
Light-weight primitive, feather-weight security?
A cryptanalytic knock-out.

(Preliminary results)

V. Banciu
University of Bristol, Dept. of

Computer Science,
Merchant Venturers Building

Woodland Road
Bristol, United Kingdom

Valentina.Banciu@bristol.ac.uk

S. Hoerder
University of Bristol, Dept. of

Computer Science,
Merchant Venturers Building

Woodland Road
Bristol, United Kingdom

hoerder@cs.bris.ac.uk

D. Page
University of Bristol, Dept. of

Computer Science,
Merchant Venturers Building

Woodland Road
Bristol, United Kingdom
page@cs.bris.ac.uk

ABSTRACT
In [12], the authors present a new light-weight cryptographic
primitive which supports an associated RFID-based authen-
tication protocol. The primitive has some structural simi-
larities to AES, but is presented as a keyed one-way func-
tion using a 128-bit key. Although a security analysis is
included, this is at a high-level only. To provide a more con-
crete idea as to the security of this primitive, we therefore
make three contributions: first, a structural attack requir-
ing Op25q plaintext/ciphertext pairs (and hence effort on-
line) plus Op221q effort offline, second an algebraic attack
on round reduced versions of the primitive which requires
only a single plaintext/ciphertext pair, and, third debunk
the claimed attack of [36] on the same primitive as wishful
thinking. Our structural attack completely breaks the prim-
itive and the algebraic attack highlights a crucial weakness
of the primitive: we conclude that although one can consider
countermeasures against these specific attacks, the design in
general is questionable and should therefore be avoided.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code breaking; C.3 [Special-
Purpose And Application-Based Systems]: Real-time
and embedded systems; D.4.6 [Security and Protection]:
Authentication

Keywords
Light-weight block cipher, structural attack, algebraic at-
tack, RFID authentication

1. INTRODUCTION
The ubiquity of modern information systems highlights the
importance of all enabling technologies, and their ability to
keep pace with the demands of associated applications. An

archetypal example is that of Radio Frequency IDentifica-
tion (RFID) tags, which interact with a reader (or termi-
nal); such combinations form the basis for applications such
as supply chain management and access control, where se-
curity and privacy [19] form central requirements. Although
traditional cryptographic technologies offer many solutions,
application-specific development and analysis of appropriate
security models (see, e.g., [39]) is often still necessary.

This challenge is non-trivial, but not unique to RFID. Other
exacerbating factors can be identified however: among the
most important are the strict constraints on computational
and storage capability placed on RFID tags, which impact
greatly on the underlying protocols and primitives. Such
constraints are driven by manufacturing cost in part, but
also by a requirement for energy efficiency [21]. For exam-
ple, active tags may include an on-board but low-capacity
battery, while passive tags are even more constrained as a re-
sult of being powered remotely via electrical current induced
in the antenna (i.e., by the reader). Since obvious candidates
such as AES may not be suitable therefore, the research field
of light-weight cryptography1 has emerged. Related work
broadly encompasses two strategies, namely

1. retro-fitting an existing primitive or protocol to meet
constraints, e.g., through efficient implementation or
parameter selection, and

2. specific design of new primitives and protocols with
the goal of light-weightness in mind, e.g., to make best
use of the platform characteristics.

Among related work, pertinent examples include the (stan-
dardised) block cipher PRESENT [5] and the hash function
PHOTON [16]. Despite an increasing volume of such de-
signs, precise definition of what the term light-weight means
is more difficult than one might imagine; one might sug-
gest low-footprint for instance, but Knezevic et al. [23] ex-
plore low-latency as a possible alternative. Either way, it
should be clear that security light-weightness, i.e., insecurity,
is highly unattractive: arguments such as [25, 34] posit that
security should instead represent a first-class design goal.

1For an excellent overview, see [32, Chapters 1 and 2].



Finding appropriate trade-offs which meet this requirement
while simultaneously catering for any resource constraints is
difficult however. In common with other examples, this is
highlighted by the EC-RAC family [27, 28, 26] of ECC-based
protocols, each of which was broken [6, 38, 14].

While each attack on EC-RAC can be broadly characterised
as relating to the security model and/or protocol, one might
also ask a question of any given underlying primitive: how
light-weight is too light-weight? Along such lines, this pa-
per examines an RFID-based authentication protocol due
to Dusart and Traoré [12]. Said protocol makes use of a
light-weight keyed one-way function; following [12], we use

C Ð hKpMq

to denote this “Dusart-Traoré primitive” where a key K
is used to process some message M . With respect to the
Dusart-Traoré primitive, we answer the question above via
contributions in Section 3. More specifically, we first demon-
strate an efficient structural attack in Section 3.2, then, in
Section 3.3, an algebraic attack that gives a far more pre-
cise security estimate regarding algebraic attacks than the
claims in [12]. In Section 3.4.3 we debunk the claim made in
[36] of having broken the Dusart-Traoré primitive; in fact
we demonstrate that the attack in [36] is not an attack
at all. In addition to this analysis, we try to answer the
question whether components of the Dusart-Traoré primi-
tive can be salvaged for the design of future light-weight
primitives by suggesting potential countermeasures in Sec-
tion 3.4.4 and conducting a comparative efficiency estima-
tion in Section 3.4.5.

