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Abstract

Flush+Reload is a cache side-channel attack that monitors access to data in shared pages. In
this paper we demonstrate how to use the attack to extract private encryption keys from GnuPG.
The high resolution and low noise of the Flush+Reload attack enables a spy program to recover
over 98% of the bits of the private key in a single decryption or signing round. Unlike previous
attacks, the attack targets the last level L3 cache. Consequently, the spy program and the victim do
not need to share the execution core of the CPU. The attack is not limited to a traditional OS and
can be used in a virtualised environment, where it can attack programs executing in a different VM.

1 Introduction

Side channel attacks are attacks that target an implementation of a cryptographic system rather than
targetting theoretical weaknesses of the system. Cache side-channel attacks are a form of side channel
attacks that rely on the timing difference between accessing cached and non-cached values.

Cache side-channel attacks have been used in the past against RSA [1, 13], Elgamal [21], DSA [2]
and AES [9, 16, 20]. With one notable exception all of these attacks rely on monopolising the cache by
accessing enough data to force the victim’s data out of the cache.

As most memory activity occurs in the L1 cache, and as monopolising L1 is much simpler than
monopolising lower cache levels [13], all of these attacks target the L1 cache and must, therefore, execute
on the same CPU core as the victim.

Gullasch et al. [9] describe a cache side-channel attack that relies on shared memory pages between
the spy program and the victim. This attack, which we call Flush+Reload, evicts specific memory
lines out of the cache without monopolising the cache. Flush+Reload evicts the selected memory
line from all the cache levels, including L3. This feature, which is not exploited by Gullasch et al.,
allows the attack to be used between processes executing on different execution cores of the same CPU.
Furthermore, as virtual machine hypervisors transparently share memory pages between VMs [5,19], the
attack is applicable across the isolation layer between VMs.

In this paper we describe the Flush+Reload attack and demonstrate its use against the GnuPG [7]
implementation of RSA. We use the attack to probe GnuPG at a resolution of 1.5MHz. This high
resolution, combined with the low noise of the attack allows us to recover over 98% of the bits of the
secret key by capturing a single signing or decryption operation.

Sections 2 and 3 provide background information about the cache architecture and about RSA. We
describe the Flush+Reload attack in section 4 and its application to GnuPG in section 5.

2 Cache Architecture and Side-Channel Attacks

Processor caches bridge the gap between the processing speed of modern processors and the data retrieval
speed of the memory. Caches are small banks of fast memory in which the processor stores values of
recently accessed memory cells. Due to locality of reference, recently used values tend to be used again.
Retrieving these values from the cache saves time and reduces the pressure on the main memory.

1



Modern processors employ a cache hierarchy consisting of multiple caches. For example, the cache
hierarchy of the Core i5-3470 processor, shown in Diagram 1, consists of three cache levels: L1, L2 and
L3.

32 KB

L1 Data

L2 256KB

Core 2

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 3

L3 Unified − 6MB

32 KB

L1 Inst

32 KB

L1 Data

Core 0

L2 256KB

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 1

32 KB

L1 Inst

Figure 1: Intel Ivy Bridge Cache Architecture

The Core i5-3470 processor has four processing units called cores. Each core has a 64KB L1 cache,
divided into a 32KB data cache and a 32KB instruction cache. Each core also has a 256KB L2 cache.
The four cores share a 6MB L3 cache.

The unit of memory in a cache is a line which contains a fixed number of bytes. A cache consists of
multiple cache sets each of which stores a fixed number of cache lines. The number of cache lines in a
set is the cache associativity. Each memory line can be cached in any of the cache lines of a single cache
set. The size of cache lines in the Core i5-3470 processor is 64 bytes. The L1 and L2 caches are 8-way
associative and the L3 cache is 12-way associative.

Retrieving data from memory or from lower cache levels takes longer than retrieving it from higher
cache levels. This difference in timing has been exploited for side-channel attacks. Tromer et al. [16]
identifies two forms of cache side-channel attacks: the Evict+Time attack and the Prime+Probe
attack.

