgeability of OtSig , whereas simulatability follows from witness
indistinguishability of Groth-Sahai proofs. Note that since we directly use a proof of knowledge, we need
not simulate proofs as there are no ciphertexts, but instead simply change the witness used by Sign to
the witness used by SimSign.

A simple use case. Messages that are elements of bilinear groups and policies demanding that they
satisfy pairing-product equations will prove useful to construct other cryptographic schemes like group
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ExpPRIV
ABS

proc Initialize

(pp, ask)←$ Setup(1λ) ; b←$ {0, 1}
Return (pp, ask)

proc LR(A0, A1,m,Υ)

If Υ(A0) = 0 or Υ(A1) = 0
then return ⊥

sk0←$ AttrGen(ask, A0)
sk1←$ AttrGen(ask, A1)
σb←$ Sign(skb,m,Υ)
Return (σb, sk0, sk1)

proc Finalize(b′)

Return (b = b′)

proc Initialize ExpUF
ABS

(pp, ask)←$ Setup(1λ)
QK ← ∅; QS ← ∅ ; return pp

proc AttrGen(A)

QK ← QK ∪ {A} ; return AttrGen(ask, A)

proc Sign(m,Υ)

QS ← QS ∪ {(m,Υ)}
Choose arbitrary A ⊆ A, with Υ(A) = 1
skA←$ AttrGen(ask, A) ; return Sign(skA,m,Υ)

proc Finalize(m,Υ, σ)

If Verify(pp,m,Υ, σ) = 0 then return false
If (m,Υ) /∈ QS and ∀A ∈ QK : Υ(A) = 0

then return true ; else return false.

Figure 6: Games defining privacy and unforgeability for attribute-based signatures

signatures. However, our pairing-based instantiation might seem too abstract for deploying PBS to
manage signing rights in a company—one of the motivations given in the introduction.

This is however not the case, as the following simple example shows: A company issues keys to their
employees which should allow them to sign only messages h‖m that start with a particular header h. This
can be implemented by mapping messages h‖m to (F (h), F (m)) via a collision-resistant hash function
F : {0, 1}∗ → G. The policy p∗ restricting signing to messages with a header h∗ can then be expressed as
PC((p∗, h‖m)) = 1⇔ e(F (h∗), H) e(F (h), H−1) = 1, which ensures h = h∗. Another possibility would be
to additionally demand that an employee hold a credential, of which the required type could even depend
on h∗, which she must use as a witness when signing. (There are numerous instantiations of credentials
(digital signatures) which are verified via PPEs; see e.g. [AFG+10].)

5 Attribute-Based Signatures from Policy-Based Signatures

In attribute-based signatures (ABS) a trusted setup produces parameters and a master secret key. The
latter is then used to issue keys for sets of attributes from a universe A. Now a holder of such a key can
sign messages w.r.t. to a predicate Υ over attributes, which must evaluate to 1 on the set of attributes
for the key. The predicate is in the clear, so verification of a signature is w.r.t. the predicate.

The Model. In view of a generalization to multiple authorities, Maji et al. [MPR11] separate the setup
algorithm into a trusted setup TSetup, which outputs public parameters tpk and ASetup, run by the
attribute-issuing authority, which outputs a public/private key pair (apk, ask).

For the single-authority case (which we consider), TSetup and ASetup can be combined to Setup with-
out weakening security: In the unforgeability game, both TSetup and ASetup are run by the experiment
impersonating the attribute-issuing authority. Moreover, even though not explicitly stated, privacy also
requires the pair (apk, ask)←$ ASetup to be set up honestly.3 For privacy, the adversary impersonates
thus an “honest but curious” authority, which we model by giving the adversary the authority’s secret
key. Since security of our scheme is extraction-based, we cannot hope to achieve perfect privacy (meaning
signatures produced with keys for different sets of attributes are distributed equally); we thus give a
computational analog. We give a formal definition of the model.

We denote the message space by M. A scheme ABS is parametrized by an attribute universe A.

3If ask is maliciously set up so that AttrGen outputs a working key for one set of attributes and a key leading to invalid
signatures for another set then privacy does not hold.

12



A claim predicate over A is a monotone boolean function Υ: P(A) → {0, 1}. On input the security
parameter 1λ, Setup outputs public parameters pp and the authority’s secret key ask. On input ask and
A ⊆ A, AttrGen outputs a secret key skA. On input skA,m,Υ, where Υ(A) = 1, Sign outputs a signature
σ. On input pp,m,Υ, σ, Verify outputs a bit. Correctness requires that for all λ ∈ N, all (pp, ask) ∈
[Setup(1λ)], all m ∈M, all A ⊆ A, all Υ with Υ(A) = 1 and all σ ∈ [Sign(AttrGen(ask, A),m,Υ)], we have
Verify(pp,m,Υ, σ) = 1.

We say that ABS has privacy if AdvPRIV
ABS,A(λ) = Pr[ExpPRIV

ABS,A(λ) ⇒ true] − 1
2 is negligible in λ for

all PT A, with ExpPRIV
ABS,A defined on the left of Figure 6. On the right we define the game ExpUF

ABS,A
and say that ABS is unforgeable if AdvUF

ABS,A(λ) = Pr[ExpUF
ABS,A(λ)⇒ true] is negligible in λ for all PT

A. Although our notion of privacy is only computational, it is stronger in another aspect: the adversary
gets the two signing keys.4

Construction. Let Y denote the set of all monotone boolean functions over A. We define a policy
checker PC for our policy-based signature PBS which instantiates ABS. A policy is a set A ⊆ A and a
message for PBS is in Y ×M, i.e., a claim predicate and the actual message. A PBS message satisfies
a policy if the set of attributes defining the policy satisfy the predicate contained in the message. The
policy checker PC for PBS is efficiently decidable (thus no witnesses are required) and is defined as:

PC : A× (Y×M)→ {0, 1} (A, (Υ,m)) 7→ Υ(A)

Let PBS = (Setuppbs,KeyGenpbs,Signpbs,Verifypbs) be a policy-based signature scheme for PC. We define
ABS[PBS] = (Setup,AttrGen, Sign,Verify) as follows:

Setup(1λ)

(pp,msk)←$ Setuppbs(1
λ) ; return pp, ask← msk

AttrGen(ask, A)

Return skA←$ KeyGenpbs(ask, A)

Sign(pp, skA,m,Υ)

Return Signpbs(skA, (Υ,m))

Verify(pp,m,Υ, σ)

Return Verifypbs(pp, (Υ,m), σ)

Theorem 3. If PBS is a policy-based signature scheme satisfying indistinguishability and unforgeability
then ABS[PBS] is an attribute-based signature scheme satisfying privacy and unforgeability.

