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Abstract

The Schnorr signature scheme is the most efficient signature scheme based on the
discrete logarithm problem and a long line of research investigates the existence of a
tight security reduction for this scheme in the random oracle model. Almost all re-
cent works present lower tightness bounds and most recently Seurin (Eurocrypt 2012)
showed that under certain assumptions the non-tight security proof for Schnorr sig-
natures in the random oracle by Pointcheval and Stern (Eurocrypt 1996) is essentially
optimal. All previous works in this direction rule out tight reductions from the (one-
more) discrete logarithm problem. In this paper we introduce a new meta-reduction
technique, which shows lower bounds for the large and very natural class of generic
reductions. A generic reduction is independent of a particular representation of group
elements and most reductions in state-of-the-art security proofs have this desirable
property. Our approach shows unconditionally that there is no tight generic reduc-
tion from any natural non-interactive computational problem Π defined over algebraic
groups to breaking Schnorr signatures, unless solving Π is easy.

In an additional application of the new meta-reduction technique, we also uncon-
ditionally rule out any (even non-tight) generic reduction from natural non-interactive
computational problems defined over algebraic groups to breaking Schnorr signatures
in the non-programmable random oracle model.

1 Motivation

The security of a cryptosystem is nowadays usually confirmed by giving a security proof.
Typically, such a proof describes a reduction from some (assumed-to-be-)hard computa-
tional problem to breaking a defined security property of the cryptosystem. A reduction is
considered as tight, if the reduction solving the hard computational problem has essentially
the same running time and success probability as the attacker on the cryptosystem. Es-
sentially, a tight reduction means that a successful attacker can be turned into an efficient
algorithm for the hard computational problem without any significant increase in the run-
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ning time and/or significant loss in the success probability. 1 The tightness of a reduction
thus determines the strength of the security guarantees provided by the security proof: A
non-tight reduction gives weaker security guarantees than a tight one. Moreover, tightness
of the reduction affects the efficiency of the cryptosystem when instantiated in practice:
A tighter reduction allows to securely use smaller parameters (shorter moduli, a smaller
group size, etc.). Therefore, it is very desirable for a cryptosystem to have a tight security
reduction.

In the domain of digital signatures, tight reductions are known for many fundamental
schemes, such as Rabin/Williams signatures [4], many strong-RSA-based signatures [24],
and RSA Full-Domain Hash [16]. For Schnorr signatures [25, 26], however, the story is a bit
different. Schnorr’s scheme is one of the most fundamental public-key cryptosystems and
Pointcheval and Stern have shown that it is provably secure, assuming the hardness of the
discrete logarithm (DL) problem [21] in the Random Oracle Model (ROM) [2]. However,
the reduction of Pointcheval and Stern from the discrete logarithm problem to breaking
Schnorr signatures is not tight: It loses a factor of q in the time-to-success ratio, where q is
the number of random oracle queries performed by the forger.

This has lead to a long line of research investigating the existence of tighter security
proofs for Schnorr signatures. At Asiacrypt 2005 Paillier and Vergnaud [20] gave a first
lower bound showing that any algebraic reduction (even in the ROM) converting a forger
for Schnorr signatures into an algorithm solving the discrete logarithm problem must lose
a factor of at least q1/2. Their result is quite strong, as they rule out reductions even for
adversaries that do not have access to a signing oracle and receive as input the message
for which they must forge (UUF-NMA, see Section 3.1 for a formal definition). However,
their result also has some limitations: It holds only under the interactive one-more discrete
logarithm assumption, they only consider algebraic reductions, and they only rule out
tight reductions from the (one-more) discrete logarithm problem. At Crypto 2008 Garg et
al. [14] refined this result, by improving the bound from q1/2 to q2/3 with a new analysis
and show that this bound is optimal if the meta-reduction follows a particular approach
for simulating the forger. At Eurocrypt 2012 Seurin [27] finally closed the gap between the
security proof of Pointcheval and Stern [21] and known impossibility results, by describing a
novel elaborate simulation strategy for the forger and providing a new analysis. All previous
works [20, 14, 27] on the existence of tight security proofs for Schnorr signatures have the
following in common:

1. They only rule out the existence of tight reductions from specific strong computational
problems, namely the (one-more) discrete logarithm problem [1]. Reduction from
weaker problems such as, e.g., the computational or decisional Diffie-Hellman problem
(CDH/DDH) are not considered.

1Usually even a polynomially-bounded increase/loss is considered as significant, if the polynomial may
be large. An increase/loss by a small constant factor is not considered as significant.
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2. The impossibility results are not unconditional but instead are themselves only valid
under the very strong OMDL hardness assumption.

3. They hold only with respect to a limited (but natural) class of reductions, so-called
algebraic reductions.

It is not entirely unlikely that first the nonexistence of a tight reduction from strong
computational problems is proven, and later a tight reduction from some weaker problem
is found. A concrete recent example in the domain of digital signatures where this has
happened is RSA Full-Domain Hash (RSA-FDH) [3]. First, at Crypto 2000 Coron [6]
described a non-tight reduction from solving the RSA-problem to breaking the security
of RSA-FDH, and at Eurocrypt 2002 [7] showed that under certain conditions no tighter
reduction from RSA can exist. Later, at Eurocrypt 2012, Kakvi and Kiltz [16] gave a tight
reduction from solving a weaker problem, the so-called Phi-Hiding problem. The leverage,
used by Kakvi and Kiltz to circumvent the aforementioned impossibility results, was to
assume hardness of a weaker computational problem, i.e., making a stronger assumption.
As all previous works rule out only tight reductions from strong computational problems
such as DL and OMDL, this might happen again with Schnorr signatures and the following
question was left open for 25 years:

Does a tight security proof for Schnorr signatures exist based on any weaker
computational problem?

2 Contribution

In this work we answer this question in the negative for an overwhelming class of weaker
problems, ruling out the existence of tight reductions for virtually all natural non-interactive
computational problems defined over abstract algebraic groups. Like previous works, we
consider universal unforgeability under no-message attacks (UUF-NMA-security). More-
over, our results hold unconditionally. In contrast to previous works, we consider generic
reductions instead of algebraic reductions, but we believe that this restriction is marginal:
The motivation of considering only algebraic reductions from [20] applies equally to generic
reductions. In particular, to the best of our knowledge all known examples of algebraic
reductions are also generic.

Our main technical contribution is a new approach for the simulation of a forger in
a meta-reduction, i.e., “a reduction against the reduction”, which differs from previous
works [20, 14, 27] and which allows us to show the following main result:

Theorem 1 (informal). For almost any natural non-interactive computational problem Π,
there is no tight generic reduction from solving Π to breaking the universal unforgeability
under no-message attacks of Schnorr signatures.
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Technical approach. We begin with the hypothesis that there exists a tight generic re-
duction R from some hard non-interactive problem Π to the UUF-NMA-security of Schnorr
signatures. Then we show that under this hypothesis there exists an efficient algorithmM,
a meta-reduction, which efficiently solves Π. This implies that the hypothesis is false. The
meta-reduction M = MR runs R as a subroutine, by efficiently simulating the forger A
for the reduction R.

All previous works in this direction [20, 14, 27] followed essentially the same approach.
The difficulty with meta-reductions is that M = MR must efficiently simulate the forger
A for R. Previous works resolved this by using a discrete logarithm oracle provided by the
OMDL assumption, which allows to efficiently compute valid signatures in the simulation
of forger A. This is also the reason why all previous results are only valid under the OMDL
assumption, and were only able to rule out reductions from the discrete log or the OMDL
problem. To overcome these limitations, a new simulation technique is necessary.

We revisit the simulation strategy of A applied in known meta-reductions, and put
forward a new technique for proving impossibility results. It turns out that considering
generic reductions provides additional leverage for simulating a successful forger efficiently,
essentially by suitably re-programming the group representation while computing valid
signatures. The technical challenge is to prove that the reduction remains oblivious to
theses changes to the group representation during the simulation, except for some negligible
probability. We show how to prove this by adopting the “low polynomial degree” proof
technique of Shoup [28], which was originally introduced to analyze the complexity of
certain algorithms for the discrete logarithm problem, to the setting considered in this
paper.

This new approach turns out to be extremely powerful, as it allows to rule out reductions
from any non-interactive representation-invariant computational problem. Since almost all
common hardness assumptions in algebraic groups (e.g., DL, CDH, DDH, DLIN, etc.) are
based on representation-invariant computational problems, we are able to rule out tight
generic reductions from virtually any natural computational problem, without making any
additional assumptions. Even though we apply it specifically to Schnorr signatures, the
overall approach is general. We expect that it is applicable to other cryptosystems as well.

Generic reductions vs. algebraic reductions Similar to algebraic reductions, a generic
reduction performs only group operations. The main difference is that the sequence of
group operations performed by an algebraic reduction may (but, to our best knowledge, in
all known examples does not) depend on the particular representation of group elements. A
generic reduction, however, is required to work essentially identical for any representation
of group elements. Generic reductions are by definition more restrictive than algebraic ones,
however, we explain below why we do not consider this restriction as very significant.

An obvious question arising with our work is the relation between algebraic and generic
reductions. Is a lower bound for generic reductions much less meaningful than a bound for
algebraic reductions? We argue that the difference is not very significant. The restriction
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to algebraic reductions was motivated by the fact most reductions in known security proofs
treat the group as a black-box, and thus are algebraic [20, 14, 27]. However, the same
motivation applies to generic reductions as well, with exactly the same arguments. In
particular, virtually all examples of algebraic reductions in the literature are also generic.