2. BACKGROUND AND NOTATION
This Section describes the authentication protocol and sup-
porting primitive presented in [12, Sections 4 and 5]; for
clarity we adopt the same notation, with specific additions
introduced where required.

The protocol and primitive. The protocol assumes two
pre-shared secrets ID and K are held by the reader and
tag. The reader sends the a challenge c to the tag, which
computes and returns the pair

r ID ` hKpcq, hIDpcq s . (1)

Since the reader can (re)compute hKpcq and hIDpcq, it can
check whether the tag produced the correct result for c and
thus infer knowledge of ID and K.

A central component is clearly h, the Dusart-Traoré prim-
itive. The design goals [12, Section 5] (specifically that
it is one-way, and produces random output) mean h can
be described as a keyed one-way function. Figure 1 illus-
trates the internal structure, which is essentially a 4-round
substitution-permutation network, with no key scheduling,
that operates on a 128-bit state (which, in common with
AES for instance, is organised as a 16-element array of 8-bit
bytes). Although the AES S-box is used for the substitution
layer, a bespoke function F realises the permutation layer:
within the j-th round, this is defined as

F jpM jq � fpM j
0,M

j

0�2j�1 mod 16
q ‖

fpM j
1,M

j

1�2j�1 mod 16
q ‖

. . . ‖
fpM j

15,M
j

15�2j�1 mod 16
q

(2)

where ‖ denotes concatenation, M j
i denotes the i-th state

element within the j-th round, and

fpx, yq �
��
x` pp255� yq ! 1q

�
�

�
pp255� xq ` py " 1qq mod 16

�
� 16

�
mod 256

.

(3)

Note that we later use M j
i ras to denote the a-th bit of

said state element, extending the notation to M j
i ra . . . bs so

ranges of bits (between the a-th and b-th inclusive) can be
specified.

Security model. Although [12, Section 2] lists some high-
level assumptions, a concrete security model is lacking.

Peculiarly, although the assumptions stateK must be shared
between tag and reader, clearly ID must also remain secret.
As such, the reader is implicitly assumed to know which
tag it communicates with. However, the application-specific
utility of the protocol for authentication (and indeed the
protocol itself) are outside our scope.

That said, a key recovery attack on h would clearly allow an
attacker to clone a tag. After collecting a (set of) authenti-
cation tuple(s), i.e., examples of Equation 1 for known (and
controlled) c, the attacker proceeds as follows: first it recov-
ers ID by targeting the hIDpcq component, then recovers
K by targeting the hKpcq component (after removing each
XOR with the now known ID). Once ID and K are known,
the attacker can fool the reader into authenticating some-
thing other than the associated tag. This strategy forms the
basis for our attacks within Section 3.

Provided security analysis. Security analysis of the prim-
itive [12, Section 7.3] offers no exact security estimates, ex-
cept for brute-force attacks. Instead, the analysis states

“Since each round of the algorithm operations are
performed modulo 16 or modulo 256 and the re-
sults from these transactions are processed by
substitution tables, the [algorithm] is very dif-
ficult to analyze algebraically.”

Any resilience against differential [4] and linear [29] crypt-
analysis is limited to discussion of the S-box, and culminates
in the statement:

“Our function is well resistant to this [differential]
attack. [...] We know that [...] the equation has



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 1

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 2

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 3

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 4

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

XOR

s-box

f function

Figure 1: Structure of the Dusart-Traoré primitive (some input arrows to the f function are omitted for
clarity).

a number of solutions close to 128 which makes
expensive the linear attack.”

Additional security considerations [12, Sections 7.1 and 7.2]
are presented in the paper, focusing in particular on the au-
thentication protocol; examples include man-in-the-middle
and side-channel style approaches.

3. SECURITY ANALYSIS
Within this Section we split our security analysis of the
Dusart-Traoré primitive into four parts:

 Section 3.1 demonstrates what the primitive is not,
namely a one-way function, by demonstrating how to
invert it.

 In Section 3.2 we demonstrate an efficient, structural
chosen plaintext attack that provides an asymptotic
upper bound on the security of the primitive.

 In Section 3.3 we provide detailed security analysis
of the cipher against algebraic attacks which requires
only a single observed plaintext/ciphertext pair, and
can therefore be executable by a passive adversary.

 We conclude the Section by considering what the Dusart-
Traoré primitive actually is (since it cannot be a one-
way function), debunking the claimed attack of [36],
and assessing whether further study of some compo-
nents may lead to secure light-weight primitives in the
future.

3.1 Inversion of F j

Since the Dusart-Traoré primitive is supposed to be a one-
way function, no inversion algorithm is given in [12]. How-
ever, superficial inspection of the internal structure suggests

it may be invertible if the key K is known: of the three
components (key addition via XOR, substitution layer, and
permutation layer F j), only the bespoke F j lacks a known
inversion algorithm. Put another way, if we can show F j

is invertible, an inversion algorithm for the Dusart-Traoré
primitive becomes trivial.

Inverting F j is essentially the same as inverting f , but one
has to account for the permutation in round j. For j � 4,
i.e., the last round, inversion is particularly simple since the
permutation pairs two symmetric input bytes used via f ,
i.e.,
�
fpM4

0 ,M
4
8 q, fpM

4
8 ,M

4
0 q

�
,
�
fpM4

1 ,M
4
9 q, fpM

4
9 ,M

4
1 q

�
, . . .