The proof can be found in Appendix C. Using the strategy to express disjunctions of statements as
sets of pairing-product equations outlined in Section 4.2, we can express PC as a set of PPEs and thus
use our efficient PBS-implementation to construct an efficient ABS. We conclude by remarking that we
could also instantiate key-policy ABS, where the key is associated with a predicate and the message with
a set of attributes. We would simply define PC : Y× (A×M)→ {0, 1}, PC(Υ, (A,m)) = Υ(A).

6 CCA-Secure Group Signatures from Policy-Based Signatures

The BMW Model. As defined in [BMW03], a group signature scheme GS = (GKg,GSig,GVf,Open)
is a 4-tuple of PT algorithms. On input the security parameter 1λ and the group size 1n, group-key-
generation algorithm GKg returns the group public key gpk, the manager’s secret key gmsk and a vector
of member secret keys gsk. On input gsk[i] and a message m ∈ {0, 1}∗, group signing algorithm GSig
returns a group signature γ by member i on m. On input gpk,m, γ, verification algorithm GVf outputs
a bit. On input gmsk,m, γ, the opening algorithm Open returns an identity i ∈ [n] or ⊥.

We say that GS is correct if for all λ, n ∈ N, all (gpk, gmsk,gsk)←$ GKg(1λ, 1n), all 1 ≤ i ≤ n, and
all m ∈ {0, 1}∗, we have GVf(gpk,m,GSig(gsk[i],m)) = 1 and Open(gmsk,m,GSig(gsk[i],m)) = i.

Security for GS is defined via the experiments ExpANON
GS and ExpTRC

GS defined in Figure 7. Following
[BMW03], in ExpANON

GS we allow the adversary only one call to his LR oracle. We say that GS is fully

4For group signatures, this notion was termed full anonymity [BMW03], as opposed to selfless anonymity [BS04], where
users are able to recognize signatures produced with their own signing key.
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ExpANON
GS

proc Initialize

(gpk, gmsk,gsk)←$ GKg(1k, 1n)
b←$ {0, 1} ; Q← ∅
Return (gpk,gsk)

proc LR(i0, i1,m)

γ←$ GSig(gsk[ib],m)
Q← Q ∪ {γ}; return γ

proc Open(m, γ)

If γ ∈ Q then return ⊥
Return Open(gmsk,m, γ)

proc Finalize(b′)

Return (b = b′)

proc Initialize ExpTRC
GS

(gpk, gmsk,gsk)←$ GKg(1k, 1n)
QC ← ∅ ; QS ← ∅ ; return (gpk, gmsk)

proc Corrupt(i)

QC ← QC ∪ {i}; return gsk[i]

proc GSig(i,m)

QS ← QS ∪ {(i,m)}; return GSig(gsk[i],m)

proc Finalize(m, γ)

If GVf(gpk,m, γ) = 0 then return false
If Open(gmsk,m, γ) = ⊥ then return true
i← Open(gmsk,m, γ)
If i ∈ [n], i /∈ QC and (i,m) /∈ QS then return true
Return false

Figure 7: Games defining full anonymity and traceability for group signatures

anonymous if for all PT adversariesA the following is negligible in λ: AdvANON
GS,A (λ) := Pr[ExpANON

GS,A (λ)⇒
true] − 1

2 . We say that GS is traceable if for all PT adversaries A the following is negligible in λ:

AdvTRC
GS,A(λ) := Pr[ExpTRC

GS,A(λ)⇒ true].

Construction. We show how to construct group signatures (GS) from a CCA-secure public key en-
cryption scheme and policy-based signatures. Since the former can be constructed from the latter (as
we show in Appendix E), this means that PBS imply GS. The main idea is to define a group signature
as a ciphertext plus a PBS. When making a group signature on a message m, a member is supposed to
encrypt her identity as c and then sign (c,m). The policy for which the member gets a PBS-key ensures
that c must be an encryption of the member’s identity.

Let PKE = (KeyGenpke,Enc,Dec) be a public-key encryption scheme satisfying IND-CCA and let
PBS = (Setup,KeyGenpbs,Sign,Verify) be a PBS for the following NP-relation:

PC
(
((ek, i), (c,m)), r

)
⇐⇒ c = Enc(ek, i; r) . (7)

Our group-signature scheme GS[PKE ,PBS] is defined as follows:

GKg(1λ, 1n)

(pp,msk)←$ Setup(1λ)
(ek,dk)←$ KeyGenpke(1

λ)
For i = 1, . . . , n do
ski←$ KeyGenpbs(msk, (ek, i))
gsk[i]← (pp, ek, i, ski)

Return (gpk← (pp, ek), gmsk← dk,gsk)

GSig((pp, ek, i, ski),m)

r←$ {0, 1}λ
c← Enc(ek, i; r)
σ←$ Sign(ski, (c,m), r)
Return (c, σ)

GVf((pp, ek),m, (c, σ))

Return Verify(pp, (c,m), σ)

Open(gmsk,m, (c, σ))

If Verify(pp, (c,m), σ) = 0
Then return ⊥

Return Dec(gmsk, c)

Theorem 4. If PBS is a policy-based signature scheme satisfying simulatability and extractability and
PKE is a public-key encryption scheme satisfying IND-CCA then GS[PKE ,PBS] is a group-signature
scheme satisfying full anonymity and traceability.

The proof can be found in Appendix D. In Appendix F we give an encryption scheme such that (7)
lies in the language of our efficient PBS from Section 4.2.
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7 Other Primitives Implied by PBS

Simulation-sound extractable NIZK proofs. Groth [Gro06] introduced a notion of simulation-
soundness for NIZK proofs of knowledge. It requires that even when an adversary is provided with an
oracle for simulated proofs, it cannot produce a new valid proof from which the extractor fails to extract
a witness. We refer to Appendix E for the definition and more details.

