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Abstract. In this paper, we first prove beyond-birthyday-bound security for the Misty struc-
ture. Specifically, we show that an r-round Misty structure is secure against CCA attacks up to
O(2

rn
r+7 ) query complexity, where n is the size of each round permutation. So for any ε > 0, a

sufficient number of rounds would guarantee the security of the Misty structure up to 2n(1−ε)

query complexity.
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1 Introduction

The Misty structure is a Feistel-type blockcipher structure used in Misty [9] and Kasumi [1].
It is known to be faster and more robust than the Feistel structure in terms of its resistance
against linear and differential cryptanalysis. Its provable security also has been widely studied
in the Luby and Rackoff model, where each round function is assumed to be a secret and truly
random permutation [4,5,8,9,11,18,19]. In this model, Minier and Gilbert [11] showed that a
5-round Misty structure is secure against CCA attacks up to the birthday bound, i.e., 2

n
2 query

complexity for the size n of each round permutation.1 Iwata et al. [5] showed that some of the
five round permutations can be replaced by uniform ε-XOR universal permutations without
losing its security. It is also shown that oracle access to some specific round permutations
does not change the security. Piret and Quisquater [18] analyzed the security of the Misty
structure when the round permutations are replaced by random involutions without fixed
points. Lee and Koo [8] dropped the condition of having no fixed point and showed that such
a construction is still secure.

However, all these results hold within the birthday bound. On the other hand, for the
Feistel structure there has been a considerable progress in the research of its provable security
in terms of the threshold query complexity. In a series of papers by Patarin [13–17], it was
proved that a 6-round Feistel structure using n-bit random round functions is CCA-secure
up to 2n(1−ε) query complexity for any ε > 0. Morris, Rogaway and Stegers [12] took a novel
approach based on a coupling technique to prove the security of maximally unbalanced Feistel
structures beyond the birthday bound. This powerful technique is also used for the security
proof of various types of generalized Feistel structures [3].

Our Contribution. In this paper, we prove beyond-birthyday-bound security for the Misty
structure. Specifically, we show that an r-round Misty structure is secure against CCA attacks
up to O(2

rn
r+7 ) query complexity, where n is the size of each round permutation. So for any

ε > 0, a sufficient number of rounds would guarantee the security of the Misty structure up
to 2n(1−ε) query complexity.

1 In this work, we only consider the notion of “superpseudorandomness” that allows an adversary to make
both forward and backward queries to the entire construction.



Proof Techniques. Since the inverse of an L-Misty structure becomes an R-Misty structure
with slight modification, we can view an L-Misty structure as a composition F ◦ G−1 for
an L-Misty structure F and an R-Misty structure G, both of smaller numbers of rounds.
Maurer, Pietrzak and Renner [10] proved that if two independent encryption schemes F and
G are NCPA-secure, then F ◦G−1 is CCA-secure. In this paper, we will use a combinatorial
interpretation of this property given as Lemma 2 and 3.

As it turns out that a 4-round L-Misty structure has the same level of security as a 3-round
R-Misty, we let the number of rounds r = 7d for d ≥ 1, and decompose an r-round L-Misty
structure into a 4d-round L-Misty structure and the inverse of a 3d-round R-Misty structure.
The NCPA-security of each component is proved by a coupling technique. Careful definition
and analysis of couplings, given in the proof of Lemma 4, is the core of our security proof.

2 Preliminaries

2.1 Notations

For an integer n ≥ 1, let In = {0, 1}n be the set of binary strings of length n. The set of all
permutations on In will be denoted Pn. We will usually write N = 2n.

For two bitstrings x and y, x||y denotes the concatenation of x and y. For a bitstring
x ∈ {0, 1}2n, xL and xR denote the unique n-bit strings such that x = xL||xR.

For a set T and an integer s ≥ 1, T ∗s denotes the set of all sequences that consists of s
pairwise distinct elements of T . For integers 1 ≤ s ≤ t, we will write (t)s = t(t−1) · · · (t−s+1).
If |T | = t, then (t)s becomes the size of T ∗s.