This means instead of considering

F�1 : Z816

2 Ñ Z816

2 ,

we only have to consider

f�1 : Z8
2 � Z8

2 Ñ Z8
2 � Z8

2.

Both F�1 and f�1 can be computed using the same Boolean
equations, but the latter requires far less of them. In the fol-
lowing, we explain how this can be achieved, focusing wlog.
on the example of f�1pM̃4

0 , M̃
4
8 q which yields M4

0 and M4
8

as output given the pair
�
M̃4

0 � fpM4
0 ,M

4
8 q, M̃

4
8 � fpM4

8 ,M
4
0 q

�

as input.

In [12, Section 6.2], the authors explain that

p255� xq � p255` xq
x mod 16 � xd 15

x � 16 � x ! 4

where !, d and ` denote logical left-shift, AND and XOR
respectively, and that for addition modulo 256 any overflow



can be ignored. Using these equivalences, Equation 3 can
be rewritten as

M̃4
0 Ð fpM4

0 ,M
4
8 q

#0 M̃4
0 r0s Ð M4

0 r0s � 0

#1 M̃4
0 r1s Ð M4

0 r1s ` 1`M4
8 r0s � 0

#2 M̃4
0 r2s Ð M4

0 r2s ` 1`M4
8 r1s � 0

#3 M̃4
0 r3s Ð M4

0 r3s ` 1`M4
8 r2s � 0

#4 M̃4
0 r4s Ð M4

0 r4s ` 1`M4
8 r3s � 1`M4

0 r0s `M4
8 r1s

#5 M̃4
0 r5s ø M4

0 r5s ` 1`M4
8 r4s � 1`M4

0 r1s `M4
8 r2s

#6 M̃4
0 r6s ø M4

0 r6s ` 1`M4
8 r5s � 1`M4

0 r2s `M4
8 r3s

#7 M̃4
0 r7s ø M4

0 r7s ` 1`M4
8 r6s � 1`M4

0 r3s `M4
8 r4s

and

M̃4
8 Ð fpM4

8 ,M
4
0 q

#0 M̃4
8 r0s Ð M4

8 r0s � 0

#1 M̃4
8 r1s Ð M4

8 r1s ` 1`M4
0 r0s � 0

#2 M̃4
8 r2s Ð M4

8 r2s ` 1`M4
0 r1s � 0

#3 M̃4
8 r3s Ð M4

8 r3s ` 1`M4
0 r2s � 0

#4 M̃4
8 r4s Ð M4

8 r4s ` 1`M4
0 r3s � 1`M4

8 r0s `M4
0 r1s

#5 M̃4
8 r5s ø M4

8 r5s ` 1`M4
0 r4s � 1`M4

8 r1s `M4
0 r2s

#6 M̃4
8 r6s ø M4

8 r6s ` 1`M4
0 r5s � 1`M4

8 r2s `M4
0 r3s

#7 M̃4
8 r7s ø M4

8 r7s ` 1`M4
0 r6s � 1`M4

8 r3s `M4
0 r4s

The addition of zero in the lines #0 to #3 has no effect and
can be ignored entirely. The least-significant bits of M4

0 and
M4

8 , namely M4
0 r0s and M4

8 r0s, are produced directly from
the equations in line #0; this allows successive recovery of
M4

t0,8ur1 . . . 3s by solving equations in lines #1 to #3. In
lines #4 to #7 we must accommodate the effect of addition,
doing so by using equations that describe a full-adder:

s Ð a` b` cin
cout Ð pad bq ` pcin d pa` bqq

In line #4 we have no carry-in yet, i.e. cinr4s � 0 but
all other operands are known. Thus we can easily obtain
M4

t0,8ur4s, and compute coutr4s. For the lines #5 to #7 we
proceed accordingly but have to take the carry-out of the
preceding line into account, e.g., cinr5s � coutr4s: this is
highlighted by theø notation. The final carry-out coutr7s
can be discarded, since the addition is modulo 256.

Crucially, notice that the process of inverting f�1 is both
deterministic and efficient.

3.2 A structural attack
The key recovery attack demonstrated in this Section is sim-
ilar to (but simpler than) structural attacks on AES (see,
e.g., [10, Chapter 10.2] for a discussion of the latter). Usu-
ally, block ciphers use a relatively large number of rounds
to defeat such structural attacks; AES-128 and PRESENT
have 10 and 31 rounds respectively for instance, whereas 4
rounds as used by the Dusart-Traoré primitive signal poten-
tial for this approach to be successful. Indeed, if one looks
at the differential trail shown in Figure 2 (noting that all
input bytes Mi except M8 are constant) it becomes obvious
that, based on Equation 2 we can exploit the symmetry of
fpM4

0 ,M
4
8 q and fpM4

8 ,M
4
0 q where M4

0 is constant whereas
M4

8 changes for each M8.

As such, the basic idea is to first generate a sufficient amount
of pM,Cq pairs that differ in M8 only. This requires the
attacker to send a (set of) challenges c � M to the reader
and record each response hKpMq � C. Then, for all possible
key byte candidates rK0,K8s, we test whether inversion of

Algorithm 1: The structural attack.

Input: A bound n on the number of plaintext/ciphertext
pairs used.

Output: A list of candidates for each key byte.
Data: An array C to temporarily store n ciphertexts, an

array M4
i to temporarily store n bytes Mi.