Let R be an NP-relation and let PC and p∗ be such that PC((p∗, x), w) = R(x,w). Let PBS = (Setup,
KeyGen, Sign,Verify, SimSetup, SKeyGen, SimSign,Extr) be a PBS for PC which satisfies simulatability and
extractability. Then the following is a simulation-sound extractable NIZK proof system:

Setupzk(1λ)

(pp,msk)←$ Setup(1λ)
sk← KeyGen(msk, p∗)
Return crs← (pp, sk)

Prove((pp, sk), x, w)

Return π ← Sign(sk, x, w)

Verifyzk((pp, sk), x, π)

Return Verify(pp, x, π)

Extrzk(tr, x, π)

(p, w)← Extr(tr, x, π)
Return w

SimSetupzk(1λ)

(pp,msk, tr)←$ SimSetup(1λ)
sk← SKeyGen(tr, p∗)
Return crs← (pp, sk) and tr

SimProve((pp, sk), tr, x)

Return π ← SimSign(tr, x)

Public-key encryption. Interpreting policies as plaintexts hidden in a signature, which can be “de-
crypted” using Extr, PBS even imply public-key encryption: Let PBS be for PC s.t. PC((p,m∗), w∗) = 1
for some m∗, w∗ and all p. Then the following as an IND-CPA secure PKE:

KeyGenpke(1
λ)

(pp,msk, tr)←$ SimSetup(1λ)

Return (pk← (pp,msk), dk← tr)

Enc((pp,msk), x)

sk←$ KeyGen(msk, x)

Return c←$ Sign(sk,m∗, w∗)

Dec(dk, c)

(x,w)← Extr(dk,m∗, c)

Return x

Using the results by Sahai [Sah99], the above NIZK and PKE can be combined to construct a CCA-secure
PKE from PBS. We refer to Appendix E for the details, where we also construct signatures of knowledge
[CL06] from PBS.
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proc Initialize // Exp
UF-(1)
PBS

(pp,msk)←$ Setup(1λ)
j ← 0 ; QS ← ∅
Return pp

proc MakeSK(p) // Exp
UF-(1)
PBS

j ← j + 1 ; Q[j][1]← p
Q[j][2]←$ KeyGen(pp,msk, p) ; Q[j][3]← ∅

proc RevealSK(i) // Exp
UF-(1)
PBS

If i 6∈ [1 . . j] then return ⊥
sk← Q[i][2] ; Q[i][2]← ⊥ ; return sk

proc Sign(i,m,w) // Exp
UF-(1)
PBS

If i 6∈ [1 . . j] then return ⊥
If Q[i][2] = ⊥ then return ⊥
σ←$ Sign(pp, Q[i][2],m,w)
QS ← QS ∪ {(m,σ)}; return σ

proc Finalize(m,σ) // Exp
UF-(1)
PBS

If Verify(pp,m, σ) = 0 then return false
(p, w)← Extr(tr,m, σ)
If (m,σ) ∈ QS then return false
For i = 1, . . . , j do

If Q[i][1] = p and Q[i][2] = ⊥
If PC((p,m), w) = 1 then return false

Return true

proc Initialize // Exp
UF-(2)
PBS

(pp,msk, tr)←$ SimSetup(1λ)
j ← 0 ; QS ← ∅
Return pp

proc MakeSK(p) // Exp
UF-(2)
PBS

j ← j + 1 ; Q[j][1]← p
Q[j][2]←$ SKeyGen(pp, tr, p) ; Q[j][3]← ∅

proc RevealSK(i) // Exp
UF-(2)
PBS

If i 6∈ [1 . . j] then return ⊥
sk← Q[i][2] ; Q[i][2]← ⊥ ; return sk

proc Sign(i,m,w) // Exp
UF-(2)
PBS

If i 6∈ [1 . . j] then return ⊥
If Q[i][2] = ⊥ then return ⊥
If PC((Q[i][1],m), w) = 0 then return ⊥
σ←$ SimSign(pp, tr,m)
QS ← QS ∪ {(m,σ)}; return σ

proc Finalize(m,σ) // Exp
UF-(2)
PBS

If Verify(pp,m, σ) = 0 then return false
(p, w)← Extr(tr,m, σ)
If (m,σ) ∈ QS then return false
For i = 1, . . . , j do

If Q[i][1] = p and Q[i][2] = ⊥
If PC((p,m), w) = 1 then return false

Return true

Figure 8: Games Exp
UF-(1)
PBS and Exp

UF-(2)
PBS in the proof SIM/EXT ⇒ UF

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, May 2005.

A Proofs that SIM and EXT Imply IND and UF

Simulatability implies indistinguishability. Assuming an adversary A against indistinguishability,
we construct an adversary B against the simulatability:
B receives (pp,msk), sets j ← 1, chooses d←$ {0, 1} and runs A on (pp,msk). Whenever A queries

LR(p0, p1,m,w0, w1), if PC((p0,m), w0) = 0 or PC((p1,m), w1) = 0, it returns ⊥; otherwise it queries
sk0←$ Key(p0) and sk1←$ Key(p1) and σd←$ Signature(j + d,m,wd) and sets j ← j + 2; it returns
(σd, sk0, sk1) to A. When A terminates outputting b′, B outputs 1 if (b′ = d) and 0 otherwise.

If in ExpSIM
PBS,B, the challenger’s bit is 1 then B perfectly simulates ExpIND

PBS for A; if on the other hand
the bit is 0 then the bit d chosen by B is perfectly hidden from A, meaning B outputs 1 with probability
1
2 . Together, this yields AdvSIM

PBS,B = 1
2 ·AdvIND

PBS,A.

Simulatability and extractability imply unforgeability. The benefit of defining unforgeability
with the help of an extractor is that the experiment is efficiently decidable, as there are no more conditions
like (p,m) ∈ L(PC). In efficiently decidable experiments, we can replace real signatures and keys by
simulated ones without changing the adversary’s behavior, since we could build a distinguisher that
breaks the SIM.

Recall ExpIND
PBS , defined in Figure 1. Now consider the modification Exp

UF-(1)
PBS given in Figure 8,

whose Finalize procedure is basically that of ExpEXT
PBS : the signature must be valid and (m,σ) must not
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be a response of the Sign oracle. We then apply the extractor of PBS to get (p, w) and the adversary
wins if either no secret key for p was ever revealed or if PC((p,m), w) = 0.

Claim. UF-(1) ⇒ UF.

We show how to use an adversary A winning UF to construct B which wins UF-(1). What makes the
proof not quite straightforward is the fact that A might win UF by outputting a pair (m,σ) which is a
query and response of the Sign oracle,5 whereas this would make UF-(1) immediately return false, since
(m,σ) ∈ QS .

We start with the simpler case, where A never outputs a query/response pair from the Sign oracle.

Our reduction B simply forwards all messages between its Exp
UF-(1)
PBS -challenger and A. If A wins UF by

outputting (m∗, σ∗) then we have (1) Verify(pp,m∗, σ∗) = 1 and (2) (m∗, σ∗) /∈ QS (by assumption). Let
(p̄, w̄)← Extr(tr,m∗, σ∗). If PC((p̄,m∗), w̄) = 0 then B wins. Otherwise, we have (p̄,m∗) ∈ L(PC). Thus,
by the winning condition of UF, for all i with Q[i][1] = p̄ we must have Q[i][2] 6= ⊥. Thus, in this case
too B wins.

