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Abstract

A function f is extractable if it is possible to algorithmically “extract,” from any program that out-
puts a value y in the image of f, a preimage of y. When combined with hardness properties such as
one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so far,
extractability has not been explicitly shown. Instead, it has only been considered as a non-standard
knowledge assumption on certain functions.

We give the first construction of extractable one-way functions assuming only standard hardness
assumptions (e.g. the subexponential Learning with Errors Assumption). Our functions are extractable
against adversaries with bounded polynomial advice and unbounded polynomial running time. We then
use these functions to construct the first 2-message zero-knowledge arguments and 3-message zero-
knowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the
same assumptions.

The construction uses ideas from [Barak, FOCS01] and [Barak, Lindell, and Vadhan, FOCS03], and
rely on the recent breakthrough construction of privately verifiable P-delegation schemes [Kalai, Raz,
and Rothblum]. The extraction procedure uses the program evaluating f in a non-black-box way, which
we show to be necessary.

1 Introduction

The ability to argue about what adversarial programs “know” in the context of a given interaction is central
to modern cryptography. A primary facet of such argumentation is the ability to efficiently “extract” knowl-
edge from the adversarial program. Establishing this ability is often a crucial step in security analysis of
cryptographic protocols and schemes.

Cryptographic proofs of knowledge are an obvious example for the use of knowledge extraction. In
fact, here ‘knowledge’ is defined by way of existence of an efficient extraction procedure. The ability to
extract values from the adversary is also useful for asserting secrecy properties by simulating the adversary’s
view of an execution of a given protocol, as in the case of zero-knowledge or multi-party computation
[GMR89, GMW87]. A quintessential example here is the Feige-Lapidot-Shamir paradigm [FLS99]. Other
contexts are mentioned within.
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How is knowledge extracted? Traditionally, the basic technique for extracting knowledge from an adver-
sary is to run it on multiple related inputs to deduce what it “knows” from the resulting outputs. The power
of this technique (often called “rewinding”) is in that it treats the adversary as a black-box and does not need
to know anything regarding its “internals”. However, as a number of impossibility results for black-box re-
ductions and simulation show, this technique is also quite limited. One main limitation of rewinding-based
extraction is that it requires multiple rounds of interaction with the adversary. Indeed, proving security of
candidate 3-message zero-knowledge protocols, succinct non-interactive arguments (SNARGs), and other
tasks are out of the technique’s reach [GK96, GW11].

Starting with the work of Barak et al. [Bar01], a handful of extraction techniques that go beyond the lim-
itations of black-box extraction have been developed. These techniques use the actual adversarial program
in an essential way, rather than only the adversary’s input-output functionality. However, these techniques
too require several rounds of protocol interaction, thus they do not work in the above contexts.

Knowledge assumptions and extractable functions. Damgård [Dam92] proposes an alternative approach
to knowledge extraction in the form of the knowledge of exponent assumption (KEA). The assumption es-
sentially states that it is possible to extract the secret value x from any program that, given two random
generators g, h of an appropriate group G, outputs a pair of group elements of the form gx, hx. This ap-
proach was then abstracted by Canetti and Dakdouk [CD08, CD09] who formulated a notion of extractable
functions. These are function families {fe} where, in addition to standard hardness properties, such as one-
wayness or collision-resistance, any (possibly adversarial) program A that given e outputs y in the image of
fe has an “extractor” E that given e and the code of A, outputs a preimage of y.

Extractable functions provide an alternative (albeit non-explicit) “extraction method” that does not rely
on interaction with the adversary. As an expression of the method’s power, KEA [HT98, BP04], or even
general extractable one-way functions [CD09, BCC+13], are known to suffice for constructing 3-message
zero-knowledge protocols. Extractable collision-resistant hash functions are known to suffice for construct-
ing succinct non-interactive arguments (SNARGs) [BCCT12]. KEA had also given rise to relatively efficient
CCA constructions [Dam92, BP04].

The black-box impossibility of some of the above applications imply that it is impossible to obtain
extractable functions where the extractor uses the adversary’s program A only as a black box. Coming up
with the suitable non-black-box techniques has been the main obstacle in constructing extractable functions,
and to date, no construction with an explicit extraction procedure is known. Instead, for all the existing
candidate constructions of extractable functions (e.g., [Dam92, CD09, BCCT12, BC12]), the existence of
such an extractor is merely assumed. Such assumptions are arguably not satisfying. For one, they do not
qualify as “efficiently falsifiable” [Nao03]; that is, unlike standard assumptions, here it may not be possible
to algorithmically test whether a given adversary breaks the assumption. In addition, the impossibility of
extractable functions with black-box extraction only further decreases our confidence in such assumptions,
as our current understanding of non-black-box techniques and their limitations is quite partial.

Thus, a natural question arises:

Can we construct useful extractable functions from standard hardness assumptions?

1.1 Results

We show, for the first time, how to construct extractable one-way functions with an explicit extraction
procedure. The functions are extractable with respect to auxiliary-input of bounded polynomial length,
and in particular, with respect to uniform adversaries. More specifically, we first give a construction of
extractable one-way functions based on publicly-verifiable P-delegation schemes:
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Theorem 1.1 (informal). Assuming one-way functions and publicly-verifiable P-delegation, there exists
EOWFs with respect to auxiliary-input of bounded polynomial length.

While the existence of publicly-verifiable P-delegation schemes is perhaps not considered as a standard
assumption, it is a falsifiable assumption [Nao03],1 with candidates such as CS proofs [Mic00] or SNARGs
[BCCT13] (when restricted to P). We view this construction mainly as a proof of concept, showing that
ruling out such extractable functions may be a hard task.

Trying to head towards a construction from standard assumptions, we formulate a generalized variant of
extractable one-way functions (GEOWFs), capturing the properties which make EOWFs useful, and in-
deed construct bounded-auxiliary-input GEOWFs from relatively standard assumptions. Specifically, our
construction relies on the existence of privately-verifiable P-delegation, which was recently established by
[KRR], based, for instance, on the Learning with Errors Assumption.

Relying on GEOWFs, we give the first constructions from standard assumptions of 2-message zero-
knowledge arguments and 3-message zero-knowledge arguments of knowledge, against verifiers with bounded-
auxiliary-input.

Theorem 1.2 (informal).

1. Assuming (even privately-verifiable) P-delegation, there exist GEOWFs with respect to auxiliary-input
of bounded polynomial length.

2. Assuming GEOWFs, ZAPs [DN07], and (even 1-hop [GHV10]) homomorphic encryption, there exists
a 3-message ZK argument of knowledge against bounded-auxiliary-input verifiers. Assuming the
GEOWFs are one-way against subexponential adversaries, there exists a 2-message ZK argument
against bounded-auxiliary-input verifiers.

We next elaborate on each of the results.

1.2 Constructing Extractable One-Way Functions with respect to Bounded-Auxiliary-Input

We first formulate a generalized version of EOWFs (GEOWFs), and show how GEOWFs can be constructed
from standard assumptions. Then, we shall see that, under appropriate conditions, we can leverage the same
ideas in order to get standard EOWFs.

Generalized EOWFs. The essence of EOWFs, and what makes them useful, is the asymmetry between a
black-box inverter and a non-black-box extractor: an inverter, which only gets a random image y = fe(x)
of an EOWF, cannot find a corresponding preimage x′, whereas a non-black-box extractor, which is given a
code that produces such an image, can find a preimage x′. GEOWFs allow to express this asymmetry in a
more flexible way. Concretely, a function family F is now associated with a “hard” binary relation RFe on
image-witness pairs (fe(x), x′). Given y = fe(x) for a random x, it is infeasible to find a witness x′, such
thatRFe (y, x′) = 1. In contrast, a non-black-box extractor that is given a code that produces such an image
can find such a witness x′.

