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Abstract. The equivalence of the random oracle model and the ideal cipher model has
been studied in a long series of results. Holenstein, Künzler, and Tessaro (STOC, 2011)
have recently completed the picture positively, assuming that, roughly speaking, equiva-
lence is indifferentiability from each other. However, under the stronger notion of reset
indifferentiability this picture changes significantly, as Demay et al. (EUROCRYPT,
2013) and Luykx et al. (ePrint, 2012) demonstrate.

We complement these latter works in several ways. First, we show that any simulator

satisfying the reset indifferentiability notion must be stateless and pseudo-deterministic.

Using this characterization we show that, with respect to reset indifferentiability, two

ideal models are either equivalent or incomparable, that is, a model cannot be strictly

stronger than the other model. In the case of the random oracle model and the ideal

cipher model, this implies that the two are incomparable. Finally, we examine weaker

notions of reset indifferentiability that, while not being able to allow composition in

general, allow composition for a large class of multi-stage games. Here we show that

the seemingly much weaker notion of 1-reset indifferentiability proposed by Luykx et

al. is equivalent to reset indifferentiability. Hence, the impossibility of coming up

with a reset indifferentiable construction transfers to the setting where only one reset

is permitted, thereby re-opening the quest for an achievable and meaningful notion in

between the two variants.
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1 Introduction

Idealized Models. The standard approach to cryptographic security is to reduce the
security of a scheme to a (hopefully) well-studied algebraic or combinatorial complexity
assumption. Unfortunately, a large number of cryptographic schemes does not admit a
security reduction in the standard model.In these cases, the community often resorts to
an idealized model, where we can sometimes obtain a proof of security. It is, of course,
highly controversial whether or not proofs in idealized models are acceptable, but there
is a tendency to prefer an analysis in an idealized model over the utter absence of any
proof at all—in particular, when one is concerned with schemes that are widely deployed
in practice [BR94, BR96, BRSS10].

Arguably the most popular model of this kind is the random oracle model (ROM)
where all parties have oracle access to a public, randomly chosen function [BR93]. Some-
what related is the ideal cipher model (ICM) which gives all parties oracle access to a
public, randomly chosen (keyed) blockcipher [Sha49]. Knowing that there is a close rela-
tion between pseudorandom functions and pseudorandom permutations—namely existential
equivalence—one could suspect that the random oracle model and the ideal cipher model
are equivalent, too. However, formalizing the notion of equivalence is delicate and so are
the proofs.

Equivalence of the ROM and ICM under Indifferentiability. Maurer, Renner
and Holenstein [MRH04] introduced the concept of indifferentiability, which since then
has been regarded as the prevalent and actually only notion of equivalence between ideal
primitives. A construction Gπ with access to some primitive π is called indifferentiable from
another ideal primitive Π, if there is a simulator S such that the construction Gπ implements
an oracle that is indistinguishable from Π, even if the distinguisherD additionally gets access
to π. Now, demanding the distinguisher D to distinguish (Gπ, π) from Π is of little sense.
Additional to the oracle Π, the distinguisher gets access to the simulator S which tries to
emulate π’s behavior consistently with Π. Thus, the distinguisher tries to distinguish the
pair of oracles (Gπ, π) from the pair of oracles (Π,SΠ).

In the case of the ideal cipher model and the random oracle model, considerable effort
has led to a proof of equivalence [CDMP05, CPS08, HKT11] under indifferentiability. The
reason why indifferentiability was considered a suitable notion of equivalence is the appealing
composition theorem established by Maurer et al. [MRH04]. Namely, they transform any
reductionist argument in the presence of the ideal primitive Π into a proof that relies on
the existence of π only. Their theorem thus transforms a reduction R into a reduction R′,
where the latter locally implements a single copy of the simulator S. Jumping ahead, it
will turn out that in this step, they rely on an implicit assumption.

Multi-Stage Adversaries. Ristenpart et al. [RSS11] were the first to point out sce-
narios where indifferentiability of Gπ from Π was not sufficient to replace Π by Gπ. Their
counterexamples involve adversaries that run in multiple stages, i.e., an adversary A con-
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sists of two or more sub-adversaries, say A = (A1,A2), that do not share state (or at least
not arbitrary state). Now, a reduction R that reduces to such a multi-stage game also needs
to be split into two parts (R1,R2) where the same restrictions upon the sharing of state
applies. Hence, for the composition theorem by Maurer et al., each part of the reduction
R1 and R2 needs to implement its own, independent copy of the simulator S. However, in
this case, the two copies of the simulator will not necessarily behave in the same way as
opposed to the “real” primitive π which is, roughly, what makes the composition theorem
collapse in the setting of multi-stage games.

Curiously, their composition holds in the presence of strong, colluding adversaries, while
it does not in the setting of weaker, non-colluding ones. Usually in cryptography, a conser-
vative approach corresponds to considering the strongest possible adversary, as a primitive
that is secure against a strong adversary is also secure against a weaker adversary. However,
the indifferentiability composition theorem is not, by itself, a security model or a proof of
security. Instead, it is a tool to transform any proof in a security model in the presence
of one ideal primitive into a security proof in the same security model in the presence of
another ideal primitive. Hence, one tries to cover any type of security model, which, in par-
ticular, includes security models where stage-sharing adversaries can mount trivial attacks.
And thus, a conservative approach in the setting of indifferentiability demands including
also weaker, namely non-colluding, state-sharing adversaries. Technically, the composition
theorem is harder to prove for weaker adversaries, because it transforms an adversary of
one type into another adversary of the same type. Considering a stronger adversary corre-
sponds to a stronger assumption in the theorem, but also to a harder statement to prove,
and vice versa for weaker adversaries.

One might hope that the distinction is of technical interest only. Unfortunately, as
we argue, in basically all real-life scenarios, we need to consider multi-stage adversaries.
Ristenpart et al. give several examples of multi-stage games for notions such as determin-
istic encryption [BBO07, BBN+09], key-dependent message security [BRS03], related key
attacks [BK03], and non-malleable hash functions [BCFW09]. On the other hand, many
classical notions of security seem inherently single-stage: IND-CPA or IND-CCA security
for encryption, or signature schemes which are existentially unforgeable under (adaptive)
chosen message attacks. However, any classical definition of security becomes multi-staged
if it is augmented with a leakage oracle. The reason is that, in the random oracle model,
every party should have access to the random oracle. In particular, this includes the leak-
age oracle and the adversarially specified leakage function, resulting in an implicit second
stage [DKW11]. Hence, whenever side-channel attacks are reflected in a model, adversaries
act at least in two-stages—and for real-life applications, we cannot discard side-channel
attacks.