We now deal with adversaries winning UF by outputting (m∗, σ∗) ∈ QS . B guesses the index of the
first Sign query involving m∗. (That is, B picks a random Sign query and if the queried message has
been queried before then B aborts.) Let the guessed query be for (i∗,m∗, w∗). Instead of querying its
own Sign oracle, B does the following: If Q[i∗][2] = ⊥ then B looks up the signing key sk∗ it forwarded
when A queried RevealSK, otherwise B queries its own RevealSK oracle to get sk∗. B computes
σ∗←$ Sign(sk∗,m∗, w∗) and returns σ∗. Every time A makes a Sign query involving m∗, B also proceeds
as just described. It is clear that this perfectly simulates A’s oracles in UF.

Assume now that A wins by outputting (m∗, σ∗) and that B guessed correctly. Since A wins, we
have (1) Verify(pp,m∗, σ∗) = 1. Since B guessed correctly, no entry in QS starts with m∗, thus (2)
(m∗, σ∗) /∈ QS . Let (p̄, w̄) ← Extr(tr,m∗, σ∗). If no key for p̄ was ever revealed then B wins. There are
two ways that a key for p̄ could have been revealed in UF-(1): either A queried RevealSK for it, or A
made a Sign query involving m∗ (in which case B may have queried RevealSK). In either case, since A
won UF, by its winning condition, we must have (p̄,m∗) /∈ L(PC). A forteriori PC(p̄,m∗), w̄) = 0; thus,
also in the case that keys for p̄ were revealed, B wins.

Claim. EXT ∧ SIM ⇒ UF-(1).

By SIM, UF-(1) is indistinguishable from Exp
UF-(2)
PBS , given in Figure 8, where we replaced Setup by

SimSetup, KeyGen by SKeyGen and Sign by SimSign conditioned on the fact that the inputs satisfy PC.
Note that it is because both games are efficiently decidable, that we can construct a distinguisher which
uses an adversary behaving differently in the two games to break SIM.

It is now easy to see that any A winning UF-(2) can be used to construct B winning EXT. When
A queries MakeSK(p), B simply stores (p, ∅, ∅) in Q. When A queries RevealSK(i), B queries
SKeyGen(Q[i][1]). And whenever A queries Sign(i,m,w), if PC((Q[i][1],m), w) = 1 then B queries
SimSign(m). B wins if and only if A wins.

B Security Proofs for the Instantiation in Section 4.1

Simulatability. We show that two runs of ExpSIM
PBS,A, one with b set to 1, and one with b set to 0 are

indistinguishable. We proceed by games: We start with Exp
SIM|b = 1
PBS,A . Our first change is that we replace

crs←$ Setupnizk(1λ) by crs←$ SimSetupnizk(1λ) and in calls to Signature, we replace π by a simulated
proof. This is indistinguishable by the zero-knowledge property of NIZK. Note that in this game, the

5We note that winning UF this way can only happen if there exist p∗,m∗ and w∗, with PC((p∗,m∗), w∗) = 0, but for
which Sign(pp,KeyGen(pp,msk, p∗),m∗, w∗) outputs a valid signature, which we have not explicitly excluded. However, by
this very attack, this cannot happen in any scheme satisfying UF; neither in any scheme satisfying EXT and SIM, since we
prove that they imply UF.
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proof π can be computed knowing only (pk,mvk, Cp, Cs, Cw, ovk,m), but not the content of Cp, Cs and
Cw nor their randomness.

In the next game, for the Signature calls, we replace the ciphertexts Cp and Cw by encryptions of 0
and Cs by an encryption of a signature s←$ Signsig(msk, 0‖ovk). This is indistinguishable by IND-CPA

of PKE . In the final game, we replace the simulated CRS by a real CRS. This final game is Exp
SIM|b = 0
PBS,A ,

which concludes the proof.

Extractability: This notion is reduced to the security of both Sig and OtSig . We distinguish two
types of adversaries. Type 1 returns a forgery (m, (ovk, Cp, Cs, Cw, π, τ)) such that there was a reply of
a SimSign query with the same ovk, Type-2 adversaries return forgeries with a fresh ovk.

We use Type-1 adversaries to break strong unforgeability of OtSig . Given ovk∗ from our chal-
lenger, we simulate ExpEXT

PBS,A except that for a randomly guessed valid SimSign query, say for m̂,

we use ovk∗, compute Ĉp, Ĉs, Ĉw and π̂ as per SimSign and complete the signature by querying our
one-time oracle on (m̂, Ĉp, Ĉs, Ĉw, π̂) to get τ̂ . Assume that the adversary A is of Type 1, then with
non-negligible probability his forgery is of the form (m,σ = (ovk∗, Cp, Cs, Cw, π, τ)). Since, for A to have
won, (m,σ) must be different from all query/response pairs for SimSign, in particular, it must be dif-
ferent from (m̂, (ovk∗, Ĉp, Ĉs, Ĉw, π̂, τ̂)), in which we embedded ovk∗. Therefore ((m,Cp, Cs, Cw, π), τ) 6=
((m̂, Ĉp, Ĉs, Ĉw, π̂), τ̂) and τ is a one-time forgery on (m,Cp, Cs, Cw, π).

We now use Type-2 adversaries to break unforgeability of Sig . On receiving vk∗ from our chal-
lenger, we run crs←$ Setupnizk(1λ) and (pk, dk)←$ KeyGenpke(1

λ). We run the adversary A on pp :=
(crs,pk, vk∗). When A makes an SKeyGen query, we compute skp by querying our signing oracle on
1‖p; when A makes a SimSign query, we use our oracle to get a signature s on 0‖ovk and use that as a
witness for the proof π in our PBS σ.

Suppose A wins the game by outputting (m,σ = (ovk, Cp, Cs, π, τ)), which satisfies Verify. Using
Extr, we get p ← Dec(dk, Cp) and w ← Dec(dk, Cw); additionally, we compute s ← Dec(dk, Cs). As σ is
valid, soundness of NIZK and correctness of PKE imply that either (i) s is a valid signature on 1‖p and
PC((p,m), w) = 1; or (ii) s is a valid signature on 0‖ovk. In case (ii), s is a valid forgery on 0‖ovk, since
Type-2 adversaries use a one-time key which was never issued in a SimSign query. In case (i), since A
wins and PC((p,m), w) = 1, we must have p /∈ QK , thus s is a valid forgery on 1‖p.