The vast majority of reductions in common security proofs for group-based cryptosys-
tems treats the underlying group as a black-box (i.e., works for any representation of the
group), and thus is generic. This is a very desirable feature, because then the cryptosys-
tem can securely be instantiated with any group in which the underlying computational
problem is hard. In contrast, representation-specific security proofs would require to re-
prove security for any particular group representation the scheme is used with. Therefore
considering generic reductions seems very reasonable.

Generic reductions vs. security proofs in the generic group model. We stress
that we model only the reduction R as a generic algorithm. We do not restrict the forger
A in this way, as commonly done in security proofs in the generic group model. It may not
be obvious that this is possible, because A expects as input group elements in some specific
encoding, while R can only specify them in the form of random encodings. However, the
reduction only gets access to the adversary as a blackbox, which means that the adversary
is external to the reduction, and the environment in which the reduction runs can easily
translate between the encodings used by reduction and adversary. Further, note that while
some reduction from a problem Π may be generic, the actual algorithm solving said problem
is not R itself, but the composition of R and A which may very well be non-generic. In
particular, this means that any results about equivalence of interesting problems in the
generic group model do not apply to the reduction. See Section 3.4 and Figure 2 for further
explanation.

Generic reductions in the non-programmable random oracle model. An orthog-
onal question to the one answered in our main result is whether security proofs – even non-
tight ones – for Schnorr signatures exist in weaker models. In another result of [20] ] Paillier
and Vergnaud analyzed the security of Schnorr Signatures in the standard model. In partic-
ular, they presented an impossibility result for security proofs based on algebraic reductions
and the discrete logarithm problem. In a similar vein, Fischlin and Fleischhacker [11] pre-
sented a result about the security of Schnorr signatures in the non-programmable random
oracle model. Essentially they prove that in the non-programmable ROM [12] no reduction
from the discrete logarithm problem can exist that invokes the adversary only ever on the
same input. This class is limited, but encompasses all forking-lemma style reductions used
to prove Schnorr signatures secure in the programmable ROM.

Both these results suffer from the same shortcomings already discussed earlier. They
only show impossibility for the discrete logarithm problem and they are themselves not
unconditional, in that they rely on the hardness of the one-more discrete logarithm problem.
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By applying our new simulation technique to reductions in the non-programmable ran-
dom oracle model, we continue this line of research and show the following result

Theorem 2 (informal). For almost any natural non-interactive computational problem
Π, there is no (even non-tight) generic reduction from solving Π to breaking the universal
unforgeability under no-message attacks of Schnorr signatures in the non-programmable
random oracle model.

Comparison to [13]. The conference version of this work [13] (published at Asiacrypt
2014) claimed that Theorem 1 holds even for interactive computational problems. This was
incorrect, as pointed out by Kiltz, Masny, and Pan [17], who in fact were able to give a
tight security proof based on the hardness of an – arguably somewhat artificial – interactive
computational problem. The question of the existence of a tight security reduction based on
a non-interactive computational problem (which is of course much more desirable) remains
open. The present version of this paper corrects the flaw from the conference version, and
thus shows the inexistence of such reductions. Moreover, we have extended this version
with Theorem 2 that unconditionally rules out any (even non-tight) generic reduction in
certain settings.

Further related work. Dodis et al. [8] showed that it is impossible to reduce any com-
putational problem to breaking the security of RSA-FDH in a model where the RSA-group
Z∗N is modeled as a generic group. This result extends [9]. Coron [7] considered the exis-
tence of tight security reductions for RSA-FDH signatures [3]. This result was generalized
by Dodis and Reyzin [10] and later refined by Kiltz and Kakvi [16].

In the context of Schnorr signatures, Neven et al. [19] described necessary conditions
the hash function must meet in order to provide existential unforgeability under chosen-
message attacks (EUF-CMA), and showed that these conditions are sufficient if the forger
(not the reduction!) is modeled as a generic group algorithm.

3 Preliminaries

Notation. If S is a set, we write s←$S to denote the action of sampling a uniformly
random element s from S. If A is a probabilistic algorithm, we denote with a←$A the
action of computing a by running A. We denote with ∅ the empty string, the empty set,
as well as the empty list, the meaning will always be clear from the context. We write [n]
to denote the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.

3.1 Schnorr Signatures

Let G be a group of order p with generator g, and let H : G × {0, 1}k → Zp be a hash
function. The Schnorr signature scheme [25, 26] consists of the following efficient algorithms
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(KGen,Sig,Vf).

KGen(g): The key generation algorithm takes as input a generator g of G. It chooses
sk←$Zp, computes pk := gsk, and outputs (pk, sk).

Sig(sk,m): The input of the signing algorithm is a private key sk and a messagem ∈ {0, 1}k.
It chooses a random integer r←$Zp, sets R := gr as well as c := H(R,m), and
computes y := sk · c+ r mod p. It outputs σ = (R, y).

Vf(pk,m, (R, y)): The verification algorithm outputs the truth value of gy ?
=pkc ·R, where

c = H(R,m).

Universal Unforgeability under No-Message Attacks. Consider the following secu-
rity experiment involving a signature scheme (KGen, Sig,Vf), an attackerA, and a challenger
C.

1. The challenger C computes a key-pair (pk, sk)←$KGen(g) and chooses a message
m←$ {0, 1}k uniformly at random. It invokes A on input (pk,m).

2. Eventually, A stops, outputting a signature σ.

Definition 3. We say that A (ε, t)-breaks the UUF-NMA-security of (KGen, Sig,Vf), if A
runs in time at most t and

Pr[A(pk,m) = σ : Vf(pk,m, σ) = 1] ≥ ε,

where randomness is taken over the random choice of pk, m, and A’s random coins.

Note that UUF-NMA-security is a very weak security goal for digital signatures. Since
we are going to prove a negative result, this is not a limitation, but instead, makes our result
even stronger. In fact, if we rule out reductions from some problem Π to forging signatures
in the sense of UUF-NMA, then the impossibility clearly holds for stronger security notions,
such as existential unforgeability under adaptive chosen-message attacks [15], too.

3.2 Computational Problems

Let G be a cyclic group of order p and g ∈ G a generator of G. We write desc(G, g) to
denote the list of group elements desc(G, g) = (g, g2, . . . , gp) ∈ Gp. We say that desc(G, g)
is the enumerating description of G with respect to g.

Definition 4. A non-interactive computational problem Π in G is specified by two (com-
putationally unbounded) procedures Π = (GΠ,VΠ), with the following syntax.

GΠ(desc(G, g)) takes as input an enumerating description of G, and outputs a state st and
a problem instance (the challenge) C = (C1, . . . , Cu, C

′) ∈ Gu × {0, 1}∗. We assume
in the sequel that at least C1 is a generator of G.
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VΠ(desc(G, g), st, S, C) takes as input (desc(G, g), st, C) as defined above, and S = (S1, . . . , Sw, S
′) ∈

Gw × {0, 1}∗. It outputs 0 or 1.

The exact description and distribution of st, C, S depends on the considered computational
problem.

Definition 5. An algorithm A (ε, t)-solves the non-interactive computational problem Π if
A has running time at most t and wins the following interactive game against a (compu-
tationally unbounded) challenger Cwith probability at most ε, where the game is defined as
follows:

1. The challenger C generates an instance of the problem (st, C)←$GΠ(desc(G, g)) and
invokes A on input C.

2. Eventually, algorithm A outputs a candidate solution S. The algorithm A wins the
game (i.e., solves the computational problem correctly) if and only if VΠ(desc(G, g), st, C, S) =
1.

Example 6. The discrete logarithm problem in G is specified by the following procedures.
GΠ(desc(G, g)) outputs (st, C) with st = ∅ and C = (g, h), where h←$G is a random group
element. VΠ(desc(G, g), st, C, S) interprets S = S′ ∈ {0, 1}∗ canonically as an integer in
Zp, and outputs 1 iff h = gS

′ .

Example 7. The UUF-NMA-forgery problem for Schnorr signatures in G with hash function
H is specified by the following procedures. GΠ(desc(G, g)) outputs (st, C) with st = m
and C = (g, pk,m) ∈ G2 × {0, 1}k, where pk = gsk for sk←$Zp and m←$ {0, 1}k. The
verification algorithm VΠ(desc(G, g), st, C, S) parses S as S = (R, y) ∈ G × Zp, sets c :=
H(R, st), and outputs 1 if and only if pkc ·R = gy.

3.3 Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight reduction
from as large a class of computational problems as possible. Ideally, we want to rule out
the existence of a tight reduction from any computational problem that meets Definition 4.
However, it is easy to see that this is not achievable in this generality: as Theorem 7
shows, the problem of forging Schnorr signatures itself is a problem that meets Definition 4.
However, of course there exists a trivial tight reduction from the problem of forging Schnorr
signatures to the problem of forging Schnorr signatures! Therefore we need to restrict the
class of considered computational problems to exclude such trivial, artificial problems.

We introduce the notion of representation-invariant computational problems. This
class of problems captures virtually any reasonable computational problem defined over an
abstract algebraic group except for a few extremely artificial problems. In particular, the
problem of forging Schnorr signatures is not contained in this class (see Theorem 10 below).
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Intuitively, a computational problem is representation-invariant, if a valid solution to
a given problem instance remains valid even if the representation of group elements in
challenges and solutions is converted to a different representation of the same group. More
formally we define it as follows:

Definition 8. Let G, Ĝ be groups such that there exists an isomorphism φ : G→ Ĝ. We say
that Π is representation-invariant, if and only if for all isomorphic groups G, Ĝ and for all
generators g ∈ G, all C = (C1, . . . , Cu, C

′)←$GΠ(desc(G, g)), all st = (st1, . . . , stt, st
′) ∈

Gt×{0, 1}∗, and all S = (S1, . . . , Sw, S
′) ∈ Gw×{0, 1}∗ holds that VΠ(desc(G, g), st, C, S) =

1 ⇐⇒ VΠ(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1, where ĝ = φ(g) ∈ G′, Ĉ = (φ(C1), . . . , φ(Cu), C ′),
ŝt = (φ(st1), . . . , φ(stt), st

′), and Ŝ = (φ(S1), . . . , φ(Sw), S′).