An Evict+Time attack works by setting the cache to a known state, typically by executing a round
of computation, evicting selected sets from the cache and measuring the time it takes to perform a round
of computation. The time to perform the computation depends on which values are in the cache when
the computation starts. Consequently, timing the computation provides information about the memory
locations that the computation accesses.

A Prime+Probe attack fills the cache with known memory lines, waits some time and times reading
these memory lines to checks which of them were evicted from the cache, if any. Again, knowledge of
which cache sets have been accessed provides information on memory locations used by the computation
and, consequently, on the data it processes.

These techniques tend to be more applicable for implementing side-channels through the L1 cache,
rather than the lower cache levels. One reason for that is that caching is based on physical memory
addresses, whereas processes use virtual addresses. With L1 caches, a byte offset in a page always map
to the same cache set. Hence, for evicting a set or for priming the cache the attacker needs only as many
pages as the cache associativity, and any pages would do.

With larger caches, the virtual memory masks the mapping between memory pages and cache sets.
Furthermore, this mapping is not necessarily stable and can change during the execution of the program.
Techniques for reconstructing the mapping have been suggested [10]. However, these techniques only
provide the mapping for the attacker’s memory. The victim’s mapping is, still, unknown.

The second limitation on these technique is the size of the L3 cache. The effect of cache size on
the Prime+Probe attack is to increase the prime and probe time significantly, reducing the potential
granularity of the attack. For the Evict+Time approach, a large cache presents a big search space,
increasing the complexity of attacks.

With practical attacks limited to the L1 cache, the techniques described above only work when the
victim and the spy programs share the same execution core.

Gullasch et al. [9] describes a cache side-channel attack that we call Flush+Reload. The attack is
similar to Prime+Probe in the sense that it monitors the cache changes during the execution of the
computation. However, unlike Prime+Probe, Flush+Reload evicts selected memory lines from the
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cache and measures the time to reload these lines to detect their use by the computation.
We discuss the Flush+Reload attack in Section 4

3 RSA

RSA [14] is a public-key cryptographic system that supports encryption and signing. Generating an
encryption system requires the following steps:

• Randomly selecting two prime numbers p and q and calculating n = pq.

• Choosing a public exponent e. GnuPG uses e = 65537.

• Calculating a private exponent d ≡ e−1 (mod (p− 1)(q − 1)).

The generated encrypted system consists of:

• The public key is the pair (n, e).

• The private key is the triple (p, q, d).

• The encrypting function is E(m) = me mod n.

• The decrypting function is D(c) = cd mod n.

A common optimisation for the implementation of the decryption function is to use:

dp = d mod (p− 1)
dq = d mod (q − 1)
Mp = Cdp mod p
Mq = Cdq mod q

M is then computed from Mp and Mq using the Garner’s formula [6]:

h = (Mp −Mq)(q−1 mod p) mod p
M = Mq + hq

To compute the encryption and decryption functions, GnuPG uses the square-and-multiply exponen-
tiation algorithm [8]. Square-and-multiply computes x = be mod m by scanning the bits of the binary
representation of the exponent e. Given a binary representation of e as 2n−1en−1 + · · · 20e0, square-and-

multiply calculates a sequence of intermediate values xn−1, . . . , x0 such that xi = bbe/2
ic mod m using

the formula xi−1 = xi
2bei−1 . Figure 2 shows a pseudo-code implementation of square-and-multiply.

function exponent(b, e, m)
begin
x← 1
for i← |e| − 1 downto 0 do

x← x2

x← x mod m
if (ei = 1) then
x← xb
x← x mod m

endif
done
return x

end

Figure 2: Exponentiation by Square-and-Multiply

As can be seen from the implementation, an attacker that can trace the execution of the square-and-
multiply exponentiation algorithm can recover the exponent. Obviously, if the exponent is d, an attacker
recovering the exponent has broken the encryption. However, as GnuPG uses the optimisation described
above, the attacker can only hope to extract dp and dq. We will now show that extracting any one of dp
and dq is enough to factor n and, consequently, to break the encryption.
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The first point to note is that because n = pq, for every X there exists an integer α such that

