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Abstract. In this paper, information theoretic cryptography is discussed based on conditional Rényi
entropies. Our discussion focuses not only on cryptography but also on the definitions of conditional
Rényi entropies and the related information theoretic inequalities. First, we revisit conditional Rényi
entropies, and clarify what kind of properties are required and actually satisfied. Then, we propose
security criteria based on Rényi entropies, which suggests us deep relations between (conditional)
Rényi entropies and error probabilities by using several guessing strategies. Based on these results,
unified proof of impossibility, namely, the lower bounds of key sizes is derived based on conditional
Rényi entropies. Our model and lower bounds include the Shannon’s perfect secrecy, and the min-
entropy based encryption presented by Dodis, and Alimomeni and Safavi-Naini. Finally, new optimal
symmetric key cryptography and almost optimal secret sharing schemes are proposed which achieve
our lower bounds.
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1 Introduction

1.1 Motivation and Related Works

How to measure the quantities of information is an important issue not only in information
theory, but also in cryptography because information measures in cryptography tell us not only the
coding efficiency but also security level in terms of equivocation of secret information. Historically,
Shannon entropy [1] is the measure of information theoretic cryptography. On the other hand, it
is also important to evaluate the cardinality of a set in which a random variable takes values, i.e.,
Hartley entropy [2]. Furthermore, min-entropy [3] is also considered to be an important quantity
in guessing the secret in the context of cryptography.

For instance, consider the case of symmetric-key encryption. As is well known by Shannon’s
seminal work [4], the perfect secrecy in symmetric-key encryption is formalized as H(M) =
H(M |C), where M and C are random variables which take values on sets of plaintexts and
ciphertexts, respectively; and then, symmetric-key encryption with perfect secrecy implies the
lower bound on secret-keys H(K) ≥ H(M) (Shannon’s bound, Shannon’s impossibility, [4]).
Similarly, we also know that the number of key candidates can be no less than the cardinality
of message set. Furthermore, Dodis [5] recently showed that the similar property also holds with
respect to min-entropy. Namely, he showed the bound on secret-keys, R∞(K) ≥ R∞(M), for
symmetric-key encryption with perfect secrecy. Also, Alimomeni and Safavi-Naini [6] introduced
the guessing secrecy, formalized by R∞(M) = R∞(M |C), and under which they derived the
bound R∞(K) ≥ R∞(M), where R∞(·) and R∞(·|·) are the min-entropy and the conditional
min-entropy, respectively. Here, it is worth noting that the above results are proved utilizing
totally different techniques. This fact is very interesting from the theoretical viewpoint, and it
must be fruitful not only for cryptography but also for information theory if we can unify the
above proofs and derive them as corollaries. In order to unify them, Rényi entropy [7] might be
useful since it is considered to be a generalization of Shannon, min, and several other kinds of
entropies as well as the cardinality.
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However, unfortunately, we cannot expect Rényi entropies to satisfy rich properties like Shan-
non entropies, since Rényi entropies are obtained axiomatically from several relaxed postulates
for Shannon entropy. Due to this fact, subadditivity does not hold for Rényi entropy although it is
very fundamental property of Shannon entropy. Hence, it is not so easy to unify the above different
kinds of proofs in terms of Rényi entropies. Even worse, the definition of conditional Rényi entropy
is not uniquely determined. In order to understand the conditional Rényi entropies, the results by
Teixeira et al. [8] are very useful. In [8], the relations among three different kinds of conditional
Rényi entropies and four different kinds of conditional min-entropies are discussed. However, the
authors missed to include another different definition of conditional Rényi entropies provided
in [9, 17]. Moreover, they did not find the definitions of conditional Rényi entropies correspond-
ing to several conditional min-entropies [10, 28] introduced in cryptographic contexts. Finding
reasonable explanations for these min-entropies is also an important contribution since these re-
lations actually bridges information theoretic conditional Rényi entropies and cryptographically
important min-entropies.

Finally, note that constructing a unified framework of information theoretic cryptography
based on conditional Rényi entropies is not only theoretically interesting but also practically
important, because measuring the security by (conditional) Rényi entropies offers us a new secu-
rity criteria. We should note that the defining security by conditional Rényi entropies instead of
conditional Shannon entropies, the security criteria is weaken compared to perfect secrecy, and
hence, the wide class of cryptosystems can be discussed in terms of Rényi entropies. In particular,
discussing min-entropy criteria is very important since the attacker will guess the key with the
highest probability (called guessing secrecy). From this viewpoint, the security should be measured
by min-entropy instead of Shannon entropy. Although this fact was pointed out by Alimomeni
and Safavi-Naini [6], the construction of encryption satisfying the guessing secrecy criteria is not
provided in the literature. Hence, it is an very interesting open problem to design information the-
oretic cryptography under Rényi entropies security criteria as well as the constructions meeting
tightly the lower bounds of key size measured by Rényi entropies or min-entropies.

1.2 Our Contributions and Organization of This Paper

Conditional Rényi entropies, revisited (Sections 2 and 3) In [8], Teixeira et al. analyzed
the relations among exiting conditional Rényi entropies. However, their analyses are not sufficient
in three aspects. First, they do not care about the implications of their results deeply. Recall that
Rényi entropies are originally discovered [7] axiomatically, and a lot of nice properties are known
for Shannon entropy which is a special case of Rényi entropy. Then, it is necessary to discuss
conditional Rényi entropies from axiomatic and/or technological viewpoints. Second, the analysis
in [8] missed to include two important conditional Rényi entropies due to Arimoto [17] and
Hayashi [9] denoted by RA

α(X|Y ) and RH
α(X|Y ), respectively, which are introduced in information

theoretic and/or cryptographic contexts . Third, cryptographically important conditional min-
entropies are not sufficiently analyzed in [8] since they cannot be not obtained from the conditional
Rényi entropies discussed in [8].

Based on the above motivations, we will discuss what kind of properties should be inves-
tigated in this paper from the axiomatic, information theoretic, and cryptographic viewpoints.
Our analysis also includes RA

α(X|Y ) and RH
α(X|Y ). In Sect. 2.3, we start our discussion from

the postulates required for Shannon and Rényi entropies, and discuss what kind of properties
should be required and/or are interested. Then, we consider the relation between conditional
Rényi entropies and conditional min-entropies. We clarify that the conditional Rényi entropies
RA

α(X|Y ) and RH
α(X|Y ) related to the conditional min entropies useful in cryptographic context.

As a result, we conclude that non-negativity, monotonicity, conditioning reduces entropy (CRE),
data processing inequality (DPI) are hopefully required, but the chain rule might not be satisfied.
Actually, we will show in Sect. 2.4 that the chain rule does not hold generally in the case of
(conditional) Rényi entropies.
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Sections 3.1–3.3 are devoted to show that the above inequalities actually hold. Furthermore,
we show an extension of Fano’s inequality [12] for conditional Rényi entropies in Section 3.4,
which will be useful in the forthcoming discussion as well as the inequalities discussed in Sections
3.1–3.3.

Proposal of security criteria based on conditional Rényi entropies (Section 4) In this
paper, we propose security criteria based on conditional Rényi entropies RA

α(X|Y ) and RH
α(X|Y ).

Our motivation and significance for proposing it lies in the following two points.
The first point lies in realistic significance which is deeply related to guessing probability by

adversaries. Owing to theoretical results about the conditional Rényi entropies in Sections 2 and
3, we will show that conditional Rényi entropies, RA

α(X|Y ) and RH
α(X|Y ), play an important role

to derive a lower bound on failure of guessing by adversaries, and it turns out that our security
criteria is a sufficient condition to make it reasonably large enough. Our way of thinking of this
is deeply related to the approach to show the converse of channel coding theorem by Shannon [1]
and the recent one to show the converse of channel coding theorem in finite blocklength regime
[30, 31] in information theory.

The second point lies in mathematical importance for generalizing Shannon’s impossibility (or
Shannon’s bounds) H(K) ≥ H(M) in symmetric-key encryption with perfect secrecy. For details
about this contribution, see below.

Generalizing Shannon’s impossibility in encryption and secret sharing (Sections 5-7)
One of our main purpose in this paper is to generalize Shannon’s impossibility (or Shannon’s
bound) H(K) ≥ H(M) in perfectly secure symmetric-key encryption so that all known bounds
(i.e., the Shannon’s, Dodis’s, and Alimomeni and Safavi-Naini’s bounds) are captured in our
generic bound. By utilizing information-theoretic results about conditional Rényi entropies ob-
tained in Sections 2 and 3, we extend Shannon’s impossibility result for encryption by a generic
and unified proof technique, and it turns out that our new bound includes all the bounds men-
tioned above (i.e., the bounds by Shannon, Dodis, and Alimomeni and Safavi-Naini) as special
cases. In addition, we apply our discussion in encryption to the case of secret sharing protocols,
and we show similar results even for secret sharing protocols. Furthermore, we slightly extend
our bound in terms of conditional Rényi entropies to the one under a class of conditional entropy
functions which is naturally characterized from axiomatic consideration in Section 2.3.

2 Conditional Rényi Entropies, Revisited

2.1 Preliminaries: Rényi Entropies and α-divergence

Definition 1 (Rényi entropy, [7]) Let X be a random variable taking values on a finite set
X . For a real number α ≥ 0, the Rényi entropy of order α is defined by3

Rα(X) :=
1

1− α
log
∑
x∈X

PX(x)α.

It is well known that many information measures such as Hartley entropy, Shannon entropy,
collision entropy, and min-entropies are special cases of Rényi entropy. Namely, they are respec-
tively obtained by R0(X) = log |X |, R1(X) := limα→1 Rα(X) = H(X), R2(X) = − log Pr{X =
X ′}, and R∞(X) := limα→∞ Rα(X) = minx∈X {− log PX(x)}, where X and X ′ are independently
and identically distributed (i.i.d.) random variables, and H(X) := −

∑
x∈X PX(x) log PX(x) is

Shannon entropy.
In the forthcoming discussion, the α-divergence (also called Rényi divergence of order α or

the normalized Chernoff α-divergence) is important.
3 Throughout of the paper, the base of logarithm is e. Note that the base of logarithm is not essential since the

same arguments hold for arbitrary base of logarithm.
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Definition 2 (α-divergence) Let X and Y be random variables taking values on a finite set
X . For a real number α ≥ 0, the α-divergence is defined by

Dα(X‖Y ) = Dα(PX(·)‖PY (·)) =
1

α− 1
log
∑
x∈X

PX(x)α

PY (x)α−1
. (1)

In particular, binary α-divergence is analogously defined as dα(p‖q) := Dα([p, 1− p]‖[q, 1− q]) =
(α− 1)−1 log

{
pαq1−α + (1− p)α(1− q)1−α

}
.

The α-divergence is considered as an generalization of Kullback-Leibler divergence defined
by D(X‖Y ) :=

∑
x∈X PX(x) log(PX(x)/PY (x)) since it holds that limα→1 Dα(X‖Y ) = D(X‖Y ).

Note that the α-divergence is nonnegative for all α ≥ 0. We also note that α-divergence is equal
to 0 if and only if PX(·) = PY (·), similarly to Kullback-Leibler divergence.

2.2 Definitions of Conditional Rényi Entropies

Similarly to Shannon entropy, it is natural to consider the conditional Rényi entropies. However,
several definitions of conditional Rényi entropies have been proposed, e.g.,[17], [18], [19, 20], [21],
and [9]. In particular, relations and properties are discussed in [8] among three kinds of conditional
Rényi entropies such as

RC
α(X|Y ) :=

∑
y∈Y

PY (y)Rα(X|Y = y) (2)

RJA
α (X|Y ) := Rα(XY )−Rα(Y ) (3)

RRW
α (X|Y ) := 1/(1− α)max

y∈Y
log
∑
x∈X

PX|Y (x|y)α (4)

defined in [18], [19, 20], and [21], respectively. The definitions RC
α(X|Y ) and RJA

α (X|Y ) can be
interpreted as extensions of conditional Shannon entropy since they are analogues of H(X|Y ) :=∑

y∈Y PY (y)H(X|Y = y) and H(X|Y ) := H(XY ) − H(Y ), respectively. The third definition
RRW

α (X|Y ) is obtained by letting ε = 0 of the conditional smooth Rényi entropy [21].
Moreover, there are two conditional Rényi entropies are known other than the above. They

are defined as

RA
α(X|Y ) :=

α

1− α
log
∑
y∈Y

PY (y)

{∑
x∈X

PX|Y (x|y)α

}1/α

(5)

RH
α(X|Y ) :=

1
1− α

log
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y)α (6)

which are introduced in [17] and [9], respectively. Both of these conditional Rényi entropies are
outside the scope of [8].