In order to cope with the new challenge of multi-stage adversaries, Ristenpart et al. put
forward a strengthened notion called reset indifferentiability. Roughly speaking, in this
game, the distinguisher may reset the simulator’s internal state between any two queries.
Returning to ROM/ICM equivalence, an inspection of the simulators defined in [CDMP05]
and [HKT11] (as well as [CPS08], for that matter) reveals that their behavior varies sub-
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stantially with their state and, thus, they are not reset indifferentiable.

Equivalence of the ROM and ICM under Reset Indifferentiability. As plain
indifferentiability is not sufficient to argue that two primitives are equivalent, the ques-
tion regarding the ideal cipher model and the random oracle model is, thus, again open.
Recently, it has been shown that reset indifferentiable constructions cannot be built via do-
main extension [DGHM13, LAMP12], thereby ruling out constructions from ideal ciphers
that are reset indifferentiable from a random oracle; note that random oracles are usually
perceived as having an infinite domain while ideal ciphers have a finite domain. With this
result at hand, we thus know that ideal ciphers cannot be used to obtain random oracles
via a reset indifferentiable construction, but it might still be possible to construct an ideal
cipher from a random oracle, i.e., either the two models are entirely incomparable, or the
random oracle model is strictly stronger.

We rule out such a possibility. Our so-called duality lemma establishes that if there is
no construction Gπ1 that is reset indifferentiable from primitive Π, then also vice versa, there
is no construction GΠ

2 that is reset indifferentiable from primitive π. Hence, our theorem
complements the results by Demay et al. and Luykx et al. [DGHM13, LAMP12] showing
that there can also not be a domain-shrinking construction.

Proving that according to plain indifferentiability, the ICM and ROM are equivalent
had been a serious challenge and finally involved a Feistel-network with many rounds. A
Feistel network is a domain-doubling construction, and is thus ruled out by the previous
impossibility results. The few leverages that remain to bypass the current impossibility
results possibly require quite new techniques. Firstly, it might still be possible to build a
construction that is neither domain-shrinking, nor domain-extending. However, as we will
see later, that means settling either direction (RO from IC and vice versa) simultaneously,
and this might be quite challenging. The second leverage is a distinction that has been
irrelevant in most works in the area of indifferentiability so far and that we would like to
point out. Namely, strong indifferentiability requires the simulator S to work for any distin-
guisher D, while weak indifferentiability only demands that for every D, there exists a good
simulator S. Known constructions are usually strongly indifferentiable, while most existing
impossibility results rule out even weakly indifferentiable constructions. In contrast, we do
not rule out weakly indifferentiable constructions. It would be interesting to see techniques
that make non-black-box use of the distinguisher D and establish a reset indifferentiable
construction that is domain shrinking.

Notions between indifferentiability and reset indifferentiability. From the
current state-of-the-art, there are two ways to proceed: firstly, we can develop new tech-
niques to exploit the few remaining leverages left to bypass the existing impossibility results.
Secondly, we might weaken the notion of reset indifferentiability as introduced by Ristenpart
et al., to a notion that is achievable by constructions and which is sufficient for a sub-class
of multi-stage games.

Demay et al. [DGHM13] introduce resource-restricted indifferentiability where adver-
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saries may share a limited amount of state. If a certain amount s of shared state is allowed,
then their impossibility result shows that a reset indifferentiable construction cannot ex-
tend the domain by more than s+ dlog(s)e bits. Maybe, the additional bits allow to bypass
the impossibility results more easily, as proving domain extension by a few bits might by
easier than requiring equality of the domain sizes—however, in this setting, the composition
results accounts for a certain class of games only.

Another approach that has been put forward by Luykx et al. [LAMP12] is to reduce the
number of resets. Indeed, allowing for a polynomial of resets/stages seems to be an overkill,
as some games such as the security model for deterministic encryption [BBO07, BBN+09]
and also certain forms of leakage require a constant number of adversarial stages only.
To this end, Luykx et al. propose the notion of single reset indifferentiability where a
distinguisher can make a single reset call only; naturally, a construction that is single-stage
reset indifferentiable would be sufficient in any security game consisting of exactly two
distinct adversarial stages such as deterministic encryption. Analogously, one can define
n-reset indifferentiability for n+ 1 adversarial stages.

However, as we prove, single-reset indifferentiability is already equivalent to full-reset
indifferentiability and so are all notions of n-reset indifferentiability. Hence, reducing the
number of allowed reset queries does not help us to establish composition results for a
restricted class of games. Thus, if a general indifferentiability result is indeed impossible,
then it is a curious open question how to cope with the uncomfortable situation. It might
be possible to establish indifferentiability results and composition theorems for a class of
games that is restricted in another way than by the number of queries. Indeed, it would be
interesting to see how such a class could look like and whether there are games for which,
in general, finding a suitable, indifferentiable construction is impossible.

Summary of our Contributions. We first introduce the notion of pseudo-deterministic
algorithms, which captures, that a probabilistic algorithm almost always returns the same
answer on the same queries and thus shares many properties with deterministic algo-
rithms. Essentially, a probabilistic (and possibly stateful) algorithm A is called pseudo-
deterministic, if no efficient distinguisher with black-box access to A can make A return
two different answers on the same input. This notion of pseudo-determinism can be seen
as an average-case version of the pseudo-deterministic algorithms that were recently intro-
duced by Goldreich, Goldwasser, and Ron [GGR12]. While they require probabilism to be
hard to detect on any input, we only require indistinguishability for efficiently generatable
inputs, on the average. As stressed by Goldreich et al. [GGR12], pseudo-deterministic al-
gorithms are practically as useful as deterministic algorithms, but they are also easier to
construct—which we indeed exploit in our paper.

We will show in Section 3 that simulators for reset indifferentiability need to be state-
less and pseudo-deterministic. Simplifying pseudo-deterministic to deterministic for the
moment (we discuss this in Appendix B), this allows us to establish what we call the dual-
ity lemma. Perhaps surprisingly, it states that, with respect to reset indifferentiability, two
idealized models are either equivalent or incomparable. The reason is that a deterministic
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and stateless simulator can act as a construction and vice versa. Consequently, in order
to prove equivalence in terms of reset indifferentiability, this lemma makes it sufficient to
prove the “easier” direction, whichever this might be. In turn, for impossibility results, one
might use this as a tool to prove impossibility more easily. In fact, we use the duality lemma
to establish that not only domain-extending constructions are impossible, but also domain-
shrinking constructions (Section 4) thereby complementing the results of [DGHM13]. Note
that the duality lemma covers strong indifferentiability, leaving non-black-box use of the
distinguisher as a potential leverage to bypass this impossibility.