X mod n = X mod p+ αp

Consequently,
Cdp mod n = Cdp mod p+ αp

As dp = d mod (p− 1), by applying Fermat’s Little Theorem to the above we get

Cdp mod n = Cd mod p+ αp

Now, as there exists a α′ such that Cd mod n = Cd mod p+ α′p, we get

Cdp mod n = Cd mod n− α′p+ αp

or
Cdp mod n = M + (α− α′)p

Thus p can be calculated using
p = gcd((Cdp −M) mod n, n)

The next section describes the Flush+Reload attack that we use to extract the exponent from
GnuPG.

4 The Flush+Reload Attack

The Flush+Reload attack is a variant of the Prime+Probe attack that relies on sharing pages
between the spy and the victim programs. With shared pages, the spy program can ensure that a
specific memory line is evicted from the whole cache hierarchy. The spy uses this to monitor access to
the memory line.

A round of attack consists of three phases. During the first phase, the monitored memory line is
flushed from the cache hierarchy. The spy program, then, waits to allows the victim time to access
the memory line before the third phase. In the third phase, the spy program reloads the memory line,
measuring the time to load it. If during the wait phase the victim accesses the memory line, the line
will be available in the cache and the reload operation will take a short time. If, on the other hand, the
victim has not accessed the memory line, the line will need to be brought from memory and the reload
will take significantly longer. Diagrams 3 (A) and (B) show the timing of the attack phases without and
with victim access.

As shown in Diagram 3 (C), the victim access can overlap the reload phase of the spy program. In
such a case, the victim access will not trigger a cache fill. Instead, the victim will use the cached data
from the reload phase. Consequently, the spy program will miss the access.

A similar scenario is when the reload operation partially overlaps the victim access. In this case,
depicted in Diagram 3 (D), the reload phase starts while the victim is waiting for the data. The reload
benefits from the victim access and terminates faster than if the data has to be loaded from memory.
However, the timing may still be longer than a load from the cache.

As the victim access is independent of the spy program code, increasing the wait period reduces
the probability of missing the access due to an overlap. On the other hand, increasing the wait period
reduces the granularity of the attack.

One way to improve the resolution of the attack without increasing the error rate is to target memory
accesses that occur frequently, such as a loop body. The attack will not be able to discern between
separate accesses, but, as shown in Diagram 3 (E), the likelihood of missing the loop is small.

It should be noted that several processor optimisations may result in false positives due to speculative
memory accesses issued by the victim’s processor [11]. These optimisations include data prefetching to
exploit spatial locality and speculative execution [17]. When analysing the attack results, the attacker
must be aware of these optimisations and develop strategies to filter them.

Our implementation of the attack is in Figure 4. The code measures the time to read the data at a
memory address and then evicts the memory line from the cache. This measurement is implemented by
the inline assembly code within the asm command.

The assembly code takes one input, the address, which is stored in register %ecx. (Line 16.) It returns
the time to read this address in the register %eax which is stored in the variable time. (Line 15.)
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Figure 3: Timing of Flush+Reload. (A) No Victim Access (B) With Victim Access (C) Victim Access
Overlap (D) Partial Overlap (E) Multiple Victim Accesses

Line 10 reads 4 bytes from the memory address in %ecx, i.e. the address pointed by adrs. To measure
the time it takes to perform this read, we use the processor’s time stamp counter.

The rdtsc instruction in line 7 reads the 64-bit counter, storing the low 32 bits of the counter in
%eax and the high 32 bits in %edx. As the times we measure are short, we treat it as a 32 bit counter,
ignoring the 32 most significant bits in %edx. Line 9 copies the counter to %esi.

After reading the memory, the time stamp counter is read again. (Line 12). Line 13 subtracts the
value of the counter before the memory read from the value after the read, leaving the result in the
output register %eax.

The crux of the technique is the ability to evict specific memory lines from the cache. This is the
function of the clflush instruction in line 14. The clflush instruction evicts the specific memory line
from all the cache hierarchy, including the L1 and L2 caches of all cores. Evicting the line from all cores
ensures that the next time the victim accesses the memory line it will be loaded into L3.