RA
α(X|Y ) is used in [17] to show that the strong converse of channel coding theorem. RH

α(X|Y )
is defined in [9] to derive an upper bound of leaked information in universal privacy amplification.

Not only the conditional Rényi entropies discussed in [8] but also RA
α(X|Y ) and RH

α(X|Y )
is non-negative and is bounded by log |X |. Note that RA

α(X|Y ) = 0 and RH
α(X|Y ) = 0 hold if

and only if every x is obtained from a certain y ∈ suppPY deterministically. On the other hand,
RA

α(X|Y ) = RH
α(X|Y ) = log |X | holds, if X and Y are statistically independent and X is uniformly

distributed on X . The proofs are not so hard and we omit them (Proofs for RA
α(X|Y ), see [17]).

Note that the following fundamental relations hold with respect to RH
α(X|Y ) and RA

α(X|Y ).

Theorem 1 For a fixed real number α ≥ 0, the probability distributions PY , and the conditional
probability distribution PX|Y , it holds that

RH
α(X|Y ) ≤ RA

α(X|Y ). (7)

Proof. See Appendix A.1. 2
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2.3 Fundamental Requirements for Conditional Rényi entropies

Here, we discuss fundamental properties required to conditional Rényi entropies from axiomatic,
information theoretic, and cryptographic viewpoints. In this section, Rényi entropies are not
restricted to each definitions, and hence, it is denoted by Rα(X|Y ).

Axiomatic Consideration Recall that Rényi entropy is axiomatically obtained, namely, Rényi
entropy is the unique quantity (up to a constant factor) that satisfies weakened postulates for
Shannon entropy [7]. According to [7], the postulates that characterize the Shannon entropy are,
(a) H(X) is a symmetric function with respect to each probability in a probability distribution
of X; (b) H(X) is a continuous function of PX ; (c) H(X) = 1 if X is a uniform binary random
variable, and; (d) the chain rule, i.e., H(XY ) = H(Y ) + H(X|Y ) holds4, where H(X|Y ) :=∑

y H(X|Y = y) = −
∑

x,y PXY (x, y) log PX|Y (x|y). Then, Rényi entropy is obtained by (a)–(c)
and, instead of (d), H(XY ) = H(X) + H(Y ) if X and Y are statistically independent.

Based on this derivation, it might be acceptable to require conditional Rényi entropies to
satisfy (a)–(c) with conditioned random variables. Namely,

– Rα(X|Y ) is symmetric with respect to {PX|Y (x|y)}x∈X for each y ∈ Y, and {PY (y)}y∈Y .
– Rα(X|Y ) is a continuous function with respect to PXY (·, ·).
– Rα(X|Y ) = 1 if a binary random variable X is uniformly distributed for given Y , i.e.,

PX|Y (1|y) = PX|Y (0|y) = 1/2 for all y ∈ suppY , where supp Y := {y ∈ Y | PY (y) > 0}.

All conditional Rényi entropies in this paper satisfy the above properties although we omit their
proof.

Since the postulate (d) is replaced with H(XY ) = H(X) + H(Y ), it is natural that Rényi
entropies do not satisfy the chain rule. Actually, it is pointed out in [8, Theorem 5] that RC

α(X|Y )
and RRW

α (X|Y ) do not satisfy the chain rule for arbitrary α 6= 15. We will see in Section 2.4 that
the chain rules also do not hold for RA

α(X|Y ) and RH
α(X|Y ).

Instead, we consider several fundamental properties related to chain rule. Note that, mono-
tonicity, i.e., H(XY ) ≥ H(X) is derived from the chain rule since non-negativity holds for con-
ditional Shannon entropies. Hence, the non-negativity for conditional Rényi entropies and mono-
tonicity for Rényi entropies are important. In fact, it is known that the monotonicity holds for
Rényi entropies. Hence, we are interested in the monotonicity for the conditional Rényi entropies.
Namely, it is desirable to satisfy that Rα(X|Z) ≤ Rα(XY |Z) for random variables X, Y , and Z.
This inequality for conditional Shannon entropies are introduced in [13, (13.9) in Lemma 13.6]
as a useful one. Hence, we will investigate the following properties:

– (Non-negativity) Rα(X|Y ) ≥ 0 for all random variables X and Y .
– (Conditioned monotonicity) Rα(X|Z) ≤ Rα(XY |Z) for random variables X, Y , and Z, where

the equality holds if Y = f(X, Z) for some (deterministic) mapping f .

It is easy to show that the conditional Rényi entropies in this paper satisfy the non-negativity,
the proofs of them are omitted.

It is also known that Rényi entropies do not satisfy the subadditivity since only the additivity
for independent random variables is required instead of the postulate (d) for Rényi entropies.
Subadditivity for Shannon entropy is written as H(XY ) ≤ H(X) + H(Y ), which is equivalent to
H(X|Y ) ≤ H(X). This inequality is called as “Conditioning reduces entropy” [11], CRE for short.
Note that CRE states that the entropy of random variable X decreases if some information Y
related to X is revealed. On the other hand, monotonicity implies that the entropy of X increases
if some information is added.
4 This form of the chain rule is inductively obtained by using the postulate (d) in [7, p. 547].
5 In the case of α = 1, conditional Rényi entropies coincide with conditional Shannon entropy, and hence, chain

rule is of course satisfied. In addition, it is obvious that RJA
α (X|Y ) also satisfies the chain rule since it is defined

to satisfy the chain rule.
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Furthermore, we can consider an inequality I(X; Z|Y ) ≥ 0, which is a direct consequence of
CRE, i.e., H(X|Y Z) ≤ H(X|Y ). This property is often used in proving information theoretic
inequality, e.g., see Proof I in Section 5.2. Also, combining this inequality with the chain rule, we
can prove that Shannon entropy is a polymatroid function [22].

In the case of Shannon entropy, I(X; Z|Y ) = 0 holds when X, Y , and Z form a Markov chain
in this order [11], in symbols X ↔ Y ↔ Z. Moreover, we note that stronger inequality than
H(X|Y Z) ≤ H(X|Y ) is known for Shannon entropy if X ↔ Y ↔ Z. In this case, it holds that
H(X|Z) ≤ H(X|Y ), which is equivalent to I(X; Z) ≥ I(X;Y ), called Data Processing inequality
(DPI).

Summarizing, we will investigate in the following properties:

– (CRE) Rα(X|Y ) ≤ Rα(X) for all random variables X and Y , where the equality holds if X
and Y are independent.

– (DPI) If random variables X, Y , and Z form a Markov chain, it holds that Rα(X|Y ) ≥
Rα(X|Z), where the equality holds if there exists a surjective mapping f : Y → Z.

Independency Similarly to conditional Shannon entropy, conditional Rényi entropy is hopefully
a measure of dependency between random variables X and Y . First, we consider the case where
random variables X and Y are independent. In this case, Rα(X|Y ) = Rα(X) is necessary to be
satisfied. Note that Rα(X|Y ) = Rα(X) holds if Y is deterministic since every random variable is
independent from the deterministic event. Next, let us consider more general case, i.e., random
variables X and Y are mutually correlated. In such a case, we often use the mutual information
I(X; Y ) := H(X)−H(X|Y ) = H(Y )−H(Y |X). It is very fundamental property that I(X; Y ) ≥
0, i.e., H(X|Y ) ≥ H(X), and here, we find CRE again.

Relation to other entropies Rényi entropy is an extension of many information measures such
as Shannon entropy, min-entropy, and Hartley entropy, collision entropy, etc. In particular, from
a cryptographic viewpoint, Shannon and min-entropies are prominently important. Hence, it is
better if Rα(X|Y ) satisfies the following properties:

(i) limα→1 Rα(X|Y ) = H(X|Y ).
(ii) Conditional Rényi entropy of order α converges to conditional min-entropies if α→∞.

Similarly to conditional Rényi entropies, we can find several definitions of conditional min-
entropies. Among them, the average conditional min-entropy

Ravg
∞ (X|Y ) := − log EY

[
max

x
PX|Y (x|Y )

]
(8)

proposed in [10] is important from a cryptographic viewpoint, e.g., [10, 23–27] . Also, we can find
the worst case conditional min-entropy (e.g., in the analysis of physically unclonable functions
(PUFs), see [28]).

Rwst
∞ (X|Y ) := − log max

x∈X
y∈supp PY

PX|Y (x|y). (9)

Here we note that the conditional Rényi entropies RC
α(X|Y ), RJA

α (X|Y ), and RRW
α (X|Y ) do

not satisfy either (i) or (ii) shown above. Namely, it is pointed out in [8] that,

– limα→∞ RRW
α (X|Y ) = Rwst

∞ (X|Y ) but limα→1 RRW
α (X|Y ) 6= H(X|Y ),

– limα→1 RN
α(X|Y ) = H(X|Y ) but limα→∞ RN

α(X|Y ) 6= Ravg
∞ (X|Y ), Rwst

∞ (X|Y ) for N ∈ {C, JA}.

In the above sense, RN
α(X|Y ), N ∈ {C, JA,RW} do not satisfy our requirements for conditional

Rényi entropies. In addition, note that (8) is not sufficiently analyzed in [8] since the condi-
tional Rényi entropies corresponding to Ravg

∞ (X|Y ) is not provided in the literature while it plays
important roles in many cryptographic applications,
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One of the reasons why we focus on RA
α(X|Y ) and RH

α(X|Y ) is that the conditional Rényi
entropy RA

α(X|Y ) and RH
α(X|Y ) missing in [8] actually bridge the conditional Shannon entropy

and the conditional min-entropy appeared in cryptography as shown below:

Theorem 2 For random variables X and Y , following relations are satisfied:

(i) lim
α→1

RA
α(X|Y ) = lim

α→1
RH

α(X|Y ) = H(X|Y ).

(ii) lim
α→∞

RA
α(X|Y ) = Ravg

∞ (X|Y ), and lim
α→∞

RH
α(X|Y ) = Rwst

∞ (X|Y ).

Proof. The proof of limα→1 RA
α(X|Y ) = H(X|Y ) is provided in [17]. For the rest of the proofs,

see Appendix A.2. 2

Therefore, in this paper, we will mainly focus on the properties of conditional Rényi entropies
RA

α(X|Y ) and RH
α(X|Y ).

2.4 Chain Rule and Weak Chain Rule for Conditional Rényi entropies

Based on the discussion of the previous section, it might be hard to expect that the conditional
Rényi entropies satisfy the chain rule. According to [8], we can readily know that the chain rule
will not hold with equality if the conditionally Rényi entropies satisfies CRE since, by defining the
conditional Rényi entropy as RJA

α (X|Y ) := Rα(XY ) − Rα(Y ) [19, 20], it does not satisfy CRE.
Hence, we aim to relax the requirement so that the chain rule holds with inequality.

Definition 3 For N ∈ {C, RW, A, H}, we say that the conditional Rényi entropy RN
α(X|Y ) sat-

isfies weak chain rule if, for arbitrarily fixed α ≥ 0, either Rα(XY ) ≥ RN
α(X|Y ) + Rα(Y ) or

Rα(XY ) ≤ RN
α(X|Y ) + Rα(Y ) holds for arbitrarily random variables X and Y . These conditions

are equivalent to RJA
α (X|Y ) ≥ RN

α(X|Y ) and RJA
α (X|Y ) ≤ RN

α(X|Y ), respectively.

Proposition 1 ([8]) Let X and Y be random variables taking values in finite sets X and Y,
respectively. Then, it holds that RJA

α (X|Y ) ≥ RRW
α (X|Y ) if α > 1, RJA

α (X|Y ) ≤ RRW
α (X|Y ),

otherwise. On the other hand, the values of RJA
α (X|Y ) and of RC

α(X|Y ) are incomparable.