2.2 Misty Structure

A 1-round L-Misty permutation is a 2n-bit permutation φ taking an n-bit permutation p as
a round function and such that

φ[p](u) = uR|| (p(uL)⊕ uR)

for u ∈ {0, 1}2n. An r-round L-Misty structure is simply the composition of r 1-round L-Misty
permutations, transforming r n-bit permutations p1, . . . , pr into a 2n-bit permutation

φr[p1, . . . , pr] = φ[pr] ◦ · · · ◦ φ[p1].

An r-round R-Misty structure ψr is similarly defined as the composition of r 1-round R-
Misty permutations, where a 1-round R-Misty permutation transforms an n-bit permutation
p into a 2n-bit permutation in the following manner.

ψ[p](u) = p(uR)|| (p(uR)⊕ uL)

for u ∈ {0, 1}2n. 1-round L-Misty and R-Misty structures are illustrated in Figure 1.
Let f be a permutation on I2n such that

f(u) = uL||(uL ⊕ uR).

Then we can check that f ◦ f = ι and

f ◦ ψr[p−1r , . . . , p−11 ] ◦ f ◦ φr[p1, . . . , pr] = ι (1)

where ι denotes the identity function on I2n.
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Fig. 1. Misty structures

2.3 Indistinguishability

Let E ∈ {φr, ψr} be an r-round Misty structure that makes oracle queries to r permutations
p1, . . . , pr ∈ Pn. So a set of r permutations Π = (p1, . . . , pr) ∈ Prn defines a permutation E[Π]
on {0, 1}2n. In the indistinguishability framework, E[Π] uses independent random permuta-
tions as round functions, while a permutation P is chosen uniformly at random from P2n. A
distinguisher A would like to tell apart two worlds E[Π] and P by adaptively making forward
and backward queries to the entire permutation. Formally, A’s distinguishing advantage is
defined by

AdvE(A) = Pr
[
P

$← P2n : A[P ] = 1
]
− Pr

[
Π

$← Prn : A[E[Π]] = 1
]
.

For q > 0, we define
AdvE(q) = max

A
AdvE(A)

where the maximum is taken over all adversaries A making at most q queries. By the rela-
tion (1), we have

Advφr(q) = Advψr(q)

for any r ≥ 1.

Combinatorial Framework. We assume that a distinguisher A makes q queries to the
permutation oracle and records a query history

Q = (ui, vi)1≤i≤q,

where (ui, vi) represents the evaluation obtained by the i-th query to the permutation oracle.
So according to the instantiation, it implies either E[Π](ui) = vi or P (ui) = vi. The query
history Q contains all the information that A has obtained at the end of the attack. In this
work, we will only consider information theoretic distinguishers. Therefore we can assume
that a distinguisher is deterministic without making any redundant queries, and hence the
output of A can be regarded as a function of Q, denoted A(Q).



If a permutation E[Π](resp. P ) is consistent with Q, i.e., E[Π](ui) = vi(resp. P (ui) = vi)
for every i = 1, . . . , q, then we will write E[Π] ` Q(resp. P ` Q). Using these notations, we
have

AdvE(A) =
∑
A(Q)=1

Pr
[
P

$← P2n : P ` Q
]
−

∑
A(Q)=1

Pr
[
Π

$← Prn : E[Π] ` Q
]

(2)

where the sum is taken over all the possible query history Q such that A(Q) = 1.2

2.4 Coupling Technique

Given a finite event space Ω and two probability distributions µ and ν defined on Ω, the total
variation distance between µ and ν, denoted ‖µ− ν‖, is defined as

‖µ− ν‖ =
1

2

∑
x∈Ω
|µ(x)− ν(x)|.

The following definitions are also all equivalent.

‖µ− ν‖ = max
S⊂Ω
{µ(S)− ν(S)} = max

S⊂Ω
{ν(S)− µ(S)} = max

S⊂Ω
{|µ(S)− ν(S)|}.

A coupling of µ and ν is a distribution τ on Ω×Ω such that for all x ∈ Ω,
∑

y∈Ω τ(x, y) = µ(x)
and for all y ∈ Ω,

∑
x∈Ω τ(x, y) = ν(x). In other words, τ is a joint distribution whose marginal

distributions are respectively µ and ν. We will use the following two lemmas in the security
proof.