The recently proposed [RSS11] notion of single reset indifferentiability intends to define a
notion of indifferentiability that is easier to achieve and simultaneously covers an interesting
class of multi-stage games that has two adversary stages only. Interestingly, as we establish,
restricting the number of resets does not yield a weaker notion of equivalence. We prove that
single (and n) reset indifferentiability is equivalent to reset indifferentiability (Section 5).
Maybe surprisingly, our proof does not rely on a hybrid argument; instead, we establish a
tight reduction that merely reduces the distinguisher’s advantage by a factor of 2.

2 Preliminaries

For a natural number n ∈ N we denote by {0, 1}n the set of all bit strings of length n.
By {0, 1}∗ we denote the set of all bit strings of finite length. As usual |M| denotes the
cardinality of a set M and logarithms are to base 2. For some probabilistic algorithm A
and input x we denote by A(x;R) the output of A on x using randomness R. Throughout
this paper we assume that λ is a security parameter (if not explicitly given then implicitly
assumed) and that algorithms (resp., Turing machines) run in polynomial time with respect
to λ.

In this paper we consider random oracles and ideal ciphers (defined below) which we
will collectively refer to as ideal primitives. Although we present most of the results directly
for ideal ciphers and random oracles, the following more general notion of ideal primitives
allows us to generalize some of our results:

Definition 2.1. An ideal primitive Πλ is a distribution on functions indexed by the security
parameter λ. For some algorithm A, security parameter λ and ideal primitive Πλ we say
that A has access to Π if A has oracle access to a function f chosen from the distribution
Πλ.

We simply write Π, i.e., omit the security parameter, if it is clear from the context.

Remark. We will usually encounter only single instances of an ideal primitive Π at a time.
Unless stated otherwise, if multiple parties have access to Π, then we implicitly assume that
the corresponding function f was chosen from the distribution Π using the same randomness
for all parties, i.e., all parties have oracle access to the same function f .
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Random Oracles and Ideal Ciphers. A random oracle (R`,m)λ is the uniform dis-
tribution on all functions mapping {0, 1}` to {0, 1}m with ` := `(λ) and m := m(λ).
An ideal cipher (Ek,n)λ is the uniform distribution on all keyed permutations of the form
{0, 1}k × {0, 1}n → {0, 1}n with k := k(λ) and n := n(λ). That is, for a cipher in the
support of (Ek,n)λ each key κ ∈ {0, 1}k describes a random (independent) permutation
Ek,n(κ, ·) : {0, 1}n → {0, 1}n. By abuse of notation, the term random oracle (resp., ideal
cipher) also refers to a specific instance chosen from the respective distribution.

Keyed vs. unkeyed ciphers. The idealized cipher model has either been considered as
a public unkeyed permutation or as a public keyed permutation. We present our results in
the keyed setting since we feel that the ideal cipher model is usually perceived in this way.
However, we want to point out that the results are equally valid for the unkeyed setting
because our proofs do not rely on the presence of a key.

Independently of this, one might be tempted to argue that the settings are interchange-
able since we know, for example, constructions of a keyed permutation from an ideal public
permutation (Even and Mansour, [EM97]). Note though, that in order to make this argu-
ment work, one needs to show that these constructions are reset indifferentiable. However,
the construction by Even and Mansour is a domain extender where the key size is twice
the message size and we rule out reset indifferentiability for such extending constructions
in Section 4. We note that it is an interesting open problem whether or not such (reset)
indifferentiable non-extending transformations exist.

2.1 Indifferentiability

Let us now recall the indifferentiability notion of Maurer et al. [MRH04] in the version by
Coron et al. [CDMP05] who replace random systems by oracle Turing machines (resp., ideal
primitives). Since we are concerned with different types of indifferentiability, we will some-
times use the term plain indifferentiability when referring to this original notion of indiffer-
entiability.

Definition 2.2. A Turing machine G with black-box access to an ideal primitive π is
strongly indifferentiable from an ideal primitive Π if there exists a simulator SΠ, such that
for any distinguisher D there exists negligible function negl, such that:∣∣∣Prob

[
DGπ ,π(1λ) = 1

]
− Prob

[
DΠ,SΠ

(1λ) = 1
]∣∣∣ ≤ negl(λ) (1)

We say that the construction is weakly indifferentiable if for any D there exists a sim-
ulator S such that (1) holds.

We will use the term real world to denote that the distinguisher D talks to the con-
struction Gπ and the primitive π, whereas in the ideal world, the distinguisher D talks to
the “target” primitive Π and simulator SΠ. The goal of the distinguisher is to determine
which of the two pairs of oracles he is talking to. Towards this goal, the distinguisher D
queries its two oracles, of which one is called the honest interface h which is either Gπ (in

8



the real world) or Π (in the ideal world). The other oracle is called the adversarial interface
a and corresponds to either π (real world) or SΠ (ideal world) Thus, (h, a) := (Gπ, π) if
distinguisher D is in the real world and (h, a) := (Π,SΠ) if it is in the ideal world. The
names h (honest) and a (adversarial) are in the style of [RSS11] and suggestive: an honest
party uses a construction as the designer intended; an adversary could, however, use the
underlying building blocks to gain an advantage.

Reset Indifferentiability. Ristenpart et al. show [RSS11] that, in general, we cannot
only securely replace a primitive Π by a construction Gπ from primitive π, if the construction
is indifferentiable only. Instead, Gπ needs to be (weakly) reset indifferentiable from Π which
extends the original indifferentiability definition by giving the distinguisher the power to
reset the simulator at arbitrary times:

Definition 2.3. Let the setup be as in Definition 2.2. An oracle Turing machine Gπ is
called strongly (resp. weakly) reset indifferentiable from ideal primitive Π if the distin-
guisher D can reset the simulator S to its initial state arbitrarily many times during the
respective experiment.

For reset indifferentiability the adversarial interface a in the real world simply ignores
reset queries. Reset indifferentiability now allows composition in arbitrary games and not
only in single-stage games, as does the original indifferentiability notion [RSS11, MRH04].