Proposition 1 implies that only RRW
α (X|Y ) satisfies the weak chain rule. However, similarly

to RC
α(X|Y ), we can show that RA

α(X|Y ) and RH
α(X|Y ) do not satisfy the chain rule even in a

weak sense.

Proposition 2 For N ∈ {A, H}, the values of RJA
α (X|Y ) and RN

α(X|Y ) are incomparable. Namely,
for a fixed α, there exist probability distributions PXY and PX′Y ′ satisfying Rα(XY ) > RN

α(X|Y )+
Rα(Y ) and Rα(X ′Y ′) < RN

α(X ′|Y ′) + Rα(Y ′).

This proposition can be verified by the following example in a binary alphabet case:

Example 1 Consider the following two cases:

Case I. PXY (0, 0) = 1/2, PXY (0, 1) = 1/8, PXY (1, 0) = 1/4, and PXY (1, 1) = 1/8.
Case II. PXY (0, 0) = 3/8, PXY (0, 1) = 1/4, PXY (1, 0) = 5/16, and PXY (1, 1) = 1/16.

The graph of ϕN(α) := Rα(XY )−RN
α(X|Y )−Rα(Y ) for N ∈ {A, H} are depicted in Fig. 1–(a),(b)

in Appendix, which means that Rα(XY ) > RN
α(X|Y ) + Rα(Y ) holds only when 0 ≤ α < 1 with

Cases A, but Rα(XY ) < RN
α(X|Y )+Rα(Y ) holds only when 0 ≤ α < 1 with Case B. Recall that,

in the case of α = 1, Rényi entropies coincide with Shannon entropies. Hence, in this case, the
chain rule, i.e., ϕN(1) = 0, holds.

3 Information Theoretic Inequalities for Rényi Entropies

As is pointed out in Theorem 2, the conditional Rényi entropies RA
α(X|Y ) and RH

α(X|Y ) are
related to cryptographically meaningful min-entropies. Furthermore, in this section, we show
that several important inequalities are satisfied by these conditional Rényi entropies, which is
another reason why we are focusing on them.
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3.1 Conditioning Reduces Entropy

First, we discuss “conditioning reduces entropy” (CRE, [11]), which is formulated as, in the case
of Shannon entropies, H(X) ≥ H(X|Y ) for arbitrary random variables X and Y . It is well known
that CRE is very useful and fundamental property in proving information theoretic inequalities.
However, it is known that several definitions of Rényi entropies do not satisfy CRE. Actually, it
is pointed out in [8] that RC

α(X|Y ), RJA
α (X|Y ), and RRW

α (X|Y ) given by (2)–(4), respectively, do
not satisfy CRE in general6.

Fortunately, however, we will point out in this section that RA
α(X|Y ) and RH

α(X|Y ), which are
outside the scope of [8], satisfy CRE in general, and in particular, we can observe that Ravg

∞ (X|Y )
and Rwst

∞ (X|Y ) satisfy CRE, though it is possible to show it directly. This fact is very useful to
show the forthcoming results in symmetric key cryptography in Section 5, and gives one of the
reasons why the conditional min-entropies Ravg

∞ (X|Y ) and Rwst
∞ (X|Y ) work well.

In the following, we will focus on CRE with respect to RH
α(X|Y ) since CRE for RA

α(X|Y )
is proved in [17, 29]. In order to understand CRE for Rényi entropy RH

α(X|Y ), we introduce a
conditional α-divergence defined by the same idea with RH

α(X|Y ) in the following form.

Definition 4 ([30]) Let X1, X2, and Y be random variables taking values on X1, X2, and Y,
respectively. Assume that the probability distributions of these random variables are given by
PX1|Y (·|y) = W (·|y)Q(y), PX2|Y (·|y) = V (·|y)Q(y) for all y ∈ Y with a probability distribution
Q(·) and conditional probability distributions W (·|·) and V (·|·).

Then, for a real number α ≥ 0, define the conditional α-divergence Dα(X1‖X2|Y ) to be

Dα(X1‖X2|Y ) := Dα(W‖V |Q) =
1

α− 1
log
∑
x,y

W (x|y)α

V (x|y)α−1
Q(y). (10)

Similarly to the conditional Rényi entropies, Dα(X1‖X2|Y ) satisfies the fundamental proper-
ties of conditional α-divergence. For a real number α ≥ 0, the conditional α-divergence satisfies
the following properties:

Proposition 3 Let X1, X2, and Y be random variables following the probability distributions
PX1|Y (·|y) = W (·|y)Q(y), PX2|Y (·|y) = V (·|y)Q(y) for all y ∈ Y.

Then, for a real number α ≥ 0, α-divergence Dα(X1‖X2|Y ) satisfies the following properties:

(i) Dα(X1‖X2|Y ) ≥ 0, where the equality holds if and only if W (·|y) = V (·|y) for all y ∈ suppQ.
(ii) limα→1 Dα(X1‖X2|Y ) = D(X1‖X2|Y ) :=

∑
x,y Q(y)W (x|y) log(W (x|y)/V (x|y)).

Proof. The property (ii) is pointed out in [30] without proof. We provide the formal proofs for (i)
and (ii) in Appendix A.3 for readers’ convenience. 2

Our derivation of CRE is immediately obtained from the following relation:

Theorem 3 Let X, Y , and Z be random variables taking values on finite sets X , Y and Z,
respectively. For all α ≥ 0, it holds that

Rα(X)−RH
α(X|Y ) = Dα(PY |X‖PY |PXα) (11)

where PXα(x) := PX(x)α/
∑

x̃ PX(x̃)α for x ∈ X .

While this theorem follows from the identity obtained by [30, eq. (21)], by letting QAB(a, b) =
PA(a)PU (b) where U follows the uniform distribution, the direct proof is given as follows:

Proof. Observe that{∑
x

PX(x)α

}−1∑
x,y

PY (y)PX|Y (x|y)α =

{∑
x

PX(x)α

}−1∑
x,y

PXY (x, y)αPY (y)1−α

=
∑
x,y

PX(x)α∑
x PX(x)α

PY |X(y|x)αPY (y)1−α. (12)

6 We can show that CRE is satisfied by RRW
α (X|Y ) in the case of α > 1. See Prop. 15 of Section 7.
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Taking the logarithms of both sides of (12) and multiplying −1/(1− α), we obtain (11). 2

This relation (11) is an analogue of the well-known definition of the mutual information:
I(X; Y ) := H(X)−H(X|Y ) since the mutual information can be written as

I(X;Y ) := D(PXY ‖PXPY ) =
∑
x,y

PY (x)PY |X(y|x) log
PY |X(y|x)

PY (y)
= D(PY |X‖PY |PX)

Note that I(X; Y ) = I(Y ; X) = D(PX|Y ‖PX |PY ) and it is easy to check that the conditional
divergence of order α satisfies that Dα(PX|Y ‖PX |PY ) = Dα(PY |X‖PY |PX). On the other hand,
it is obvious that Dα(PX|Y ‖PX |PYα) = Dα(PY |X‖PY |PXα) does not hold generally, and hence,
Rα(X)−RH

α(X|Y ) = Rα(Y )−RH
α(Y |X) also does not hold for general α.

Hence, it is natural to define a mutual information of order α by

IH
α (X; Y ) := Rα(X)−RH

α(X|Y ), (13)

which is similar to the Arimoto’s mutual information of order α defined by

IA
α (X; Y ) := Rα(X)−RA

α(X|Y ), (14)

in the context of describing channel coding theorem in a general setting [17] .

Remark 1 Note that IH
α (X;Y ) and IA

α (X;Y ) are not symmetric, i.e., IH
α (X; Y ) 6= IH

α (Y ; X) and
IA
α (X; Y ) 6= IA

α (Y ;X) in general. In addition, it is seen that IA
α (X; Y ) ≤ IH

α (X; Y ) in general,
since RH

α(X|Y ) ≤ RA
α(X|Y ). As we will see immediately, RH

α(X|Y ) satisfies CRE as well as
RA

α(X|Y ), it is easy to see that both of IA
α (X; Y ) and IH

α (X; Y ) are non-negative, and they are
equal to zero if X and Y are statistically independent.

From Theorem 3, the following relation follows quite easily. Recall that Dα(PY |X‖PY |PXα) = 0
if X and Y are statistically independent.

Theorem 4 (Conditioning reduces entropy) Let X and Y be random variables taking values
on X and Y, respectively. For all α ≥ 0, it holds that

RH
α(X|Y ) ≤ Rα(X), (15)

where the equality holds if X and Y are statistically independent.

Remark 2 Although Theorem 4 is a direct consequence of Theorem 3, this theorem itself directly
follows from Jensen’s inequality as shown below:

Alternative Proof of Theorem 4. From Jensen’s inequality, in the case of 0 ≤ α < 1, we have

EY

[∑
x∈X

PX|Y (x|Y )α

]
≤
∑
x∈X

EY

[
PX|Y (x|Y )

]α =
∑
x∈X

PX(x)α.

Similarly, it holds that EY

[∑
x∈X PX|Y (x|Y )α

]
≥
∑

x∈X PX(x)α in the case of α ≥ 1. 2

3.2 Data Processing Inequality

If random variables X, Y , and Z, taking values on finite sets X , Y, and Z, respectively, satisfy

PXZ|Y (x, z|y) = PX|Y (x|y)PZ|Y (z|y), for all x ∈ X , y ∈ Y, and z ∈ Z (16)

we say that X, Y , and Z form a Markov chain, in symbols X ↔ Y ↔ Z. The data processing
inequality (DPI, [11]) tells us that I(X; Y ) ≥ I(X; Z) holds if X ↔ Y ↔ Z. We can extend
Theorem 4, in the following way:
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Theorem 5 (Data processing inequality) Let X, Y , and Z be random variables taking on
finite sets X , Y, and Z, respectively, and assume that X ↔ Y ↔ Z. Then it holds that IA

α (X; Y ) ≥
IA
α (X; Z) and IH

α (X; Y ) ≥ IH
α (X; Z) for arbitrary α ≥ 0. The equality holds if and only if there

exists a surjective mapping f : Y → Z.

Proof. Without loss of generality, we can write Z = g(Y, R) where g : Y×R → Z is a deterministic
mapping, and R is a random variable taking values on a finite set and is independent of X. Then,
we have both of RA

α(X|g(Y, R), Y, R) = RA
α(X|Y R) and RH

α(X|g(Y, R), Y,R) = RH
α(X|Y R) since

g is deterministic. Noticing that X ↔ Y ↔ R, it holds that

PX|Y R(x|y, r) =
PXR|Y (x, r|y)

PR|Y (r|y)
=

PX|Y (x|y)PR|Y (r|y)
PR|Y (r|y)

= PX|Y (x|y) (17)

for all x ∈ X , y ∈ Y, and z ∈ Z, where the second equality is validated by the Markov chain.
Hence, we have RA

α(X|Y R) = RA
α(X|Y ) and RH

α(X|Y R) = RH
α(X|Y ). Since conditioning reduces

entropy, we obtain RA
α(X|Y ) ≤ RA

α(X|g(Y, R)) and RH
α(X|Y ) ≤ RH

α(X|g(Y, R)), which completes
the proof. 2

Remark 3 DPI is very useful since it implies that the quality of information degenerates by
processing the information. It is worth noting that DPI generally holds only if we use RA

α(X|Y )
and RH

α(X|Y ) since DPI is extension of CRE.

3.3 Conditioned Monotonicity

It is well known that Shannon entropy satisfies monotonicity and subadditivity, i.e., H(X) ≤
H(XY ) and H(XY ) ≤ H(X) + H(Y ), respectively, for random variables X and Y . However,
since RJA

α (X|Y ) does not satisfy CRE in general [8], it is easy to see that Rényi entropy only
satisfies monotonicity. Here, we show an extended monotonicity for conditional Rényi entropy,
which is also useful in cryptographic applications. In the case of Shannon entropy, this results is
easily verified by subadditivity, while this fact is presented in [13, (13.9) in Lemma 13.6].