Lemma 1. Let µ and ν be probability distributions on a finite event space Ω, let τ be a
coupling of µ and ν, and let (X,Y ) be a random variable sampled according to distribution τ .
Then ‖µ− ν‖ ≤ Pr[X 6= Y ].

Lemma 2. Let Ω be some finite event space and ν be the uniform probability distribution on
Ω. Let µ be a probability distribution on Ω such that ‖µ− ν‖ ≤ ε. Then there is a set S ⊂ Ω
such that

1. |S| ≥ (1−
√
ε)|Ω|,

2. µ(x) ≥ (1−
√
ε)ν(x) for every x ∈ S.

The proof of the above lemmas is given in [6,7]. For completeness, we include the same proof
in Appendix A.

3 Security of the Misty Structure

In this section, we give only the security proof of an L-Misty structure since the security of
L-Misty and R-Misty structures are equivalent. Specifically, we consider an r-round L-Misty
structure φr, where r is a multiple of 7. We will write r = l1 + l2, where l1 = 4d and l2 = 3d
for an integer d ≥ 1. We begin with the following lemma.

2 Here we only consider a “valid” query history that A might produce by communicating with a permutation
P ∈ P2n. For example, in a valid query history Q, (x, y) and (x′, y) with x 6= x′ could not be both contained
in Q.



Lemma 3. Let E ∈ {φr, ψr} and δ > 0. Assume that for any query history Q such that
|Q| = q, we have

p1(Q) ≥ (1− δ)p2(Q)

where

p1(Q) = Pr
[
Π

$← Prn : E[Π] ` Q
]
,

p2(Q) = Pr
[
P

$← P2n : P ` Q
]

= 1/(N2)q.

Then we have

AdvE(A) ≤ δ.

Proof. By (2), we have

AdvE(A) =
∑
A(Q)=1

p2(Q)−
∑
A(Q)=1

p1(Q)

≤
∑
A(Q)=1

p2(Q)− (1− δ)
∑
A(Q)=1

p2(Q)

≤ δ
∑
A(Q)=1

p2(Q) ≤ δ.

Suppose that φr[Π] ` Q for a set of permutations Π = (p1, . . . , pr) and a query history
Q = (ui, vi)1≤i≤q. Let Π1 = (p1, . . . , pl1) and Π2 = (p−1r , . . . , p−1l1+1) (in reverse order). By (1),
it follows that

φl1 [Π1] ` (ui, wi)1≤i≤q and ψl2 [Π2] ` (f(vi), f(wi))1≤i≤q,

for some w = (wi)1≤i≤q ∈ (I2n)∗q. Therefore for a query history Q, we have

p1(Q) =
∑
w∈Ω

Pr
[
Π1

$← P l1n , Π2
$← P l2n : φl1 [Π1] ` (ui, wi)1≤i≤q ∧ ψl2 [Π2] ` (f(vi), f(wi))1≤i≤q

]
=
∑
w∈Ω

Pr
[
Π

$← P l1n : φl1 [Π] ` (ui, wi)1≤i≤q

]
Pr
[
Π

$← P l2n : ψl2 [Π] ` (f(vi), f(wi))1≤i≤q

]
where Ω = (I2n)∗q.

In order to lower bound each factor of the products appearing in the last equality, we
define probability distributions µs and λs for each s = (si)1≤i≤q ∈ Ω, where for each w =
(wi)1≤i≤q ∈ Ω,

µs(w) = Pr
[
Π

$← P l1n : φl1 [Π] ` (si, wi)1≤i≤q

]
,

λs(w) = Pr
[
Π

$← P l2n : ψl2 [Π] ` (si, wi)1≤i≤q

]
.

Using the coupling technique, we can upper bound the statistical distance between each of
µs and λs and the uniform probability distribution. The proof will be given at the end of this
section.