3 Pseudo-deterministic Stateless Simulators for Indifferen-
tiability

Recall that the composition theorem by Maurer et al. [MRH04] for plain indifferentiability
holds for single-stage adversaries only. Their theorem says, that if (i) the construction Gπ is
indifferentiable from the ideal primitive Π and if (ii) there is a reduction R that transforms
a successful adversary A against some notion of security into an adversary RA against a
single-stage game in the presence of the ideal primitive Π, then also in the presence of the
construction Gπ there is a reduction R′ that transforms a successful adversary A into an
adversary R′A against the single-stage game.

In order to prove a general composition theorem, Ristenpart et al. [RSS11] strengthen
the notion of indifferentiability to account for the different stages of the adversary. They
introduce the notion of (weak) reset indifferentiability and prove that the aforementioned
theorem works for arbitrary games, if the construction Gπ is reset indifferentiable from the
ideal primitive Π. In contrast to plain indifferentiability, here, the distinguisher gets extra
powers, namely to reset the simulator at arbitrary times. Ristenpart et al. [RSS11] and
Demay et al. [DGHM13] remark that reset indifferentiability is equivalent to plain indiffer-
entiability with stateless simulators. Intuitively, this follows from the observation that the
distinguisher in the reset indifferentiability game can simply reset the simulator after each
query it asks. We believe that, albeit equivalent, stateless simulators are often easier to

9



handle than reset-resistant simulators and thus explicitly introduce indifferentiability with
stateless simulators as multi-stage indifferentiability and then prove that it is equivalent to
reset indifferentiability.

In Subsection 3.2, we prove that strong multi-stage indifferentiability implies that the
simulators are also pseudo-deterministic, a notion that we put forward in this section.
Relative to a random oracle or an ideal cipher, we show how to derandomize pseudo-
deterministic simulators, if the simulators are allowed to depend on the number of queries
made by the distinguisher.

3.1 Multi-stage Indifferentiability

A stateless interactive algorithm is an algorithm whose behavior is statistically independent
from the call/answer history of the algorithm. We now prove that indifferentiability with
stateless simulators is equivalent to reset indifferentiability.

Definition 3.1. A construction G with black-box access to primitive π is strongly multi-
stage indifferentiable from primitive Π if there exists a stateless probabilistic polynomial-time
simulator S (with access to Π), such that for any probabilistic polynomial-time distinguisher
D there exists negligible function negl such that:∣∣∣Prob

[
DGπ ,π(1λ) = 1

]
− Prob

[
DΠ,SΠ

(1λ) = 1
]∣∣∣ ≤ negl(λ) (2)

We say that a construction Gπ is weakly multi-stage indifferentiable from Π if for any
probabilistic polynomial-time distinguisher D there exists a stateless probabilistic polynomial-
time simulator S such that (2) holds.

Lemma 3.2. A construction G with black-box access to primitive π is weakly (resp., strongly)
multi-stage indifferentiable from primitive Π if and only if G is weakly (resp., strongly) reset
indifferentiable from primitive Π.

Proof. First note that any stateless simulator is, naturally, indifferent to resets and thus
multi-stage indifferentiability implies reset indifferentiability. Moreover, strong reset in-
differentiability implies strong multi-stage indifferentiability since the simulator for reset
indifferentiability must work for any distinguisher, in particular for those which reset after
each query. Hence this stateful simulator can be simply initialized and run by a stateless
simulator (the stateless simulator does this for each query it receives).

We now prove the remaining relation, i.e., that weak reset indifferentiability implies weak
multi-stage indifferentiability. Assume that reset indifferentiability holds and consider an
arbitrary distinguisher D in the multi-stage indifferentiability game. From this we construct
a distinguisher D′ for the reset indifferentiability game which runs D and sends a reset query
to its adversarial a-interface after every a-query issued by D. Let S ′ be the simulator for
D′ guaranteed to exist by reset indifferentiability. We construct a stateless simulator S for
multi-stage indifferentiability which simply runs (the stateful) S ′ and resets its own state
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after each query. Now the following equations hold for b ∈ {0, 1}:

Prob
[
D′Π,S′(1λ) = b

]
= Prob

[
D′Π,S(1λ) = b

]
= Prob

[
DΠ,S(1λ) = b

]
.

Thus, if equation (2) holds for (D′,S ′), then it holds equally for (D,S).

3.2 Pseudo-Deterministic Algorithms

Our notion of pseudo-deterministic algorithms intuitively captures that no distinguisher
can query the algorithm on an input such that it returns something different from the
most likely output. That is, the adversary wins if in its set of input/output pairs to the
algorithm there is a query for which the algorithm did not return the most likely response.
We also introduce a weak notion of this property, where we call A pseudo-deterministic for a
specific distinguisher if the probability of the distinguisher winning in the above experiment
is negligible.

Our notion of pseudo-determinism can be seen as an average-case version of the pseudo-
deterministic algorithms as recently introduced by Goldreich et al. [GGR12]. While they
require probabilism to be hard to detect on any input, we only require indistinguishability
for efficiently generatable inputs, on average.

Definition 3.3. Let λ be a security parameter and AO a stateless probabilistic polynomial-
time oracle Turing machine with access to some oracle O. Let L[D,A,O] denote the induced
set of input/output pairs (x, y) of AO when queried arbitrarily many times by the distin-
guisher D, where A uses fresh coins in each run. We say that AO is pseudo-deterministic if
for all probabilistic polynomial-time distinguishers D there exists a negligible function negl,
such that

ProbD,A,O
[
∀(x, y) ∈ L[D,A,O] y = yx,AO

]
≥ 1− negl(λ). (3)

The notation yx,AO denotes the most likely output of A on input x over the randomness of
A, i.e., conditioned on a fixed oracle O. If there are two equally likely answers on input x,
we choose yx,AO to be the lexicographically smaller one.

We say algorithm AO is pseudo-deterministic for distinguisher DAO(1λ,·)(1λ), if there
exists negligible function negl, such that equation (3) holds for D.

Note that the definition of A being pseudo-deterministic for distinguisher D does not
imply that it is hard to distinguish whether A is probabilistic or deterministic—it is only
hard for a particular algorithm D. Although this might sound like a weak and somewhat
useless property, it will be sufficient to show that if a simulator is pseudo-deterministic for
a distinguisher, then the simulator can be entirely derandomized via random oracles/ideal
ciphers.

We now show that strong multi-stage indifferentiability implies that the simulators are
not only stateless but also pseudo-deterministic. This is captured by the following lemma.