The purpose of the mfence and lfence instructions in lines 5, 6, 8 and 11 is to serialise the in-
struction stream. The Intel architecture may execute instructions in parallel or out of order. Without
serialisation, instructions surrounding the measured code segment may be executed within that segment.
Intel recommends using the serialising instruction cpuid for that purpose [12]. However, in virtualised
environments the hypervisor emulates the cpuid instruction. This emulation takes significant time (over
1,000 cycles) and this time is not constant, reducing the granularity and the stability of the attack.

The lfence instruction performs partial serialisation. It ensures that load instructions preceding it
have completed before it is executed and that no instruction following it executes before the lfence

instruction. The mfence instruction orders all memory access, fence instructions and the clflush in-
struction. It is not, however, ordered with respect to other instructions and is, therefore, not sufficient
to ensure ordering.

Line 18 compares the time difference between the two rdtsc instructions against a pre-defined thresh-
old. Loads shorter than the threshold are presumed to be served from the cache, indicating that another
process has accessed the memory line since it was last flushed from the cache. Loads longer than the
threshold are presumed to be served from the memory, indicating no access to the memory line.

The threshold used in the attack is architecture dependent. To find the threshold for the test archi-
tecture, we used the measurement code of the probe in Listing 4 to measure load times from memory
and from the L1 cache level. (To measure the L1 times we removed the clflush instruction in line 14.)
The results of 100,000 measurements of each are presented in Figure 5.

Virtually all loads from the L1 cache take between 33 and 49 cycles. Of the 100,000 measurements
taken we have witnessed 9 outliers, taking over 4,000 cycles. We believe these are the result of OS or
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1 int probe(char *adrs) {

2 volatile unsigned long time;

3

4 asm __volatile__ (

5 " mfence \n"

6 " lfence \n"

7 " rdtsc \n"

8 " lfence \n"

9 " movl %%eax, %%esi \n"

10 " movl (%1), %%eax \n"

11 " lfence \n"

12 " rdtsc \n"

13 " subl %%esi, %%eax \n"

14 " clflush 0(%1) \n"

15 : "=a" (time)

16 : "c" (adrs)

17 : "%esi", "%edx");

18 return time < threshold;

19 }

Figure 4: Code for the Flush+Reload Technique
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Figure 5: Distribution of Load Times.

hypervisor activity.
Loads from memory show less constant timing. 97% of those take between 200 and 300 cycles.

Another 2% are spread between 300 and 400 cycles, but the numbers are too low to be visible in the
graph. The last 1% is spread between 850 and 1,200 cycles, with a visible peak at 900 cycles. As in with
the L1 measurements, a small number of outliers were seen.

The L1 measurements underestimate the probe time for data that the victim accesses. In an attack,
data the victim accesses is read from the L3 cache. Intel documentation [11] states that the difference
is between 22 and 39 cycles. Based on the measurement results and the Intel documentation we set the
threshold to 120 cycles.

5 Attacking GnuPG

In this section we describe how we use the Flush+Reload technique to extract the components of the
private key from the GnuPG implementation of RSA. The attack can work both in a virtualised and in
a non-virtualised environment.

We executed the test on an HP Elite 8300, which features an Intel Core i5-3470 processor and 8GB
DDR3-1600 memory. The OS is Fedora 18.

The spy program divides time into fixed slots of 2048 cycles each. In each slot it probes one memory
line of the code of each of the square, multiply and modulo reduce calculations. To increase the chance of a
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Figure 6: Time measurements of probes

probe capturing the access, we selected memory lines that are executed frequently during the calculation.
After probing each memory line, the spy program busy waits to the end of the time slot.

To facilitate locating the memory lines, we used a version of the gpg program that we compiled with
debugging symbols. In a real attack settings, the attacker will need to reverse engineer the attacked
program to locate the memory lines. Debugging information allows us to find the memory addresses
corresponding to each source line without the tedious work of reverse engineering.