Lemma 4. Let µs and λs be the probability distributions defined as above, and let ν be the
uniform probability distribution on Ω = (I2n)∗q. Then we have ‖µs−ν‖ ≤ ε1 and ‖λs−ν‖ ≤ ε2,
where

ε1 =
N − 1

4(d+ 1)

(
q

N − q
+

4q

N − 1

)d+1

,

ε2 =
N − 1

4(d+ 1)

(
4q

N − 1

)d+1

.

Applying Lemma 2 and 4 with µ = µs for s = u = (ui)1≤i≤q, we have a subset S1 ⊂ Ω such
that |S1| ≥ (1−√ε1)|Ω| and

Pr
[
Π

$← P l1n : φl1 [Π] ` (ui, wi)1≤i≤q

]
≥ (1−

√
ε1)ν(w) =

1−√ε1
(N2)q

for every w ∈ S1.
Let f(v) = (f(vi))1≤i≤q and f(w) = (f(wi))1≤i≤q. Again applying Lemma 2 and 4 with

µ = λs for s = f(v), we have a subset S2 ⊂ Ω such that |S2| ≥ (1−√ε2)|Ω| and

Pr
[
Π

$← P l2n : ψl2 [Π] ` (f(vi), f(wi))1≤i≤q

]
≥ (1−

√
ε2)ν(f(w)) =

1−√ε2
(N2)q

for every w ∈ S2. Let S = S1 ∩ S2. Since |Ω \ S1| ≤
√
ε1|Ω| and |Ω \ S2| ≤

√
ε2|Ω|, we have

|Ω \ S| = |Ω \ (S1 ∩ S2)| ≤ |Ω \ S1|+ |Ω \ S2| ≤ (
√
ε1 +

√
ε2)|Ω|,

or equivalently,
|S| ≥ (1−

√
ε1 −

√
ε2)|Ω|.

Therefore it follows that

p1(Q) =
∑
w∈Ω

Pr
[
Π

$← P l1n : φl1 [Π] ` (ui, wi)1≤i≤q

]
· Pr

[
Π

$← P l2n : ψl2 [Π] ` (f(vi), f(wi))1≤i≤q

]
≥ (1−

√
ε1 −

√
ε2)|Ω| ·

(
1−√ε1
(N2)q

)
·
(

1−√ε2
(N2)q

)
≥ (1− 2

√
ε1 − 2

√
ε2)p2(Q).

By Lemma 3 and the equivalence of φr and ψr, we have the following theorem.

Theorem 1. Let E ∈ {φr, ψr} be an r-round Misty structure using r independent random
n-bit permutations. If r = 7d for d ≥ 1, then

AdvE(q) ≤

√
N − 1

d+ 1

(
q

N − q
+

4q

N − 1

)d+1

+

√
N − 1

d+ 1

(
4q

N − 1

)d+1

.

Asymptotic Interpretation. Assuming q ≤ N/2, we can simplify the upper bound in
Theorem 1 as

AdvE(q) ≤ 2

√
N − 1

d+ 1

(
6q

N − 1

)d+1

= 2

√
(6q)d+1

(d+ 1)(N − 1)d
≈ 2

√
(6q)d+1

(d+ 1)Nd
.



For a fixed parameter d, when q � N
d
d+1 , the advantage AdvE(q) gets close to 0.

Proof of Lemma 4. Fix s = (si)1≤i≤q and for m = 0, . . . , q, define probability distributions
πm where for each w = (w1, . . . , wq) ∈ Ω,

πm(w) = Pr [(um+1, . . . , uq)
$← (I2n\{s1, . . . , sm})∗(q−m),

Π
$← P l1n : φl1 [Π] ` (si, wi)1≤i≤m ∧ φl1 [Π] ` (ui, wi)m+1≤i≤q].

Then we can check that π0 = ν and πq = µs. Since

‖µs − ν‖ ≤
q−1∑
m=0

‖πm+1 − πm‖, (3)

we will focus on upper bounding ‖πm+1 − πm‖ for each m = 0, . . . , q − 1. In order to couple
πm+1 and πm, we will define a random variable (T, V ) on Ω × Ω by the sampling process
described in Figure 2.