Lemma 3.4. Let Gπ be a construction with black-box access to primitive π which is strongly
multi-stage indifferentiable from primitive Π. Then there is a stateless pseudo-deterministic
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probabilistic polynomial-time simulator S such that for all probabilistic polynomial-time dis-
tinguishers D equation (2) holds in the strong case.

Proof. Let us assume there exists stateless simulator S such that for all distinguishers D
equation (2) holds and such that S is not pseudo-deterministic. The latter implies that there
exists distinguisher Dpd against the pseudo-determinism of simulator S, i.e., there is a non-
negligible probability that Dpd asks a query to S, where S has a non-negligible probability
of returning a different value than the most likely one. We now construct distinguisher D′
against strong multi-stage indifferentiability. Distinguisher D′ runs Dpd on the adversarial
a-interface. Let q1, . . . , qt be the queries asked by Dpd. Distinguisher D′ then sends the
same queries once more to its a-interface and returns 1 if at least one response does not
match and 0 otherwise. If D′ is in the real world, talking to Gπ and π algorithm D′ will
always output 0 as π is a function. If on the other hand, D′ is in the ideal world, then
Dpd will succeed with noticeable probability and hence D′ will distinguish both worlds with
noticeable probability, a contradiction.

Deterministic Simulators. Bennett and Gill prove in [BG81] that relative to a random
oracle the complexity classes BPP and P are equivalent. Let us quickly sketch their idea.
Given a probabilistic polynomial time oracle Turing machine MR which has access to
random oracle R and which decides a language L in BPP we can prove the existence of a
deterministic polynomial time Turing machine DR which also decides L. Let us by p(|x|)
denote the runtime of machine MR for inputs of length |x|. As MR runs in polynomial
time there exists a polynomial upper bound p(|x|) on the length of queriesMR can pose to
the random oracle. To derandomize MR we construct a deterministic machine DR which
works analogously toMR with the single exception that whenMR requests a random coin
then DR generates this coin deterministically by querying the random oracle on the next
smallest input that cannot have been queried byMR due to its runtime restriction. As the
random oracle produces perfect randomness, the machines decide the same language with
probability 1 over the choice of random oracle.

Using the techniques developed by Bennet and Gill [BG81] we now show that in the
multi-stage indifferentiability setting, if a simulator is pseudo-deterministic for a distin-
guisher D, then it can be derandomized, in case the constructed primitive Π is a random
oracle or an ideal cipher. When applied to a simulator S that is universal for all dis-
tinguishers (strong indifferentiability), these derandomization techniques yield a family of
simulators that depends only on the number of queries made by the distinguisher (weak
indifferentiability). We give the proof in Appendix A.

Lemma 3.5. Let AΠ be a stateless probabilistic polynomial-time algorithm with oracle ac-
cess to a random oracle R`,m or an ideal cipher Ek,n for ` ∈ ω (log λ) (resp., (k + n) ∈
ω (log λ)). Let s be polynomial in λ. From AΠ, we construct a deterministic algorithm BΠ

such that the following holds: for all efficient distinguisher D that make less than s queries
to their oracle, it holds that if AΠ is pseudo-deterministic for D, then∣∣∣ProbR,Π

[
DΠ,AΠ(R,·)(1λ) = 1

]
− ProbΠ

[
DΠ,BΠ(·)(1λ) = 1

]∣∣∣
12



is negligible, where the probability is over the choice of oracle Π and algorithm A’s and
distinguisher D’s internal coin tosses for the first case and over the choice of oracle Π and
distinguisher D’s internal coin tosses in the second.

Remark. While lemma 3.4 says that simulators need to be pseudo-deterministic, we will,
for the sake of readability, make the simplifying assumption that simulators for reset in-
differentiability are deterministic throughout the paper. Nevertheless, our results hold in
either case. In Appendix B we point out how our proofs would be affected if this assumption
were not in place.

4 The Random Oracle and Ideal Cipher Model are Incom-
parable

In this section we prove that the random oracle model and the ideal cipher model are
incomparable with respect to strong multi-stage indifferentiability. We start by giving an
alternative, simpler proof of the fact that multi-stage indifferentiable constructions cannot
be built via domain extension [DGHM13, LAMP12] (Lemma 4.1). [DGHM13] rule out
domain extension even for a single bit of extension. In turn, we obtain an easier proof in
the setting where the extension factor is super-logarithmic. In Section 4.1 we then present
our duality lemma for multi-stage indifferentiability which allows us to conclude that the
ROM and the ICM are incomparable with respect to strong multi-stage indifferentiability.

Lemma 4.1. Let R be a random oracle with domain {0, 1}` (resp., E be an ideal cipher
with domain {0, 1}k × {0, 1}n) and π be any ideal primitive with domain size 2v. For
` − v ∈ ω(log(λ)) (resp., k + n − v ∈ ω(log(λ))) there exists no construction Gπ that is
weakly multi-stage indifferentiable from R (resp., E).

We prove Lemma 4.1 for the random oracle case; the proof for ideal ciphers works
analogously. Note that we prove the statement for weak multi-stage indifferentiability,
thereby essentially ruling out any (possibly non-black-box) construction.

In the following proof we consider a particular distinguisher that tests for the ideal
world by forcing the simulator to query its oracle on a particular value M . We show that
no simulator is able to do this with more than negligible probability since M is drawn from
a very large set while the simulator, being stateless, is only able to make queries from a
negligible fraction of this large set; it thus fails to pass the test.

Proof of Lemma 4.1. Assume towards contradiction that there exists construction Gπ that
is weakly multi-stage indifferentiable from random oracle R and, hence, for every distin-
guisher D there exists a stateless simulator S such that D cannot distinguish between the
real and ideal world.

We consider a distinguisher Dh,a with access to honest and adversarial interfaces (h, a)
which implement the random oracle R and simulator S in the ideal world and construction
Gπ and ideal primitive π in the real world. The distinguisher D chooses a message M ∈
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{0, 1}` uniformly at random and executes construction G via an internal simulation using
its adversarial interface a, i.e., it computes Ga(M). Then, the distinguisher asks its honest
interface on message M to compute h(M) and returns 1 if the two results agree and 0
otherwise. Note that in the real world distinguisher D will always output 1. Thus, the
simulator S has to ensure that GS

R
(M) is equal to R(M) with overwhelming probability

over the choice of the random oracle R. We now prove that, in the ideal world, the two
values match only with negligible probability over the choice of the message M and the two
settings can thus be distinguished by D.