C Proofs for the Construction of Attribute-Based Signatures

Privacy. Let A be an adversary against privacy of ABS. It is quite straightforward to build B breaking
indistinguishability of PBS. B receives (pp,msk) from its challenger and forwards them to A as (pp, ask).
When A queries LR(A0, A1,m,Υ), B queries its own LR oracle for the two policies p0 := A0 and p1 := A1,
and the message (Υ,m), and forwards the response (σ, sk0, sk1) to A.

For i ∈ {0, 1}, we have PC(pi, (Υ,m)) = 0 iff Υ(Ai) = 0, thus B’s oracle returns ⊥, whenever A’s
oracle should return ⊥. Otherwise B’s oracle computes ski←$ KeyGenpbs(msk, pi), for i ∈ {0, 1} and
σb←$ Signpbs(skb, (Υ,m)), which, by definition is the same as ski←$ AttrGen(ask, Ai), for i ∈ {0, 1}, and
σb←$ Sign(skb,m,Υ). Thus A receives what it expects from its oracle LR. Finally, B outputs whatever
A outputs. It is clear that B guesses b correctly whenever A does; thus, AdvIND

PBS,B = AdvPRIV
ABS,A.

Unforgeability. Assume A wins ExpUF
ABS ; we construct B which wins ExpUF

PBS with the same
probability. B receives pp, forwards it to A and answers A’s oracle queries as follows, after initial-
izing a counter j ← 1. AttrGen(A): B queries MakeSK(A) and RevealSK(j), forwards the re-
ceived key skA to A and sets j ← j + 1. Sign(m,Υ): B picks a random A ⊆ A with Υ(A) = 1,
queries MakeSK(A) and Sign(j, (Υ,m)), forwards the received signature to A and sets j ← j + 1.
When A outputs (m,Υ, σ), B outputs ((Υ,m), σ). Suppose A wins by outputting (m,Υ, σ). Then
1 = Verify(pp,m,Υ, σ) = Verifypbs(pp, (Υ,m), σ). Since A won, we have (1) (m,Υ) /∈ QS and (2) for all

A ∈ QK : Υ(A) = 0. Thus in ExpUF
PBS , we have that for all i, for which PC(Q[i][1], (Υ,m)) = Υ(A) = 1:
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proc Initialize // ExpTRC
GS

(pp,msk)←$ Setup(1λ)
(ek,dk)←$ KeyGenpke(1

λ) ; QC ← ∅; QS ← ∅
For i = 1, . . . , n do
ski←$ KeyGenpbs(msk, (ek, i))
gsk[i]← (pp, ek, i, ski)

Return ((pp, ek),dk)

proc Finalize(m, (c, σ)) // ExpTRC
GS

If Verify(pp, (c,m), σ) = 0 then return false
i∗ ← Dec(dk, c)
If i∗ ∈ [n], i∗ /∈ QC and (i∗,m) /∈ QS then return true
Return false

proc Corrupt(i) // ExpTRC
GS

QC ← QC ∪ {i}
Return gsk[i]

proc GSig(i,m) // ExpTRC
GS

QS ← QS ∪ {(i,m)}
r←$ {0, 1}λ
c← Enc(ek, i; r)
σ←$ Sign(ski, (c,m), r)
Return (c, σ)

Figure 9: Games ExpTRC
GS for the proof of traceability of GS

Q[i][2] 6= ⊥ (as otherwise Q[i][1] would be in QK), and (Υ,m) /∈ Q[i][3] (as otherwise (m,Υ) would be in
QS). Thus, whenever A wins ExpUF

ABS , B wins ExpUF
PBS .

D Proofs for the Construction of Group Signatures

Traceability from UF. Plugging in the definition of GS[PKE ,PBS] in ExpTRC
GS,A, we get (after some

simplification) the experiment in Figure 9.
We build an adversary B against UF of PBS which simulates the above game and wins ExpUF

PBS
whenever A wins ExpTRC

GS .

B(pp : MakeSK(·),RevealSK(·),Sign(·, ·, ·))
(ek,dk)←$ KeyGenpke(1

λ)
For i = 1, . . . , n do

MakeSK((ek, i))
(m, (c, σ))←$A((pp, ek),dk) : CorruptB(·),GSigB(·, ·))
Return (m, (c, σ))

CorruptB(i)

ski ← RevealSK(i); return (pp, ek, i, ski)

GSigB(i,m)

r←$ {0, 1}λ ; c← Enc(ek, i; r)
σ←$ Sign(i, (c,m), r); return (c, σ)

Suppose that A wins ExpTRC
GS by outputting (m∗, (c∗, σ∗)). Thus Verify(pp, (c∗,m∗), σ∗) = 1 and with

i∗ ← Dec(sk, c∗), we have that i∗ ∈ [n] and A has queried neither Corrupt(i∗) nor GSig(i∗,m∗).
This means that B has neither queried RevealSK(i∗) nor Sign(i∗, (c,m∗), r) for any c and r, thus (∗)
Q[i∗][2] 6= ⊥ and for all c: (c,m∗) /∈ Q[i][3], thus in particular (c∗,m∗) /∈ Q[i][3].
B wins ExpUF

PBS if Verify(pp, (c∗,m∗), σ∗) = 1 and if for all i, for which (Q[i][1], (c∗,m∗)) ∈ L(PC), we
have (1) Q[i][2] 6= ⊥ and (2) (c∗,m∗) /∈ Q[i][3]. Now for any (c,m), we have: (Q[i][1], (c,m)) ∈ L(PC) iff
c is in the range of Enc(ek, i; ·), which, by correctness of PKE , implies i = Dec(dk, c). Thus we only have
to show (1) and (2) for i← i∗; which we have already done in (∗).

Anonymity. We let Expanon-d
GS denote the experiment ExpANON

GS when the bit b is fixed to b ← d. To
show anonymity it then suffices to prove that for all PT adversaries A the difference∣∣Pr[Expanon-1

GS,A (λ)⇒ true]− Pr[Expanon-0
GS,A (λ)⇒ true]

∣∣
is negligible in λ, which we will show by a series of game hops. Plugging our scheme into the definition
Expanon-b

GS (see Figure 7), we get the game given on the left of Figure 10, when we ignore the boxes.