Theorem 6 Let X, Y , and Z be random variables taking values on finite sets X , Y, and Z,
respectively. Then, for N ∈ {A, H}, we have:

(i) RN
α(X|Z) ≤ RN

α(XY |Z),
(ii) RN

α(X|Z) = RN
α(XY |Z) if and only if Y = f(X, Z) for some (deterministic) mapping f .

Proof. Although (i) for RA
α(X|Y ) is proved in [29, Proposition 2], we will prove this claim for

both conditional Rényi entropies simultaneously. For any α with 0 ≤ α < 1 and arbitrary z ∈ Z,
it holds that∑

x,y

PXY |Z(x, y|z)α =
∑

x

PX|Z(x|z)α
∑

y

PY |XZ(y|x, z)α ≥
∑

x

PX|Z(x|z)α. (18)

Hence, we have

∑
z

PZ(z)

(∑
x,y

PXY |Z(x, y|z)α

)1/α

≥
∑

z

PZ(z)

(∑
x

PX|Z(x|z)α

)1/α

, (19)∑
z

PZ(z)
∑
x,y

PXY |Z(x, y|z)α ≥
∑

z

PZ(z)
∑

x

PX|Z(x|z)α, (20)

which result in RA
α(X|Z) ≤ RA

α(XY |Z) and RH
α(X|Z) ≤ RH

α(XY |Z), respectively. Equalities of
RN

α(X|Z) = RN
α(XY |Z) holds if and only if the equality of (18) holds, i.e.,∑

y

PY |XZ(y|x, z)α = 1. (21)
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holds for all x, z with PXZ(x, z) > 0. For any x, z with PXZ(x, z) > 0, (21) holds if x and z
uniquely determine y = f(x, z). Coversely, for any x, z with PXZ(x, z) > 0, if (21) holds, we
can define a deterministic mapping f by y := f(x, z) such that PY |XZ(y|x, z) = 1. Therefore,
RN

α(X|Z) = RN
α(XY |Z) is equivalent to the condition (21), and it is also equivalent to Y =

f(X, Z) for some deterministic mapping f .
The case of α > 1 can be similarly discussed, and we omit it. In addition, the statement in

the case α = 1 is true, since it means the case of Shannon entropy. 2

3.4 Fano’s Inequality

In this section, we derive upper-bounds for RH
α(X|Y ), and they can be seen as extension of Fano’s

inequality (see Remark 4).

Theorem 7 Let X and Y be random variables taking values in a finite set X . Also, let Pe :=
Pr{X 6= Y } and P̄e := 1− Pe. Then, for α ≥ 0, we have the following inequalities.

(i) If 0 ≤ α ≤ 1 and Pe ≥ 1− 1
|X | , or α ≥ 1 and 0 ≤ Pe ≤ 1− 1

|X | , it holds that

RH
α(X|Y ) ≤ 1

1− α
log
[
(|X | − 1)1−αPα

e + P̄α
e

]
.

(ii) If 0 ≤ α ≤ 1 and 0 ≤ Pe ≤ 1− 1
|X | , or α ≥ 1 and Pe ≥ 1− 1

|X | , it holds that

RH
α(X|Y ) ≤ 1

1− α
log
[
(|X | − 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
.

Here, in the above inequalities the case α = 1 is meant to take the limits at α = 1, and the case
Pe = 0 is meant to take the limits at Pe = 0.

Proof. See Appendix A.4 2

Remark 4 In Theorem 2 it is shown that limα→1 RH
α(X|Y ) = H(X|Y ). On the other hand, by

applying the L’Hospital’s rule to the right hands of inequalities in Theorem 7, we obtain the
following finite limits at α = 1:

(i) lim
α→1

1
1− α

log
[
(|X | − 1)1−αPα

e + P̄α
e

]
= Pe log(|X | − 1) + h(Pe),

(ii) lim
α→1

1
1− α

log
[
(|X | − 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
= Pe log(|X | − 1) + h(Pe),

where h(·) is the binary entropy function. Therefore, by taking the limit at α = 1 for each
of inequalities in Theorem 7, we obtain Fano’s inequality as a special case. In this sense, our
inequalities in Theorem 7 can be considered as extension of Fano’s inequality.

Remark 5 Note that Fano’s inequality implies H(X|Y )→ 0 as Pe → 0. Theorem 7 implies that,
for any α ≥ 0, RH

α(X|Y )→ 0 as Pe → 0, as we would expect.

4 Security Criteria Based on Conditional Rényi Entropies

4.1 Motivation and Significance

Our motivation and significance for considering security criteria based on conditional Rényi en-
tropies lies in two points.

The first point lies in realistic significance which is deeply related to guessing probability by
adversaries. In Section 4.3, we show that (conditional) Rényi entropies play an important role
to derive a lower bound on failure of guessing by adversaries, and it turns out that our security
criteria is a sufficient condition to make it reasonably large enough. Our way of thinking is also
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related to the recent elegant approach in information theory in order to show the converse of
channel coding theorem in finite blocklength regime [30, 31].

The second point lies in mathematical importance for generalizing Shannon’s impossibility (or
Shannon’s bounds) in information-theoretic cryptography. The purpose is to extend and unify
existing notions and techniques by considering (conditional) Rényi entropies which cover various
kinds of entropies such as the (conditional) Shannon entropy, collision entropy, and min-entropy.
Specifically, for symmetric-key encryption protocols, there exist several known bounds on secret-
keys including the Shannon’s bounds (see Section 4.2). And, our purpose is to extend those bounds
in a generic and unified manner by using security criteria based on conditional Rényi entropies.

4.2 Existing Lower Bounds on Secret-keys

We describe well-known Shannon’s bound [4] for symmetric-key encryption and its extensions (or
variants) by Dodis [5], and Alimomeni and Safavi-Naini [6]. To discribe the bounds, we use the
following notation: let K, M , and C be random variables which take values in finite sets K,M, and
C of secret-keys, plaintexts, and ciphertexts, respectively. Informally, a symmetric-key encryption
is said to meet perfect correctness if it has no decryption-errors; a symmetric-key encryption is
said to meet perfect secrecy if it reveals no information about plaintexts from ciphertexts, which
is formalized by H(M |C) = H(M) (see Section 5 for the formal model of encryption protocols
and its explanation).

Proposition 4 (Shannon’s bound: [4]) Let Π be a symmetric-key encryption such that both
encryption and decryption algorithms are deterministic. If Π satisfies perfect correctness and
perfect secrecy, we have H(K) ≥ H(M) and |K| ≥ |M|.

Proposition 5 (Dodis’s bound: Th.3 in [5]) Let Π be a symmetric-key encryption. If Π sat-
isfies perfect correctness and perfect secrecy, we have R∞(K) ≥ R∞(M).

Proposition 6 (Alimomeni and Safavi-Naini’s bound: Th.2 in [6]) Let Π be a symmetric-
key encryption such that both encryption and decryption algorithms are deterministic. If Π sat-
isfies both R∞(M) = Ravg

∞ (M |C) and perfect correctness, we have R∞(K) ≥ R∞(M).

4.3 Lower Bounds on Failure Probability of Adversary’s Guessing

We show that lower bounds on failure probability of adversary’s guessing are given by conditional
Rényi entropies, RH

α(M |C) or RA
α(M |C), in general.

Let α > 1. Suppose that an adversary obtains a ciphertext C by observing a channel, and
he chooses an arbitrary function g. Let M̂ := g(C), Pe := Pr{M 6= M̂}, and P̄e := 1 − Pe. The
purpose of the adversary is to maximize Pr{M = M̂} = P̄e (or equivalently, to minimize Pe) by
taking a guessing strategy g. Without loss of generality, we assume P̄e ≥ 1/|M|.

First, we derive a lower bound on Pe by using IH
α (M ; C). By the inequalities

Rα(M) = IH
α (M ; C) + RH

α(M |C)
≤ IH

α (M ; C) + RH
α(M |M̂) (22)

≤ IH
α (M ; C) +

1
1− α

log
[
(|M| − 1)1−αPα

e + P̄α
e

]
, (23)

where (22) follows from DPI for RH
α(X|Y ) and (23) follows from our extension of Fano’s inequality

(i.e., Theorem 7), we have

exp
{

(1− α)[Rα(M)− IH
α (M ; C)]

}
≥ (|M| − 1)1−αPα

e + P̄α
e

≥ (1− Pe)α. (24)
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By (24), we obtain

Pe ≥ 1− exp
{

1− α

α
[Rα(M)− IH

α (M ; C)]
}

.

Therefore, we obtain the following result.

Theorem 8 The failure probability of adversary’s guessing is lower-bounded by

Pe ≥ 1− exp
{

1− α

α
Rα(M)

}
exp

{
α− 1

α
IH
α (M ;C)

}
. (25)

In particular, if PM is the uniform distribution, we have

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IH
α (M ; C)

}
. (26)

If we impose security criteria IH
α (M ; C) ≤ ε for small ε (say, ε = 0) for an encryption proto-

col (note that any other quantity Rα(M), |M| is independent of security of the protocol), the
above lower bound can be large, and hence the adversary cannot guess a target plaintext from a
ciphertext with reasonable probability even if he chooses a powerful guessing strategy g.

Remark 6 The bound (25) is tight for α = 2 and α =∞ in the following sense.

– Case of α = 2: Consider the case that IH
2 (M ;C) = 0 and PM is the uniform distribution.

Then, (26) implies that Pe ≥ 1 − exp(−1
2R2(M)) = 1 − 1√

|M|
, or equivalently P̄e ≤ 1√

|M|
.

The equality of this bound is achievable, since it is the collision probability (i.e., an adversary
can take a strategy which selects a plaintext according to PM ).

– Case of α = ∞: Consider the case IH
∞(M ; C) = 0. Then, (25) implies that Pe ≥ 1 −

exp(−R∞(M)) = 1 −maxm PM (m), or equivalently P̄e ≤ maxm PM (m). The equality of this
bound is achievable, since an adversary can take a strategy g(C) = arg maxm PM (m).

Second, we discuss a lower bound on Pe by using IA
α (M ; C). Before discussion, we note the

following previous results.

Definition 5 ([32]) For random variables X, Y , and a real number ρ 6= 1, the Gallager’s func-
tion is defined by

E0(ρ, PX , PY |X) = − log
∑

y

(∑
x

PX(x)PY |X(y|x)
1

1+ρ

)1+ρ

.

Proposition 7 ([17]) For random variables X and Y , it holds that

IA
α (X; Y ) =

α

1− α
E0(α−1 − 1, PXα , PY |X)

where PXα is given by PXα(x) = PX(x)α
P

x̃ PX(x̃)α . Conversely, for random variables X and Y , we have

α

1− α
E0(α−1 − 1, PX , PY |X) = IA

α (X1/α; Y ),

where PX1/α
is given by PX1/α

(x) = PX(x)1/α
P

x̃ PX(x̃)1/α .



14

Proposition 8 ([30]) For a real number α > 0, and for distributions PX , PX̂ over X such that
ε := Pr{X 6= X̂} ≤ 1− 1

|X | , it holds

dα(1− ε ‖ 1/|X |) ≤ α

1− α
E0(α−1 − 1, PX , PX̂|X).

In particular, we have

α

α− 1
log(1− ε) + log |X | ≤ α

1− α
E0(α−1 − 1, PX , PX̂|X).

Now, let’s be back to our discussion. We use the same notation as in the case of IH
α (M ;C).

By combining the above propositions, we have

α

α− 1
log(1− Pe) + log m ≤ α

1− α
E0(α−1 − 1, PM , PM̂ |M )

= IA
α (M1/α; M̂)

≤ IA
α (M1/α;C),

where M̂ = g(C), PM1/α
(m) = PM (m)1/α

P

m̃ PM (m̃)1/α , and the last inequality follows from DPI for

RA
α(X|Y ). From the inequality, we obtain the following result.