Observe that this definition only demands the existence of an isomorphism φ : G → Ĝ
and not that it is efficiently computable.

Example 9. The discrete logarithm problem is representation-invariant. Let C = (g, h) ∈ G2

be a discrete log challenge, with corresponding solution S′ ∈ {0, 1}∗ such that S′ canonically
interpreted as an integer S′ ∈ Zp satisfies gS′

= h ∈ G. Let φ : G→ Ĝ be an isomorphism,
and let (ĝ, ĥ) := (φ(g), φ(h)). Then it clearly holds that ĝŜ′

= ĥ, where Ŝ′ = S′.

Virtually all common hardness assumptions in algebraic groups are based on representation-
invariant computational problems. Popular examples are, for instance, the discrete log
problem (DL), computational Diffie-Hellman (CDH), decisional Diffie-Hellman (DDH), de-
cision linear (DLIN), and so on.

Example 10. The UUF-NMA-forgery problem for Schnorr signatures with hash function H
is not representation-invariant for any hash functionH. Let C = (g, pk,m)←$GΠ(desc(G, g))
be a challenge with solution S = (R, y) ∈ G×Zp satisfying pkc ·R = gy, where c := H(R,m).

Let Ĝ be a group isomorphic to G, such that G∩ Ĝ = ∅ (that is, there exists no element
of Ĝ having the same representation as some element of G).2 Let G → Ĝ denote the
isomorphism. If there exists any R such that H(R,m) 6= H(φ(R),m) in Zp (which holds in
particular if H is collision resistant and φ efficiently computable), then we have

gy = pkH(R,m) ·R but φ(g)y 6= φ(pk)H(φ(R),m) · φ(R).

Thus, a solution to this problem is valid only with respect to a particular given representa-
tion of group elements.

The UUF-NMA-forgery problem of Schnorr signatures is not representation-invariant,
because a solution to this problem involves the hash value H(R,m) that depends on a
concrete representation of group element R. We consider such complexity assumptions as
rather unnatural, as they are usually very specific to certain constructions of cryptosystems.

2Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the encoding by
prepending a suitable fixed string to each group element, and changing the group law accordingly.
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O(e, e′, ◦)

(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GetIdx(e, e′)

return Encode(LG
i ◦ LG

j )

GetIdx(~e)

parse ~e as (e1, . . . , ew)

for j = 1, . . . , w do

pick first i ∈
[∣∣LE∣∣] s.t. LEi = ej

ij := i

return (i1, . . . , iw)

Encode(G)

parse G as (G1, . . . , Gu)

for j = 1, . . . , u do

if ∃i s.t. LG
i = Gj

ej := LEi
else

ej ←$E \ LE

append ej to LE

append Gj to LG

return (e1, . . . , eu)

Figure 1: Procedures implementing the generic group oracle.

3.4 Generic Reductions

In this section we recall the notion of generic groups, loosely following [28] (cf. also [18, 23],
for instance), and define generic (i.e., representation independent) reductions.

Generic groups. Let (G, ·) be a group of order p and E ⊆ {0, 1}dlog pe be a set of size
|E| = |G|. If g, h ∈ G are two group elements, then we write g÷h for g ·h−1. Following [28]
we define an encoding function as a random injective map φ : G → E. We say that an
element e ∈ E is the encoding assigned to group element h ∈ G, if φ(h) = e.

A generic group algorithm is an algorithmR which takes as input Ĉ = (φ(C1), . . . , φ(Cu), C ′),
where φ(Ci) ∈ E is an encoding of group element Ci for all i ∈ [u], and C ′ ∈ {0, 1}∗ is
a bit string. The algorithm outputs Ŝ = (φ(S1), . . . , φ(Sw), S′), where φ(Si) ∈ E is an
encoding of group element Si for all i ∈ [w], and S′ ∈ {0, 1}∗ is a bit string. In order to
perform computations on encoded group elements, algorithm R= RO may query a generic
group oracle (or “group oracle” for short). This oracle O takes as input two encodings
e = φ(G), e′ = φ(G′) and a symbol ◦ ∈ {·,÷}, and returns φ(G ◦ G′). Note that (E, ·O),
where ·O denotes the group operation on E induced by oracle O, forms a group which is
isomorphic to (G, ·).

It will later be helpful to have a specific implementation of O. We will therefore assume
in the sequel that O internally maintains two lists LG ⊆ G and LE ⊆ E. These lists define
the encoding function φ as LEi = φ(LGi ), where LGi and LEi denote the i-th element of LG
and LE , respectively, for all i ∈

[∣∣LG∣∣]. Note that from the perspective of a generic group
algorithm it makes no difference whether the encoding function is fixed at the beginning
or lazily evaluated whenever a new group element occurs. We will assume that the oracle
uses lazy evaluation to simplify our discussion and avoid unnecessary steps for achieving
polynomial runtime of our meta-reductions.
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Procedure Encode takes a list G = (G1, . . . , Gu) of group elements as input. It checks
for each Gj ∈ L if an encoding has already been assigned to Gj , i.e., whether there
exists an index i such that LGi = Gj . If this holds, Encode sets ej := LEi . Otherwise
(if no encoding has been assigned to Gj so far), it chooses a fresh and random encoding
ej←$E\LE . In either case Gj and ej are appended to LG and LE , respectively, which
gradually defines the map φ such that φ(Gj) = ej . Note also that the same group
element and encoding may occur multiple times in the list. Finally, the procedure
returns the list (e1, . . . , eu) of encodings.

Procedure GetIdx takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w] it
defines ij as the smallest3 index such that ej = LEij , and returns (i1, . . . , iw).4

The lists LG and LE are initially empty. ThenO calls (e1, . . . , eu)←$ Encode(G1, . . . , Gu)
to determine encodings for all group elements G1, . . . , Gu and starts the generic group al-
gorithm on input R(e1, . . . , eu, C

′).
The reduction RO may now submit queries of the form (e, e′, ◦) ∈ E × E × {·,÷} to

the generic group oracle O. In the sequel we will restrict R to issue only queries (e, e′, ◦) to
O such that e, e′ ∈ LE . It determines the smallest indices i and j with e = ei and e′ = ej
by calling (i, j) = GetIdx(e, e′). Then it computes LGi ◦ LGj and returns the encoding
Encode(LGi ◦LGj ). Furthemore, we require that R only outputs encodings φ(Si) such that
φ(Si) ∈ LE .
Remark 11. We note that the above restrictions are without loss of generality. To explain
this, recall that the assignment between group elements and encodings is random. An
alternative implementation O′ of O could, given an encoding e 6∈ LE , assign a random
group element G←$G\LG to e by appending G to LG and e to LE , in which case R would
obtain an encoding of an independent, new group element. Of course R can simulate this
behavior easily when interacting with O, too.

Generic reductions. Recall that a (fully black-box [22]) reduction from problem Π to
problem Σ is an efficient algorithmR that solves Π, having black-box access to an algorithm
A solving Σ.

In the sequel we consider reductions RA,O having black-box access to an algorithm A
as well as to a generic group oracle O. A generic reduction receives as input a challenge
C = (φ(C1), . . . , φ(Cu), C ′) ∈ Gu × {0, 1}∗ consisting of u encoded group elements and
a bit-string C ′. R may perform computations on encoded group elements, by invoking a
generic group oracle O as described above, and interacts with algorithm A to compute a
solution S = (φ(S1), . . . , φ(Sw), S′) ∈ Gw × {0, 1}∗, which again may consist of encoded
group elements φ(S1), . . . , φ(Sw) and a bit-string S′ ∈ {0, 1}∗.

3Recall that the same encoding may occur multiple times in LE .
4Note that GetIdxmay receive only encodings e1, . . . , ew which are already contained in LE , as otherwise

the behavior of GetIdx is undefined. We will make sure that this is always the case.
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R

A

O

Environment

C1, . . . , Cl, C
′

φ(C1), . . . , φ(Cl), C
′ (φ(i), φ(j), ◦)

φ(i ◦ j)

φ(X),m, ω X,m, ω

A,mφ(A),m

φ(B) = H(φ(A),m) B

(R, y)(φ(R), y)

S1, . . . , Sw, S
′

φ(S1), . . . , φ(Sw), S′

Figure 2: An example of the interaction between a generic reduction R and a non-generic
adversary A against the unforgeability of Schnorr signatures. All group elements – such as
the challenge input, random oracle queries, and the signature output by A – are encoded
by the environment before being passed to R. In the other direction, encodings of group
elements output by R – such as the public key that is the input of A, random oracle
responses, and the solution output by R – are decoded before being passed to the outside
world.

We stress that the adversary A does not necessarily have to be a generic algorithm. It
may not be immediately obvious that a generic reduction can make use of a non-generic
adversary, considering that A might expect a particular encoding of the group elements.
However, this is indeed possible. In particular, most reductions in security proofs for
cryptosystems that are based on algebraic groups (e.g. [21, 5, 29], to name a few well-
known examples) are independent of a particular group representation, and thus generic.

Recall that R is fully blackbox, i.e., A is external to R. Thus, the environment in which
the reduction runs can easily translate between the two encodings. Consider as an example
the reduction shown in Figure 2 that interacts with a non-generic adversary A. We stress
that the actual algorithm solving the problem Π, which is a composition of R and A is
therefore not generic.