It is natural to require that the relation RFe is efficiently testable, in this case we say that the GEOWF
is publicly-verifiable. However, we shall see that GEOWFs are useful, even for hard relations that are
not publicly-verifiable. Specifically, we will consider privately-verifiable GEOWFs where RFe (y, x) is not
efficiently testable given only (y = fe(x

′), x), but can be efficiently tested given x′ in addition.

1See discussion in [CLP13] on the equivalent concept of 2-message P-certificates.

3



The main idea behind the construction. To convey the basic idea behind our constructions of GEOWFs
with respect to bounded auxiliary-input, consider the following first attempt. The GEOWF f is key-less,
it is simply a pseudorandom generator stretching inputs of length n to outputs of length 2n. The relation
RF contains pairs (y,M) such that the witnessM is a description of a machine of length at most n, and
M(1n) outputs y. The fact that the relationRF (y, ·) is hard to satisfy for y = f(x) and a random x, follows
from the pseudo-randomness of the output y. Indeed, a truly random output that is indistinguishable from y
would have high Kolmogorov complexity. However, given any adversarial programMA whose description
size is bounded by n and that outputs some y ∈ {0, 1}2n, the description of the program MA itself is a
witness that satisfies the relationRF (y,MA), and thus extraction is trivial.

The main problem is that the time required to test the relation RF (even given some preimage of y) is
not bounded by any particular polynomial; indeed, the running time ofMA may be an arbitrary polynomial.
One can try to fix this by padding the witnessMA with 1t where t is the running time ofMA. However,
now the length of the extracted witness depends on the running time of the adversarial programMA and is
not bounded by any particular polynomial in the length of the image. Such generalized extractable functions
do not seem to be as powerful though; in particular, we do not know how to use them for constructing
2-message and 3-message ZK protocols.

A similar problem is encountered in Barak’s zero-knowledge protocol [Bar01], where the entire com-
putation of a malicious verifier is used as the simulation trapdoor. As in the protocol of [BLV06], we get
around this problem using a non-interactive proof system that allows for quick verification of (possibly
long) computations. Instead of computing the output y of the witness program MA, RF will (quickly)
verify a proof for the fact that MA(1n) outputs y. That is, (y, (M, π)) ∈ RF only if π is a convincing
proof that M(1n) = y. Intuitively, the soundness of the proof guarantees that the relation is still hard to
satisfy. Extraction from a bounded-auxiliary-input adversaryMA is done by simply computing a proof for
its computation.

P-delegation. The proof system required in our constructions is a non-interactive computationally sound
proof for deterministic polytime statements, from hereon referred to as a P-delegation scheme. More pre-
cisely, in a P-delegation scheme, the verifier generates, once and for all, an “offline message” σ together
with a private verification state τ and sends σ to the prover. Then, the prover can compute a non-interactive
proof π for any adaptively chosen statement of the sort: “machineM outputs y within t steps”. We require
that the verifier runs in time polynomial in the security parameter n, but only polylogarithmic in t, and the
prover runs in time polynomial in (t, n). We say that a delegation scheme is publicly-verifiable if the ver-
ification state τ can be published without compromising soundness. Otherwise we say that the scheme is
privately-verifiable.

As mentioned in Section 1.1, while we do have candidates for publicly-verifiable P-delegation, their
security is not based on standard assumptions. In a recent breakthrough result, Kalai, Raz and Rothblum
[KRR13, KRR] construct a privately verifiable P-delegation scheme based on any private information re-
trieval scheme with sub-exponential security. While the scheme of [KRR13, KRR] only has non-adaptive
soundness, we use standard techniques to get soundness for a statement that is adaptively chosen from a
relatively small set of possible statements. This is indeed what is required for our construction (see the body
for more details).

GEOWF from P-delegation. We now sketch how P-delegation is used to obtain GEOWFs. We obtain
publicly-verifiable GEOWFs based on publicly-verifiable delegation, or privately-verifiable GEOWFs based
on privately-verifiable delegation. The GEOWF f is key-less, it is given as input a seed s and a random
string r. f applies a pseudo-random generator on s and obtains an image v. f then uses the randomness
r to sample an offline message σ together with a verification state τ for a P-delegation scheme. Finally,
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f outputs (v, σ). We assume that if the delegation scheme is publicly-verifiable, the offline message σ
includes the verification state τ . Also, if the delegation scheme is privately-verifiable, we assume that τ can
be inefficiently computed from σ. (Both assumption are WLOG.)

The relation RF contains pairs consisting of an image (v, σ) and witness (M, π), such that the length
ofM is much shorter then the length of v and π is an accepting proof for the statement “M(1n) outputs
v”, with respect to the verification state τ corresponding to the offline message σ. Indeed, if the delegation
scheme is publicly-verifiable, τ can be efficiently computed from σ, and therefore the relation RF is effi-
ciently testable. And if the delegation scheme is privately-verifiable, τ can be efficiently computed given a
primage of (v, σ) that contains the randomness used to sample σ and τ .

Constructing standard EOWFs. We show how to construct a standard (not generalized) EOWF g from
a publicly-verifiable GEOWF f . The basic high-level idea is to embed the structure of the GEOWF f and
the relation RF into the standard EOWF g. For this purpose, g will get as input a string i ∈ {0, 1}n, which
intuitively picks one of two branches for computing the function. If i 6= 0n (which is almost always the case
for a random input) the output is computed in the “normal branch”, where g takes an input x for the GEOWF
f and outputs f(x). If i 6= 0n, the output is computed in the “trapdoor branch”, which is is almost never
taken for a random input, but is used by the extractor. In the trapdoor branch, g takes as input a candidate
output y for f and a witness x′ for RF (y, ·). g verifies that (y, x′) ∈ RF and if so, it outputs y. Given
an adversarial program MA that outputs y in the image of f , the extractor for g can invoke the extractor
for f , obtain a witness x′ such that (y, x′) ∈ RF , and from this witness construct a valid (trapdoor branch)
primage (i = 0n, y, x′) for y.

The above transformation cannot start from a privately-verifiable GEOWF; indeed public-verification is
required so to allow the function to efficiently evaluate the relationRF in the trapdoor branch. We also note
that the above transformation is oversimplified and implicitly assumes that an adversarial evaluator cannot
use the trapdoor branch of the function to produce an output that is in the image of g but not in the image
of f , in which case extraction may fail. In the body, we show how to avoid this problem by relying on
the specific construction of publicly-verifiable GEOWFs from publicly-verifiable P-delegation with an extra
property (satisfied by existing candidates).

1.3 Zero Knowledge against Verifiers with Bounded-Auxiliary-Input

We start by describing how to construct 2-message and 3-message zero-knowledge protocols from standard
(non-generalized) EOWFs, and then explain how to replace the EOWFs with GEOWFs.

From EOWF to 3-message zero knowledge. The protocol follows the Feige-Lapidot-Shamir trapdoor
paradigm [FLS99]. Given, say a key-less, EOWF f , the basic idea is to have the verifier send the prover
an image y = f(x) of a random element x, which will serve as the trapdoor. The prover would then give
a witness-indistinguishable proof-of-knowledge attesting that it either knows a witness w for the proven
statement, or it knows a preimage x′ of y. Intuitively, soundness (and actually proof of knowledge) follow
from the one-wayness of f and the proof of knowledge property of the WI system. Zero knowledge follows
from the extractability of f . Indeed, the simulator, given the code of the verifier, can run the extractor of the
EOWF, obtain x, and use it to simulate the WI proof.