// Iterate through all key byte tuples

1 for i � 0 upto 7 do
// Online:

2 for j � 0 upto n� 1 do
// Choose suitable M, store corresponding C

3 M0,...,15 Ð t0, . . . , 0u
4 Mi�8 Ð j
5 Crjs Ð challengeDevicepMq

6 end

// Offline: Determine candidates for rKi,Ki�8s

7 for kA � 0 upto 255 do
8 for kB � 0 upto 255 do
9 for j � 0 upto n do

10 C Ð Crjs

11 M̃4
i Ð S�1pCi ` kAq

12 M̃4
i�8 Ð S�1pCi�8 ` kBq

13
�
M4

i ,M
4
i�8

�
Ð f�1pM̃4

i , M̃
4
i�8q

14 M4
i rjs ÐM4

i

15 end

// Do all Mi have the same value?

16 isCandidateÐ true
17 for j � 1 upto n� 1 do
18 if M4

i rj � 1s � M4
i rjs then

19 isCandidateÐ false
20 end

21 end
22 if isCandidate then

// We found candidates for rKi,Ki�8s:

23 printCandidatespi, rkA, kBsq

24 end

25 end

26 end

27 end

the final round, i.e. computing

M̃4
0 Ð S�1pC0 `K0q

M̃4
8 Ð S�1pC8 `K8q�

M4
0 ,M

4
8

�
Ð f�1pM̃4

0 , M̃
4
8 q

yields
�
M4

0 ,M
4
8

�
such that M4

0 is constant for all pM,Cq
pairs. This process can then be repeated for differentials
in M9, . . . ,M15 to recover the remaining key bytes. Algo-
rithm 1 outlines the concrete attack; note that S�1 denotes
inversion of the AES S-box while f�1 represents application
of the aforementioned approach to inversion of f .

The run-time complexity of the algorithm is determined by
the loops in line #1 (number of key bytes divided by two),
lines #7 and #8 (number of possible key byte values) and
line #9 (number of pM,Cq pairs being used). This gives an
overall run-time complexity of

Op23�8�8�log2pnqq � Op219�log2pnqq



M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 1

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 2

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 3

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

Round 4

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

XOR

s-box

f function

Figure 2: Exemplary differential propagation of the Dusart-Traoré primitive for a single differential occurring
in M8. Differentials are shown in red.

and memory complexity of Opnq.

n successful key recov-
eries

avg. remaining can-
didates per tuple

2 0 260.034
3 0 2.043
4 968 1.006
5 31 1.031
6 1 1.000

Table 1: Experimental results using 1000 randomly
sampled keys.

We implemented the attack2 and experimentally tested it
against 1000 randomly chosen keys: the results are shown
in Table 1. The second row shows the number of keys that
could be uniquely identified using at most n pM,Cq pairs
per key byte tuple. The last row shows the average number
of key candidate tuples rKi,Ki�8s remaining after using n
pM,Cq pairs. The mean of the minimum number of pairs re-
quired to successfully recover a secret key is n � 4.033: this
means an average run-time complexity of Op221q, requiring
and average 8�4.033 � 25 of chosen pM,Cq pairs. The results
also show that the dispersion around the mean value is very
small, with a standard deviation σ � 0.184. Furthermore,
the reduction of possible candidates for a tuple rKi,Ki�8s
happens rapidly; this means that even in cases where the
number of available pM,Cq pairs is insufficient to uniquely
identify the correct tuple, the complexity of an exhaustive
search through the remaining tuples is much improved.

We ran our experiment on a Intel Core i5-480M processor
with 6GB of RAM, which performed the entire experiment in
just over 700 seconds. Thus, a single key can comfortably be

2Code will be published online once the paper has been pub-
lished.

recovered in less than a second (without considering RFID
communication overhead).

3.3 An algebraic attack
Algebraic attacks have been applied in the context of stream
ciphers [7, 2] and block ciphers [9] alike. The idea is to ex-
press the underlying algorithm as a system of Boolean equa-
tions (involving the plaintext and ciphertext bits as known
inputs and the key bits as unkowns) which can then be solved
using automated tools. For bijective functions, and we have
already shown the Dusart-Traoré primitive to be bijective
in Section 3.1, a single observed pM,Cq pair is sufficient
to uniquely identify the secret key in an algebraic attack.
Ideally, a modern cipher will lead to a system of equations
which is as computationally hard to solve as performing a
brute-force search on the key space [35].

In order to evaluate the resistance of the Dusart-Traoré
primitive against algebraic attacks, we chose to use the Cryp-
toMiniSat2 [37] SAT solver, which is one of the best available
non-commercial solvers. Put simply, the underlying 3SAT
problem is NP-complete and thus has an exponential worst-
case run-time. CryptoMiniSat2 achieves a comparatively
good average run-time using a probabilistic Conflict-Driven
Clause-Learning (CDCL) approach. More precisely, as the
system of equations has a unique solution, i.e. is solvable,
only the run-time of CryptoMiniSat2 is probabilistic.