4 Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reduction R that
reduces a representation-invariant computational problem Π to breaking the UUF-NMA-
security of the Schnorr signature scheme. Our results in this direction are negative, showing
that it is impossible to find a generic reduction from any non-interactive representation-
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invariant computational problem.

4.1 Single-Instance Reductions

We begin with considering a very simple class of reduction that we call vanilla reductions.
A vanilla reduction is a reduction that runs the UUF-NMA forger A exactly once (without
restarting or rewinding) in order to solve the problem Π. This allows us to explain and
analyze the new simulation technique. Later we turn to reductions that may execute A
repeatedly, such as the known security proof from [21] based on the Forking Lemma.

4.1.1 An Inefficient Adversary A

In this section we describe an inefficient adversary A that breaks the UUF-NMA-security
of the Schnorr signature scheme. Recall that a black-box reduction R must work for any
attacker A. Thus, algorithm RA will solve the challenge problem Π, given black-box access
to A. The meta-reduction will be able to simulate this attacker efficiently for any generic
reduction R. We describe this attacker for comprehensibility, in order to make our meta-
reduction more accessible to the reader.

1. The input ofA is a Schnorr public-key pk, a messagem, and random coins ω ∈ {0, 1}κ.

2. The forger A chooses q uniformly random group elements R1, . . . , Rq←$G. (We make
the assumption that q ≤ |G|.) Subsequently, the forger A queries the random oracle
H on (Ri,m) for all i ∈ [q]. Let ci := H(Ri,m) ∈ Zp be the corresponding answers.

3. Finally, the forger A chooses an index uniformly at random α←$ [q], computes y ∈ Zp
which satisfies the equation gy = pkcα · Rα, and outputs (Rα, y). For concreteness,
we assume this computation is performed by exhaustive search over all y ∈ Zp (recall
that we consider an unbounded attacker here, we show later how to instantiate it
efficiently).

Note that (Rα, y) is a valid signature for messagem with respect to the public key pk. Thus,
the forger A breaks the UUF-NMA-security of the Schnorr signatures with probability 1.

4.1.2 Main Result for Vanilla Reductions

Now we are ready to prove our main result for vanilla reductions.

Theorem 12. Let Π = (GΠ,VΠ) be a non-interactive representation-invariant computa-
tional problem with a challenge consisting of u group elements and let p be the group order.
Suppose there exists a generic vanilla reduction R that (εR, tR)-solves Π, having one-time
black-box access to an attacker A that (εA, tA)-breaks the UUF-NMA-security of Schnorr
signatures with success probability εA = 1 by asking q random oracle queries. Then there
exists an algorithmM that (ε, t)-solves Π with ε ≥ εR − 2(u+q+tR)2

p and t ≈ tR.
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Remark 13. The values u, q, and tR are polynomially bounded while p is exponential.
Therefore, the theorem shows that the existence of a reduction R implies the existence
of a meta-reduction M, which solves Π with essentially the same success probability and
running time. Thus, an efficient (and even non-tight) reduction R can only exist if there
exists an efficient algorithm for Π, which means that Π cannot be hard.

Remark 14. Observe that Theorem 12 rules out reductions from nearly arbitrary non-
interactive computational problems. At a first glance this might look contradictory, for
instance there always exists a trivial reduction from the problem of forging Schnorr signa-
tures to solving the same problem. However, as explained in Theorem 10, forging Schnorr-
signatures is not a representation-invariant computational problem, therefore this is not a
contradiction.

Proof. Assume that there exists a generic vanilla reduction R := RO,A that (εR, tR)-solves
Π, when given access to a generic group oracle O, and a forger A(φ(pk),m, ω), where the
inputs to the forger are chosen by R. Furthermore, the reduction R simulates the random
oracle R.H for A. We show how to build a meta-reductionM that has black-box access to
R and solves the representation-invariant problem Π directly.

We describe M in a sequence of games, beginning with an inefficient implementation
M0 ofM and modify it gradually until we obtain an efficient implementationM2 ofM.
We bound the probability with which any reduction R can distinguish each implementation
Mi from Mi−1 for all i ∈ {1, 2}, which yields that M2 is an efficient algorithm that can
use R to solve Π if R is tight. In what follows let Xi denote the event that R outputs a
valid solution to the given problem instance Ĉ of Π in Game i.

Game 0. Our meta-reductionM0 is an algorithm for solving a representation-invariant
computational problem Π, as defined in Section 3.3. That is,M0 takes as input an instance
C = (C1, . . . , Cu, C

′) ∈ Gu×{0, 1}∗, of the representation-invariant computational problem
Π and outputs a candidate solution S. R is a generic reduction, i.e., a representation-
independent algorithm for Π having black-box access to an attacker A. Algorithm M0

runs reduction R as a subroutine, by simulating the generic group oracle O and attacker
A for R. In order to provide the generic group oracle for R,M0 implements the following
procedures (cf. Figure 3).

Initialization of M0: At the beginning of the game, M0 initializes two lists LG := ∅
and LE := ∅, which are used to simulate the generic group oracle O. Furthermore, M0

chooses ~R = (R1, . . . , Rq)←$Gq at random (these values will later be used by the simulated
attacker A), sets I := (C1, . . . , Cu, R1, . . . , Rq), and runs Encode(I) to assign encodings to
these group elements. ThenM0 invokes the reduction R on input Ĉ := (LE1 , . . . ,LEu , C ′).
Note that Ĉ is an encoded version of the challenge instance of Π received byM0. That is,
we have Ĉ = (φ(C1), . . . , φ(Cu), C ′). Oracle queries of R are answered byM0 as follows.
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M0(C)

# Initialization

parse C as (C1, . . . , Cu, C
′)

LG := ∅
LE := ∅
~R = (R1, . . . , Rq)←$Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

Encode(I)

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

A(φ(pk),m, ω)

foreach i in [q] do

ci := R.H(φ(Ri),m)

α←$ [q]

y := logg pk
cαRα

return (φ(Rα), y)

Figure 3: Implementation ofM0.

Generic group oracle O(e, e′, ◦): To simulate the generic group oracle,M0 implements
procedures Encode and GetIdx as described in Section 3.4. Whenever R submits a query
(e, e′, ◦) ∈ E×E×{·,÷} to the generic group oracle O, the meta-reduction determines the
smallest indices i and j such that e = LGi and e′ = LGj by calling (i, j) = GetIdx(e, e′).
Then it computes LGi ◦ LGj and returns Encode(LGi ◦ LGj ).

The forger A(φ(pk),m, ω): This procedure implements a simulation of the inefficient
attacker A described in Section 4.1.1. It proceeds as follows. When R outputs (φ(pk),m, ω)
to invoke an instance of A, A queries the random oracle R.H provided by R on (φ(Ri),m)
for all i ∈ [q], to determine ci = H(φ(Ri),m). Afterwards, M0 chooses an index α←$ [q]
uniformly at random, computes the the discrete logarithm y := logg pk

cαRα by exhaustive
search, and outputs (φ(Rα), y). (This step is not efficient. We show in subsequent games
how to implement this simulation efficiently.)

Finalization ofM0: Eventually, the algorithmR outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S
′) ∈

Ew×{0, 1}∗. The algorithmM0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the
indices of group elements (LGi1 , . . . ,L

G
iw

) corresponding to encodings (Ŝ1, . . . , Ŝw), and out-
puts (LGi1 , . . . ,L

G
iw
, S′).
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M1(C)

# Initialization

parse C as (C1, . . . , Cu, C
′)

LG := ∅
LE := ∅
LV := ∅
~R = (R1, . . . , Rq)←$Gq

I := (C1, . . . , Cu, R1, . . . , Rq)

Encode(I)

LVi := ηi, ∀i ∈ [u+ q] .

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

O(e, e′, ◦)

(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GetIdx(e, e′)

a := LVi � LVj ∈ Zu+qp

append a to LV

return Encode(LG
i ◦ LG

j )

Figure 4: Meta-ReductionM1. Elements highlighted in gray show the differences toM0.
All other procedures are identical toM0 and thus omitted.

Analysis ofM0. Note thatM0 provides a perfect simulation of the oracle O and it also
mimics the attacker from Section 4.1.1 perfectly. In particular, (Rα, y) is a valid forgery
for message m and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to Ĉ with probability
Pr[X0 ] = εR. Since Π is assumed to be representation-invariant, S := (S1, . . . , Sw, S

′) with
Ŝi = φ(Si) for i ∈ [w] is therefore a valid solution to C. Thus,M0 outputs a valid solution
S to C with probability εR.

Game 1. In this game we introduce a meta-reductionM1, which essentially extendsM0

with additional bookkeeping to record the sequence of group operations performed by R.
The purpose of this intermediate game is to simplify our analysis of the final implementa-
tion M2. Meta-reduction M1 proceeds identical to M0, except for a few differences (cf.
Figure 4).

Initialization of M1: The initialization is exactly as before, except thatM1 maintains
an additional list LV of elements of Zu+q

p . Let LVi denote the i-th entry of LV .
List LV is initialized with the u+q canonical unit vectors in Zu+q

p . That is, let ηi denote
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A(φ(pk),m, ω)

foreach i in [q] do

ci = R.H(φ(Ri),m)

α←$ [q]

y←$Zp ; R∗α := gypk−cα

I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq)

for j = 1, . . . ,
∣∣LG∣∣ do

LG
i := Eval(I∗,LVi )

return (φ(R∗α), y)

Figure 5: Efficient simulation of attacker A byM2.

the i-th canonical unit vector in Zu+q
p , i.e.,

η1 := (1, 0, . . . , 0), η2 := (0, 1, 0, . . . , 0), . . . , ηu+q := (0, . . . , 0, 1).

Then LV is initialized such that LVi := ηi for all i ∈ [u+ q] .