Following through on this intuition encounters several difficulties. First, a WI proof of knowledge
requires three messages, and thus a first WI prover message must be sent in the first message of the protocol.
Furthermore, the WI statement is only determined when the verifier sends y in the second protocol message.
Therefore, we must make sure to use a WI proof of knowledge where the first prover message does not
depend on the statement. Another basic problem concerns the length of the first WI message. Recall that, in
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our construction of EOWFs against bounded-auxiliary-input adversaries, the function’s output is longer than
the adversary’s advice. Since a cheating verifier may compute y using the first WI message as an advice,
we must therefore use a WI system where the length of the first message is independent of the length of the
proven statement. We design a WI proof of knowledge with the required properties based on ZAPs [DN07]
and extractable commitments [PW09].

An additional potential problem is that a malicious verifier may output an element ỹ outside of the
function’s image, an event which in general may not be efficiently recognizable, and cause the simulator
to fail. This can be solved in a couple of generic ways, later on we shall outline one such solution, based
on 1-hop homomorphic encryption. A different approach to the problem, based on ZAPs is described in
[BCC+13].

From EOWFs to 2-message zero knowledge. In the 2-message protocol, we replace the 3-message WI
proof of knowledge with a 2-message WI proof (e.g. a ZAP). However, in the above 3-message protocol,
soundness is established by using the proof-of-knowledge property of the WI, whereas 2-message WI proofs
of knowledge are not known. Instead, we prove soundness using complexity leveraging. The prover adds to
its message a statistically-binding commitment to junk, and proves that either “x ∈ L”, or “f(x) = y and
the commitment is to x”. We require that the commitment is invertible in some superpolynomial time T ,
whereas the one-wayness of f still holds against adversaries that run in time poly(T ). Now, an inverter of
f can run the cheating prover with a verifier message that contains its input image y, and brute-force break
the commitment to obtain a preimage of y.

Replacing EOWF with GEOWF. We would like to base our zero-knowledge protocols on privately-
verifiable GEOWFs (that can be constructed from standard assumptions) instead of on EOWFs. A natural
first attempt is to modify the protocol as follows: the verifier sends an image y = f(x), as before, and
the prover then gives a WI proof of knowledge attesting that it either knows a witness w for the proven
statement, or that it knows, not a preimage, but a witness x′ such that RF (y, x′) = 1. The main problem
with this first attempt is that the relationRF is not publicly-verifiable, and thus the simulator has no way of
proving the statement. Another possible problem is that a malicious verifier may output an element outside
of the function’s image, an event which in general may not be efficiently recognizable. In such a case there
is no extraction guarantee, and simulation may fail. The solution for both is to test the relationRF , and the
validity of the verifier’s image, using a two-message secure function evaluation protocol, based for example
on a 1-hop homomorphic encryption [GHV10]. More concretely, the verifier, in addition to the the function
output y, sends an encryption c of the input x. The simulator then homomorphically evaluates a circuit that
efficiently computesRF (y, x′) given x, as well as verifies that indeed y = f(x). The simulator then obtains
an evaluated ciphertext ĉ that decrypts to 1 (the honest prover will simply simulate an encryption ĉ of 1).
Finally, the prover (or simulator) sends back ĉ, and gives a WI proof of knowledge attesting that it either
knows a witness w for the proven statement, or that the ciphertext ĉ was generated as described. The verifier
verifies the WI proof is accepting and that ĉ decrypts to 1.

Limitations on 2 and 3 message ZK and related work. 3-message zero-knowledge protocols with black-
box simulation exist only for trivial languages [GK96]. The impossibility extends to the case of adversaries
with bounded advice of size nΩ(1), where n is the security parameter (see Appendix A for more details). Pre-
vious 3-message zero-knowledge protocols were based on either on the knowledge of exponent assumption
[HT98, BP04], on extractable one-way functions[BCC+13], or other extractability assumptions [CD08]. In
all the simulator uses a non-black extractor that is only assumed to exist, but not explicitly constructed.

Two-message zero-knowledge arguments against adversaries with unbounded polynomial advice exist
only for trivial languages (regardless of how simulation is done) [GO94]. In fact, impossibility extends even
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to adversaries with bounded advice, provided that the advice string is longer than the verifier’s message.
Barak et al. [BLV06] construct a 2-message argument that is zero-knowledge as long as the verifier’s advice
is shorter than the verifier message by super-logarithmic additive factor. Indeed, our two-message protocol
has the same skeleton. However, security of the Barak et al. protocol is only shown assuming existence of
P-delegation schemes (or universal arguments for non-deterministic languages) that are publicly verifiable,
which as discussed earlier is not considered to be a standard assumption.

1.4 Why Extractable Functions?

As pointed out above, the extractable functions constructed here mimic Barak’s zero-knowledge protocol
[Bar01]. The similarity becomes even stronger when considering the two-message zero-knowledge protocol
of Barak et. al [BLV06]: Our two message protocol can be directly obtained from that of [BLV06] by re-
placing the CS proofs with P-delegation, and accounting for private verifiability as sketched above. This can
be done without mention of extractable functions. Still, we believe that the abstraction of extractable func-
tions is helpful in this context. In particular, it helps separating the protocol structure from the underlying
mechanism of extracting a secret value from a given adversarial program.

Furthermore, we hope that this abstraction will prove useful for additional applications beyond two
and three-message zero-knowledge. Applications like succinct non-interactive arguments (SNARGs) and
efficient CCA encryption seem to require extractable functions with stronger properties such as injectiveness
or collision-resistance [Dam92, BCCT12]. At this point, candidates for extractable functions with such
properties are known based on non-standard assumptions regarding different number theoretic and algebraic
structures, such as the knowledge-of-exponent assumption. In contrast, our construction is unstructured and
does not satisfy the above properties. Indeed, in our function it is easy to find collisions: Consider a machine
M that just evaluates the function on any arbitrary input x. By simply applying the extractor onM, we can
obtain a different preimage x′ mapping to an equivalent image.

We hope that the proposed construction will provide a stepping stone to improved constructions of
stronger extractable functions based on standard and better understood hardness assumptions. Two natural
targets here are extractable collision-resistant hash functions and extractable non-interactive commitments.

2 Extractable One-Way Functions

In this section, we define auxiliary-input extractable one-way functions (EOWFs), bounded-auxiliary-input
EOWFs, and generalized extractable one-way functions (GEOWFs).

Definition 2.1 (Auxiliary-input EOWFs [CD08]). Let `, `′,m be polynomially bounded length functions.
An efficiently computable family of functions

F =
{
fe : {0, 1}`(n) → {0, 1}`′(n)

∣∣∣ e ∈ {0, 1}m(n), n ∈ N
}

,

associated with an efficient (probabilistic) key sampler KF , is an auxiliary-input EOWF if it is:

1. One-way: For any PPTA, polynomial b, large enough security parameter n ∈ N, and z ∈ {0, 1}b(n):

Pr
e←KF (1n)

x←{0,1}`(n)

[
x′ ← A(e, fe(x); z)
fe(x

′) = fe(x)

]
≤ negl(n) .
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2. Extractable: For any PPT adversary A, there exists a PPT extractor E such that, for any polynomial
b, large enough security parameter n ∈ N, and z ∈ {0, 1}b(n):

Pr
e←KF (1n)

[
y ← A(e; z)
∃x : fe(x) = y

∧ x′ ← E(e; z)
fe(x

′) 6= y

]
≤ negl(n)

Bounded auxiliary input. We now define bounded-auxiliary-input EOWFs. Unlike the definition above,
where extraction is guaranteed with respect to auxiliary input of any polynomial size b, here b is fixed in
advance and the function is designed accordingly. That is, extraction is only guaranteed against adversaries
whose advice is bounded by b, whereas their running time may still be an arbitrary polynomial; this, in
particular, captures the class of uniform polytime adversaries.