Intuitively, one has to wonder why anyone would want to
translate a problem that is, as per Section 3.2 efficiently
solvable into a NP-complete problem. Indeed, the authors of
[8] for example question whether any block cipher will ever
be broken using algebraic attacks and SAT solvers. From
our point of view, it is interesting to test the resilience of a
primitive against algebraic attacks for a range of reasons:



r
Input Resources

Solved
clauses variables time RAM

1 79279 15712 0.55 s 65.26 MB X
2 135430 23600 453.14 s 261.91 MB X
3 190988 31488 ¡ 1 d ¥ 4847.94 MB –
4 TODO TODO ¡ 1 d TODO –

Table 2: Results of our algebraic attack on round
reduced versions of the Dusart-Traoré primitive. r
denotes the number of rounds. For the aborted
attacks(r P 3, 4), CryptoMiniSat2 did not produce
RAM usage statistics so we used the VmPeak mea-
sure of linux’s /proc/PID/status instead.

 They require only a single observed pM,Cq pair and
are thus very powerful in cases where the secret key
gets updated after each invocation of the block cipher.

 They are stupid attacks in the sense that all the in-
tellectual challenge is hidden inside the SAT solver
whereas the attacker only has to the tedious but fairly
simple translation of the cipher into suitable Boolean
equations.

 In some cases an algebraic attack step using SAT solvers
is added to improve results obtained from side-channel
or fault injection attacks (e.g., [30, 33, 40, 18]). Thus,
it is important to know a primitive’s security margin
against algebraic attacks when estimating its resilience
against side-channel or fault-injection attacks.

For the algebraic attack we consider round-reduced variants
of the Dusart-Traoré primitive with 1, 2 or 3 rounds. In
order to obtain the input equations for CryptoMiniSat2, we
used the two step translation approach from [3]

polynomial
ó

linear system
ó

conjunctive normal form

which returns Conjunctive Normal Form (CNF) (see, e.g.,
[1]) equations with exactly 3 literals per clause as required
by 3SAT. (The CNF equations will be published online once
the paper has been published.) As the S-box is identical to
the AES S-box, in the first step we used the system of 23
quadratic equations from [9] to describe it. We used one of
the testvectors given by the authors of [12] as pM,Cq pair
and, due to submission deadlines, aborted CryptoMiniSat2
for run-times greater than one day. The experiment was
run single threaded on a server with an Intel Xeon E5620
processor and 49 GB memory. The results we obtained are
shown in Table 2. For 1 and 2 round versions, the algebraic
attack was successful and fast whereas for 3 and 4 rounds
the attack did not succeed within our imposed time limit of
1 day. This is due to a combination of the cipher’s diffu-
sion property which increases exponentially in the number
of rounds r, achieving full diffusion in the last round as well
as the exponential nature of the SAT problem.

In comparison, AES-128 achieves full diffusion, i.e. all key
bytes affect each byte of the round output, in only two

rounds and has far more rounds providing a far better secu-
rity margin. This indicates that side-channel and fault in-
jection attacks with an algebraic attack enhancement have a
comparatively large attack number of rounds that can be ex-
ploited. Still, our experiments show that the Dusart-Traoré
primitive is at least able to resist pure algebraic attacks.

3.4 Additional comment and analysis
3.4.1 Keyed hash function or block cipher?

In the conference presentation and in private communica-
tion, the authors of [12] describe h as a hash function while
the paper only refers to it as a one-way function; clearly,
some confusion about what h is supposed to be exists. Based
on the results of the preceding sections, we challenge the
claim that h is a keyed hash function and, as part of this
argument, the claim that h is a one-way function:

 A basic characteristic of any hash function is that it
compresses a message of arbitrary length into a fixed
length digest. In contrast, the Dusart-Traoré primitive
is specified as a mapping of fixed length inputs onto
fixed length outputs, namely

Z816

2 � Z816

2 Ñ Z816

2

It furthermore requires that one of the Z816

2 inputs has
high entropy as it is used as secret key.

 There is no analysis of pre-image or collision resistance,
nor of attack strategies such as length extension. More
specifically, a hash function should be one-way func-
tions, i.e., inverting it to compute a pre-image should
be infeasible. Given our results in Section 3.1, it is
clear that the Dusart-Traoré primitive can be inverted
once the secret key input is known; our results from
Section 3.2 and Section 3.3 also demonstrate that it is
practically feasible to recover secret keys. As a result,
the primitive can not be considered to be a one-way
function.

As a result of the above, we propose the primitive is consid-
ered a (broken) block cipher. Given this classification, note
the effectiveness of our two attacks prompted us not to fur-
ther investigate potential weakness of the primitive in block
cipher based MAC constructions such as CBC-MAC (see,
e.g., [20, Chapter 4.5]) or other standard attacks against
block ciphers such as differential [4] and linear [29] crypt-
analysis.

3.4.2 Security analysis via statistical tests of random-
ness

The most concrete security analysis of the Dusart-Traoré
primitive is in [12, Section 6.4], where the authors assess the
randomness of output from h using the NIST test suite [31]
for random number generators. Using a short-hand for the
(binary) inputs to h, the sequence

h00...01 p00 . . . 00q
h00...01 ph00...01 p00 . . . 00qq
h00...01 ph00...01 ph00...01 p00 . . . 00qqq
. . .



is used as input to the test suite, and obtain largely positive
results from the various randomness tests; the conclusion is
that the primitive meets this aspect of the design criteria.