In this description, D[j] and R[j], all initialized as empty sets, represent the domain and
the range of each round permutation pj , respectively. Variable p[j, x], initialized as ⊥ for
every 1 ≤ j ≤ l1 and x ∈ In, records the evaluation of pj(x). Once evaluation pj(x) = y is
determined by lazy sampling during the procedure p(j, x), then x and y are added to D[j]
and R[j], respectively, and variable p[j, x] is assigned y.

In lines 5 to 8, the first m elements that T and V share in common are initialized and
faithfully updated. The (m + 1)-th elements of T and V are initialized in lines 9 and 10,
and simultaneously updated in lines 11 to 25. The last q −m − 1 elements of T and V are
determined in lines 26 to 31 without any update process. As for this random variable, we
point out some noteworthy properties.

1. In any case, the first m elements of T and V are equal.
2. If t[l1] = v[l1], then T = V at the end of the experiment.
3. By ignoring the steps used to sample V , we can check that T and V follow probability

distributions πm+1 and πm, respectively. Especially note that
(a) when j ≡ 3 mod 4, the distribution of y′ is uniform among the points in In\R[j],

since ∆ defines a perfect matching in

{z ∈ In : z /∈ R[j] and z ⊕∆ /∈ R[j]}

by connecting z and z ⊕∆,
(b) if either t[j − 1]L ∈ D[j] or v[j − 1]L ∈ D[j], then the choice of y′ is not affected by y

in lines 22 and 23.

Therefore by Lemma 1, we have

‖πm+1 − πm‖ ≤ Pr [T 6= V ] = Pr [t[l1] 6= v[l1]] . (4)

Since t[j] = v[j] implies t[j + 1] = v[j + 1] for every 0 ≤ j ≤ l1 − 1, we have

Pr [t[l1] 6= v[l1]] ≤
d−1∏
h=0

Pr

[
t[4h+ 4] 6= v[4h+ 4] |t[4h] 6= v[4h]

]
. (5)



If any of flag1[4h+ 3] and flag2[4h+ 3] is not true, then we have

v[4h+ 4]L = t[4h+ 3]R = v[4h+ 3]R = t[4h+ 4]L.

Furthermore, if t[4h+ 3]R = v[4h+ 3]R and flag2[4h+ 4] is not true, then we have

t[4h+ 4]R = v[4h+ 4]R.

So the probability that t[4h+ 4] 6= v[4h+ 4] is upper bounded by

Pr [flag1[4h+ 3]] + Pr [flag2[4h+ 3]] + Pr [flag2[4h+ 4]] . (6)

Since the probability of flag1[4h + 3] being true is upper bounded by the probability that

y ⊕∆ ∈ R[4h+ 3] for a random y
$← In\R[4h+ 3], we have

Pr [flag1[4h+ 3]] ≤ q

N − q
. (7)

flag2[4h+ 3] being true implies either t[4h+ 2]L ∈ D[4h+ 3] or v[4h+ 2]L ∈ D[4h+ 3]. Again,
t[4h+ 2]L ∈ D[4h+ 3] implies

t[4h+ 2]L = t[4h+ 1]R = p(4h+ 1, t[4h]L)⊕ t[4h]R = p(4h+ 1, wi[4h]L)⊕ wi[4h]R

for some i = 1, . . . ,m. Since t[4h] 6= wi[4h] for any i = 1, . . . ,m, we can assume that t[4h]L 6=
wi[4h]L in the above condition. Furthermore, since p(4h+ 1, ·) faithfully instantiates a truly
random permutation, we have

Pr [flag2[4h+ 3]] ≤ 2m

N − 1
. (8)

With the same analysis, we also have

Pr [flag2[4h+ 4]] ≤ 2m

N − 1
. (9)

Then by (3), (4), (5), (6), (7), (8), (9), we obtain

‖µs − ν‖ ≤
q−1∑
m=0

(
q

N − q
+

4m

N − 1

)d
≤
∫ q

0

(
q

N − q
+

4x

N − 1

)d
dx

≤ N − 1

4(d+ 1)

(
q

N − q
+

4q

N − 1

)d+1

.