For b-bounded auxiliary input, we also define key-less families. While for unbounded auxiliary input,
extraction is impossible for key-less families (the adversary may get as auxiliary input a random image, thus
forcing the extractor to break one-wayness), for b-bounded auxiliary input, it may be possible. Indeed, we
can set the output length `′ is sufficiently larger than the bound b on the auxiliary input. Our constructions,
in Section 3, will yield such key-less functions.

Definition 2.2 (b-bounded-auxiliary-input EOWFs). Let b, `, `′,m be polynomially bounded length func-
tions (where `, `′,m may depend on b). An efficiently computable family of functions

F =
{
fe : {0, 1}`(n) → {0, 1}`′(n)

∣∣∣ e ∈ {0, 1}m(n), n ∈ N
}

,

associated with an efficient (probabilistic) key sampler KF , is a b-bounded auxiliary-input EOWF if it is:

1. One-way: As in Definition 2.1.

2. Extractable against b-bounded adversaries: For any PPT adversaryA, there exists a PPT extractor
E such that, for any large enough security parameter n ∈ N, and z ∈ {0, 1}b(n):

Pr
e←KF (1n)

[
y ← A(e; z)
∃x : fe(x) = y

∧ x′ ← E(e; z)
fe(x

′) 6= y

]
≤ negl(n)

We say that the function is key-less if in all the above definitions the key is always set to be the security
parameter; namely, e ≡ 1n. In this case, the extraction guarantee always holds (rather than only for a
random key).

Remark 2.1 (Bounded randomness). Throughout, we treat any randomness used by the adversary as part
of its advice z, in particular, in the case of bounded advice, we assume that the randomness is bounded
accordingly. For many applications, this is sufficient as we can transform any adversary that uses arbitrary
polynomial randomness to one that uses bounded randomness, by having it stretch its randomness with a
PRG. This approach is applicable, for example, for ZK against b-bounded-auxiliary-input verifiers (see
Section 4), as well as for any application where testing if the adversary breaks the scheme can be done
efficiently.
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2.1 Generalized Extractable One-Way Functions

The essence of EOWFs, and what makes them useful, is the asymmetry between an inverter and a non-black-
box extractor: a black-box inverter that only gets a random image y = fe(x) cannot find a corresponding
preimage x′, whereas a non-black-box extractor, which is given a code that produces such an image, can find
a preimage x′. Generalized EOWFs (GEOWFs) allows to express this asymmetry in a more flexible way.
Concretely, a function family F is now associated with a “hard” relation RFe (fe(x), x′) on image-witness
pairs (fe(x), x′) ∈ {0, 1}`′ × {0, 1}`. Given y = fe(x) for a random x, it is infeasible to find a witness x′,
such that RFe (y, x′) = 1. In contrast, a non-black-box extractor that is given a code that produces such an
image can find such a witness x′.

We consider two variants of GEOWFs: The first is publicly-verifiable GEOWFs, where for (y =
fe(x

′), x), the relationRFe (y, x), can be efficiently tested given y and x only (and the key e if the function is
keyed). The second is privately-verifiable GEOWFs, where the relation RFe (y, x), might not be efficiently
testable given only (y = fe(x

′), x), but is possible to efficiently test the relation given x′ in addition.
We note that standard EOWFs, as given in Definition 2.1, fall under the category of publicly-verifiable

GEOWFs, where the relationRFe (y, x) simply tests whether y = fe(x).

Definition 2.3 (GEOWFs). An efficiently computable family of functions

F =
{
fe : {0, 1}`(n) → {0, 1}`′(n)

∣∣∣ e ∈ {0, 1}m(n), n ∈ N
}

,

associated with an efficient (probabilistic) key samplerKF , is a GEOWF, with respect to a relationRFe (y, x)
on triples (e, y, x) ∈ {0, 1}m(n)+`′(n)+`(n), if it is:

1. RF -Hard: For any PPT A, polynomial b, large enough security parameter n ∈ N, and z ∈
{0, 1}b(n):

Pr
e←KF (1n)

x←{0,1}`(n)

[
x′ ← A(e, fe(x); z)
RFe (fe(x), x′) = 1

]
≤ negl(n) .

2. RF -Extractable: For any PPT adversary A, there exists a PPT extractor E such that, for any poly-
nomial b, large enough security parameter n ∈ N, and z ∈ {0, 1}b(n):

Pr
e←KF (1n)

[
y ← A(e; z)
∃x : fe(x) = y

∧ x′ ← E(e; z)
RFe (fe(x), x′) 6= 1

]
≤ negl(n) .

We further say that the function is

• Publicly-verifiable ifRFe (fe(x), x′) can always be efficiently computed by a tester T (e, fe(x), x′).

• Privately-verifiable ifRFe (fe(x), x′) can be efficiently computed by a tester a tester T (e, x, x′).

Bounded auxiliary input GEOWFs (b-bounded-auxiliary-input GEOWFs) are defined analogously to b-
bounded-auxiliary-input-EOWFs. That is, RF -hardness is defined exactly as in Definition 2.3, whereas
RF -hardness is only against adversaries with auxiliary input of an apriori fixed polynomial size b(n).

Remark 2.2 (DoesRF -hardness imply one-wayness). In principle,RF -hardness may not imply one-wayness
of F . Although this is not needed for our purposes, we may further require that the relationRF includes all
pairs (fe(x), x), and thus ensure thatRF -hardness does imply one-wayness.
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Remark 2.3 (GEOWFs vs. Proximity EOWFs). In [BCCT12], a different variant of EOWFs called proximity
EOWFs is defined. There a proximity relation ∼ is defined on the range of the function. One-wayness is
strengthened to require that not only is inverting fe(x) is hard, but also finding x′ such that fe(x) ∼ fe(x

′)
is hard. Extractability is weakened so that the extractor is allowed to output x′ as above, rather than an
actual preimage. GEOWF simply allow the relation to be even more general. In particular, any proximity
EOWF with relation ∼ implies a GEOWF with relation R, such that R(fe(x), x′) = 1 iff fe(x) ∼ fe(x

′).
In particular, the limitations we show in Section ?? on GEOWFs apply to proximity EOWFs as well.

3 Constructions

In this section, we construct bounded-auxiliary-input extractable one-way functions (bounded-auxiliary-input-
EOWFs) and generalized bounded-auxiliary-input-EOWFs (GEOWFs). Before presenting the construction,
we define non-interactive universal arguments for deterministic computations, which is the main tool we
rely on, and discuss an instantiation based on the delegation scheme of Kalai, Raz, and Rothblum [KRR].

3.1 Non-Interactive Universal Arguments for Deterministic Computations & Delegation

In what follows, we denote by LU the universal language consisting of all tuples (M, x, t) such that M
accepts x within t steps. We denote by LU (T ) all pairs (M, x) such that (M, x, T ) ∈ LU .

Let T (n) ∈ (2ω(logn), 2poly(n)) be a computable superpolynomial function. An NIUA system for
Dtime(T ) consists of three algorithms (G,P,V) that work as follows. The (probabilistic) generator G,
given a security parameter 1n, outputs a reference string σ and a corresponding verification state τ ; in par-
ticular, G is independent of any statement to be proven later. The honest prover P (M, x;σ) produces a
certificate π for the fact that (M, x) ∈ LU (T (n)). The verifier V (M, x;π, τ) verifies the validity of π.
Formally, an NIUA system is defined as follows.