However, randomness tests use a black-box model of the
block cipher: their ability to detect differential vulnerabili-
ties depends strongly on the black-box inputs, i.e., initiali-
sation of the input generation sequence. In [12, Section 4],
use of K � 0 � 00 . . . 00 is explicitly avoided. Had this case
been considered in the analysis, it would have been clear
that each ciphertext with Mi �Mj for all 0 ¤ i, j   16 will
produce outputs where all bytes have the same value. More
generally, it can be easily seen that for all 0 ¤ i, j   16 and
pM,Kq with Mi �Mj and Ki � Kj the ciphertext will have
Ci � Cj . This is a crucial indicator of a design weakness
and would have been detected by the NIST test suite if the
inputs had been chosen differently.

However, to the best of our knowledge, there is no feasible
strategy to detect all possible differential weaknesses using
such a test suite: completely ignoring traditional, white-box
cryptanalytic techniques in preference for automated black-
box testing does not give an adequate result therefore.

3.4.3 A broken attack
In [36] the authors claim to have found a working attack
on the Dusart-Traoré primitive. Unlike our attacks, they
attack the first round of the primitive by iterating over key
candidates Ki, Ki�1 and challenges that differ only in byte
Mi�1, looking for collisions of the form

fpspMi `Kiq, spMi�1 `Ki�1qq

=

fpspMi `Kiq, spM
�
i�1 `Ki�1qq

(4)

where s denotes the s-box and M�
i�1 the byte containing the

differential.

The first observation to make is that this equation will pro-
duce trivial collisions for all key byte candidates Ki,Ki�1.
Having M0

i � spMi�1 `Ki�1 and M0�
i�1 � spM�

i�1 `Ki�1q
the trivial collisions occur for

M0
i r0s � M0�

i�1r0s
M0

i r1s � M0�
i�1r1s

M0
i r2s � M0�

i�1r2s
M0

i r3s � M0�
i�1r3s

M0
i r4s � M0�

i�1r4s
M0

i r5s � M0�
i�1r5s

M0
i r6s � M0�

i�1r6s

as one can easily see from the bitwise equations in Sec-
tion 3.1. The example values presented by the authors of
[36] of K1 � 0x92, M1 � 0xb7 and M�

1 � 0x66 produce
M0

1 � 0x3f and M0�
1 � 0xbf which is just such a trivial

collision. In addition to the non-trivial collisions, collisions
can also occur for selected values due to the carry of the
integer addition in lines #4 to #7 of the bitwise equations
in Section 3.1.

The second, more general observation is that the challenges
used in Equation 4 have no relation to the key under attack.
Iterating over all possible key byte candidates should thus
produce a number of trivial collisions for all key byte can-
didates. In other words, the attack presented in [36] is no

attack at all as it can not distinguish between correct and
wrong key candidates. Instead it only highlights a structural
property of the Dusart-Traoré primitive. In contrast to this,
our structural attack focuses on the last round of the cipher
using the ciphertext outputs of the Dusart-Traoré primitive
which actually depend on the secret key that is being at-
tacked.

3.4.4 Potential countermeasures
A first step to repair the primitive would be to add at least
4 more rounds, and to tweak Equation 3 into

fpx, yq �
��
x` pp0xFF` yq≪1q

�
�

�
pp0xFF` xq ` py≫1qq

�
≪ 4

�
mod 256

,
(5)

i.e., using rotate operations instead of shifts and omitting
the existing reduction modulo 16. The tweaks to Equa-
tion 3 will increase the complexity of inverting the f func-
tion, while the additional rounds will ensure that a single
input difference affects all input bytes of the last round.
However, attack-specific “patching” of the primitive, which
the above amounts to, seems fraught with danger; the re-
sult certainly provides no strong guarantee of a security level
matching that intended. The lack of key schedule and exis-
tence of meet-in-the-middle attacks on other reduced round
block ciphers (e.g., [11], which targets 8-round AES) seem
fundamentally worrying for instance, even before necessary
application of standard cryptanalysis (e.g., [29, 4]).

3.4.5 Comparison of light-weightness wrt. imple-
mentation

Considering that the primitive is broken, one has to ask
whether the efficiency advantages are sufficient to warrant
any attempt to salvage individual components. To explore
this question, we make a rough comparison between the
Dusart-Traoré primitive, AES and PRESENT on 8-bit mi-
croprocessors; see, e.g., [13] for a more detailed comparison
of AES, PRESENT and other light-weight primitives and
[17, 24] for even more resource constrained architectures.

The first question that arises is that of implementation strat-
egy:

 A hardware implementations of some light-weight block
cipher will typically trade-off efficiency in favour of
area by instantiating a single round over which it then
iterates. Where this approach is employed, PRESENT
has a clear efficiency advantage over both AES and
the Dusart-Traoré primitive; this stems from a sim-
pler permutation layer (which requires no gates) and
smaller S-box.

 A throughput-focused software implementation will use
bit-slicing, although in context this approach is moot
due to the small number of blocks processed per au-
thentication round. Even so, PRESENT again enjoys
an advantage due to the same reasons above.

 Finally, a vanilla software implementations using look-
up tables3 will typically impose a penalty on PRESENT
because of the permutation layer.

3For RFID tags we consider this a possible scenario if the



For vanilla software implementations it makes sense to com-
pare AES and the Dusart-Traoré primitive in greater de-
tail. Obviously, the two major differences between AES and
the Dusart-Traoré primitive are a) the reduced number of
rounds and b) the lack of key scheduling. Initially, both
are efficiency gains, but since they are also crucial security
weaknesses for the Dusart-Traoré primitive, neither is sal-
vageable.

What remains is the permutation layer.