We modify this game to Exp
anon-(1)-b
GS by including the lines in boxes, which replace each respective

preceding line. We show that Exp
anon-(1)-b
GS is indistinguishable from Expanon-b

GS : An adversary which
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proc Initialize // Expanon-b
GS , Exp

anon-(1)-b
GS

(pp,msk)←$ Setup(1λ) ; Q← ∅
(pp,msk, tr)←$ SimSetup(1λ) ; Q← ∅

(ek,dk)←$ KeyGenpke(1
λ)

For i = 1, . . . , n
ski←$ KeyGen(msk, (ek, i))

ski←$ SimKeyGen(msk, (ek, i))

gsk[i]← (pp, ek, i, ski)
Return ((pp, ek),gsk)

proc LR(i0, i1,m) // Expanon-b
GS , Exp

anon-(1)-b
GS

r←$ {0, 1}λ ; c∗ ← Enc(ek, ib; r)
σ∗←$ Sign(ski, (c

∗,m), r)

σ∗←$ SimSign(tr, (c∗,m))

Q← Q ∪ {(c∗, σ∗)}; return (c∗, σ∗)

proc Open(m, γ) // Expanon-b
GS , Exp

anon-(1)-b
GS

If γ ∈ Q then return ⊥
If Verify(pp, (c,m), σ) = 0 then return ⊥
Return Dec(dk, c)

proc Finalize(b′) // Expanon-b
GS , Exp

anon-(1)-b
GS

Return (b = b′)

proc Initialize // Exp
anon-(2)
GS

(pp,msk, tr)←$ SimSetup(1λ) ; Q← ∅
(ek,dk)←$ KeyGenpke(1

λ)
For i = 1, . . . , n

ski←$ SimKeyGen(msk, (ek, i))
gsk[i]← (pp, ek, i, ski)

Return ((pp, ek),gsk)

proc LR(i0, i1,m) // Exp
anon-(2)
GS

r←$ {0, 1}λ ; c∗ ← Enc(ek, 0; r)
σ∗←$ SimSign(tr, (c∗,m))
Q← Q ∪ {(c∗, σ∗)}; return (c∗, σ∗)

proc Open(m, γ) // Exp
anon-(2)
GS

If γ ∈ Q then return ⊥
If Verify(pp, (c,m), σ) = 0 then return ⊥
Return Dec(dk, c)

proc Finalize(b′) // Exp
anon-(2)
GS

Return (b = b′)

Figure 10: Games Expanon-b
GS , Exp

anon-(1)-b
GS and Exp

anon-(2)
GS for the proof of anonymity of GS

behaved differently in the two games could be used to break the notion SIM of PBS by building an
adversary B as follows: B gets (pp,msk) from its challenger and uses its oracle Key to compute ski
and oracle Signature to compute σ in the boxed lines (or the ones above, depending on which game
B plays). (Note that when B makes a Signature(i, (c,m), r) query when answering the LR query then
by definition we have PC

(
((ek, i), (c,m)), r

)
= 1, so Signature returns the output of either SimSign or

Sign.)
We next define Expanon-(2), given on the right in Figure 10, in which c is an encryption of 0 instead of ib.

Note that this final game is independent of the bit b, thus the adversary’s probability of outputting b is 1
2 .

We show that by IND-CCA of PKE and EXT of PBS, Expanon-(1)-b and Expanon-(2) are indistinguishable.
In Figure 11 we define an adversary B(b) against PKE which uses an adversary A that behaves differently
in these two games to break IND-CCA of PKE .

We first define the event QRY marked in the description of B(b): QRYb denotes the event that in

Exp
anon-(1)-b
GS[PKE,PBS],A, A makes a valid Open query (m, (c∗, σ)) with σ 6= σ∗. QRYz denotes the event that A

does so in Exp
anon-(2)
GS[PKE,PBS],A, i.e., when c∗ is an encryption of 0. In our analysis, we require the following

lemma, which we prove below.

Lemma 1. The probability that the event QRYz happens is upper-bounded by AdvEXT
PBS,BE [A] with BE [A]

defined in Figure 11.

We now show that if AdvIND-CCA
PKE,B(b)[A] and ExpEXT

PBS,BE [A] are negligible then so is Adv
anon-(1)
GS[PKE,PBS],A,

which implies anonymity of our group-signature scheme. Analyzing the behavior of B(b) in ExpIND-CCA-d
PKE ,
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B(b)(ek : LR(·, ·),Dec(·))
(pp,msk, tr)←$ SimSetup(1λ)
For i = 1, . . . , n
ski←$ SimKeyGen(msk, (ek, i))
gsk[i]← (pp, ek, i, ski)

b′←$A((pp, ek),gsk : LRB(b)(·, ·, ·),
OpenB(b)(·, ·))

Return b′

LRB(b)(i0, i1,m)

c∗←$ LR(0, ib)
σ∗←$ SimSign(tr, (c∗,m))
Return (c∗, σ∗)

OpenB(b)(m, (c, σ))

If Verify(pp, (c,m), σ) = 0 then return ⊥
If c = c∗ and σ 6= σ∗ (QRY)
B halts and returns 1

Return Dec(c)

BE(pp : SKeyGen(·),SimSign(·, ·, ·))
(ek,dk)←$ KeyGenpke(1

λ)
For i = 1, . . . , n

ski←$ SKeyGen((ek, i))
gsk[i]← (pp, ek, i, ski)

b′←$A((pp, ek),gsk : LRBE
(·, ·, ·),OpenBE

(·, ·))
Return b′

LRBE
(i0, i1,m)

r∗←$ {0, 1}λ
c∗ ← Enc(ek, 0; r∗)
σ∗←$ SimSign((c∗,m))
Return (c∗, σ∗)

OpenBE
(m, (c, σ))

If Verify(pp, (c,m), σ) = 0 then return ⊥
If c = c∗ and σ 6= σ∗ (QRY)
BE halts and returns ((c∗,m), σ)

Return Dec(c)

Figure 11: Adversaries B(b) against IND-CCA of PKE and BE against EXT of PBS

for d = 0, 1, we get:

Pr[ExpIND-CCA-1
PKE,B(b)[A] = 1] = Pr[Exp

anon-(1)-b
GS,A = 1 ∧ ¬QRYb] + Pr[QRYb]

≥ Pr[Exp
anon-(1)-b
GS,A = 1]

and

Pr[ExpIND-CCA-0
PKE,B(b)[A] = 1] = Pr[Exp

anon-(2)
GS,A = 1 ∧ ¬QRYz] + Pr[QRYz]

≤ Pr[Exp
anon-(2)
GS,A = 1] + AdvEXT

PBS,BE [A]

Together this yields

Pr[Exp
anon-(1)-b
GS,A = 1]− Pr[Exp

anon-(2)
GS,A = 1] ≤ AdvIND-CCA

PKE,B(b)[A] + AdvEXT
PBS,BE [A] (8)