Definition 3.1 (NIUA). A triple of algorithms (G,P,V) is a non-interactive universal argument system for
for Dtime(T ) if it satisfies:

1. Perfect Completeness: For any n ∈ N and (M, x) ∈ LU (T (n)):

Pr
(σ,τ)←G(1n)

[V (M, x;π, τ) = 1 | π ← P (M, x;σ)] = 1 .

2. Adaptive soundness for a bounded number of statements: There is a polynomial b, such that for
any polysize prover P∗, large enough n ∈ N, and set of at most 2b(n) statements S ⊆ {0, 1}poly(n):

Pr
(σ,τ)←G(1n)

[
V(M, x;π, τ) = 1

∣∣∣∣ (M, x, π)← P∗(σ)
(M, x) ∈ S \ LU (T (n))

]
≤ negl(n) .

3. Fast verification and relative prover efficiency: There exists a polynomial p such that for every
n ∈ N, t ≤ T (n), and (M, x) ∈ LU (t):

• the generator G runs in time p(n) ;

• the verifier V runs in time p(n+ |M|+ |x|);

• the prover P runs in time p(n+ |M|+ |x|+ t).
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The system is said to be publicly-verifiable if soundness is maintained when the malicious prover is also
given the verification state τ . In this case, we will assume WLOG that the verification state τ appears in the
clear in the reference string σ.

Existence and connection to delegation of computation. There are two differences between the notion of
delegation for deterministic computations (See, e.g., [KRR13]) and the NIUA notion defined above. The
first is that a delegation system is associated with a given language L(M) for a fixed deterministic machine
M, and the corresponding efficiency parameters depend on the worst-case running time TM of M. In
particular, the generator G depends on TM as an extra parameter, and the prover’s efficiency is polynomial
in the worst-case running time TM. The second difference is that only non-adaptive soundness is guaranteed;
in particular, the generator’s message σ may, in principle, depend on the input x.

Kalai, Raz, and Rothblum [KRR] show how to construct such a privately verifiable delegation scheme
for every language in Dtime(T ) ⊆ EXP, assuming subexponentially secure private information retrieval
schemes, which can in turn be constructed based the subexponential Learning with Errors assumption
[BV11].

In order to get a (privately verifiable) NIUA for Dtime(T ), we could potentially use their result with
respect to a universal machine and worst-case running time O(T ). However, this solution would lack the
required prover efficiency, as the prover will always run in time poly(T ), even for machinesMwith running
time tM << T . This is undesired in our case, as we will be interested in T that is super-polynomial.
Fortunately, a rather standard transformation does allow to get the required efficiency from their result.
Specifically, we could run the generator in their solution to generate a reference string and verification state
(σ, τ) for computations of size t for all t ∈

{
1, 2, 22, . . . , 2log T

}
, and have the prover and verifier use the

right (σ, τ) according to the concrete running time tM < T , guaranteeing that the prover’s running time is
at most poly(2tM) as required.

As for adaptivity, in their scheme, the generator does work independently of the input x, but only non-
adaptive soundness is shown; namely, soundness is only guaranteed when σ is generated independently of x.
To guarantee soundness for adaptively chosen inputs x from a set S of size at most 2b(n), we may repeat the
above argument O(b(n)) times. Assuming that the underlying delegation scheme is secure against provers
that run in time 2O(b(n)) (by choosing the security parameter in the [KRR] scheme appropriately), the parallel
repetition exponentially reduces the soundness error (see e.g., [BIN97]). Then, we can take a union bound
over all 2b(n) adaptive choices of x and get the required soundness. The O(b(n))-factor hit in succinctness
and verification time are still tolerable for our purposes (and still satisfy the above definition).

Theorem 3.1 (Following from [KRR]). Assuming sub-exponential security of the Learning with Errors
Problem, for any b(n) = poly(n), and T (n) ∈ (2ω(logn), 2poly(n)), there exists a (privately-verifiable)
NIUA with adaptive soundness for at most 2b(n) statements.

3.2 Constructions

We now present our constructions of bounded-auxiliary-input EOWFs and GEOWFs. We start with the
construction of GEOWFs, based on any NIUA. We then give a construction of the standard (rather than gen-
eralized) EOWFs based on publicly-verifiable NIUAs with an additional key validation property (satisfied
by existing candidates).
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3.2.1 The generalized extractable one-way function

Let b(n) be a polynomial. Let (G,P,V) be an NIUA system for Dtime(T (n)) for some function T (n) ∈
(2ω(logn), 2poly(n)), with adaptive soundness for 2b(n) statements. We assume that the system handles state-
ments of the form (M, v) ∈ {0, 1}b(n) × {0, 1}b(n)+n asserting that “M(1n) outputs v in T (n) steps”.
Assume that, G(1n; r) uses randomness of size n to output a reference string of polynomial size m(n), and
a verification state τ (if the system is publicly-verifiable, then τ appears in σ). Assume that P outputs certifi-
cates π of size p(n). Let PRG be a pseudo random generator stretching n bits to b(n) +n bits. We construct
a key-less family of functions F = {fn}n∈N, consisting of one function fn : {0, 1}`(n) → {0, 1}`′(n), for
each security parameter n, where `(n) = max(2n, b(n) + p(n)) and `′(n) = m(n) + b(n) + n.

The function is given in Figure 1, and is followed by the corresponding relationRF .

Inputs: (s, r, pad) of respective lengths (n, n, `(n)− 2n).

1. Compute v = PRG(s).

2. Sample NIUA reference string and verification state (σ, τ)← G(1n; r).

3. Output (σ, v).

Figure 1: The function fn.

We now define the corresponding relation RF =
{
RFn
}
n∈N in Figure 2, which will be publicly-

verifiable (respectively, privately-verifiable) if the NIUA is publicly (respectively, privately verifiable). For
simplicity, we assume that the NIUA is such that for every valid reference string σ produced by G, there is
a single possible verification state τ (this can always be achieved by adding a commitment to τ inside σ).

Inputs:
y = fn(x) = (σ, v) of respective lengths (m(n), b(n) + n),
x′ = (M, π, pad) of respective lengths (b(n), p(n), `(n)− b(n)− p(n)).

1. Compute the (unique) verification state τ corresponding to the reference string σ:

2. Run V(M, v, π, τ) to verify the statement “M(1n) outputs v in T (n) steps”.

3. Return 1 iff verification passes.

Figure 2: The relationRFn (fn(x), x′).

Claim 3.1. RF is publicly-verifiable (respectively privately-verifiable), if (G,P,V) is publicly-verifiable
(respectively privately-verifiable).

Proof. First, by definition, when (G,P,V) is publicly-verifiable, τ can be obtained from σ, NIUA verifica-
tion can be done efficiently, and thus the relationRFn can be efficiently tested.
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Next, assume that (G,P,V) is private-verifiable. Recall that showing that RFn is privately-verifiable,
means that given any preimage x such that y = fn(x), we can efficiently test RFn (y, x′). Indeed, given
such a preimage x = (s, r, pad), we can obtain the generator randomness r, and run G(1n; r) to obtain the
(unique) verification state τ corresponding to σ, and efficiently testRFn .

Remark 3.1 (One-wayness vs. RF -hardness of F). The relation RF defined above is such that (fn(x), x)
may not satisfy the relation. In particular, this means that RF -hardness may not imply one-wayness of
F . While this is not needed for our purposes, the relation RF can be augmented to also include all pairs
(fn(x), x), andRF -hardness is preserved; that is, the function we define is one-way in the usual sense.

We now turn to show that F is a GEOWF with respect toRF .