Proposition 9 The failure probability of adversary’s guessing is lower-bounded by

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IA
α (M1/α; C)

}
. (27)

In particular, if PM is the uniform distribution, we have

Pe ≥ 1− |M|
1−α

α exp
{

α− 1
α

IA
α (M ; C)

}
. (28)

Remark 7 If PM is the uniform distribution, the bound (26) is directly obtained from the bound
(28) since IA

α (M ; C) ≤ IH
α (M ; C). However, it is not the case in general.

Therefore, IH
α (M ;C) ≤ ε or IA

α (M ; C) ≤ ε for an extremely small ε ∈ [0, 1] is a sufficient
condition to show that the failure probability of adversary’s guessing is large enough (or equiv-
alently, the success probability of adversary’s guessing is small enough). Our security criteria
based on conditional Rényi entropies is IH

α (M ;C) ≤ ε or IA
α (M ; C) ≤ ε, which is equivalent to

Rα(M) − RH
α(M |C) ≤ ε or Rα(M) − RA

α(M |C) ≤ ε, and it is natural to consider the security
criteria in terms of an adversary’s guessing probability.

5 Generalizing Shannon’s Impossibility in Encryption

In this section, we extend the bounds in Section 4.2 in a generic and unified manner by using
security criteria based on conditional Rényi entropies.

5.1 The Model and Security Definition

We explain the traditional model of (symmetric-key) encryption protocols. In the following, let
M (resp. C) be a finite set of plaintexts (resp. a finite set of ciphertexts). Also, let M be a random
variable which takes plaintexts inM and PM its distribution. C denotes a random variable which
takes ciphertexts c ∈ C.

Let Π = ([PED], πenc, πdec) be an encryption protocol as defined below:
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– Let PED be a probability distribution over E×D which is a finite set of pairs of encryption and
decryption keys. [PED] is a key generation algorithm, and it outputs (e, d) ∈ E ×D according
to PED;

– πenc is an encryption algorithm. It takes an encryption key e ∈ E and a plaintext m ∈ M
on input, and it outputs a ciphertext c← πenc(e,m), which will be sent via an authenticated
channel;

– πdec is a decryption algorithm. It takes on input a decryption key d ∈ D and a ciphertext
c ∈ C, and it outputs m̃← πdec(d, c) where m̃ ∈M.

If Π = ([PK ], πenc, πdec) (i.e., [PED] = [PKK ] and e = d), Π is said to be a symmetric-key
encryption.

In this paper, we do not require that πenc is deterministic, namely, πenc can be randomized.
Also, we assume that Π meets perfect correctness, namely, it satisfies πdec(d, πenc(e,m)) = m for
any possible (e, d) and m. In addition, we consider the case where an encryption protocol Π is
usable at most one time (i.e., the one-time model).

Let PM be a distribution onM, and we assume that it is fixed in the following discussion.

Definition 6 (Secrecy) For α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). An encryption
protocol Π is said to meet ε-secrecy with respect to Rα(·|·), if it satisfies

Rα(M)−Rα(M |C) ≤ ε.

In particular, Π meets perfect secrecy with respect to Rα(·|·), if ε = 0 above.

Note that the traditional notion of perfect secrecy (i.e., H(M |C) = H(M)) is equivalent to
that of perfect secrecy with respect to H(·|·) = RH

1 (·|·) = RA
1 (·|·) (i.e., α = 1)7. Also, ε-secrecy

with respect to RH
α(·|·) (resp., RA

α(·|·)) is equivalent to IH
α (M ;C) ≤ ε (resp., IA

α (M ; C) ≤ ε) (see
Section 4.3).

5.2 Basic Idea for Generalization of Shannon’s Impossibility

By Shannon’s work [4], it is well known that we have H(K) ≥ H(M) for symmetric-key encryption
with perfect secrecy (see Proposition 4), which is often called Shannon’s impossibility. It will be
natural to generalize or extend it to the Rényi entropy. However, there exist some difficulties to
generalize it in a technical viewpoint, since in general conditional Rényi entropies do not always
have rich properties like the conditional Shannon entropy as we have seen in Sections 2 and 3. In
this subsection, we briefly explain our idea of generalizing Shannon’s impossibility to the Rényi
entropy.

First, let’s recall two proof techniques used for deriving H(K) ≥ H(M) below, where PS, PC,
and CRE mean perfect secrecy, perfect correctness, and conditioning reduces entropy, respectively.

Proof I Proof II
H(M) = H(M |C) (by PS) H(M) = H(M |C) (by PS)

=H(M |C)−H(M |KC) (by PC) ≤H(MK|C) (by conditioned monotonicity)
= I(M ; K|C) =H(K|C) + H(M |KC) (by chain rule)
=H(K|C)−H(K|MC) =H(K|C) (by PC)
≤H(K|C) ≤H(K) (by CRE)
≤H(K) (by CRE)

In addition to PS and PC, the property commonly used in both proofs is CRE. From this
point of view, it would be reasonable to consider a class of conditional Rényi entropies RH

α(·|·)
and RA

α(·|·) which satisfy CRE. In addition, in order to complete the proofs, the useful property
of the mutual information (i.e., I(X; Y ) = I(Y ;X)) is used in Proof I, while the properties of
7 This condition is equivalent to I(M ; C) = 0, or equivalently, M and C are independent (i.e., PMC = PMPC).
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conditioned monotonicity and chain rule are used in Proof II. At this point, one may think it
hopeless to apply the technique in Proof I, since IH

α (X; Y ) 6= IH
α (Y ;X) and IA

α (X; Y ) 6= IA
α (Y ; X)

in general; and also one may think it hopeless to apply the technique even in Proof II, since
each of RH

α(·|·) and RA
α(·|·) does not satisfy the (weak) chain rule in general. Nonetheless, our

idea is to follow that of Proof II: our technical point is not to use the (weak) chain rule, but to
successfully utilize the equality condition of conditioned monotonicity in the case of PC. Owing
to our new results about conditional Rényi entropies in Sections 2 and 3, we can prove extension
of Shannons’s impossibility in a highly simple and unified way compared to other ways used for
the proofs in the bounds in Section 4.2, as will be seen in Section 5.3.

5.3 Lower Bounds

We newly derive a family of lower bounds on secret-keys with respect to (conditional) Rényi
entropies in a comprehensive way. And, it will be seen that our new bounds include all the
existing bounds in Section 4.2 as special cases.

Theorem 9 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π = ([PED], πenc, πdec)
be an encryption protocol satisfying perfect correctness. Then, we have the following bounds.

(i) (Lower bound on encryption-keys’ size) If Π satisfies Rα(C) ≤ Rα(C|M) + ε and πenc is
deterministic, we have Rα(E) ≥ Rα(C)− ε.

(ii) (Lower bound on decryption-keys’ size) Suppose that Π satisfies Rα(M) ≤ Rα(M |C) + ε.
Then, we have Rα(D) ≥ Rα(M)− ε.

(iii) (Lower bound on ciphertexts’ size) It holds that Rα(C) ≥ Rα(M).

Proof. First, we can show (i) as follows.

Rα(C) ≤ Rα(C|M) + ε
(a)

≤ Rα(CE|M) + ε
(b)
= Rα(E|M) + ε

(c)
= Rα(E) + ε, (29)

where (a) follows from Theorem 6 (i), (b) follows from Theorem 6 (ii) since πenc is deterministic,
and (c) follows from that M and E are independent.

Secondly, we can show (ii) as follows.

Rα(M) ≤ Rα(M |C) + ε
(a)

≤ Rα(MD|C) + ε
(b)
= Rα(D|C) + ε

(c)

≤ Rα(D) + ε, (30)

where (a) follows from Theorem 6 (i), (b) follows from Theorem 6 (ii) since Π meets perfect
correctness, and (c) follows from that both RH

α(·|·) and RA
α(·|·) satisfy CRE (see Theorem 4).

Finally, we show (iii). Let K̂ := (E, D). Then, we get

Rα(M)
(a)
= Rα(M |K̂)

(b)

≤ Rα(MC|K̂)
(c)
= Rα(C|K̂)

(d)

≤ Rα(C), (31)

where (a) follows from that K̂ and M are independent, (b) follows from Theorem 6 (i), (c) also
follows from Theorem 6 (ii) since Π meets perfect correctness, and (d) follows from that both
RH

α(·|·) and RA
α(·|·) satisfy CRE (see Theorem 4). 2

In particular, we obtain the following results for symmetric-key encryption protocols.

Corollary 1 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π = ([PK ], πenc, πdec)
be a symmetric-key encryption protocol which meets perfect correctness. Then, we have the fol-
lowing.

(i) If Π satisfies Rα(M) ≤ Rα(M |C) + ε, it holds that Rα(K) ≥ Rα(M)− ε.
(ii) If Π satisfies Rα(C) ≤ Rα(C|M) + ε and πenc is deterministic, we have Rα(K) ≥ Rα(C) −

ε and Rα(C) ≥ Rα(M).
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Proof. Suppose E = D = K in Theorem 9. The statement (i) follows from (ii) of Theorem 9.
Furthermore, the statement (ii) follows from (i) and (iii) of Theorem 9. 2

Corollary 2 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π = ([PK ], πenc, πdec)
be a symmetric-key encryption protocol which meets perfect correctness and ε-secrecy with respect
to Rα(·|·). Then, it holds that Rα(K) ≥ Rα(M)− ε.

Interestingly, the following proposition shows that traditional perfect secrecy implies a family
of lower bounds of the Rényi entropy Rα(·) for all α ≥ 0.

Corollary 3 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which meets both
perfect correctness and perfect secrecy. Then, for any α ≥ 0, it holds that Rα(K) ≥ Rα(M). In
particular, if πenc is deterministic, we have Rα(K) ≥ Rα(C) ≥ Rα(M).

Proof. For arbitrary α ≥ 0, let Rα(·|·) be RH
α(·|·) or RA

α(·|·). If Π meets perfect secrecy, or
equivalently, M and C are independent, it holds that Rα(M |C) = Rα(M) and Rα(C|M) =
Rα(C). Then, from Corollary 1 and by applying ε = 0, the proof is completed. 2

Remark 8 Note that the Shannon’s bounds (i.e., Proposition 4) are special cases of Corollary 3,
since they are obtained by applying α = 0, 1 in Corollary 38. Also, Dodis’s bound (i.e., Proposition
5) is a special case of Corollary 3, since it is obtained by applying α =∞ in Corollary 3. Further-
more, Alimomeni and Safavi-Naini’s bound (i.e., Proposition 6) is a special case of Corollary 2,
since it is obtained by applying ε = 0 and Ravg

∞ (·|·) = limα→∞ RA
α(·|·) in Corollary 29. Therefore,

since Corollaries 2 and 3 are special cases of Theorem 9, all the bounds are special cases of ours
in Theorem 9.

5.4 Construction

We note that H(M |C) = H(M) implies Rα(M |C) = Rα(M) for all α ≥ 0, where Rα(·|·) is RH
α(·|·)

or RA
α(·|·). Therefore, in this sense security criteria based on the Shannon entropy implies security

criteria based on the Rényi entropy. However, the converse is not true in general. Actually, security
criteria based on the min-entropy is strictly weaker than that of the Shannon entropy. Although
in [6] it is not shown that the lower bound in Proposition 6 is tight for symmetric-key encryption
protocols which do not meet perfect security, we can show that it is tight by considering the
following simple construction.

Suppose M = C = K = {0, 1} and PK(0) = PM (0) = p with 1/2 < p < 1. We consider
the one-time pad for 1-bit encryption Π1 = ([PK ], πenc, πdec), where πenc(k, m) = k ⊕ m and
πdec(k, c) = k ⊕ c.

Proposition 10 The above protocol Π1 does not meet perfect secrecy, and Π1 satisfies per-
fect secrecy with respect to Ravg

∞ (·|·), or equivalently IA
∞(M ; C) = 0. Furthermore, it holds that

R∞(K) = R∞(M) in Π1.

Proof. For the above protocol Π1, it holds that

PM |C(m|1) =
1
2

for any m ∈ {0, 1}, PM |C(0|0) =
p2

p2 + (1− p)2
, PM |C(1|0) =

(1− p)2

p2 + (1− p)2
.