It remains now to lower-bound the probability on the left-hand side of (8). Let B(b) be defined as B(b)
but behaving like B(b) does in ExpIND-CPA-(1− b), that is: when answering A’s LRB query, it queries its
own LR oracle on (ib, 0); moreover, if during an Open query the event QRY happens, it returns 0 (rather
than 1). We then get:

Pr[ExpIND-CCA-1

PKE,B(b)[A]
= 1] = Pr[Exp

anon-(2)
GS,A = 1 ∧ ¬QRYz]

= Pr[Exp
anon-(2)
GS,A = 1]− Pr[Exp

anon-(2)
GS,A = 1 ∧ QRYz]

≥ Pr[Exp
anon-(2)
GS,A = 1]− Pr[QRYz]

and

Pr[ExpIND-CCA-0

PKE,B(b)[A]
= 1] = Pr[Exp

anon-(1)-b
GS,A = 1 ∧ ¬QRYb]

≤ Pr[Exp
anon-(1)-b
GS,A = 1]
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Together this yields

Pr[Exp
anon-(2)
GS,A = 1]− Pr[Exp

anon-(1)-b
GS,A = 1] ≤ AdvIND-CCA

PKE,B(b)[A]
+ AdvEXT

PBS,BE [A] . (9)

(8) and (9) together yield:∣∣Pr[Exp
anon-(1)-b
GS,A = 1]− Pr[Exp

anon-(2)
GS,A = 1]

∣∣
≤ max

{
AdvIND-CCA

PKE,B(b)[A],AdvIND-CCA

PKE,B(b)[A]

}
+ AdvEXT

PBS,BE [A] ,

thus, assuming PKE satisfies IND-CCA and PBS satisfies EXT, the games Exp
anon-(1)-b
GS and Exp

anon-(2)
GS

are indistinguishable. Since the last game is independent of the bit b, together we have that games
Expanon-1

GS[PKE,PBS],A and Expanon-0
GS[PKE,PBS],A are indistinguishable. It remains to prove Lemma 1.

Proof of Lemma 1. We construct an adversary BE which breaks EXT whenever QRY happens in the
game where A is given as c∗ an encryption of 0. BE is given on the right of Figure 11 and perfectly
simulates ExpIND-CCA-0

PKE,B[A] .

We show that whenever the event QRY happens then BE wins ExpEXT
PBS by returning ((c∗, m̂), σ̂): We

have to show that in this case we have (1) Verify(pp, (c∗, m̂), σ̂) = 1; (2) ((c∗, m̂), σ̂) is not among the
query/response pairs for SimSign calls; and (3) with ((êk, ı̂), r̂)← Extr(tr, (c∗, m̂), σ̂) we have either (3a)
(êk, ı̂) was never queried to SKeyGen or (3b) PC

(
((êk, ı̂), (c∗, m̂)), r̂

)
= 0.

(1) is the case as otherwise BE would not have halted in the OpenB query. (2) is satisfied, as σ∗ is
the only reply of a SimSign call, and by (QRY) we have σ̂ 6= σ∗. Suppose (3a) is not satisfied, which
means êk is the encryption key set up by BE and 1 ≤ ı̂ ≤ n. By Equation (7), Condition (3b) means
c∗ 6= Enc(ek, ı̂; r̂). This is satisfied, since c∗ = Enc(ek, 0; r∗) and by correctness of PKE , c∗ cannot be the
encryption of a different message.

E Other Primitives Implied by PBS

Theorem 2 shows which primitives are sufficient for policy-based signatures. We now show which primi-
tives are necessary, that is, which fundamental cryptographic primitives are implied by PBS. For ease of
readability, we restate the construction from Section 7.

Simulation-sound extractable NIZK proofs. Groth [Gro06] introduced a notion of simulation-
soundness for NIZK proofs of knowledge. It requires that even when an adversary is provided with an
oracle producing simulated proofs for (not necessarily true) statements of his choice, the adversary cannot
produce a new valid proof from which the extractor fails to extract a witness. The formal definitions can
be found in the full version of [Gro06]. We simplify them slightly, in that we do not distinguish between
the trapdoors for simulation and extraction, and thus only have one SimSetup algorithm:

Let ExpZK
NIZK and ExpSSE

NIZK be defined in Figure 12. A proof system NIZK = (Setup,Prove,Verify)
for a relation R is zero-knowledge if there exist SimSetup and SimSign such that AdvZK

NIZK,A(λ) =

Pr[ExpZK
NIZK,A(λ) ⇒ true] − 1

2 is negligible in λ for all PT A. It is simulation-sound extractable if

there exists Extr such that AdvSSE
NIZK,A(λ) = Pr[ExpSSE

NIZK,A(λ)⇒ true] is negligible in λ for all PT A.
Let R be an NP-relation and let PC and p∗ be such that PC((p∗, x), w) = R(x,w). Let PBS =

(Setuppbs,KeyGen, Sign,Verifypbs,SimSetuppbs,SKeyGen,SimSign,Extrpbs) be a policy-based signature scheme
for PC which satisfies simulatability and extractability. Then the following scheme NIZK[PBS] is a
simulation-sound extractable NIZK proof system:
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proc Initialize ExpZK
NIZK

b← {0, 1}
(crs0, tr)← SimSetupzk(1λ)
(crs1)← Setupzk(1λ)
Return crsb

proc Proof(x,w)

If R(x,w) = 1 then π0←$ SimProve(tr, x)
else π0 ← ⊥

π1←$ Prove(crs1, x, w)
Return πb

proc Finalize(b′)

Return (b = b′)

proc Initialize ExpSSE
NIZK

(crs, tr)←$ SimSetup(1λ) ; Q← ∅
return crs

proc SimProve(x)

π←$ SimProve(crs, tr, x) ; Q← Q ∪ {(x, π)}
return π

proc Finalize(x, π)

w ← Extr(tr, x, π)
Return 1 if all of the following hold:

(x, π) /∈ Q
Verify(crs, x, π) = 1
R(x,w) = 0

Figure 12: Games defining zero-knowledge and simulation-sound extractability for NIZK

Setupzk(1λ)

(pp,msk)←$ Setuppbs(1
λ)

sk← KeyGen(msk, p∗)
Return crs← (pp, sk)

Prove((pp, sk), x, w)

Return π ← Sign(sk, x, w)

Verifyzk((pp, sk), x, π)

Return Verifypbs(pp, x, π)

Extrzk(tr, x, π)

(p, w)← Extrpbs(tr, x, π)
Return w

SimSetupzk(1λ)

(pp,msk, tr)←$ SimSetuppbs(1
λ)

sk← SKeyGen(tr, p∗)
Return crs← (pp, sk) and tr

SimProve((pp, sk), tr, x)

Return π ← SimSign(tr, x)

The proofs that SIM of PBS implies zero knowledge of NIZK and that EXT of PBS implies simulation-
sound extractability of NIZK are straightforward.