In order to upper bound ‖λs − ν‖, we fix s = (si)1≤i≤q, and for m = 0, . . . , q, define
probability distributions π′m where for each w = (w1, . . . , wq) ∈ Ω,

π′m(w) = Pr [(um+1, . . . , uq)
$← (I2n\{s1, . . . , sm})∗(q−m),

Π
$← P l2n : ψl2 [Π] ` (si, wi)1≤i≤m ∧ ψl2 [Π] ` (ui, wi)m+1≤i≤q].



Since π′0 = ν and π′q = λs we have

‖λs − ν‖ ≤
q−1∑
m=0

‖π′m+1 − π′m‖. (10)

In order to couple π′m+1 and π′m, we define a random variable (T ′, V ′) on Ω×Ω by the sampling
process described in Figure 3. We can check that T ′ and V ′ follow probability distributions
π′m+1 and π′m, respectively. We also have

‖π′m+1 − π′m‖ ≤ Pr
[
T ′ 6= V ′

]
= Pr [t[l2] 6= v[l2]] (11)

and

Pr [t[l2] 6= v[l2]] ≤
d−1∏
h=0

Pr

[
t[3h+ 3] 6= v[3h+ 3] |t[3h] 6= v[3h]

]
. (12)

If flag[3h+2] is not true, then we have t[3h+2]L = v[3h+2]L. Similarly, if flag[3h+3] is not
true, then we have t[3h+3]L = v[3h+3]L, and subject to the condition t[3h+2]L = v[3h+2]L,

t[3h+ 3]R = t[3h+ 2]L ⊕ t[3h+ 3]L

= v[3h+ 2]L ⊕ v[3h+ 3]L = v[3h+ 3]R.

Therefore the probability that t[3h+ 3] 6= v[3h+ 3] is upper bounded by

Pr [flag[3h+ 2]] + Pr [flag[3h+ 3]] . (13)

Similar to the analysis of the probability of flag1[4h+ 3] being true in the sampling process
of (T, V ), we have

Pr [flag[3h+ 2]] ≤ 2m

N − 1
, (14)

Pr [flag[3h+ 3]] ≤ 2m

N − 1
. (15)

Therefore by (10), (11), (12), (13), (14), (15), we obtain

‖λs − ν‖ ≤
q−1∑
m=0

(
4m

N − 1

)d
≤
∫ q

0

(
4x

N − 1

)d
dx

≤ N − 1

4(d+ 1)

(
4q

N − 1

)d+1

.
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1: for j ← 1 to l1 do
2: D[j]← ∅
3: R[j]← ∅
4: p[j, x]← ⊥ for every x ∈ In
5: for i← 1 to m do
6: wi[0]← si

7: for j ← 1 to l1 do
8: wi[j]← wi[j − 1]R||(p(j, wi[j − 1]L)⊕ wi[j − 1]R)

9: t[0]← sm+1

10: v[0]
$← I2n\{s1, . . . , sm}

11: for j ← 1 to l1 do
12: if t[j − 1]L /∈ D[j] and v[j − 1]L /∈ D[j] then

13: y
$← In\R[j]

14: ∆← t[j − 1]R ⊕ v[j − 1]R
15: if j ≡ 3 mod 4 and y ⊕∆ /∈ R[j] then
16: y′ ← y ⊕∆
17: else
18: flag1[j]← true
19: y′ ← y

20: else if t[j − 1]L ∈ D[j] or v[j − 1]L ∈ D[j] then
21: flag2[j]← true
22: y ← p(j, t[j − 1]L)
23: y′ ← p(j, v[j − 1]L)

24: t[j]← t[j − 1]R||(y ⊕ t[j − 1]R)
25: v[j]← v[j − 1]R||(y′ ⊕ v[j − 1]R)

26: if t[l1] = v[l1] then

27: (vm+2, . . . , vq)
$← (I2n\{w1[l1], . . . , wm[l1], v[l1]})∗(q−m−1)

28: (tm+2, . . . , tq)← (vm+2, . . . , vq)
29: else
30: (vm+2, . . . , vq)

$← (I2n\{w1[l1], . . . , wm[l1], v[l1]})∗(q−m−1)

31: (tm+2, . . . , tq)
$← (I2n\{w1[l1], . . . , wm[l1], t[l1]})∗(q−m−1)