Let us assume the ideal world and denote the query/response pairs to the a-interface with
(qi, ri)1≤i≤t. We analyze the simulator’s behavior when it is asked these queries q1,...,qt.
If for none of the qi the simulator S asks the random oracle on M , then the answer of
GS

R
(M) is independent of R(M) and thus different with overwhelming probability. By a

simple counting argument, we now prove that, with high probability over the choice of M ,
on no query (not even one outside of the set (qi, ri)1≤i≤t), the simulator S asks R on M .
For this, note that the queries which simulator S receives are of length v. Hence there are
at most 2v distinct possible queries to S. Denote by c the upper bound on the number
of queries that S asks to its random oracle over all possible queries that S itself receives.
As the simulator S runs in polynomial time c exists and is polynomial. Noting that S is
stateless, we conclude that S asks at most c2v � 2` queries. Hence the probability that the
distinguisher’s M is in the set{

M : ∃q SR asks M on input q
}

is negligible. The probability that the distinguisher D returns 1 in the ideal world where it
is given access to simulator S and a random oracle R is therefore also negligible. Thus, the
distinguisher D has a distinguishing advantage of almost 1 which concludes the proof.

4.1 The Duality Lemma for Multi-Stage Indifferentiability

We now prove the inverse direction, that is an ideal cipher cannot be build from a random
oracle with larger domain. In contrast to the previous section we here give an impossibility
result for strong multi-stage indifferentiability. Our result is, however, more general and
of independent interest. Strong multi-stage indifferentiability guarantees the existence of a
simulator that is stateless and deterministic. Constructions of ideal primitives often need
to be stateless and deterministic as well. If for example, the construction, implements a
publicly accessible function such as a hash function, it needs has to be stateless. Note that
this is the case both for random oracles and ideal ciphers.

If we assume constructions to be deterministic and stateless this allows us to exchange
the role of construction and simulator thereby turning an impossibility result (resp. feasibil-
ity result) in one direction into an impossibility result (resp. feasibility result) in the other
direction, or likewise, we can transform a positive result in one direction into a positive
result in the other direction. We formalize this idea in the Duality Lemma and see how to
prove it in the case of strong multi-stage indifferentiability.
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Lemma 4.2 (Duality Lemma for Multi-Stage Indifferentiability). Let π and π′ by two
ideal primitives. Assuming constructions are stateless and deterministic, then one of two
following statements holds:

1. The two primitives are computationally equivalent, i.e., there exist constructions G1, G2

such that Gπ1 is strongly multi-stage indifferentiable from π′ and Gπ
′

2 is strongly multi-
stage indifferentiable from π, or

2. π and π′ are incomparable with respect to strong multi-stage indifferentiability.

In essence this means that a positive or negative result in either direction gives us a result
for the other direction. As we have already seen a negative result for domain extenders this
gives us the result for the other directions, i.e., going from a large random oracle R to a
small ideal cipher E , or from a large ideal cipher E to a small random oracle R.

Proof of Lemma 4.2. Assume construction Gπ with black-box access to ideal primitive π is
strongly multi-stage indifferentiable from π′. Then by definition there exists a deterministic,
stateless simulator S such that no distinguisher D can tell apart the ideal world (π′,Sπ′

)
from the real world (Gπ, π). Likewise, by definition, G is stateless and deterministic. We
now exchange the roles of construction G and simulator S, thereby getting a new “construc-
tion” Sπ′

implementing primitive π. It remains to show that Sπ′
is strongly multi-stage

indifferentiable from π.
Let us assume the contrary. Then there exists distinguisher D that can distinguish

between the settings (π′,Sπ′
) and the setting (Gπ, π). This, however, contradicts the as-

sumption that Gπ is strongly multi-stage indifferentiable from π′.

An immediate consequence of the duality lemma and Lemma 4.1 is captured by the
following corollary:

Corollary 4.3. The ideal cipher model and the random oracle model are incomparable with
respect to strong multi-stage indifferentiability.

Remark. One interesting consequence of the duality lemma is best seen by an example:
Can a random oracle with smaller domain be constructed from a random oracle with a larger
domain? Intuitively, it feels natural to assume that this works. However, Lemma 4.1 tells us,
that the inverse is not possible and, thus, by the duality lemma we can directly conclude that
any construction using a large random oracle cannot be strongly multi-stage indifferentiable
from a small random oracle. So far, we have failed to either prove impossibility for weak
multi-stage indifferentiability or to come up with a construction. We leave this for future
work.

5 Single versus Multi-Reset

Luykx et al. [LAMP12] introduce the presumably weaker notion of n-reset indifferentiability,
where the distinguisher is allowed to reset the simulator only n times. Naturally, for a
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construction that is n-reset indifferentiable the composition theorem holds for games that
have n + 1 or less stages. In the following we show that, however, already the extreme
single-reset notion implies full reset indifferentiability for simulators that do not depend on
the distinguisher (i.e., the strong case). This yields that also for n-reset indifferentiability
all our separations hold in a black-box fashion.

Lemma 5.1. Let Gπ be a deterministic, stateless construction with black-box access to
primitive π which is strongly 1-reset indifferentiable from primitive Π via a deterministic,
stateless simulator. Then, Gπ is also strongly multi-stage indifferentiable from primitive Π.

The proof of this lemma makes use of the following Claim 5.2, which we deal with later.
For this, let Q[D, rD,Π,S] denote the ordered list of query/answer pairs induced by running
D with randomness rD and access to oracles Π and S.

Claim 5.2. Let Gπ be a construction with black-box access to primitive π which is strongly
1-reset indifferentiable from primitive Π and denote the corresponding simulator by S. De-
fine the simulator S ′ as running S and resetting itself after each query it receives. Then,
for any probabilistic polynomial-time algorithm DSS with access to an ideal primitive Π and
a simulator S, with high probability over the choice of Π and r, it holds that their induced
query-answer lists Q[DSS, r,Π,S] and Q[DSS, r,Π,S ′] are equal, formally, there exists neg-
ligible function negl such that

ProbΠ,r

[
Q[DSS, r,Π,S] = Q[DSS, r,Π,S ′]

]
≥ 1− negl(λ). (4)

Let us see how we can prove Lemma 5.1 with the help of Claim 5.2.