AES The permutation layer consists of the ShiftRow op-
eration which can be implemented for free, and the
MixColumn operation which can be implemented using
3 XOR operations and 2 table look-ups per state byte
(for details, see, e.g., [10, Section 4.1.1]).

Dusart-Traoré The f function described in Equation 3 re-
quires 4 XOR operations, 3 shift operations and 1 in-
teger addition per state byte.

Put simply, the bespoke permutation layer of the Dusart-
Traoré primitive only becomes competitive if the 2 table
look-ups used by AES require more cycles than 5 ALU-type
operations.

While the relative efficiency of f depends somewhat on the
platform therefore, the more rigorous study of properties
pertaining to the AES S-box (or indeed alternative map-
pings [22] based on the combination of logical and arithmetic
operations) arguably still make them the more attractive
choice.

4. CONCLUSIONS
Our results from Sections 3.2 and 3.3 clearly demonstrate
that the Dusart-Traoré primitive is insecure for all practical
purposes, and should therefore never be used; given the re-
quirement for a light-weight block cipher, we suggest use of
a standardised alternative such as PRESENT [5, ISO/IEC
29192-2:2011] with a more robust security analysis. In ad-
dition, our efficiency analysis in Section 3.4.5 strongly indi-
cates that any attempt to salvage parts of the Dusart-Traoré
primitive for a redesign is unlikely to result in a block cipher
design that is both secure and competitive against AES.

From a research perspective, two open questions remain. In
some applications of light-weight block ciphers, the criteria
for “light-weight” can be low round complexity. Some ex-
amples of broken block ciphers such as this with low round
complexity exist and cryptanalysis of reduced-round vari-
ants is a common tool to establish the security margin of
a given block cipher yet the minimum round complexity to
achieve specific security levels remains unknown. In addi-
tion, the the aforementioned question of automated black
box security analysis remains unanswered as well. A final
question, that considers efficient design of masked “light-
weight” block-ciphers, is already being addressed by current
research, see, e.g., [15].

micro-controller does not have a cache, i.e., if cache timing
attacks can be ignored, and if the application profile only
requires occasional use of the block cipher on one or two
message blocks.

Acknowledgements. The work described in this paper has
been supported by EPSRC grants EP/H001689/1 and
EP/H049606/1. The authors would like to thank Pierre
Dusart for additional information and test vectors provided
during private communication.

5. REFERENCES
[1] Satisfiability Suggested Format.

ftp://dimacs.rutgers.edu/pub/challenge/

satisfiability/doc/satformat.dvi. accessed on
October 1st, 2012.

[2] F. Armknecht. A linearization attack on the Bluetooth
key stream generator. Cryptology ePrint Archive,
Report 2002/191, 2002.

[3] G. Bard, N. Courtois, and C. Jefferson. Efficient
methods for conversion and solution of sparse systems
of low-degree multivariate polynomials over GF(2) via
SAT-solvers. Cryptology ePrint Archive, Report
2007/024, 2007.

[4] E. Biham and A. Shamir. Differential cryptanalysis of
DES-like cryptosystems. In Advances in Cryptology
(CRYPTO), pages 2–21. Springer-Verlag LNCS 537,
1990.

[5] A. Bogdanov, L. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. Robshaw, Y. Seurin, and
C. Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In Cryptographic Hardware and Embedded
Systems (CHES), pages 450–466. Springer-Verlag
LNCS 4727, 2007.

[6] J. Bringer, H. Chabanne, and T. Icart. Cryptanalysis
of EC-RAC, a RFID identification protocol. In
Cryptology and Network Security (CANS), pages
149–161. Springer-Verlag LNCS 5339, 2008.

[7] N. Courtois. Higher order correlation attacks, XL
algorithm and cryptanalysis of Toyocrypt. In
Information Security and Cryptology (ICISC), pages
182–199. Springer-Verlag LNCS 2587, 2003.

[8] N. Courtois, G. Bard, and D. Wagner. Algebraic and
slide attacks on keeloq. In Fast Software Encryption
(FSE), pages 97–115. Springer-Verlag LNCS 5086,
2008.

[9] N. Courtois and J. Pieprzyk. Cryptanalysis of block
ciphers with overdefined systems of equations. In
Advances in Cryptology (ASIACRYPT), pages
267–287. Springer-Verlag LNCS 2501, 2002.

[10] J. Daemen and V. Rijmen. The Design of Rijndael.
Springer-Verlag Berlin Heidelberg, 2002.

[11] H. Demirci and A.A.Selçuk. A Meet-in-the-Middle
Attack on 8-Round AES. In Fast Software Encryption
(FSE), pages 116–126. Springer-Verlag LNCS 5086,
2008.

[12] P. Dusart and S. Traoré. Lightweight Authentication
Protocol for Low-Cost RFID Tags. In Information
Security Theory and Practice (WISTP), pages
129–144. Springer-Verlag LNCS 7886, 2013.

[13] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and
L. Uhsadel. A survey of lightweight-cryptography
implementations. IEEE Design & Test of Computers,
24(6):522–533, 2007.

[14] J. Fan, J. Hermans, and F. Vercauteren. On the
claimed privacy of EC-RAC III. In Radio Frequency
Identification: Security and Privacy Issues (RFIDSec),



pages 66–74. Springer-Verlag LNCS 6370, 2010.