Hence, it is clear that Π1 does not meet perfect secrecy. On the other hand, we have

Ravg
∞ (M |C) = − log

(∑
c

PC(c)max
m

PM |C(m|c)

)
= − log

(
PC(0) · p2

p2 + (1− p)2
+ PC(1) · 1

2

)
= − log

(
p2 + p(1− p)

)
= − log p = R∞(M).

8 Strictly speaking, the bounds are slightly more general than Shannon’s ones, since we have removed the assump-
tion that πenc and πdec are deterministic

9 Strictly speaking, the bound is slightly more general than Alimomeni and Safavi-Naini’s one, since we do not
assume that πenc and πdec are deterministic.
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In addition, it is obvious that R∞(K) = R∞(M) = − log p. Therefore, the proof is completed. 2

Remark 9 In the above construction Π1, we note that limα→∞ RH
α(M |C) = Rwst

∞ (M |C) <
R∞(M). Therefore, Π1 does not meet perfect secrecy with respect to Rwst

∞ (·|·). Also, we note
that Rwst

∞ (C|M) < R∞(C), and Π1 illustrates IA
∞(M ; C) 6= IA

∞(C; M) for the random variables
M and C, while Π1 meets IH

∞(M ; C) = IH
∞(C; M)( 6= 0).

In general, for any sufficiently large α ≥ 0, the following construction shows that the lower
bound in Corollary 2 for symmetric-key encryption protocols is tight in an asymptotical sense.

Suppose M = C = K = {0, 1} and PM (0) = p and PK(0) = q such that p = 1
2(1 + δ1),

q = p + δ2, and 0 < δi and δi = o(1/α) for i = 1, 2. We consider the one-time pad for 1-bit
encryption Π2 = ([PK ], πenc, πdec), where πenc(k,m) = k ⊕m and πdec(k, c) = k ⊕ c.

Proposition 11 For a sufficiently large α ≥ 0, the above protocol Π2 does not meet perfect
secrecy, and Π2 meets ε-secrecy with respect to RH

α(·|·), or equivalently IH
α (M ; C) = ε, with ε =

o(1/α). Furthermore, it holds that Rα(K) = Rα(M)− o(1/α) in Π2.

Proof. See Appendix A.5. 2

Remark 10 Note that the above construction Π2 meets ε-secrecy with respect to RA
α(·|·), or

equivalently IA
α (M ; C) = ε, with ε = o(1/α). This fact directly follows from Proposition 11 and

the inequality IA
α (M ; C) ≤ IH

α (M ; C). Also, by calculation (see Appendix A.5), we can see that
Π2 illustrates IH

α (M ; C) 6= IH
α (C; M) for the random variables M and C.

6 Generalizing Shannon’s Impossibility in Secret Sharing

As in the case of encryption in Section 5, we can also consider and show similar results for
secret sharing protocols. In this section, we use the following notation: for any finite set Z, let
P(Z) := {Z ⊂ Z} be the family of all subsets of Z. Also, for any finite set Z and any non-negative
integer z, let P(Z, z) := {Z ⊂ Z | |Z| ≤ z} be the family of all subsets of Z whose cardinality is
less than or equal to z.

6.1 The Model and Security Definition

Let {1, 2, . . . , n} be a finite set of IDs of n users. Also, for every i ∈ {1, 2, . . . , n}, let Vi be a finite
set of shares of the user i, and PVi is its associated distribution on Vi. In addition, let S be a
finite set of secret information and PS its associated distribution.

Let Π = ([PS ], πshare, πcomb) be a (t, n)-secret sharing protocol, where 1 ≤ t ≤ n, as defined
below:

– [PS ] is a sampling algorithm for secret information, and it outputs a secret s ∈ S according
to a probability distribution PS ;

– πshare is a randomized algorithm for generating shares for all users, and it is executed by a
honest entity called dealer. It takes a secret s ∈ S on input and outputs (v1, v2, . . . , vn) ∈∏n

i=1 Vi ; and
– πcomb is an algorithm for recovering a secret. It takes t shares on input and outputs a secret

s ∈ S.

In this paper, we assume that Π meets perfect correctness: for any possible secret s ∈ S, and
for all possible shares (v1, v2, . . . , vn)← πshare(s), it holds that πcomb(vi1 , vi2 , . . . , vit) = s for any
subset {i1, i2, . . . , it} ⊂ {1, 2, . . . , n}.

In the following, for any subset U := {i1, i2, . . . , iu} ⊂ {1, 2, . . . , n}, we use the notation
VU := (Vi1 , Vi2 , . . . , Viu). Then, we give security formalization for a (t, n)-secret sharing protocol
as follows.
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Definition 7 (Security) For α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π be a (t, n)-
secret sharing protocol. Then, Π is said to meet ε-security with respect to Rα(·|·), if for any
colluding group W ∈ P({1, 2, . . . , n}, t− 1) it satisfies

Rα(S)−Rα(S|VW) ≤ ε.

In particular, Π meets perfect security with respect to Rα(·|·) if ε = 0 above.

Note that the traditional (t, n)-threshold secret sharing protocol is equivalent to the (t, n)-
secret sharing protocol with perfect security with respect to R1(·|·) = H(·|·)10.

As in Section 4.3, the security criteria in Definition 7 is explained in terms of failure probability
of guessing by colluding groups: Let W ∈ P({1, 2, . . . , n}, t − 1) be any colluding group, and
suppose that W takes arbitrary strategy g for guessing a secret S. Let Ŝ := g(VW) and Pe :=
Pr{S 6= Ŝ}. Without loss of generality, we assume Pe ≤ 1 − 1/|S|. Then, we have the following
propositions, and the proofs are shown in a similar way in Section 4.3.

Theorem 10 The failure probability of guessing by colluders W is lower-bounded by

Pe ≥ 1− exp
{

1− α

α
Rα(S)

}
exp

{
α− 1

α
IH
α (S; VW)

}
.

In particular, if PS is the uniform distribution, we have

Pe ≥ 1− |S|
1−α

α exp
{

α− 1
α

IH
α (S;VW)

}
.

Proposition 12 The failure probability of guessing by colluders W is lower-bounded by

Pe ≥ 1− |S|
1−α

α exp
{

α− 1
α

IA
α (S1/α; VW)

}
.

In particular, if PS is the uniform distribution, we have

Pe ≥ 1− |S|
1−α

α exp
{

α− 1
α

IA
α (S; VW)

}
.

6.2 Lower Bounds

First, the following tight lower bounds for (t, n)-threshold secret sharing protocols are well known.

Proposition 13 ([33]) Let Π be a (t, n)-threshold secret sharing protocol. Then, for every i ∈
{1, 2, . . . , n}, it holds that H(Vi) ≥ H(S) and |Vi| ≥ |S|.

We next show a new lower bound in a general setting, and we will see that Proposition 13 is
a special case of ours (see Remark 11).

Theorem 11 For arbitrary α ≥ 0, let Rα(·|·) be any of RH
α(·|·) and RA

α(·|·). Let Π be a (t, n)-
secret sharing scheme which meets ε-security with respect to Rα(·|·). Then, we have Rα(Vi) ≥
Rα(S)− ε for every i ∈ {1, 2, . . . , n}.

Proof. For any i ∈ {1, 2, . . . , n}, we take W ∈ P({1, 2, . . . , n}, t − 1) such that i 6∈ W and
|W| = t− 1. Then, we have

Rα(S) ≤ Rα(S|VW) + ε
(a)

≤ Rα(S, Vi|VW) + ε
(b)
= Rα(Vi|VW) + ε

(c)

≤ Rα(Vi) + ε, (32)

where (a) follows from Theorem 6 (i), (b) follows from Theorem 6 (ii) since Π meets perfect
correctness, and (c) follows from that both RH

α(·|·) and RA
α(·|·) satisfy CRE (see Theorem 4). 2

As in the case of encryption (i.e., Corollary 3), Theorem 11 implies the following result. The
proof is shown in the same way as that of Corollary 3.
10 This condition is equivalent to I(S; VW) = 0, or equivalently, S and VW are independent (i.e., PSVW = PSPVW )

for all W ∈ P({1, 2, . . . , n}, t − 1).
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Corollary 4 Let Π be a (t, n)-threshold secret sharing protocol. Then, for any α ≥ 0, it holds
that Rα(Vi) ≥ Rα(S) for every i ∈ {1, 2, . . . , n}.

Remark 11 Note that Proposition 13 is a special case of Corollary 4, since the bounds in Propo-
sition 13 are obtained by applying α = 0, 1 in Corollary 4.

By applying α = ∞ in Corollary 4, we obtain the bound R∞(Vi) ≥ R∞(S) for every i ∈
{1, 2, . . . , n}, which can be considered as an analogue of Dodis’s bound (i.e., Proposition 5) in the
context of secret sharing protocols.

By Theorem 11 and the fact that Ravg
∞ (·|·) = limα→∞ RA

α(·|·), an analogue of Alimomeni and
Safavi-Naini’s bound (i.e., Proposition 6) in secret sharing can also be obtained. To the best of
authors’ knowledge, this kind of security is first proposed in the context of secret sharing protocols
in this paper.

Corollary 5 Let Π be a (t, n)-secret sharing protocol which meets perfect security with respect
to Ravg

∞ (·|·). Then, we have R∞(Vi) ≥ R∞(S) for every i ∈ {1, 2, . . . , n}.

6.3 Construction

The lower bound in Corollary 5 is almost tight, since there exits the following construction Π3

which is an analogue of the construction Π1 in Section 5.
Let S, and V1, V2, . . . , Vn be binary random variables. Assume that S and V1, V2, . . . , Vn−1 are

independent and they satisfy PS(0) = PV1(0) = · · · = PVn−1(0) = p, for 1/2 < p < 1. Then, we
generate Vn by Vn := S ⊕ V1 ⊕ V2 ⊕ · · · ⊕ Vn−1.

Proposition 14 The construction Π3 realizes an (n, n)-secret sharing protocol which meets per-
fect security with respect to Ravg

∞ (·|·). In addition, the share sizes in Π3 are almost optimal
(or the lower bound in Corollary 5 is almost tight) in the sense that R∞(Vi) = R∞(S) for
i = 1, 2, . . . , n− 1, but R∞(Vn) > R∞(S).

Proof. See Appendix A.6. 2

Remark 12 In the construction Π3, S and VW are not statistically independent if n ∈ W, but
are independent if n 6∈ W. Therefore, Π3 is not an (n, n)-threshold secret sharing protocol.

7 Further Extension of Our Results

In Sections 5 and 6, we have derived lower bounds in a generic and unified manner by using
security criteria based on conditional Rényi entropies (i.e., by using RH

α(·|·) and RA
α(·|·)). In this

section, from a theoretical interest, we further extend the results to a wide class of conditional
entropies which includes RH

α(·|·) and RA
α(·|·).

7.1 A Class of Pairs of Entropies and Conditional Entropies under Consideration

In the proof of our bound in Theorem 9, we note that it is crucial to use the properties of CRE and
conditioned monotonicity of RH

α(·|·) and RA
α(·|·). Therefore, in order to further extend Theorem 9

in a generic way, we consider a wide class of entropies and conditional entropies satisfying several
properties including CRE and conditioned monotonicity. In addition to the above consideration,
we take into account the axiomatic consideration in Section 2.3 for conditional entropies. From the
aspect above, we define the following class of pairs of entropy and conditional entropy functions.

Definition 8 Let Σ be a class of pairs of entropy and conditional entropy functions such that,
for any (F (·), F (·|·)) ∈ Σ, it satisfies the following conditions.
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1. (Unconditioning implies entropy) If Y is the random variable taking a constant (i.e., Y is
deterministic), a conditional entropy function implies an entropy function F (·|Y ) = F (·),
namely F (X|Y ) = F (X) for any random variable X.

2. (Symmetricity) F (X|Y ) is symmetric with respect to {PX|Y (x|y)}x∈X for each y ∈ Y, and
{PY (y)}y∈Y .