Theorem 3.2. The function family F = {fn}n∈N, given in Figure 1 is a GEOWF, with respect to RF ,
against (b(n)− ω(1))-bounded auxiliary-input.

High-level idea behind the proof. To see that F isRF -hard, note that to breakRF -hardness, an adversary
given a random image (σ, v), where v = PRG(s) is of length b(n) + n, has to come up with a “small”
machineM, whose description length is at most b(n), and a proof thatM outputs v (within a T (n) steps).
However, in an indistinguishable world where v is a truly random string, v would almost surely have high
Kolomogorov complexity, and a short machine M that outputs v would not exist. Thus, in this case, the
breaker has to produce an accepting proof for a false statement, and violate the soundness of the NIUA.

As for extraction, given a poly-time machineMz with short advice z that outputs (σ, v), where σ is a
valid reference string for the NIUA system, the extractor simply computes a proof π for the fact thatMz

outputs v, and outputs the preimage (Mz, π; pad). By the completeness of the NIUA system, the proof π
is indeed accepting, and the preimage satisfies RF . Furthermore, by the relative prover efficiency of the
NIUA, the extractor runs in time that is polynomial in the running time of the adversaryMz .

Proof of Theorem 3.2. We first showRF -hardness, and then showRF -extractability.

RF -hardness. Assume there exists a breaker B that, given y = (σ, v), where σ ← G(1n), and v ←
PRG(Un), finds x = (M, π, pad) such that RFn (y, x) = 1 with noticeable probability ε(n). We construct
a prover P∗ that breaks the adaptive soundness of the NIUA (for 2b(n) statements), with probability ε(n)−
negl(n). P∗, given σ, first samples on its own ṽ ← Ub(n)+n (independently of σ), and then runs B(σ, ṽ) to
obtain a machineM of size b(n), and a proof π.

We first claim that with probability ε(n) − negl(n), π is an accepting proof for the statement (M, ṽ)
asserting that “M(1n) outputs ṽ in T (n) steps”. Indeed, the view of B in the above experiment is identical
to its real view, except that it gets a truly random ṽ, rather than a pseudo-random v that was generated using
PRG. Thus, the claim follows by the PRG guarantee.

Next, we note that since ṽ is a (b(n) + n)-long random string, except with negligible probability 2−n,
there does not existM of size b(n) that outputs ṽ. Thus, P∗ produces an accepting proof for one of 2b(n)

false statements given by the adaptive choice ofM∈ {0, 1}b(n), and violates the soundness of the NIUA.

RF -extractability. We now show RF -extractability. We, in fact, show that there is one universal PPT
extractor E that can handle and PPT adversaryMwith advice of size at most b(n)−ω(1). For an adversarial
codeM and advice z ∈ {0, 1}b(n)−ω(1), denote byMz the machine that, on input 1n, runs runsM(1n; z).
The extractor E is given (M, z), where Mz has description size at most b(n) and running time at most
tM < T (n), andMz(1

n) = y = (σ, v) ∈ Image(fn). To compute a witness x′ ∈ RF (y), E computes a
certificate π for the fact that “Mz(1

n) = v”, and then outputs x′ = (Mz, π, pad). The fact that x′ is indeed
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a valid witness follows directly from the perfect completeness of the scheme. Finally, we note that by the
relative prover efficiency of the NIUA the extractor runs in time that is polynomial in the running time tM
of the adversary .

Remark 3.2 (RF -hardness against superpolynomial adversaries). In Section 4.4.2, we shall require GEOWFs
that are RF -hard even against adversaries of size poly(T (n)), for some superpolynomial function T (n).
Such GEOWFs can be obtained from the above construction, by using a PRG that is secure against poly(T (n))
adversaries, and an NIUA that is sound against such adversaries (such an NIUA can be obtained from [KRR],
based on an appropriately strong private information retrieval scheme).

3.2.2 The standard extractable one-way function

We construct a standard extractable one-way function based on publicly-verifiable NIUAs that have an
additional property that says that, in addition to perfect completeness for an honestly chosen reference string
σ (which in the publicly-verifiable case is also the verification state), it is also possible to check whether
any given σ is valid, or more generally admits perfect completeness. We note that exiting candidates for
publicly-verifiable NIUAs indeed have this property.2

Definition 3.2 (NIUA with key validation). A publicly-verifiable NIUA system is said to have key validation
if there exists and efficient algorithm Valid, such that for any σ ∈ {0, 1}m(n), if Valid(σ) = 1, then the
system has perfect completeness with respect to σ. That is, proofs for true statements, generated and verified
using σ, are always accepted.

We now turn to describe the construction, which at a very high-level attempts to embed the structure of the
previous GEOWF function and relation into a standard EOWF.

Let b(n) be a polynomial. Let (G,P,V) be an NIUA system with the same parameters as in the above
GEOWF construction, and with the additional key-validation property. Let PRG be a pseudo random gen-
erator stretching n bits to b(n) + n bits.

We construct a key-less family of functions F = {fn}n∈N, consisting of one function fn : {0, 1}`(n) →
{0, 1}`′(n), for each security parameter n, where `(n) = 4n + 2b(n) + m(n) + p(n) and `′(n) = m(n) +
b(n) + n. The function is given in Figure 3.

We now turn to show that F is an EOWF.

Theorem 3.3. The function family F = {fn}n∈N, given in Figure 3 is an EOWF, against (b(n) − ω(1))-
bounded auxiliary-input.

High-level idea behind the proof. To see that F is one-way, note that, except with negligible probability,
a random image comes from the “normal branch of the function”, where i /∈ {0n, 1n} and includes an
honestly sampled σ and a pseudorandom string v = PRG(s). To invert it, an adversary must either invert
PRG(s), allowing it to produce a “normal branch” preimage, or obtain a short machineM and an accepting
proof π, thatM outputs v, allowing it to produce a “trapdoor branch” preimage. In the first case, the inverter
violates the one-wayness of PRG. In the second case, the inverter can be used to break the soundness of
the NIUA as in the proof of Theorem 3.2 (leveraging the fact that a truly random ṽ almost surely cannot be
computed by a short machine).

2Indeed, in Micali’s CS proofs, perfect completeness holds with respect to all possible keys for a hash function. In the publicly-
veriable instantiations of the SNARKs from [BCCT13] it is possible to verify the validity of σ using a bilinear map.
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Inputs: (i, (s, r), (σ,M, v, π)) of respective lengths (n, (n, n), (m(n), b(n), b(n) + n, p(n)))

• If i /∈ {0n, 1n}:

1. Compute v∗ = PRG(s).

2. Sample a reference string σ∗ ← G(1n; r).

3. Output (v∗, σ∗).

• If i = 0n:

1. Perform the following tests:

– Run Valid(σ) to check the validity of σ,
– Run V(M, v, π, σ) to verify the statement “M(1n) outputs v in T (n) steps”,

If both accept, output (v, σ).

2. Otherwise, output ⊥.

• If i = 1n, output ⊥.

Figure 3: The function fn.

As for extraction, given a poly-time machineMz with short advice z that outputs (σ, v) 6= ⊥, by the
definition of fn, σ is a valid reference string for the NIUA system (indeed, ⊥ is an image that indicates
an improper reference string σ, or an non-accepting proof π). In this case, the extractor simply computes
a proof π for the fact that Mz outputs v, and outputs the preimage (0n, (0n, 0n), (σ,Mz, v, π)). By the
completeness of the NIUA system, for a valid σ, the proof π is indeed accepting. By the relative prover
efficiency of the NIUA, the extractor runs in time that is polynomial in the running time of the adversary
Mz . The only other case to consider is whereMz outputs ⊥, in which case producing a preimage is easily
done by setting i = 1n.