Generic group oracle O(e, e′, ◦) In parallel to computing the group operation, the
generic group oracle implemented byM1 also performs computations on vectors of LV .

Given a query (e, e′, ◦) ∈ E ×E ×{·,÷}, the oracle O determines the smallest indices i
and j such that e = LGi and e′ = LGj by calling GetIdx. It computes a := LVi �LVj ∈ Zu+q

p ,
where � := + if ◦ = · and � := − if ◦ = ÷, and appends a to LV . Finally it returns
Encode(LGi ◦ LGj ).

Analysis of M1. Recall that the initial content I of LG is I = (C1, . . . , Cu, R1, . . . , Rq),
and that R performs only group operations on I. Thus, any group element h ∈ LG can
be written as h =

∏u
i=1C

ai
i ·

∏q
i=1R

au+i
i where the vector a = (a1, . . . , au+q) ∈ Zu+q

p

is (essentially) determined by the sequence of queries issued by R to O. For a vector
a ∈ Zu+q

p and a vector of group elements V = (v1, . . . , vu+q) ∈ Gu+q let us write Eval(V, a)
as a shorthand for Eval(V, a) :=

∏u+q
i=1 v

ai
i in the following. In particular, it holds that

Eval(I, a) =
∏u
i=1C

ai
i ·

∏q
i=1R

au+i
i . The key motivation for the changes introduced in

Game 1is that now (by construction of M1) it holds that LGi = Eval(I,LVi ) for all i ∈[∣∣LG∣∣] . Thus, at any point in time during the execution of R, the entire list LG of group
elements can be recomputed from LV and I by setting LGi := Eval(I,LVi ) for i ∈

[∣∣LV ∣∣].
The reduction R is completely oblivious to this additional bookkeeping performed byM1,
thus we have Pr[X1 ] = Pr[X0 ] .

Game 2. Note that the meta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedure A needed to compute a discrete log-
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arithm by exhaustive search. In this final game, we construct a meta-reduction M2 that
simulatesA efficiently. M2 proceeds exactly likeM1, except for the following (cf. Figure 5).

The forger A(φ(pk),m, ω): When R outputs (φ(pk),m, ω) to invoke an instance of A,
A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to determine
ci = H(φ(Ri),m). Then it chooses an index α←$ [q] uniformly at random, samples an
element y uniformly at random from Zp, computes R∗α := gypk−cα , and re-computes the
entire list LG using R∗α instead of Rα.

More precisely, let I∗ := (C1, . . . , Cu, R1, . . . , Rα−1, R
∗
α, Rα+1, . . . , Rq). Observe that the

vector I∗ is identical to the initial contents I of LG, with the difference that Rα is replaced
by R∗α. The list LGis now recomputed from LV and I∗ by setting LGi := Eval(I∗,LVi ) for
all i ∈

[∣∣LV ∣∣]. Finally,M2 returns (φ(R∗α), y) to R as the forgery.

Analysis of M2. First note that (φ(R∗α), y) is a valid signature, since φ(R∗α) is the en-
coding of group element R∗α satisfying the verification equation gy = pkcα · R∗α, where
cα = H(φ(R∗α),m). Next we claim that R is not able to distinguishM2 fromM1, except
for a negligibly small probability. To show this, observe that Game 2 and Game 1 are per-
fectly indistinguishable, if for all pairs of vectors LVi ,LVj ∈ LV it holds that Eval(I,LVi ) =

Eval(I,LVj ) ⇐⇒ Eval(I∗,LVi ) = Eval(I∗,LVj ), because in this case M2 chooses identical
encodings for two group elements LGi ,LGj ∈ LG if and only if M1 chooses identical encod-
ings. It remains to show that this happens with overwhelming probability. We state this
in the following Lemma.

Lemma 15. Let F denote the event that R computes vectors LVi ,LVj ∈ LV such that

Eval(I,LVi ) = Eval(I,LVj ) ∧ Eval(I∗,LVi ) 6= Eval(I∗,LVj ) (1)

or

Eval(I,LVi ) 6= Eval(I,LVj ) ∧ Eval(I∗,LVi ) = Eval(I∗,LVj ). (2)

Then
Pr[F ] ≤ 2(u+ q + tR)2/p.

The proof of Lemma 15 is deferred to Section 4.2. We apply it to finish the proof
of Theorem 12. By Lemma 15, algorithm M2 fails to simulate M1 with probability at
most 2(u+ q + tR)2/p. Thus, we have Pr[X2 ] ≥ Pr[X1 ]− 2(u+ q + tR)2/p.

Note also thatM2 provides an efficient simulation of adversary A. The total running
time ofM2 is essentially of the running time of R plus some minor additional computations
and bookkeeping. Furthermore, if R is able to (εR, tR)-solve Π, thenM2 is able to (ε, t)-
solve Π with probability at least

ε ≥ Pr[X2 ] ≥ εR −
2(u+ q + tR)2

p
.
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4.2 Proof of Lemma 15

The proof of this lemma is based on the observation that an algorithm that performs
only a (polynomially) limited number of group operations in an (exponential-size) generic
group is very unlikely to find any “non-trivial relation” among random group elements.
This technique was introduced in [28] in a different setting, to analyze the complexity of
algorithms for the discrete logarithm problem.

Proof. We first introduce an alternative formulation of event F . Recall that the vectors
I and I∗ differ only in their α-th component. In the sequel let us write Iα to denote the
vector I, but with its α-th component Rα set equal to 1 ∈ G. That is,

Iα := (R1, . . . , Rα−1, 1, Rα+1, . . . , Rq, g1, . . . , gu).

Then we have

Eval(I,LVi ) = Eval(Iα,LVi ) ·R
LVi,α
α and Eval(I∗,LVi ) = Eval(Iα,LVi ) · (R∗α)L

V
i,α

where LVi,α denotes the α-th component of vector LVi . In particular, for any two vectors
LVi ,LVj we have

Eval(I,LVi ) = Eval(I,LVj ) ⇐⇒ Eval(Iα,LVi ) ·R
LVi,α
α = Eval(Iα,LVj ) ·R

LVj,α
α

⇐⇒ Eval(Iα,LVi − LVj ) ·R
LVi,α−LVj,α
α = 1

Thus, Equation 1 is equivalent to

Eval(Iα,LVi − LVj ) ·R
LVi,α−LVj,α
α = 1 ∧ Eval(Iα,LVi − LVj ) · (R∗α)L

V
i,α−LVj,α 6= 1 (3)

If we take discrete logarithms to base γ ∈ G, where γ is an arbitrary generator of G,
and define the degree-one polynomial ∆i,j,α ∈ Zp[X] as

∆i,j := log Eval(Iα,LVi − LVj ) +X ·
(
LVi,α − LVj,α

)
,

then Equation 3 (and therefore also Equation 1) is in turn equivalent to

∆i,j(logRα) ≡ 0 mod p ∧ ∆i,j(logR∗α) 6≡ 0 mod p. (4)

Similarly, Equation 2 is equivalent to

∆i,j(logRα) 6≡ 0 mod p ∧ ∆i,j(logR∗α) ≡ 0 mod p. (5)

Thus, event F occurs if R computes vectors LVi ,LVj such that either Equation 4 or
Equation 5 holds.
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Failure Event F1. Let F1 denote the event that Equation 4 holds. Note that this can
only happen if R performs a sequence of computations, such that there exist a pair (i, j) ∈[∣∣LV ∣∣]× [∣∣LV ∣∣] such that the polynomial ∆i,j is not the zero-polynomial in Zp[X], but it
holds that ∆i,j(Rα) ≡ 0 mod p.

At the beginning of the gameR receives only a random encoding φ(Rα) of group element
Rα. The only further information that R learns about Rα throughout the game is through
equality or inequality of encodings. Since R runs in time tR, it can issue at most tR oracle
queries. Thus, at the end of the game the list LV contains at most |LV | ≤ tR + q + u
entries. Each pair (i, j) ∈

[∣∣LV ∣∣] with i 6= j defines a (possibly non-zero) polynomial ∆i,j .
In total there are at most (tR + q + u) · (tR + q + u− 1) ≤ (tR + q + u)2 such polynomials.

Since all polynomials have degree one, and logRα is uniformly distributed over Zp
(because Rα is uniformly random over G), the probability that logRα is a root of any of
these polynomials is upper bounded by

Pr[F1 ] ≤ (u+ q + tR)2

p
.

Failure Event F2. Let F2 denote the event that Equation 5 holds. Since logR∗α is uni-
formly distributed over Zp (because we have defined R∗α := gypk−c for uniformly y←$Zp),
with similar arguments as before we have

Pr[F2 ] ≤ (u+ q + tR)2

p
.

Bounding Pr[F ]. Since F = F1 ∪ F2 we have

Pr[F ] ≤ Pr[F1 ] + Pr[F2 ] ≤ 2(u+ q + tR)2

p
.

5 Multi-Instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequential
executions of the signature forger A. This is the interesting case, in particular because the
Forking-Lemma based security proof for Schnorr signatures by Pointcheval and Stern [21]
is of this type.

Again we construct a meta-reduction with simulated adversary. The main difference
to our single-instance adversary is that it does not succeed with probability 1, but tosses
a biased coin that decides if it forges for the message or not. On the first glance this
approach might seem to be of little value, because an adversary with a higher success
probability should improve the success probability of the reduction. However, it was shown
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in [27] that, once we consider a reduction that runs multiple sequential executions of this
adversary, this approach allows to derive an optimal tightness bound.

In the following we assume that the reduction R executes n sequential instances of
the same adversary A(φ(pk),m, ω), where the public key φ(pk), the message m, and the
randomness ω of each instance are chosen by R. Observe that the input to the adversary
and the random oracle query/answers completely determine the behaviour of the adversary.
Thus, any successive execution of an instance of A may be identical to a previous execution
up to a certain point, where the response c = H(R,m) of the random oracle differs from a
response c′ = H(R,m) received by A in a previous execution. This point is called the forking
point [27].