3. (Continuity) F (X|Y ) is a continuous function with respect to PXY .
4. (Uniformity implies maximum) F (X|Y ) = 1 if a binary random variable X is uniformly

distributed for given Y .
5. (Non-negativity) F (X|Y ) ≥ 0 for all random variables X and Y .
6. (Conditioned monotonicity) (i) F (X|Z) ≤ F (XY |Z) for all random variables X, Y , and Z;

and in particular , (ii) F (X|Z) = F (XY |Z) if Y = f(X, Z) for some (deterministic) mapping
f .

7. (CRE) F (X|Y ) ≤ F (X) for all random variables X and Y , where equality holds if X and Y
is independent.

Note that all the properties in Definition 8 are focused on and discussed in Section 2.3, and
more importantly, we have explained why we consider all the properties as important and reason-
able ones for conditional entropies. As we have seen, the class Σ actually contains (Rα(·), RH

α(·|·))
and (Rα(·), RA

α(·|·)) for all α ≥ 0. In addition, Σ contains (Rα(·), RRW
α (·|·)) for any α > 1, and its

proof is straightforward from [8, 21]. Therefore, we have the following proposition.

Proposition 15 The class Σ in Definition 8 contains

(i) (Rα(·), RH
α(·|·)) for any α ≥ 0;

(ii) (Rα(·), RA
α(·|·)) for any α ≥ 0; and

(iii) (Rα(·), RRW
α (·|·)) for any α > 1.

By using the class Σ, we further extend our results in Sections 5 and 6, as will be seen in the
following sections.

7.2 Encryption

The model of encryption protocols is the same as that in Section 5.1. However, we consider the
following security definition instead of Definition 6.

Definition 9 (Secrecy) Let Π be an encryption protocol. Then, for any (F (·), F (·|·)) ∈ Σ in
Definition 8, Π is said to meet ε-secrecy with respect to (F (·), F (·|·)), if it satisfies

F (M)− F (M |C) ≤ ε.

Then, we derive a family of lower bounds on secret-keys for all entropy and conditional entropy
functions in Σ in Definition 8 in a comprehensive way. Theorem 12, and Corollaries 6, 7 and 8
below are extension of Theorem 9, and Corollaries 1, 2 and 3, respectively. Their proofs can be
shown in the same way as those in Section 5.3, and we omit them here.

Theorem 12 Let Π = ([PED], πenc, πdec) be an encryption protocol satisfying perfect correctness.
Then, for any (F (·), F (·|·)) ∈ Σ in Definition 8, we have the following.

(i) (Lower bound on encryption-keys’ size) If Π satisfies F (C) ≤ F (C|M) + ε and πenc is deter-
ministic, we have F (E) ≥ F (C)− ε.

(ii) (Lower bound on decryption-keys’ size) Suppose that Π satisfies F (M) ≤ F (M |C) + ε. Then,
we have F (D) ≥ F (M)− ε.

(iii) (Lower bound on ciphertexts’ size) It holds that F (C) ≥ F (M).

Corollary 6 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which meets per-
fect correctness. For any (F (·), F (·|·)) ∈ Σ in Definition 8, we have the following.
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(i) If Π satisfies F (M) ≤ F (M |C) + ε, it holds that F (K) ≥ F (M)− ε.
(ii) If Π satisfies F (C) ≤ F (C|M) + ε and πenc is deterministic, we have F (K) ≥ F (C) −

ε and F (C) ≥ F (M).

Corollary 7 Let (F (·), F (·|·)) ∈ Σ in Definition 8, and let Π = ([PK ], πenc, πdec) be a symmetric-
key encryption protocol which meets perfect correctness and ε-secrecy with respect to (F (·), F (·|·)).
Then, it holds that F (K) ≥ F (M)− ε.

Corollary 8 Let Π = ([PK ], πenc, πdec) be a symmetric-key encryption protocol which meets both
perfect correctness and perfect secrecy. Then, for any entropy function F (·) appearing in Σ in
Definition 8, it holds that F (K) ≥ F (M). In particular, if πenc is deterministic, we have F (K) ≥
F (C) ≥ F (M).

7.3 Secret Sharing

The model of secret sharing protocols is the same as that in Section 6.1. We consider the following
security definition instead of Definition 7.

Definition 10 (Security) Let Π be a (t, n)-secret sharing protocol. Then, for any (F (·), F (·|·)) ∈
Σ in Definition 8, Π is said to meet ε-security with respect to (F (·), F (·|·)), if for all W ∈
P({1, 2, . . . , n}, t− 1) it satisfies F (S)− F (S|VW) ≤ ε.

Then, as in the case of encryption, we can derive a family of lower bounds on shares for all
entropy and conditional entropy functions in Σ in Definition 8 in a comprehensive way. Theorem
13 and Corollary 9 below are extension of Theorem 11 and Corollary 4, respectively. The proof
of Theorem 13 is given in the same way as that of Theorem 11, and we omit it here.

Theorem 13 For any (F (·), F (·|·)) in Σ in Definition 8 and any (t, n)-secret sharing scheme
Π which meets ε-security with respect to (F (·), F (·|·)), it holds that F (Vi) ≥ F (S) − ε for every
i ∈ {1, 2, . . . , n}.

Corollary 9 Let Π be a (t, n)-threshold secret sharing protocol. Then, for any entropy function
F (·) appearing in Σ in Definition 8, it holds that F (Vi) ≥ F (S) for every i ∈ {1, 2, . . . , n}.
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A Technical Proofs

A.1 Proof of Theorem 1

Proof: Note that RA
α(X|Y ) and RH

α(X|Y ) is written as

RA
α(X|Y ) :=

α

1− α
log
∑
y∈Y

PY (y)

(∑
x∈X

PX|Y (x|y)α

)1/α

=
α

1− α
log EY

(∑
x∈X

PX|Y (x|Y )α

)1/α
 , (33)

RH
α(X|Y ) :=

α

1− α
log

∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y)α

1/α

=
α

1− α
log

(
EY

[∑
x∈X

PX|Y (x|Y )α

])1/α

. (34)
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Due to Jensen’s inequality, in the case of 0 ≤ α ≤ 1, it holds that(
EY

[∑
x∈X

PX|Y (x|Y )α

])1/α

≤ EY

(∑
x∈X

PX|Y (x|Y )α

)1/α
 . (35)

Combining (33)–(35), we can conclude that RH
α(X|Y ) ≤ RA

α(X|Y ).
Similar arguments can be applied to the case of α ≥ 1, which completes the proof. 2

A.2 Proof of Theorem 2

(i) The equality limα→∞ RA
α(X|Y ) = H(X|Y ) is proved in [17]. limα→∞ RH

α(X|Y ) = H(X|Y ) is
easily verified by the L’Hospital’s rule. Namely, we have

lim
α→1

RH
α(X|Y ) = − lim

α→1

d
dα

log EY

[∑
x∈X

PX|Y (x|Y )α

]
= − lim

α→1
EY

[∑
x∈X

d
dα

PX|Y (x|Y )α

]

= −EY

[∑
x∈X

PX|Y (x|Y ) log PX|Y (x|Y )

]
=
∑
y∈Y

PY (y)H(X|Y = y). (36)

(ii) We first prove limα→∞ RA
α(X|Y ) = Ravg

∞ (X|Y ). Observing that

max
x

PX|Y (x|y) ≤

{∑
x

PX|Y (x|y)α

}1/α

≤ |X |1/α max
x

PX|Y (x|y) (37)

holds for arbitrarily fixed y ∈ Y, it holds that

lim
α→∞

α

1− α
log
∑

y

PY (y)

{∑
x

PX|Y (x|y)α

}1/α

= − log
∑

y

PY (y)max
x

PX|Y (x|y), (38)

which means that limα→∞ RA
α(X|Y ) = Ravg

∞ (X|Y ) holds.
Then, we prove limα→∞ RH

α(X|Y ) = Rwst
∞ (X|Y ). We can check that for every fixed y ∈ Y

max
x

PX|Y (x|y)α ≤
∑

x

PX|Y (x|y)α ≤ |X |max
x

PX|Y (x|y)α. (39)

The expectations of the upper and the lower bounds in (39) with respect to Y can be further
bounded as ∑

y

PY (y)|X |max
x

PX|Y (x|y)α ≤ |X | max
x∈X

y∈supp PY

PX|Y (x|y)α (40)

and

PY (y∗)max
x

PX|Y (x|y∗)α ≤
∑

y

PY (y)max
x

PX|Y (x|y)α (41)

respectively, where we define that y∗ ∈ suppPY attains the maximum of PX|Y (x|y) over the
set X × suppPY .

Now, we can assume that α is sufficiently large, say α > 1. Then, noticing that 1/(1−α) < 0
and from (39)–(41), we have

RH
α(X|Y ) ≥ 1

1− α
log

|X | max
x∈X

y∈supp PY

PX|Y (x|y)α


and

RH
α(X|Y ) ≤ 1

1− α
log

PY (y∗) max
x∈X

y∈supp PY

PX|Y (x|y)α

 .

Hence, we have lim infα→∞ RH
α(X|Y ) ≥ − log maxx,y PX|Y (x|y), and lim supα→∞ RH

α(X|Y ) ≤
− log maxx,y PX|Y (x|y), since |X | is finite, which imply the claim of the proposition.
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A.3 Proof of Proposition 3

(i) For 0 ≤ α < 1, it follows that

∑
x,y

W (x|y)α

V (x|y)α−1
Q(y) =

∑
x,y

(
W (x|y)
V (x|y)

)α

PY Z(x, y) = EY Z

[(
W (Y |Z)
V (Y |Z)

)α]

≤
{

EY Z

[
W (Y |Z)
V (Y |Z)

]}α

=

{∑
x,y

W (x|y)
V (x|y)

V (x|y)Q(y)

}α

= 1 (42)

where the inequality follows from Jensen’s inequality. The quality holds if W (Y |Z)/V (Y |Z) is
constant with probability 1, which implies W (·|y) = V (·|y) for y ∈ suppQ.

Similarly, we have ∑
x,y

W (x|y)α

V (x|y)α−1
Q(y) ≥ 1

for α ≥ 1. Hence, we have Dα(X1‖X2|Y ) ≥ 0 for all α ≥ 0.

(ii) The claim directly follows from the L’Hospital’s rule:

lim
α→1

Dα(X1‖X2|Y ) =
d
dα

log
∑
x,y

{
W (x|y)
V (x|y)

}α

V (x|y)Q(y)

∣∣∣∣∣
α=1

=
∑
x,y

Q(y)W (x|y) log
W (x|y)
V (x|y)

= D(W‖V |Q) = D(X1‖X2|Y ). (43)

2

A.4 Proof of Theorem 7

Let m := |X |. We define a random variable Z and its associated distribution PZ over X × X as
follows. For (i, j) ∈ X × X , we define

PZ(i, j) :=


P̄e

m
if i = j,

Pe

m(m− 1)
if i 6= j.

Also, for any fixed j ∈ X , we define a distribution PZ1(·|j) over X by

PZ1(i|j) :=

 P̄e if i = j,
Pe

m− 1
if i 6= j.