Proof of Lemma 5.1. Let us by ≈ denote that two values are negligibly close, that is

a ≈ b ⇐⇒ |a− b| ≤ negl(λ)

for some negligible function negl.
Let S be the simulator guaranteed by the fact that Gπ is strongly 1-reset indifferentiable

from primitive Π, that is, for all efficient distinguishers D we have that

Prob
[
DG,π(1λ) = 1

]
≈ Prob

[
DΠ,SΠ

(1λ) = 1
]
. (5)

Let S ′ be the simulator from Claim 5.2. By Claim 5.2, we have that for all efficient distin-
guishers D, it holds that

Prob
[
DΠ,SΠ

(1λ) = 1
]
≈ Prob

[
DΠ,S′Π(1λ) = 1

]
.

Thus, we can transform D into a non-resetting distinguisher with exactly the same behavior.
Let D′ be as D with the exception that it does not forward D’s reset queries. Then, we
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have that

Prob
[
DΠ,SΠ

(1λ) = 1
]

≈Prob
[
DΠ,S′Π(1λ) = 1

]
(Claim 5.2)

= Prob
[
D′Π,S

′
(1λ) = 1

]
(S ′ resets after each step)

= Prob
[
D′Π,S(1λ) = 1

]
(Claim 5.2)

≈Prob
[
D′G

π ,π
(1λ) = 1

]
(Equation 5) (6)

= Prob
[
DGπ ,π(1λ) = 1

]
(7)

where Equation 6 follows from the assumption that S is good for all D′ that make less than
a certain number of reset queries which is certainly satisfied for D′ who does not make even
a single reset query. And Equation 7 follows, as resets do not have any effect in the real
world. As S ′ is clearly reset indifferentiable this concludes the proof.

What is left is to prove Claim 5.2:

Proof of Claim 5.2. Assume towards contradiction that there exists a probabilistic polynomial-
time algorithm DSS such that Equation (4) does not hold, that is, there is a non-negligible
function ν(λ) such that

1− ν(λ) = ProbΠ,r

[
Q[DSS, r,Π,S] = Q[DSS, r,Π,S ′]

]
.

We now transform DSS into a successful distinguisher D for 1-reset indifferentiability,
thereby contradicting the assumption. The distinguisher D = (D1,D2) is a two phase
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algorithm. In the first phase, D1 (depicted in Figure 1) only makes queries to the honest
interface but no queries to its adversarial interface. In turn, in the second phase, D2 makes
queries to both, the adversarial and the honest interface.

In the first phase, D1 runs two local separate copies of DSS using the same uniformly
sampled randomness r. It keeps a record of all queries, answers, and resets performed in
both runs. In one run, DSS has access to a locally simulated S and in the other run DSS has
access to a locally simulated S ′. The reset requests issued by DSS are honored in both cases
within the simulation. Note that in this phase no query (reset or other) to the adversarial
interface is forwarded to the adversarial interface that D has access to. In contrast, D1 does
forward any query that either copy of DSS makes to the honest interface to its own honest
interface. Similarly, any query by either of the simulated simulators S and S ′ to the honest
interface are forwarded by D1 to its own honest interface. This simulation is performed
until both distinguishers terminate or until there is a query that is answered differently by
S and S ′. Let (q1, . . . , q`) be the queries in the interaction between DSS and S since the last
reset of S, or since the beginning of the simulation if S did not receive any reset queries.

We define the following event E:

E: There is no query that is answered differently by S and S ′.

E: There is a query that is answered differently by S and S ′.

If event E happens, then D1 passes a special symbol to D2; and D2 returns a random bit.
If event E happens, then D1 passes the queries q1, . . . , q` to D2. Note that ql denotes the
query that previously answered differently. The distinguisher D2 replays these queries on
its adversarial interface and records the answers y1, . . . , y`. It then issues a reset request
and asks the single query q` once again, storing the answer as y′`. Finally, it outputs 0 if
y` = y′` and 1 if y` 6= y′`.

Analysis. Before we continue let us provide some intuition on why D := (D1,D2) dis-
tinguishes the real from the ideal world. In the real world y` will always match y′` as π
is a function, thus, giving the same answer on the same query. In the ideal world, on the
other hand, the two values differ with the same probability that the two internal simulations
produced a different value, that is with probability Prob

[
E
]
.

By definition, ν(λ) denotes the probability that event E happens in the ideal world, that
is, if the honest interface of D is implemented by Π:

ν(λ) := ProbΠ,D
[
Q[DSS, r,Π,S] 6= Q[DSS, r,Π,S ′]

]
.

The probability is over the choice of Π and D’s internal coins. Note that the two simulators
S and S ′ are deterministic. The outer simulator that D is connected to is irrelevant for
event E.

We now prove that the probability of D outputting 1 in the ideal world, that is,

Prob
[
DΠ,SΠ

(1λ) = 1
]

is greater than 1
2 + 1

2ν(n). Moreover, the probability that the dis-

tinguisher D outputs 1 in the real world, i.e, Prob
[
DGπ ,π(1λ) = 1

]
is at most 1

2 , because
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the distinguisher always flips a random coin, as the deterministic construction Gπ always
produces identical queries. Thus,∣∣∣Prob

[
DΠ,SΠ

(1λ) = 1
]
− Prob

[
DGπ ,π(1λ) = 1

]∣∣∣ ≥ 1

2
ν(λ) (8)

contradicting the assumption that construction Gπ is single-reset indifferentiable from Π
and hence such a DSS cannot exist.

We now estimate Prob
[
DΠ,SΠ

(1λ) = 1
]
, that is, the probability of D outputting 1 in

the ideal world.

ProbΠ,D

[
DΠ,SΠ

(1λ) = 1
]

=
1

2
· ProbΠ,D [E ] + ProbΠ,D

[
E
]
· ProbΠ,D

[
DΠ,SΠ

(1λ) = 1
∣∣E ]

=
1

2
· (1− ν(λ)) + ν(λ) · ProbΠ,D

[
DΠ,SΠ

(1λ) = 1
∣∣E ]

≈1

2
− 1

2
ν(n) + ν(n) · 1 (9)

=
1

2
+

1

2
ν(n),

where the second to last transformation (Equation 9) follows from the determinism of S
and the fact that for a single query (since the last reset), S = S ′. In turn,

ProbΠ,D

[
DGπ ,π(1λ) = 1

]
=

1

2
· ProbΠ,D [E ] + ProbΠ,D

[
E
]
· ProbΠ,D

[
DGπ ,π(1λ) = 1

∣∣E ]
=

1

2
· ProbΠ,D [E ] + ProbΠ,D

[
E
]
· 0

≤1

2
.
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A Missing Proofs for Section 3

A.1 Proof of Lemma 3.5

Lemma (Lemma 3.5, restated). Let AΠ be a stateless probabilistic polynomial-time algo-
rithm with oracle access to a random oracle R`,m or an ideal cipher Ek,n for ` ∈ ω (log λ)
(resp., (k+n) ∈ ω (log λ)). Let s be polynomial in λ. From AΠ, we construct a deterministic
algorithm BΠ such that the following holds: for all efficient distinguisher D that make less
than s queries to their oracle, it holds that if AΠ is pseudo-deterministic for D, then∣∣∣ProbR,Π

[
DΠ,AΠ(R,·)(1λ) = 1

]
− ProbΠ

[
DΠ,BΠ(·)(1λ) = 1

]∣∣∣
is negligible, where the probability is over the choice of oracle Π and algorithm A’s and
distinguisher D’s internal coin tosses for the first case and over the choice of oracle Π and
distinguisher D’s internal coin tosses in the second.