5.1 A Family of Inefficient Adversaries AF,f
In this section, we describe a different inefficient adversary A against the UUF-NMA-
security of the Schnorr signature scheme. In fact, we do not describe a single adversary
but a family of adversaries from which the meta-reduction will choose one to simulate at
random.

To define this family, we fix the following notations. The Bernoulli distribution of a
parameter µ ∈ [0, 1] is defined by Berµ, i.e., Pr[δ = 1] = µ and Pr[δ = 0] = 1 − µ. Let
Q = G × Zp be the set of possible random oracle queries and answers. By Si = Qi we
denote the set of random oracle query sequences of length i and the set of all possible

sequences is defined as S =
q⋃
i=1

Si. Consider now the set F of all functions F : {0, 1}k×G×

{0, 1}κ × S → G. And the set E of functions f : G → {0, 1} for which the following holds
Pr[f(g) = 1 | g←$G ] = Pr[b = 1 | b←$ Berµ ]. For each pair (F, f) ∈ F × E we define the
adversary AF,f as follows:

1. The input ofA is a Schnorr public-key pk, a messagem, and random coins ω ∈ {0, 1}κ.

2. The forger A sets σ := ⊥ and performs the following computations. For i = 1, . . . , q it
computes Ri := F (m, pk, ω, (R1, c1), . . . , (Ri−1, ci−1)) and queries the random oracle
H on (Ri,m), where ci := H(Ri,m) ∈ Zp is the corresponding answers. If σ = ⊥,
then AF,f sets Zi := pkciRi and checks if f(Zi) = 1. If this is the case, then AF,f
computes yi ∈ Zp satisfying the equation gyi = Ri ·pkci by exhaustive search and sets
σ := (Ri, yi). Otherwise, if f(Zi) = 0, then it continues with the loop.

3. Finally, the forger AF,f returns σ.

Note that (Ri, yi) is a valid signature for message m with respect to the public key pk.
Thus, the forger AF,f breaks the UUF-NMA-security of the Schnorr signatures whenever
f(Zi) = 1 for at least one i ∈ [q]. This translates to a success probability of εA = 1−(1−µ)q.

Observe that defining the adversaries as above ensures that, while different instances
of the same adversary will behave identically as long as their input and the answers of
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the random oracle are the same, as soon as one of the inputs or one of the random oracle
answers differ the behavior of two instances will be independent of one another from that
point onwards. As such, the behavior of these adversaries mimics closely the idea behind
the forking lemma and it allows us to easily simulate the adversary in our meta-reduction
below.

5.2 Main Result for Multi-Instance Reductions

In this section, we combine the approach of Seurin [27] with our simulation of signature forg-
eries based on re-programming of the group representation, as introduced in Section 4.1.2.
This allows to prove a nearly optimal unconditional tightness bound for all generic reduc-
tions and any representation-invariant computational problem Π.

Unfortunately, the combination of the elaborate techniques of Seurin [27] with our
approach yields a rather complex meta-reduction. We stress that we follow Seurin’s work
as closely as possible. The main difference lies in the way signature forgeries are computed,
namely in our case by exploiting the properties of the generic group representation, instead
of using an OMDL-oracle as in [27].

The main difference between the meta-reduction described in this section and the one
presented in Section 4.1.2 lies in the simulation of the random oracle queries issued by the
adversary in different sequential executions. In particular, the meta-reductionM simulates
the oracles procedures Encode, GetIdx, and O exactly as before.

Theorem 16. Let Π be a representation-invariant computational problem. Suppose there
exists a generic reduction RO,AF,f that (εR, tR)-solves Π, having n-time black-box access to
an attacker AF,f that (εA, tA, q)-breaks the UUF-NMA-security of Schnorr signatures with
success probability εA = 1 − (1 − µ)q in time tA ≈ q. Then there exists an algorithm M
that (ε, t)-solves Π with

ε ≥ εR −
2n(u+ nq + tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

Remark 17. Just as in Theorem 12, the term 2n(u+nq+tR)/p in the bound on ε is negligible.
However, now we have an additional term n ln((1 − εA)−1/(q(1 − p−1/4)). Note that this
term is identical to the corresponding term from the main theorem of [27]. Following [27],
we therefore conclude that any reduction R must have a security loss of Ω(q).

Proof. Suppose that there exists a generic reduction R := RO,A that (εR, tR)-solves Π,
when given access to a generic group oracle O and to n instances of the same forger AF,f ,
where the inputs to each instance of the forger are chosen by R. As before, the random
oracle R.H for A is provided by R. We show how to construct a meta-reduction M that
has black-box access to R and that solves the representation-invariant problem Π directly.
Again we proceed in a sequence of games, and denote with Mi the implementation of
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algorithmM in Game i, and with Xi the event that R outputs a valid solution S to C in
Game i. As in Section 4.1.2, we will bound the probability with which any efficient reduction
R can distinguish each implementationMi fromMi−1 for all i ∈ {1, 2, 3}. We start with
an inefficient implementation M0 of M, and modify this implementation gradually until
we obtain an efficient algorithmM3 that uses R to solve Π.

Game 0. M0 (cf. Figure 6) takes as input an instance C = (C1, . . . , Cu, C
′) ∈ Gu ×

{0, 1}∗ of the representation-invariant computational problem Π and outputs a candidate
solution S. It also maintains the encoding of the group using two lists LG ⊆ G and
LE ⊆ E. Our first instanceM0 perfectly simulates one adversary chosen from the family
of adversaries described above uniformly at random. The only difference between the real
and the simulated adversary is that the meta-reduction does not fix the functions F, f at
the beginning but instead defines them on the fly.

Initialization ofM0 At the beginning of the game,M0 chooses ~R = (R1,1, . . . , Rn,q)←$Gnq

at random (these are the values the function F will be lazily programmed to evaluate to),
sets I := (C1, . . . , Cu, R1,1, . . . , Rn,q), and runs Encode(I) to assign encodings to these
group elements. Furthermore, M0 initializes lists T , Γgood, Γbad, and D as empty lists.
Recall that R executes n sequential instances of the simulated adversary A and that de-
pending on the input and the query/answer pairs to R.H, the successive execution might
be identical to a certain point. The list T will be used to store the inputs and query answer
pairs of each adversary to ensure consistency of F across adversary instances. Note further
that the simulated adversary tosses a biased coin and decides whether it forges a signature
or not. The lists Γgood and Γbad are used to store these decisions whether for a given Z, the
simulated adversary AF,f will forge a signature or not. Again, they are used to ensure con-
sistency of f across adversary instances. Accordingly Γgood contains exactly those elements
for whichM0 knows the discrete logarithms and Γbad contains exactly those elements for
which it will never compute the discrete logarithms. Finally, D is used to store known
discrete logarithms. Then, M0 runs a black-box simulation of the reduction R on input
Ĉ := (LE1 , . . . ,LEu , C ′). Note that Ĉ is an encoded version of the challenge instance of Π
received byM0. That is, we have Ĉ = (φ(C1), . . . , φ(Cu), C ′). Oracle queries of R = RO,A
are answered exactly as described in Section 4.1.2, with the difference being the forger that
we describe in the following.

The forger A(φ(pk),m, ω) The simulation of the forger A is rather technical, because
M0 has to provide a consistent simulation of the n sequential executions of A. As already
discussed at the beginning of this chapter, M0 has to emulate an identical behavior of A
up to the forking point, or the reduction might loose its advantage. We split this algorithm
up into several sup-procedures (see Figure 6). The main sub-procedures are BeforeFork
and AfterFork, with the idea that A runs the code of BeforeFork if the forking point
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M0(C)

# Initialization

parse C as (C1, . . . , Cu, C
′)

LG := ∅
LE := ∅
~R = (R1,1, . . . , Rn,q)←$Gnq

I := (C1, . . . , Cu, R1,1, . . . , Rn,q)

Encode(I)

T := ∅
Γgood := ∅
Γbad := ∅
D := ∅
j := 0

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

A(φ(pk),m, ω)

j := j + 1

ipk := GetIdx(φ(pk))

τ := (φ(pk),m, ω)

σ := ⊥
i := 1

BeforeFork(m,LG
ipk

)

AfterFork(m,LG
ipk

)

append τ to T
return σ

BeforeFork(m, pk)

k := EvalF(τ)

while k 6= ⊥ do

ci := R.H(Rk,m)

append (k, ci) to τ

k′ := EvalF(τ)

if σ = ⊥
Zi := Rkpk

ci

Encode(Zi)

if k′ = ⊥
Fork(Zi, k, ci)

k := k′

else if φ(Zi) ∈ Γgood

σ := Forge(Rk, Zi)

i := i+ 1

AfterFork(m, pk)

while i ≤ q do

ci := R.H(φ(Rj,i),m)

append ((j, i), ci) to τ

if σ = ⊥
Zi := Rj,ipk

ci

Encode(Zi)

if φ(Zi) 6∈ Γgood ∪ Γbad

Decide(Zi, (j, i), ci)

if φ(Zi) ∈ Γgood

σ := Forge(Rj,i, Zi)

i := i+ 1

EvalF(τ)

foreach τ ′ in T do

if τ ≺ τ ′

(k, c) := τ ′|τ |+1

return k

return ⊥

Fork(Z, k, c)

if φ(Z) 6∈ Γgood ∪ Γbad

Decide(Z, k, c)

if φ(Z) ∈ Γgood

σ := Forge(Rk, Z)

Forge(R,Z)

foreach (Z ′, y′) in D do

if Z ′ = Z

return (φ(R), y′)

Decide(Z, k, c)

δz ←$ Berµ
if δz = 0

Γbad = Γbad ∪ {φ(Z)}
else

Γgood = Γgood ∪ {φ(Z)}
y := DLog(Z, k, c)

append (Z, y) to D

DLog(Z, k, c)

foreach y in Zp do

if gy = Z

return y

Figure 6: Meta-ReductionM0.
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has not been reached yet and the simulation must be consistent with a previous execution.
The second procedure, AfterFork describes howM0 simulates A after the forking point.