Note that PZ1(i|j) = mPZ(i, j) for (i, j) ∈ X × X . Then, by non-negativity of the conditional
α-divergence we have

0 ≤ Dα(XY ‖Z|Y ) =
1

α− 1
log

∑
j

PY (j)
∑

i

(
PXY (i, j)

PY (j)

)α

PZ1(i|j)1−α


=

1
α− 1

log

m1−α
∑
i,j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α

 . (44)
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On the other hand, we get∑
i,j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α

=
∑
i 6=j

PXY (i, j)αPY (j)1−αPZ(i, j)1−α +
∑

i

PXY (i, i)αPY (i)1−αPZ(i, i)1−α

=
(

Pe

m(m− 1)

)1−α∑
i6=j

PXY (i, j)αPY (j)1−α +
(

P̄e

m

)1−α∑
i

PXY (i, i)αPY (i)1−α

=
(

Pe

m(m− 1)

)1−α
∑

i,j

PXY (i, j)αPY (j)1−α −
∑

i

PXY (i, i)αPY (i)1−α


+
(

P̄e

m

)1−α∑
i

PXY (i, i)αPY (i)1−α

=
(

Pe

m(m− 1)

)1−α∑
i,j

PXY (i, j)αPY (j)1−α

+

(∑
i

PXY (i, i)αPY (i)1−α

)[(
P̄e

m

)1−α

−
(

Pe

m(m− 1)

)1−α
]

. (45)

Therefore, by (44) and (45) we obtain

0 ≥ 1
1− α

log

{(
Pe

m− 1

)1−α∑
i,j

PXY (i, j)αPY (j)1−α

+

(∑
i

PXY (i, i)αPY (i)1−α

)[
P̄ 1−α

e −
(

Pe

m− 1

)1−α
]}

(46)

For simplicity, we set

r :=
∑
i,j

PXY (i, j)αPY (j)1−α, s :=
∑

i

PXY (i, i)αPY (i)1−α,

a :=
(

Pe

m− 1

)1−α

, b := P̄ 1−α
e −

(
Pe

m− 1

)1−α

,

and then (46) is written in the form:

1
1− α

log(ar + sb) ≤ 0. (47)

Suppose that 0 ≤ α < 1 and Pe 6= 0 (i.e., a > 0). Then, (47) implies

r ≤ a−1(1− sb) = (m− 1)1−αPα−1
e + s(1− (m− 1)1−αPα−1

e P̄ 1−α
e ). (48)

Here, we note that 1− (m− 1)1−αPα−1
e P̄ 1−α

e ≥ 0 (resp., ≤ 0) if Pe ≥ 1− 1
m (resp., Pe ≤ 1− 1

m).
Now, we need the following lemma.

Lemma 1 For a real number α ≥ 0, it holds that:

(i) P̄e ≤ s ≤ P̄α
e if 0 ≤ α ≤ 1;

(ii) P̄α
e ≤ s ≤ P̄e if α ≥ 1.
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Proof. It is trivial that the statement is true for α = 0, 1. Thus, we consider the case of α 6= 0, 1.
First, we show (i). Suppose 0 < α < 1. Then, we have

s =
∑

i

PXY (i, i)αPY (i)1−α ≥
∑

i

PXY (i, i)αPXY (i, i)1−α =
∑

i

PXY (i, i) = P̄e.

On the other hand, we consider a function

f(x1, . . . , xm, y1, . . . , ym) =
m∑

i=1

xα
i y1−α

i (0 ≤ xi ≤ yi)

subject to the constraints
∑m

i=1 xi = P̄e and
∑m

i=1 yi = 1. For arbitrary (x1, . . . , xm, y1, . . . , ym)
satisfying the above condition, we define a random variable W by Pr(W = xi/yi) = yi for
i = 1, 2, . . . , m. Then, since g(w) := wα is a concave function, it holds that

EW [g(W )] ≤ g(EW [W ])

by Jensen’s inequality. Therefore, we have

f(x1, . . . , xm, y1, . . . , ym) ≤ P̄α
e ,

and hence s ≤ P̄α
e (Note that this inequality can also be shown by using Lagrange multipliers).

Next, suppose that α > 1. In this case, we can similarly show s ≤ P̄e. In addition, by using
the similar discussion in the case 0 < α < 1, we can also prove s ≥ P̄α

e . 2

If 0 ≤ α < 1 and Pe ≥ 1− 1
m , from (48) and (i) in Lemma 1 it follows that

r ≤ (m− 1)1−αPα−1
e + P̄α

e (1− (m− 1)1−αPα−1
e P̄ 1−α

e )
= (m− 1)1−αPα

e + P̄α
e . (49)

If 0 ≤ α < 1 and 0 < Pe ≤ 1− 1
m , from (48) and (i) in Lemma 1 it follows that

r ≤ (m− 1)1−αPα−1
e + P̄e(1− (m− 1)1−αPα−1

e P̄ 1−α
e )

= (m− 1)1−αPα−1
e (1− P̄ 2−α

e ) + P̄e. (50)

Next, suppose that α > 1 and Pe 6= 0. Then, (47) implies

r ≥ a−1(1− sb)
= (m− 1)1−αPα−1

e + s(1− (m− 1)1−αPα−1
e P̄ 1−α

e ). (51)

Here, we note that 1− (m− 1)1−αPα−1
e P̄ 1−α

e ≥ 0 (resp., ≤ 0) if Pe ≤ 1− 1
m (resp., Pe ≥ 1− 1

m).
If α > 1 and Pe ≥ 1− 1

m , from (51) and (ii) in Lemma 1 it follows that

r ≥ (m− 1)1−αPα−1
e + P̄e(1− (m− 1)1−αPα−1

e P̄ 1−α
e )

= (m− 1)1−αPα−1
e (1− P̄ 2−α

e ) + P̄e. (52)

If α > 1 and 0 < Pe ≤ 1− 1
m , from (51) and (ii) in Lemma 1 it follows that

r ≥ (m− 1)1−αPα−1
e + P̄α

e (1− (m− 1)1−αPα−1
e P̄ 1−α

e )
= (m− 1)1−αPα

e + P̄α
e . (53)

Therefore, from (49), (50), (52) and (53), it holds that

RH
α(X|Y ) =

1
1− α

log r

≤


1

1−α log
[
(m− 1)1−αPα

e + P̄α
e

]
if 0 ≤ α < 1 and Pe ≥ 1− 1

m , or α > 1 and 0 < Pe ≤ 1− 1
m ,

1
1−α log

[
(m− 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
if 0 ≤ α < 1 and 0 < Pe ≤ 1− 1

m , or α > 1 and Pe ≥ 1− 1
m

(54)
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For the case α = 1, the left hand of (54) implies limα→1 Rα(X|Y ) = H(X|Y ) by Theorem
2-(ii). In addition, the right hands of (54) have a finite limit at α = 1, and it is equal to Fano’s
inequality (see Remark 4). Therefore, (54) holds even for α = 1.

For the case Pe = 0, the left hand of (54) implies limPe→0 Rα(X|Y ) = Rα(X|X) = 0, and the
right hands of (54) imply

lim
Pe→0

1
1− α

log
[
(m− 1)1−αPα

e + P̄α
e

]
= 0 (for α ≥ 1),

lim
Pe→0

1
1− α

log
[
(m− 1)1−αPα−1

e (1− P̄ 2−α
e ) + P̄e

]
= 0 (for 0 ≤ α ≤ 1).

Therefore, (54) holds for Pe = 0. 2

A.5 Proof of Theorem 11

It is easily seen that Π2 does not meet perfect secrecy since q 6= 1/2. And, it holds that:

Rα(M) =
1

1− α
log(pα + (1− p)α)

=
1

1− α
log
[(

1
2

)α

(1− δ1)α +
(

1
2

)α

(1 + δ1)α

]
(55)

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (56)

Rα(K) =
1

1− α
log(qα + (1− q)α) =

1
1− α

log(pα + (1− p)α + o(1))

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (57)

Rα(C) =
1

1− α
log
[(

1
2

)α

(1− δ2
1)

α +
(

1
2

)α

(1 + δ2
1)

α + o(1)
]

(58)

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (59)

RH
α(M |C) =

1
1− α

log
∑

c

PC(c)
∑
m

PM |C(m|c)α

=
1

1− α
log
(

1
2

)α [
(1− δ2

1) +
1
2

(1− δ1)2α

(1 + δ2
1)α−1

+
1
2

(1 + δ1)2α

(1 + δ2
1)α−1

+ o(1)
]

=
1

1− α
log
(

1
2

)α

(2 + o(1)), (60)

RH
α(C|M) =

1
1− α

log
∑
m

PM (m)
∑

c

PC|M (c|m)α

=
1

1− α
log [p(qα + (1− q)α) + (1− p)(qα + (1− q)α)]

=
1

1− α
log (qα + (1− q)α) = Rα(K). (61)

Therefore, we get

IH
α (M ; C) = Rα(M)−RH

α(M |C) =
1

1− α
log

2 + o(1)
2 + o(1)

= log(1 + o(1))
1

α−1

= log(1 + o(1/α)) = o(1/α),

where the last equality follows from log(1+x) = x−o(x). Similarly, we also have Rα(M)−Rα(K) =
o(1/α). Therefore, the proof is completed. Finally, for Remark 10 we see that IH

α (M ; C) 6=
IH
α (C; M) by calculation. 2
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A.6 Proof of Theorem 14

Since Ravg
∞ (X|Y ) satisfies “conditioning reduces entropy,” it is sufficient to show Ravg

∞ (S|VW) =
R∞(S) only in the case of |W| = n− 1. Let q := 1− p.

First, consider the case where n 6∈ W. In this case, it is easy to see that

PS|V1V2···Vn−1
(s|v1, v2, . . . , vn−1) = PS(s)

holds since S and V1, V2, . . . , Vn−1 are independent. Hence, Ravg
∞ (S|VW) = R∞(S) obviously holds

in this case.
Next, we consider the case of n ∈ W. From the symmetricity, it is sufficient to consider the case

where we have11 v = {v2, . . . , vn−1} in addition to vn. Let σ : {0, 1}n−2 → {0, 1} be the mapping
that computes exclusive OR of all inputs. Due to the construction and the independency among
S and V1, V2, . . . , Vn−1, the probability PV Vn(v, vn) can be calculated in the following cases:

Case 1: σ(v)⊕ vn = 1, i.e., (σ(v), vn) = (0, 1) or (σ(v), vn) = (1, 0):

PV Vn(v, vn) = PSV1V (1, 0, v) + PSV1V (0, 1,v) = 2pqPV (v) (62)

Case 2: σ(v)⊕ vn = 0, i.e., (σ(v), vn) = (0, 0) or (σ(v), vn) = (1, 1):

PV Vn(v, vn) = PSV1V (0, 0, v) + PSV1V (1, 1, v) = (p2 + q2)PV (v) (63)

Furthermore, note that the following relation:

PS|V Vn
(s|v, vn) = PSV1|V Vn

(s, 1|v, vn) + PSV1|V Vn
(s, 0|v, vn). (64)

Now, consider Case 1. In this case it is easy to see that

PSV1|V Vn
(0, 1|v, vn) = PSV1|V Vn

(1, 0|v, vn) =
1
2
, and, PSV1|V Vn

(0, 0|v, vn) = PSV1|V Vn
(1, 1|v, vn) = 0.

(65)

Hence, (64) becomes PS|V Vn
(s|v, vn) = 1/2, which leads to

PV Vn(v, vn) max
s

PS|V Vn
(s|v, vn) = pq · PV (v). (66)

Next, consider Case 2. In this case, it is easy to see that

PSV1|V Vn
(0, 1|v, vn) = PSV1|V (1, 0|v, vn) = 0

and hence, (64) becomes

max
s

PS|V Vn
(s|v, vn) = max

{
PSV1|V Vn

(0, 0|v, vn), PSV1|V Vn
(1, 1|v, vn)

}
. (67)

Here, PSV1|V Vn
(0, 0|v, vn) can be calculated as follows:

PSV1|V Vn
(0, 0|v, vn) =

PSV1V Vn(0, 0, v, vn)
PV (v, vn)

=
PSV1(0, 0)PV (v)

PV (v, vn)
=

p2

p2 + q2
(68)

Similarly, we have PSV1|V Vn
(1, 1|v, vn) = q2/(p2 + q2). Hence, because of p > q, (67) becomes

PV Vn(v, vn)max
s

PS|V (s|v) = p2 · PV (v). (69)

Summarizing (66) and (69), we have∑
v,vn

PV Vn(v, vn)max
s

PS|V Vn
(s|v, vn) =

∑
v:σ(v)=0

vn=1

∑
v:σ(v)=1

vn=0

pqPV (v) +
∑

v:σ(v)=0
vn=0

∑
v:σ(v)=1

vn=1

p2PV (v)

=
∑

v:σ(v)=0,1

(pq + p2)PV (v) = p (70)

Hence, we obtain R∞(S|VW) = R∞(S) = − log p, which completes the proof. 2

B Graphs of ϕN(α) for Cases I and II in Example 1

11 In the case of n = 2, we set v = ∅.



30

(a) ϕA(α) = Rα(X) − RA
α(X|Y ) (b) ϕH(α) = Rα(X) − RH

α(X|Y )

Fig. 1. Graphs of ϕN(α), N ∈ {A, H} for Cases I and II in Example 1