Measurement times for the first 200 time slots of the GnuPG signing are displayed in Figure 6. Mea-
surements under the threshold indicate victim access to the respective memory line. The exponentiations
for signing takes a total of 22,402 slots or about 15ms. The exponents used have a total of 2046 bits. Of
these 9 were missed and 25 were inverted, giving an error rate of 1.6%.

Diagram 7 is an enlarged view of the boxed section in Diagram 6. As the displayed area is below the
threshold, the diagram only displays the memory lines that were retrieved from the cache, showing the
activity of the GnuPG encryption. The steps of the exponentiation are clearly visible in the diagram.
For example, between time slots 13 and 17 the victim was calculating a square, Time slots 18–21 are for
modulo reduce calculation and 29–33 for multiplication.
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Figure 7: Time measurements of probes

Sequences of Square-Reduce-Multiply-Reduce indicate a 1 bit. Sequences of Square-Reduce which
are not followed by Multiply indicate a 0 bit. The bit sequence shown in Diagram 6 is, therefore,
01010000110011110. These bits match the start of dp. Table 1 shows the time slots corresponding to
each bit. The modulo reduce calculation between time slots 0 and 3 is for calculating dp = d mod p. The
modulo reduce between slots 8 and 11 is for reducing the message hash to modulus p.

Speculative execution is apparent in the graph. For example, in slot 94 the memory lines corre-
sponding to all three operations are loaded from the cache. Obviously, under normal execution of the
exponentiation, Multiply and Square cannot occur in the same time slot. The reason all three memory
locations are accessed is that the processor tries to predict the future behaviour of the program. In the
case of a conditional branch instruction, the processor may start following one of the branches or even
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Seq. Time Slots Value
1 13–21 0
2 21–37 1
3 38–45 0
4 45–59 1
5 59–65 0
6 66–73 0

Seq. Time Slots Value
7 73–80 0
8 80–87 0
9 87–101 1
10 102–116 1
11 116–123 0
12 123–130 0

Seq. Time Slots Value
13 130–144 1
14 145–159 1
15 159–173 1
16 163–187 1
17 188–194 0

Table 1: Time Slots for Bit Sequence

both before evaluating the condition. Only when the condition is evaluated the processor will commit
to the execution.

In time slot 94, the processor speculated that the value of the current bit may be 0. It, therefore,
skipped the if body and fetched the memory line of the Square operation. When the value of the bit was
evaluated, the processor terminated the speculated branch and proceeded with the Multiply step.

6 Conclusions

This paper describes the Flush+Reload attack and its use for extracting the RSA private key from
GnuPG. The attack is able to recover over 98% of the bits of the private key, virtually breaking the key,
by capturing a single decryption or signing round. The attack requires the spy program and the victim
to share pages, and can work over the isolation layer of virtualised systems.

It is hard to overstate the severity of the weakness in GnuPG. GnuPG is a very popular cryptography
package. It is used as the cryptography module of many open-source projects and is used, for example,
for email, file and communication encryption. With our attack, any process running on the system can
extract private keys. Hence, GnuPG in its current form is not safe for a multi-user system or for any
system that may run untrusted code.

Past research has indicated that the square-and-multiply exponentiation may be vulnerable to side
channel attacks. The most important lesson that software developers can take from this paper is that
sometimes the reuse of an existing technique is all it takes to change a theoretical weakness to an
exploitable vulnerability.

It may be possible that other known weaknesses can become exploitable with this attack. Examples
that come to mind include identifying the extra reduction in Montgomery Multiplication [3,15] and the
Vaudenay padding oracle attack [4, 18]. Further research is required to determine the extent to which
Flush+Reload can be used as part of such attacks and whether existing countermeasures provide
sufficient protection against Flush+Reload.

It should be noted that the attack is not limited to cryptography software. Other software may
leak sensitive information through the cache. This is particularly worrying in a virtualised environment,
where users expect complete isolation between VMs. Memory de-duplication may save resources, but it
compromises security. We recommend that memory de-duplication in virtualised systems is disabled.
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