Proof. Let AΠ be a stateless algorithm with access to ideal primitive Π where Π is either a
random oracle R`,m or an ideal cipher Ek,n.

LetD be an efficient distinguisher for whichAΠ is pseudo-deterministic. As distinguisher
D is efficient, there exists an upper bound p(|λ|) on the number of queries to the Π-interface
by D. We construct a deterministic algorithm B which works as A with the only exception
that B deterministically generates “random” bits by querying its random oracle, whenever
A makes use of a random bit. For the jth requested random bit, algorithm B calls the
Π-oracle (either random oracle R or ideal cipher E where it uses the encryption interface of
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E) on p(|λ|) + j distinct values xor-ing the result and choosing a bit from this result. Note
that as ` ∈ ω (log λ) (resp., n+ k ∈ ω (log λ)) there exist sufficiently many distinct values.

Remember that we denote by yq,AO the most likely output of algorithm A on input q
conditioned on fixed oracle O. We want to prove that∣∣∣ProbΠ,D,A

[
DΠ,AΠ

(1λ) = 1
]
− ProbΠ,D

[
DΠ,BΠ

(1λ) = 1
]∣∣∣

is negligible in λ. We prove a stronger statement, namely, that the outputs of A and
B are likely to be identical. We define event C capturing that “the outputs of A and B
agree on all inputs.” Towards this goal we define event A as “algorithm A returns yqi,AΠ

for all queries qi” where yqi,AΠ is the most likely answer of AΠ on input qi, i.e., we set

yqi,AΠ := arg maxy
{

ProbR
[
AΠ(qi;R) = y

]}
(cf. Definition 3.3). Likewise, we define event

B as “algorithm B returns yqi,AΠ for all queries qi.” We will show that

ProbΠ,D,A [A ] ≥ 1− negl (10)

and

ProbΠ,D [B ] ≥ 1− negl. (11)

Clearly, the probability that A and B produce the same answers for all qi is lower bounded
by the probability that A and B both output yqi,AΠ for all qi. Thus,

ProbΠ,D,A [C ] ≥ ProbΠ,D,A [A ∧ B ]

= 1− ProbΠ,D,A [¬A ∨ ¬B ]

≥ 1− (ProbΠ,D,A [¬A ] + ProbΠ,D [¬B ])

≥ 1− negl− negl.

Let us now make these statements formal as well as prove inequalities (10) and (11). We
denote with qi the queries to A by D and by Ri the randomness used by A on query qi. We
say that event A occurs (over Π,D, R1, ..., Rn), if

∀i AΠ(qi;Ri) = yqi,AΠ .

Note that the pseudo-determinism of A for D directly implies that

ProbΠ,D,R1,...,Rn

[
∀i AΠ(qi;Ri) = yqi,AΠ

]
≥ 1− negl, (12)

which establishes inequality (10). We say that event B occurs (over Π,D), if

∀i BΠ(qi) = yqi,AΠ ,

where qi now denotes the queries by D to algorithm B. Inequality (11) we derive from
inequality (10) via an averaging argument. Note that in inequality (12) we consider fresh
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randomness Ri for every query qi. If for all queries qi a random choice of randomness is
good with overwhelming probability, then a random choice of randomness is good for all qi
with overwhelming probability:

ProbΠ,D,R
[
∀i AΠ(qi;R) = yqi,AΠ

]
≥ 1− negl. (13)

Moreover, when considering the random oracle via lazy sampling, one can observe that the
randomness generated by B from Π is independent from the part of Π that is used in the
experiment, which yields that

ProbΠ,D
[
∀i;BΠ(qi) = yqi,AΠ

]
= ProbΠ,D,R

[
∀i;AΠ(qi;R) = yqi,AΠ

]
≥ 1− negl

as desired.

B Pseudo-Deterministic vs. Deterministic Simulators

Let us discuss how proofs need to be modified, if we replace deterministic simulators by
pseudo-deterministic ones.

Duality Lemma The main idea of the Duality Lemma 4.2 is to exchange the role of
the simulator and the construction. Namely, a construction Gπ that is strongly reset in-
differentiable from a primitive Π comes with a simulator S, which, by Lemma 3.3 is also
pseudo-deterministic and thus, SΠ is actually strongly reset indifferentiable from primitive
π using G as a simulator. However, if S is not deterministic, but only pseudo-deterministic,
then we need to slightly adapt the definition of a construction to allow for those algorithms.
As pseudo-deterministic constructions are as useful as deterministic ones, all proofs still go
through. In the remaining part of this section, we will also explain, where proofs change, if
we consider pseudo-deterministic constructions.

Single-Stage versus Multi-Stage We will examine how the proofs of Lemma 5.1 change,
if we consider pseudo-deterministic simulators S and pseudo-deterministic constructions G.
Namely, in the proof of Claim 5.2, the transformation in Equation 9 follows from pseudo-
determinism of the simulator instead of determinism of the simulator S and thus, the
transformation is not an equality, but rather a transformation into a negligibly close term.
Similarly, we argue before Equation 8 that the deterministic construction always returns
consistent answers. If the construction is pseudo-deterministic only, then we loose a negli-
gibly small amount that accounts for the pseudo-determinism of the construction G.

24


	Introduction
	Preliminaries
	Indifferentiability

	Pseudo-deterministic Stateless Simulators for Indifferentiability
	Multi-stage Indifferentiability
	Pseudo-Deterministic Algorithms

	The Random Oracle and Ideal Cipher Model are Incomparable
	The Duality Lemma for Multi-Stage Indifferentiability

	Single versus Multi-Reset
	Acknowledgements
	Missing Proofs for Section 3
	Proof of Lemma 3.5

	Pseudo-Deterministic vs. Deterministic Simulators