32: T ← (w1[l1], . . . , wm[l1], t[l1], tm+2, . . . , tq)
33: V ← (w1[l1], . . . , wm[l1], v[l1], vm+2, . . . , vq)
34: return (T, V )

Procedure p(j, x)

35: if p[j, x] = ⊥ then

36: p[j, x]
$← In\R[j]

37: D[j]← D[j] ∪ {x}
38: R[j]← R[j] ∪ {p[j, x]}
39: return p[j, x]

Fig. 2. Sampling process for random variable (T, V ) that couples πm+1 and πm



1: for j ← 1 to l2 do
2: D[j]← ∅
3: R[j]← ∅
4: p[j, x]← ⊥ for every x ∈ In
5: for i← 1 to m do
6: wi[0]← si

7: for j ← 1 to l2 do
8: wi[j]← p(j, wi[j − 1]R)||(p(j, wi[j − 1]R)⊕ wi[j − 1]L)

9: t[0]← sm+1

10: v[0]
$← I2n\{s1, . . . , sm}

11: for j ← 1 to l2 do
12: if t[j − 1]R /∈ D[j] and v[j − 1]R /∈ D[j] then

13: y
$← In\R[j]

14: y′ ← y
15: else if t[j − 1]R ∈ D[j] or v[j − 1]R ∈ D[j] then
16: flag[j]← true
17: y ← p(j, t[j − 1]R)
18: y′ ← p(j, v[j − 1]R)

19: t[j]← y||(y ⊕ t[j − 1]L)
20: v[j]← y′||(y′ ⊕ v[j − 1]L)

21: if t[l2] = v[l2] then

22: (vm+2, . . . , vq)
$← (I2n\{w1[l2], . . . , wm[l2], v[l2]})∗(q−m−1)

23: (tm+2, . . . , tq)← (vm+2, . . . , vq)
24: else
25: (vm+2, . . . , vq)

$← (I2n\{w1[l2], . . . , wm[l2], v[l2]})∗(q−m−1)

26: (tm+2, . . . , tq)
$← (I2n\{w1[l2], . . . , wm[l2], t[l2]})∗(q−m−1)

27: T ′ ← (w1[l2], . . . , wm[l2], t[l2], tm+2, . . . , tq)
28: V ′ ← (w1[l2], . . . , wm[l2], v[l2], vm+2, . . . , vq)
29: return (T ′, V ′)

Procedure p(j, x)

30: if p[j, x] = ⊥ then

31: p[j, x]
$← In\R[j]

32: D[j]← D[j] ∪ {x}
33: R[j]← R[j] ∪ {p[j, x]}
34: return p[j, x]

Fig. 3. Sampling process for random variable (T ′, V ′) that couples π′m+1 and π′m
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A Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Let λ be a coupling of µ and ν and let (X,Y ) ∼ λ. By definition, for
any z ∈ Ω, λ(z, z) ≤ min{µ(z), ν(z)}. Since Pr [X = Y ] =

∑
z∈Ω λ(z, z), we have

Pr [X = Y ] ≤
∑
z∈Ω

min{µ(z), ν(z)}.

Therefore we have

Pr [X 6= Y ] ≥ 1−
∑
z∈Ω

min{µ(z), ν(z)}

=
∑
z∈Ω

(µ(z)−min{µ(z), ν(z)})

=
∑
z∈Ω

µ(z)≥ν(z)

(µ(z)− ν(z))

= max
S⊂Ω
{µ(S)− ν(S)} = ‖µ− ν‖.



Proof of Lemma 2. Let S = {x ∈ Ω : µ(x) ≥ (1−
√
ε)ν(x)}. By definition, any element of S

satisfies the second condition. Contary to the first condition, suppose that |S| < (1−
√
ε)|Ω|.

This implies ν(Ω\S) = 1− |S|/|Ω| >
√
ε, and hence

ν(Ω\S)− µ(Ω\S) ≥ ν(Ω\S)−
(
1−
√
ε
)
ν(Ω\S) =

√
εν(Ω\S) >

(√
ε
)2

= ε.

This is a contradiction to ‖µ− ν‖ ≤ ε.