Now we proceed with the technical description of the main procedure of A and explain
the sub-procedures in the following. When R outputs (φ(pk),m, ω) to invoke an instance
of AF,f , thenM0’s simulation of AF,f initializes the list τ with its input (φ(pk),m, ω) and
the forgery σ with ⊥. These inputs are part of the function F and we need to store them
in oder to ensure consistency with previous adversary instances.

The forger’s first stage BeforeFork(pk,m): In this stage, the forger first tries
to evaluate the function F on its input using EvalF. If no previous instance with the same
input exists, the instance has already forked and BeforeFork immediately returns. If the
instance has not yet forked from all other instances, i.e., if there exists a previous instance
with the same input, it receives back the index k of the R to which F evaluates. In this case
it proceeds to ask query ci = R.H(φ(Rk),m) and appends (k, ci) to τ . If it has not already
forged a signature it then computes Zi := Rkpk

ci . If the forking point has been reached,
the adversary now forks from the previous instances as described in Fork. Otherwise, if
Zi ∈ Γgood, then AF,f forges a signature by calling Forge(Rk, Zi). The algorithm will
repeat the described process until the forking point is reached.

The forger’s second stage AfterFork(pk,m): After the current instance has
forked from all previous instances it proceeds as follows. Until exactly q random oracle
queries have been asked, AF,f queries ci := R.H(φ(Rj,i),m) and appends ((j, i), ci) to τ . If
the adversary has not already forged a signature, it continues to compute Zi := Rj,ipk

ci .
If φ(Zi) is neither in Γgood nor in Γbad, the adversary decides in which set to put it by
invoking Decide. If afterwards φ(Zi) is in Γgood, a signature is forged. The algorithm
continues in this fashion until exactly q random oracle queries have been asked.

Handling the forking point Fork(Z, k, c): When the simulation of AF,f reaches
the forking point, it checks whether φ(Z) is contained neither in Γgood nor in Γbad and if
this is the case, the simulation decides in which set to put it by invoking Decide. If φ(Z) is
contained in Γgood, i.e. ifM already knows the discrete logarithm, the simulation produces
a forgery.

Deciding whether to forge Decide(Z, k, c): To decide whether Z belongs in Γgood
or Γbad, the simulation tosses a biased coin δz←$ Berµ. If δz = 0 then Z is added to Γbad.
If δz = 1 then Z is added to Γgood, its discrete logarithm y is computed using DLog and
(Z, y) is appended to D.

Computing the discrete logarithm DLog(Z, k, c): Computation of the discrete
logarithm is performed by exhaustively searching for a y ∈ Zp satisfying gy = Z.
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Producing a forgery Forge(R,Z): Actually producing a forgery is trivial, because
forgeries will only be produced for Z ∈ Γgood and for each such Z, D already contains the
discrete logarithm. Accordingly, a forgery is produced by finding the entry (Z ′, y′) ∈ D
such that Z ′ = Z and returning (R, y′)

Finalization of M0 Eventually, R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S
′) ∈ Ĝw ×

{0, 1}∗. Then M0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of
group elements (LGi1 , . . . ,L

G
iw

) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,
LGiw , S

′).

Analysis of M0 Note thatM0 provides a perfect simulation of the oracle O and it also
mimics the inefficient attacker from Section 5.1 perfectly, the only difference being that F
is chosen lazily. In particular, (R, y′) is a valid forgery for message m and thus, RO,AF,f
outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to Ĉ with probability Pr[X0 ] = εR. Since Π is
assumed to be representation-invariant, S := (S1, . . . , Sw, S

′) is therefore a valid solution
to C, where Ŝi = φ(Si) for i ∈ [w]. Thus M0 outputs a valid solution S to C with
probability εR.

Game 1. In this game we introduce an implementation M1 which extends M0 with
bookkeeping, exactly as in Game 1 from the proof of Theorem 12. See Figure 7. Briefly
summarized, we introduce an additional list LV ⊆ Zu+nq

p to record the sequence of oper-
ations performed by A. Let ηi denote the i-th canonical unit vector in Zu+nq

p . Then this
list is initialized as LVi = ηi for i ∈ [u + nq]. Whenever R asks to perform a computation
(LEi ,LEj , ◦), thenM1 proceeds as before, but additionally appends a := LVi +LVj ∈ Zu+nq

p

(if ◦ = ·) or LVi − LVj ∈ Zu+nq
p (if ◦ = ÷) to LV .

Furthermore, in order to keep list LV consistent with LG (exactly as in in the proof of
Theorem 12), we replace the generic group oracle O ofM0 with the following procedure.

Generic group oracle O(e, e′, ◦) Given a query (e, e′, ◦) ∈ E ×E ×{·,÷}, the oracle O
determines the smallest indices i and j such that e = ei and e′ = ej by calling GetIdx. It
computes a := LVi � LVj ∈ Zu+nq

p , where � := + if ◦ = · and � := − if ◦ = ÷, and appends
a to LV . Finally it returns Encode(LGi ◦ LGj ).

Recall that the initial content I of LG is I = (C1, . . . , Cu, R1,1, . . . , Rn,q), and that R
performs only group operations on I. Now, by construction of M1, it holds that LGi =
Eval(I,LVi ) for all i ∈

[∣∣LG∣∣]. Thus, at any point in time during the execution of R,
the entire list LG of group elements can be recomputed from LV and I by setting LGi :=
Eval(I,LVi ) for i ∈

[∣∣LV ∣∣].
Again this change is made to keep list LV consistent with LG, i.e., to ensure that

LGi = Eval(I,LVi ) for all i ∈
[∣∣LG∣∣], where I := (C1, . . . , Cu, R1,1, . . . , Rn,q). Clearly R is
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M1(C)

# Initialize

parse C as (C1, . . . , Cu, C
′)

LG := ∅
LE := ∅
LV := ∅
~R = (R1,1, . . . , Rn,q)←$Gq·n

I := (C1, . . . , Cu, R1,1, . . . , Rn,q)

Encode(I)

LVi := ηi, ∀i ∈ [u+ nq].

T := ∅
Γgood := ∅
Γbad := ∅
D := ∅
j := 0

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

O(e, e′, ◦)

(e, e′, ◦) ∈ E × E × {·,÷}
(i, j) := GetIdx(e, e′)

a := LVi � LVj ∈ Zu+qp

append a to LV

return Encode(LG
i ◦ LG

j )

Figure 7: ExtendingM0 with additional bookkeeping yieldsM1. The elements highlighted
in gray show the difference toM0. All procedures not shown are not changed.

completely oblivious to this change, thus

Pr[X1 ] = Pr[X0 ]

Game 2. In this game we introduce an implementation M2 (cf. Figure 8) which works
exactly as M1, except that it aborts when it would have to compute a new forgery at a
forking point. That is,M2 aborts when it would have to forge in the case where it queried
an Ri already asked by a previous instance of the adversary but received a different answer
ci. This step is important, because in the final implementationM3 we will not be able to
simulate valid signatures if this happens.

Fork(Z, k, c): If Fork is called on input φ(Z), such that φ(Z) is neither in Γgood nor in
Γbad, and the Decide places it in Γgood, thenM2 aborts.
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Fork(Z, k, c)

if φ(Z) 6∈ Γgood ∪ Γbad

Decide(Z, k, c)

if φ(Z) ∈ Γgood

Abort simulation

if φ(Z) ∈ Γgood

σ := Forge(Rk, Z)

Figure 8: The difference betweenM1 andM2.

Analysis ofM2. We claim thatR is not able to distinguishM2 fromM1 with probability
greater than (n ln

(
(1− εA)−1

)
)/q(1 − p−1/4). To show this, observe that Game 2 and

Game 1 are perfectly indistinguishable, as long as M2 does not abort in Fork. We use
Lemma 4 of [27] to bound the probability of an abort.

Lemma 18 (Based on Lemma 4 of [27]). The probability that M2 aborts in Fork is at
most

n ln
(
(1− εA)−1

)
q(1− p−1/4)

We thus have

Pr[X2 ] ≥ Pr[X1 ]− Pr[F1 ] ≥ Pr[X1 ]−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

DLog(Z, (j, i), c)

y←$Zp
R∗j,i := gy · pk−c

(C1, ..., Cu, R
′
1,1, ..., R

′
q,n) := (LG

1 , . . . ,LG
u+qn)

I∗ := (C1, . . . , Cu, R
′
1,1, . . . , R

′
j,i−1, R

∗
j,i, R

′
j,i+1, . . . , R

′
n,q

for k = 1, . . . ,
∣∣LG∣∣ do

LG
k := Eval(I∗,LVk )

return y

Figure 9: The difference betweenM2 andM3.

Game 3. Note that the meta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedure A needed to compute a discrete log-
arithm by exhaustive search. In this final game, we construct an efficient meta-reduction
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M3 that it identical toM2, with the difference that it simulates A efficiently. M3 proceeds
exactly likeM2, except for the following (cf. Figure 9).