Proof of Theorem 3.3. We first showRF -hardness, and then showRF -extractability.

One-wayness. Assume there exists an inverter I that, given y = fn(x), where x← U`(n), finds a preimage
x′ = (i′, (s′, r′), (σ′,M′, v′, π′)) with noticeable probability ε(n). We construct a prover P∗ that breaks the
adaptive soundness of the NIUA (for 2b(n) statements), with probability ε(n)− negl(n). P∗ is defined as in
the proof of Theorem 3.2: given σ, it first samples on its own ṽ ← Ub(n)+n (independently of σ), and then
runs I(σ, ṽ) to obtain x′ = (i′, (s′, r′), (σ′,M′, v′, π′)).

Claim 3.2. With probability ε(n) − negl(n), π′ is an accepting proof, with respect to σ, for the statement
(M′, v), attesting that “M′(1n) outputs ṽ in T (n) steps”.

The claim will conclude the proof of one-wayness since, as in the proof of Theorem 3.2, except with
negligible probability, there does not exist a machineM′ of size b(n) that outputs ṽ which is a (b(n) + n)-
long random string. This means that I outputs an accepting proof for one of 2b(n) false statements (given
differentM′ ∈ {0, 1}b(n)), and violates the soundness of the NIUA.
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Proof. To prove the claim, we first consider an hybrid experiment where I samples a pseudorandom v ←
PRG(Un) instead of a truly random ṽ. By the PRG guarantee, we know that the probability of outputting
(M′, π) as required by the claim changes at most by a neglible amount negl(n). Next we note that the view
of I in the hybrid experiment is identical to its view in the real world where it receives a random image
y = (σ, v). Furthermore, whenever I finds a preimage x′ = (i′, (s′, r′), (σ′,M′, v′, π′)) of y such that
i′ = 0n, by the definition of fn, (σ′, v′) = (σ, v), and π′ must be an accepting proof for the statement
(M′, v′ = v), with respect to σ′ = σ.

Since we know that I inverts the function with probability ε(n), it thus suffices to show that the preimage
it finds is such that i = 0n, except with negligible probability. Indeed, whenever I finds a preimage such
that i′ /∈ {0n, 1n}, by the definition of fn, it inverts v = PRG(s), contradicting the one-wayness of PRG.
Also, a preimage of (σ, v) cannot have i′ = 1n, assuming (σ, v) 6= ⊥, which is the case with overwhelming
probability. This concludes the proof of the claim.

Extractability. We show that there is one universal PPT extractor E that can handle and PPT adversaryM
with advice of size at most b(n) − ω(1). The proof is similar to the extractability proof of Theorem 3.2.
For an adversarial codeM and advice z ∈ {0, 1}b(n)−ω(1), we denote byMz the machine that, on input
1n, runs runsM(1n; z). The extractor E is given (M, z), whereMz has description size at most b(n) and
running time at most tM < T (n), andMz(1

n) = (σ, v) ∈ Image(fn).
If (σ, v) 6= (0m(n), 0b(n)+n), we know that σ must be valid, in which case E computes a certificate π for

the fact that “Mz(1
n) = v”, and then outputs the preimage x′ = (0n, (0n, 0n), (σ,Mz, v, π)). The fact that

x′ is indeed a valid preimage follows directly from the perfect completeness of the scheme, for a valid σ. If
(σ, v) = (0m(n), 0b(n)+n), the extractor outputs the preimage x′ = (1n, (0n, 0n), (0m(n), 0b(n), 0b(n)+n, 0p(n))).

Finally, we note that by the relative prover efficiency of the NIUA the extractor runs in time that is
polynomial in the running time tM of the adversary .

4 2-Message and 3-Message Zero Knowledge
against Bounded-Auxiliary-Input Verifiers

In this section, we define and construct two and three message ZK arguments against verifiers with bounded
auxiliary input, based on GEOWFs. We start by presenting the definition of such ZK arguments, and two
tools which will be of use. Then, we move on to describe our constructions.

4.1 Definition

The standard definition of zero knowledge [GMR89, Gol04] considers adversarial verifiers with non-uniform
auxiliary input of arbitrary polynomial size. We consider a relaxed notion of zero knowledge against veri-
fiers that have bounded non-uniform advice, but arbitrary polynomial running time. This relaxed notion, in
particular, includes zero knowledge against uniform verifiers (sometimes referred to as plain zero knowledge
[BLV06]).

Concretely, we shall focus on PPT verifiers V ∗ having advice z of size at most b(n), and using an
arbitrary polynomial number of random coins.

Definition 4.1. An argument system (P, V ) for an NP relationRL(ϕ,w) is zero knowledge against verifiers

16



with b-bounded advice if for every PPT verifier V ∗, there exists a PPT simulator S such that:

{〈P (w) � V ∗(z)〉(ϕ)} (ϕ,w)∈RL
z∈{0,1}b(|ϕ|)

≈c {S(z, ϕ)} (ϕ,w)∈RL
z∈{0,1}b(|ϕ|)

,

where computational indistinguishability is with respect to arbitrary non-uniform distinguishers.

Remark 4.1 (universal simulator). In the above definition, each PPT V ∗ is required to have a designated
PPT simulator S∗V . Our constructions will, in fact, guarantee the existence of one universal simulator S that,
in addition to (z, ϕ), is also given the code of V ∗ and a bound 1t

∗
V on the running time of V ∗(ϕ; z), and

simulates V ∗’s view. Moreover, the running time of S is bounded by some (universal) polynomial poly(t∗V )
in the running time of V ∗. We note that, in ZK with unbounded polynomial auxiliary input, such universality
follows automatically by considering the universal machine and auxiliary input (V ∗, 1t

∗
V ). In our context,

however, this does not hold since tV ∗ is unbounded and can be larger than the bound b on the size of the
advice.

4.2 WI Proof of Knowledge with an Instance-Independent First Message

In this section, we define and construct 3-message WI proofs of knowledge with an instance-independent
first message, which will be used in our construction of a 3-message ZK argument of knowledge. In such
proof systems, the prover’s first message is completely independent of the statement and witness (ϕ,w) ∈
RL to be proven; in particular, it is of fixed polynomial length in a security parameter n, independently of
|ϕ,w|.

Classical WIPOK protocols do not satisfy this requirement. For example, in the classical Hamiltonicity
protocol [Blu86], the first message is independent of the witness w, but does depend on the statement ϕ. In
Lapidot and Shamir’s Hamiltonicity variant [LS90], the first message is independent of (ϕ,w) themselves,
but does depend on |ϕ,w| (see details in [OV12]). ZAPs do satisfy the independence requirement (as there
is no first prover message at all), but they do not constitute a proof of knowledge.

We show that, using ZAPs, and 3-message extractable commitments, we can obtain a WIPOK where the
first (prover) message is completely independent of (ϕ,w), even of their length, and the second (verifier)
message only depends on |ϕ|.

Definition 4.2 (WIPOK with instance-independent first message). Let 〈P � V 〉 be a 3-message proof
system for L with messages (α, β, γ); we say it is a WIPOK with instance-independent first message, if it
satisfies:

1. Completeness with first message independence: For any ϕ ∈ L ∩ {0, 1}`, w ∈ RL(ϕ), n ∈ N:

Pr

V (ϕ, α, β, γ; r′) = 1

∣∣∣∣∣∣
α← P (1n; r)

β ← V (`, α; r′)
γ ← P (ϕ,w, α, β; r)

 = 1 ,

where r, r′ ← {0, 1}poly(n) are the randomness used by P and V .