Public-key encryption. In order to construct a public-key encryption (PKE) scheme from PBS, we
note that policies can be interpreted as plaintexts hidden in a signature, which can be “decrypted” using
extractability. Consider the following scheme PKE [PBS] constructed from PBS for PC s.t. PC((p,m∗), w∗) =
1 for some m∗, w∗ and all p.

KeyGenpke(1
λ)

(pp,msk, tr)←$ SimSetuppbs(1
λ)

Return (pk← (pp,msk), dk← tr)

Enc((pp,msk), x)

sk←$ KeyGen(msk, x)

Return c←$ Sign(sk,m∗, w∗)

Dec(dk, c)

(x,w)← Extr(dk,m∗, c)

Return x

If PBS satisfies IND then it follows immediately that PKE satisfies indistinguishability of ciphertexts
under chosen-plaintext attack (IND-CPA).

Sahai [Sah99] shows that when instantiating the Naor-Yung [NY90] construction with a simulation-
sound NIZK, one obtains a chosen-ciphertext-attack (CCA)-secure public-key encryption scheme, which
is what we require for our construction of group signatures in Section 6. Combining our constructions
above of SSE NIZK and CPA PKE, we thus obtain a CCA-secure PKE; which we could also directly
construct as follows:

Let PKEcpa = (KeyGencpa,Enccpa,Deccpa) be a CPA-secure PKE; let PBS be a policy-based signature
scheme for the policy checker

PC(((pk0,pk1), (c0, c1)), (x, r0, r1)) = 1 ⇐⇒ c0 = Encpke(pk0, x; r0) ∧ c1 = Encpke(pk1, x; r1) (10)

Then the following scheme PKEcca is an IND-CCA secure PKE scheme:
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KeyGencca(1λ)

(pk0,dk0)←$ KeyGencpa(1λ)

(pk1,dk1)←$ KeyGencpa(1λ)

(pp,msk)←$ Setuppbs(1
λ)

sk←$ KeyGen(msk, (pk0,pk1))

Return pk← (pk0,pk1, sk)

dk← (pp,dk0)

Enccca((pk0,pk1, sk), x)

r0, r1←$ {0, 1}λ
c0 ← Enccpa(pk0, x; r0)

c1 ← Enccpa(pk1, x; r1)

σ←$ Sign(sk, (c0, c1), (x, r0, r1))

Return c = (c0, c1, σ)

Deccca((pp,dk0), (c0, c1, σ))

If Verify(pp, (c0, c1), σ) = 0

Return ⊥
Return Deccpa(dk0, c0)

Signatures of knowledge. Lastly, we show that PBS also imply another related primitive: In
signatures of knowledge (SoK) [CL06] there is a setup outputting trusted parameters, but no authority.
Anyone can make a signature on a message m w.r.t. an NP-relation R and a statement x, if they know
a witness w for x, i.e., R(x,w) = 1. Security is defined by simulatability and extractability notions
analogous to ours for PBS. We refer to [CL06] for the definitions.

To construct a SoK, we use a PBS which signs messages of the form (R, x,m) and require a signer to
know a witness w for x w.r.t. R. In particular, let PBS be a PBS scheme for the policy checker PC s.t.
for some policy p∗ we have: PC((p∗, (R, x,m), w) = 1 iff R(x,w) = 1. Then we define:

Setupsok(1λ)

(pp,msk)←$ Setuppbs(1
λ)

sk←$ KeyGenpbs(msk, p∗)

Return ppsok = (pp, sk)

Signsok((pp, sk), R, x,m,w)

c←$ Signpbs(sk, (R, x,m), w)

Return c

Verifysok((pp, sk), R, x,m, σ)

Return Verifypbs(pp, (R, x,m), σ)

SimSetupsok, SimSignsok and Extrsok, as required by the security definitions are defined by replacing the
respective PBS algorithms by their simulated variants. Extrsok runs Extrpbs to get (p, w) and returns w.
It is then straightforward to show that the above scheme satisfies both simulatability and extractability.

F Efficient Instantiations

Group signatures. The efficient instantiation of policy-based signatures given in Section 4.2 requires
that the policy checker PC be expressible as a set of pairing-product equations. For our construction of
group signatures from PBS in Section 6, this means that Equation (7) must be expressed as an equation
of the form given in Equation (2).

We thus need to express the predicate “is an encryption of my identity” as a statement in the language
of pairing-product equations. The witness therefore must be a group element, so it seems that we need an
encryption scheme whose randomness is a group element. It is however sufficient to find a group element
which witnesses the fact that a ciphertext is the encryption of a certain plaintext.

Let user identities be elements I ∈ G and define the opener’s public key as Y ∈ G. An ElGamal
encryption of I under public key Y is defined by choosing r←$ Zp and setting (C,D) ← (I · Y r, Gr).
Using the bilinear map, W ← Hr is a witness for encryption of I using the two equations:

e(C,H) = e(I,H) e(Y,W ) e(D,H) = e(G,W ) (11)

Thus, for a policy I (which we identify with the user identity) and a message of the form (C,D,M),
the policy checker for our group-signature construction is defined as

PC := {((I, (C,D,M)),W ) | (I, C,D,W ) satisfy Equation (11)} .

In order to efficiently instantiate our group-signature construction given in Section 6, we thus require a
CCA-secure encryption, which contains as part of a ciphertext an ElGamal ciphertext, which we show
how to construct next.
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CCA-secure encryption. In Section 7, we showed how to combine two ciphertexts and a policy-based
signature on them to a CCA-secure public-key encryption. The policy checker for the PBS is defined in
Equation (10). Using as the CPA-secure scheme ElGamal encryption, this can be expressed as a set of
pairing-product equations, where Y1, Y2 ∈ G are be the public keys defining the policy, the ciphertexts
(C0, D0) ∈ G2 and (C1, D1) ∈ G2 represent the PBS-message and (X,W0,W1) ∈ G×H2 is the witness:

e(C0, H) = e(X,H) e(Y0,W 0) e(D0, H) = e(G,W 0)

e(C1, H) = e(X,H) e(Y1,W 1) e(D1, H) = e(G,W 1)
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