[15] B. Gérard, V. Grosso, M. Naya-Plasencia, and F.-X.
Standaert. Block ciphers that are easier to mask: How
far can we go? Cryptology ePrint Archive, Report
2013/369, 2013. To appear in proc. of Cryptographic
Hardware and Embedded Systems (CHES) 2013.

[16] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON
family of lightweight hash functions. In Advances in
Cryptology (CRYPTO), pages 222–239.
Springer-Verlag LNCS 6841, 2011.

[17] N. Jacob, S. Saetang, C.-N. Chen, S. Kutzner, S. Ling,
and A. Poschmann. Feasibility and practicability of
standardized cryptography on 4-bit micro controllers.
In Selected Areas in Cryptography (SAC), pages
184–201. Springer-Verlag LNCS 7707, 2013.

[18] P. Jovanovic, M. Kreuzer, and I. Polian. An algebraic
fault attack on the led block cipher. Cryptology ePrint
Archive, Report 2012/400, 2012.

[19] A. Juels. RFID security and privacy: a research
survey. IEEE Selected Areas in Communications,
24(2):381–394, 2006.

[20] J. Katz and Y. Lindell. Introduction To Modern
Cryptography. Chapman & Hall/CRC, 2008.

[21] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and
F.-X. Standaert. Towards green cryptography: a
comparison of lightweight ciphers from the energy
viewpoint. In Cryptographic Hardware and Embedded
Systems (CHES), pages 390–407. Springer-Verlag
LNCS 7428, 2012.

[22] A. Klimov and A. Shamir. A new class of invertible
mappings. In Cryptographic Hardware and Embedded
Systems (CHES), pages 470–483. Springer-Verlag
LNCS 2523, 2002.

[23] M. Knezevic, V. Nikov, and P. Rombouts.
Low-latency encryption - is “lightweight = light +
wait”? In Cryptographic Hardware and Embedded
Systems (CHES), pages 426–446. Springer-Verlag
LNCS 7428, 2012.

[24] L. Knudsen, G. Leander, A. Poschmann, and
M. Robshaw. PRINTcipher: A Block Cipher for
IC-Printing. In Cryptographic Hardware and Embedded
Systems (CHES), pages 16–32. Springer-Verlag LNCS
6225, 2010.

[25] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and
S. Ravi. Security as a new dimension in embedded
system design. In Design Automation Conference
(DAC), pages 753–760, 2004.

[26] Y. Lee, L. Batina, D. Singelée, and I. Verbauwhede.
Low-cost untraceable authentication protocols for
RFID. In ACM Conference on Wireless Nnetwork
Security (WiSec), pages 55–64, 2010.

[27] Y. Lee, L. Batina, and I. Verbauwhede. EC-RAC
(ECDLP based Randomized Access Control):
provably secure RFID authentication protocol. In
IEEE International Conference on RFID, pages
97–104, 2008.

[28] Y. Lee, L. Batina, and I. Verbauwhede. Untraceable
RFID authentication protocols: revision of EC-RAC.
In IEEE International Conference on RFID, pages
178–185, 2009.

[29] M. Matsui. Linear cryptanalysis method for DES
cipher. In Advances in Cryptology (EUROCRYPT),

pages 386–397. Springer-Verlag LNCS 765, 1993.

[30] M. Mohamed, S. Bulygin, and J. Buchmann. Using sat
solving to improve differential fault analysis of
trivium. In Information Security and Assurance,
volume 200 of Communications in Computer and
Information Science, pages 62–71. Springer, 2011.

[31] NIST. Random Number Generation Toolkit. http://
csrc.nist.gov/groups/ST/toolkit/rng/index.html,
2013.

[32] A. Poschmann. Lightweight cryptography:
cryptographic engineering for a pervasive world. PhD
thesis, Ruhr-University Bochum, 2009.

[33] N. Potlapally, A. Raghunathan, S. Ravi, N. Jha, and
R. Lee. Aiding side-channel attacks on cryptographic
software with satisfiability-based analysis. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions
on, 15(4):465–470, 2007.

[34] S. Ravi, A. Raghunathan, P. Kocher, and
S. Hattangady. Security in embedded systems: design
challenges. ACM Transactions on Embedded
Computing Systems (TECS), 3(3):461–491, 2004.

[35] C. Shannon. Communication theory of secrecy
systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

[36] W. Shao-Hui, X. Fu, C. Dan-wei, and W. Ru-chuan.
Security analysis of lightweight authentication
protocol from wistp 2013. Cryptology ePrint Archive,
Report 2013/411, 2013.

[37] M. Soos. CryptoMiniSat2 v2.9.5.
http://www.msoos.org/cryptominisat2/. accessed
on June 1st, 2013.

[38] T. van Deursen and S. Radomirović. EC-RAC:
enriching a capacious RFID attack collection. In Radio
Frequency Identification: Security and Privacy Issues
(RFIDSec), pages 75–90. Springer-Verlag LNCS 6370,
2010.

[39] S. Vaudenay. On privacy models for RFID. In
Advances in Cryptology (ASIACRYPT), pages 68–87.
Springer-Verlag LNCS 4833, 2007.

[40] X. Zhao, S. Guo, F. Zhang, T. Wang, Z. Shi, and
K. Ji. Algebraic differential fault attacks on led using
a single fault injection. Cryptology ePrint Archive,
Report 2012/347, 2012.