DLog(Z, k, c): The DLog procedure chooses y←$Zp uniformly random and computes

R∗j,i := gy · pk−c (6)

Then it reads the first u+ qn entries from LG as

(C1, ..., Cu, R
′
1,1, ..., R

′
q,n) := (LG1 , . . . ,LGu+qn),

replaces Rj,i with R∗j,i by setting

I∗ := (C1, . . . , Cu, R
′
1,1, . . . , R

′
j,i−1, R

∗
i,j , R

′
j,i+1, . . . , R

′
q,n),

and finally re-computes the entire list LG from LV by setting LGa := Eval(I∗,LVa ) for
all a ∈

[∣∣LV ∣∣]. Note that this implicitly defines Z as Z := gy, due to Equation 6.

Note that meta-reductionM3 can be implemented efficiently, as it does not have to compute
discrete logarithms. It remains to show that it is indistinguishable fromM2 for R with all
but negligible probablility.

Analysis of M3. First note that each σ with σ 6= ⊥ output by A is a valid signature.
Moreover, we claim that R is not able to distinguishM3 fromM2, except for a negligibly
small probability. To this end, we apply a lemma which is very similar to Lemma 15 from
the proof of Theorem 12.

Lemma 19. Let F2 denote the event that R computes vectors LVa ,LVb ∈ LV such that

Eval(I,LVa ) = Eval(I,LVb ) ∧ Eval(I∗,LVa ) 6= Eval(I∗,LVb )

or

Eval(I,LVa ) 6= Eval(I,LVb ) ∧ Eval(I∗,LVa ) = Eval(I∗,LVb ).

Then
Pr[F2 ] ≤ 2n(u+ nq + tR)

p
.

Before we sketch the proof of this lemma (which is very similar to the proof of Lemma 15),
let us finish the proof of Theorem 12. Note that M3 is perfectly indistinguishable from
M2, unless Event F occurs. Applying the above lemma, we thus obtain

Pr[X3 ] ≥ Pr[X2 ]− Pr[F2 ] ≥ Pr[X2 ]− 2n(u+ nq + tR)

p
.
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Summing up, we thus obtain that

ε ≥ εR −
2n(u+ nq + tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

Proof Sketch for Lemma 19. The proof of Lemma 19 is almost identical to the proof of
Lemma 15. The main difference is that we need to simulate many (up to n) signatures
in the multi-instance case. This works well, with the same arguments as in the proof of
Lemma 15, as long as we make sure that we do not need to re-assign the same encoding
twice. (In particular because this would invalidate a signature previously computed by A,
and thus be easily noticeable for R.)

By construction ofM3, this can happen only if Fork receives as input a group element
Z such that φ(Z) ∈ Γgood. Note that this is exactly when event F1 occurs, in which case
the game is aborted anyway, due to the changes introduced in Game 2.

Suppose that event F1 does not occur. In this case we re-assign each encoding at most
once, by replacing in list LG a uniformly distributed group element Ri,j with another uni-
form group element R∗i,j , and re-computing all group elements contained in LG. Following
Lemma 15, each replacement can be noticed by R with probability at most

2(u+ nq + tR)

p
,

where the term u+nq (instead of u+q as before) is due to the fact that in the multi-instance
case LG is now initialized with u+ nq group elements. Since in total at most n encodings
are re-assigned throughout the game, a union bound yields

Pr[F2 ] ≤ 2n(u+ nq + tR)

p
.

6 On the Existence of Generic Reductions in the NPROM

In this section we apply our meta-reduction technique to a question orthogonal to the search
for tight security proofs in the random oracle model. Namely, we investigate the possibility
of finding any generic reduction R (not just tight ones) that reduces a representation-
invariant computational problem Π to breaking the UUF-NMA-security of the Schnorr
signature scheme in the, weaker, Non-Programmable Random Oracle Model. As in the
sections before, our results here are negative. We prove that it is impossible to find a
generic reduction from any non-interactive representation-invariant computational problem
in the NPROM.
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6.1 An Inefficient adversary A

We once again describe an inefficient adversary A that breaks UUF-NMA-security of
Schnorr signatures. The adversary A for this case is very simple.

1. The input of A is a Schnorr public key pk ∈ G, a message m ∈ {0, 1}k, and random
coins ω ∈ {0, 1}κ.

2. The forger A chooses a uniformly random R←$G, queries the random oracle to
computes c := H(R,m) and computes Z := pkcR.

3. Finally, the forger A uses exhaustive search to find y ∈ Zp such that Z = gy and
outputs (R, y).

Note that (R, y) is by definition of the Schnorr signature scheme always a valid signature
for messagem under public key pk. Thus, the forger described above breaks the UUF-NMA-
security of Schnorr signatures with probability 1.

6.2 Main Result for Reductions in the NPROM

We will prove the following Theorem.

Theorem 20. Let Π = (GΠ,VΠ) be a representation-invariant non-interactive computa-
tional problem. Suppose there exists a generic reduction R that (εR, tR)-solves Π, having
n-time black-box access to an attacker A that (εA, tA, q)-breaks the UUF-NMA-security of
Schnorr signatures in the non-programmable random oracle model with success probabil-
ity εA = 1 in time tA ≈ 1. Then there exists an algorithm M that (ε, t)-solves Π with
ε ≥ εR(1− 2n(u+ tR)/p) and t ≈ tR.
Remark 21. The values n, u, and tR are polynomially bounded while p is exponential.
Therefore, the theorem shows that the existence of a reduction R implies the existence
of a meta-reduction M, which solves Π with essentially the same success probability and
running time. Thus, an efficient (and even non-tight) reduction R can only exist if there
exists an efficient algorithm for Π, which means that Π cannot be hard.

Proof. Assume that there exists a generic reduction R := RO,A that (εR, trdv)-solves Π
when given access to a generic group oracle O, and a forger A(φ(pk),m, ω), where the
inputs to the forger are chosen by R. Furthermore, the reduction R can observe all random
oracle queries made by A, however it cannot influence the responses. We show how to build
a meta-reductionM that has black-box access to R and solves the representation-invariant
problem Π directly.

Note, that we may assume without loss of generality that R will never invoke A on
the same input twice. This is because R cannot influence the random oracle responses and
therefore the “forking” point for two instantiations must already be in the initial inputs.
This makes things much simpler, as we do not have to ensure consistency between different
instances of the adversary.
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M(C)

# Initialization

parse C as (C1, . . . , Cu, C
′)

LG := ∅
LE := ∅
Encode(C1, . . . , Cu)

Ĉ := (LE1 , . . . ,LEu , C ′)
Ŝ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw, S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LG
i1 , . . . ,L

G
iw , S

′)

A(φ(pk),m, ω)

e←$E

if e ∈ LE

Abort simulation

c := R.H(e,m)

y←$Zp
i := GetIdx(φ(pk))

R := gy · (LG
i )−c

if R ∈ LG

Abort simulation

append e to LE

append R to LG

return (e, y)

Figure 10: Implementation ofM.

Meta-reductionM. At the beginning of the game,M receives a challenge C = (C1, . . . ,
Cu, C

′). It initializes the lists LG := ∅ and LE := ∅ and determines encodings by running
(φ(C1), . . . , φ(Cu)) = Encode(C1, . . . , Cu). Then it invokes RA,O(φ(C1), . . . , φ(Cu), C ′).
The oracle O is simulated exactly as in previous proofs.

Whenever R outputs (φ(pk),m, ω) to invoke an instance of A,M proceeds as follows.
It chooses a random encoding e←$E, and raises event F1 and aborts if e ∈ LE . Then
it queries the random oracle provided by R to compute c := H.R(e,m), chooses y←$Zp,
calls i := GetIdx(φ(pk)), and computes R := gy · (LGi )−c. It raises event F2 and aborts if
R ∈ LG. FinallyM appends e to LE and R to LG and outputs (e, y) as a forgery.

Eventually, the algorithm R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S
′) ∈ Ew × {0, 1}∗.

The algorithmM runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of group
elements (LGi1 , . . . ,L

G
iw

) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L
G
iw
, S′).

Analysis of M. Note that M provides a perfect simulation of the oracle O. Further,
it mimics the attacker from Section 6.1 perfectly unless it aborts while attemptimg to
simulate a forger. In particular, (R, y) is always a valid forgery for message m and thus, R
outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S

′) to Ĉ with probability εR. Since Π is assumed to be
representation-invariant, S := (S1, . . . , Sw, S

′) with Ŝi = φ(Si) for i ∈ [w] is therefore a valid
solution to C. Therefore, the success probability ofM is at least ε ≥ εR · (1−Pr[F1 ∪ F2 ]).

Since the n encodings chosen while simulating the forger A are chosen uniformly at
random, and we have

∣∣LE∣∣ ≤ u + tR at all times, we can bound the probability that F1

occurs using a union bound as Pr[F1 ] ≤ n · (u+ tR)/p. Similarly, since y←$Zp is uniformly
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random and therefore R is a uniformly random group element in each simulated forger,
we have Pr[F2 ] ≤ n · (u + tR)/p. Therefore, using another union bound, we get that
Pr[F1 ∪ F2 ] ≤ Pr[F1 ] + Pr[F2 ] ≤ 2n(u+ tR)/p.

Thus, in conclusion we obtain that

ε ≥ εR
(

1− 2n(u+ tR)

p

)
as claimed.

Remark 22. It is interesting to note, that the above result does not carry over to the
standard model. The reason is that – as mentioned before – the adversary is not necessarily
generic. In the standard model, however, the hash function must be evaluated locally by
both the reduction and the adversary. Since they are using different encodings of the group
elements, a signature that appears valid for the adversary is invalid from the point of view
of the reduction with overwhelming probability.

One might attempt to rectify this by specifying different hash functions to adversary
and reduction, i.e., specifying H(φ(·)) as the hash function for the adversary. However, this
fails for the simple reason that φ(·) is not necessarily efficiently computable.
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