The honest prover’s first message α is of length n, independently of the length of the statement and
witness (ϕ,w).
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2. Adaptive witness-indistinguishability: for any deterministic polysize verifier V ∗ and all large enough
n ∈ N:

Pr

V ∗(ϕ, α, β, γ) = b

∣∣∣∣∣∣
α← P (1n; r)

ϕ,w0, w1, β ← V ∗(α)
γ ← P (ϕ,wb, α, β; r)

 ≤ 1

2
+ negl(n) ,

where b← {0, 1}, r ← {0, 1}poly(n) is the randomness used by P , and w0, w1 ∈ RL(ϕ).

3. Adaptive proof of knowledge: there is a PPT extractor E , such that, for any polynomial ` = `(n),
all large enough n ∈ N, and any deterministic prover P ∗:

if Pr

 V (ϕ, α, β, γ; r′) = 1

∣∣∣∣∣∣
α← P ∗

β ← V (`(n), α; r′)
ϕ, γ ← P ∗(α, β)

 ≥ ε ,

then Pr

 w ← EP ∗(11/ε, ϕ, α, β, γ)
w /∈ RL(ϕ)

∣∣∣∣∣∣∣∣
α← P ∗

β ← V (`(n), α; r′)
ϕ, γ ← P ∗(α, β)
V (ϕ, α, β, γ; r′) = 1

 ≤ negl(n) ,

where ϕ ∈ {0, 1}`(n), and r′ ← {0, 1}poly(n) is the randomness used by V .

Construction from ZAPs. We now show how to use ZAPs and extractable commitments to construct a
WIPOK with the required properties. As mentioned above, ZAPs already have the required independence,
but they do not provide POK. The high-level idea is to add the POK feature to ZAPs, while maintaining the
required instance-independence. This can be done by having the prover commit to a random string r using a
3-message extractable commitment (e.g., as formalized in [PW09]), and then sending, as the third message,
the padded witness w⊕ r along with a ZAP proof that it was computed correctly. While the first message is
independent of ϕ,w it does depend on the length |w|; this is naturally solved by committing to a seed s of
fixed length and later deriving r using a PRG.

Intuitively, extraction of the witness is now possible by extracting r (or s) from the committing prover.
To ensure WI we use the idea of turning a single witness statement into a two independent-witnesses state-
ment as done in [FS90, COSV12, BP13].

In what follows, we denote by (C,R) the committer and receiver algorithms of a perfectly-binding 3-
message extractable commitment protocol, and we denote by ~C =

(
C(1), C(2), C(3)

)
its three messages.

We further require that extraction is possible given any two valid transcripts ~C, ~C ′ that share the same first
message. Such an extractable commitment can be constructed from any perfectly-binding non-interactive
commitment, see e.g. [PW09].

Lemma 4.1. Protocol 4 is a 3-message WIPOK with instance-independent first message.

We next prove the lemma. The proof is an adaptation of a proof from [BP13].

Proof. We start by showing that the protocol is WI. Let

(ϕ̄, w̄0, w̄1) = {(ϕ,w0, w1) : (ϕ,w0), (ϕ,w1) ∈ RL}

be any infinite sequence of instances in L and corresponding witness pairs. We next consider a sequence
of hybrids starting with an hybrid describing an interaction with a prover that uses w0 ∈ w̄0, and ending
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Protocol 4

Common Input: security parameter n, and ϕ ∈ L ∩ {0, 1}`(n).

Auxiliary Input to P : w ∈ RL(ϕ).

1. P samples seeds s0, s1 ← {0, 1}
√
n, and a bit b← {0, 1}, and sends the first commitment mes-

sage to each of the three (C
(1)
0 , C

(1)
1 , C(1))← (C(s0), C(s1), C(b)), where |(C(1)

0 , C
(1)
1 , C(1))| =

n.a

2. V , given the length of the statement ` = |ϕ|, samples randomness r ← {0, 1}poly(n) for a
ZAP, and receiver messages (C

(2)
0 , C

(2)
1 , C(2)) ← (R(C

(1)
0 ),R(C

(1)
1 ),R(C(1))), and sends

(r, C
(2)
0 , C

(2)
1 , C(2)) to P .

3. P , given (ϕ,w), now performs the following:

• computes the third committer messages
(C

(3)
0 , C

(3)
1 , C(3))← (C(s0, C

(2)
0 ), C(s1, C

(2)
1 ), C(b, C(2))).

• computes a0 = w ⊕ PRG(s0), a1 = w ⊕ PRG(s1).

• computes a ZAP proof π for the statement:{~C = C(0, C(2))
}
∨


~C0 = C(s0, C

(2)
0 )

a0 = w ⊕ PRG(s0)
w ∈ RL(ϕ)


∧{~C = C(1, C(2))

}
∨


~C1 = C(s1, C

(2)
1 )

a1 = w ⊕ PRG(s1)
w ∈ RL(ϕ)




• sends C(3)
0 , C

(3)
1 , C(3), a0, a1, π.

4. V verifies the ZAP proof π, the validity of the commitments transcripts, and decides whether to
accept accordingly.

aThe commitment to b does not have to be extractable; however, we use the same commitment scheme to avoid extra
notation.

Figure 4: A 3-message WIPOK with instance-independent first message

with an hybrid describing an interaction with a prover that uses w1 ∈ w̄1, where both w0, w1, are witnesses
for some ϕ ∈ ϕ̄. We shall prove that no efficient verifier can distinguish between any two hybrids in the
sequence. The list of hybrids is given in Table 1. We think of the hybrids as two symmetric sequences:
one 0.1-6, starts from witness w0, and the other 1.1-6 starts at witness w1. We will show that within these
sequences the hybrids are indistinguishable, and then we will show that 0.6 is indistinguishable from 1.6.

Hybrid 0.1: This hybrid describes a true interaction of a malicious verifier V ∗ with an honest prover P
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hyb zapwb ~Cb rb ab ⊕ rb zapw1−b ~C1−b r1−b a1−b ⊕ r1−b
0.1 (sb, w0) sb PRGb(sb) w0 (s1−b, w0) s1−b PRG(s1−b) w0

0.2 b sb PRGb(sb) w0 (s1−b, w0) s1−b PRG(s1−b) w0

0.3 b 0|sb| PRGb(sb) w0 (s1−b, w0) s1−b PRG(s1−b) w0

0.4 b 0|sb| u w0 (s1−b, w0) s1−b PRG(s1−b) w0

0.5 b 0|sb| u w1 (s1−b, w0) s1−b PRG(s1−b) w0

0.6 (sb, w1) sb PRGb(sb) w1 (s1−b, w0) s1−b PRG(s1−b) w0

1.6 (sb, w0) sb PRGb(sb) w0 (s1−b, w1) s1−b PRG(s1−b) w1

1.2-5 . . . . . . . . . . . . . . . . . . . . . . . .

1.1 (sb, w1) sb PRGb(sb) w1 (s1−b, w1) s1−b PRG(s1−b) w1

Table 1: The sequence of hybrids; the bit b corresponds to the bit commitment ~C; the gray cells indicate the
difference from the previous hybrid.

that usesw0 as a witness for the statement x ∈ L. In particular, the ZAP uses the witness ((s0, w0), (s1, w0));
formally, the witness also includes the randomness for the commitments ~C0 and ~C1, but for notational
brevity, we shall omit it. In Table 1, the witness used in part 0 of the ZAP is referred to as zapw0, and the
one corresponding to 1 in zapw1.

Hybrid 0.2: This hybrid differs from the previous one only in the witness used in the ZAP. Specifically,
for the bit b given by ~C, the witness for the ZAP is set to be (b, (s1−b, w0)), instead of ((sb, w0), (s1−b, w0)).
(Again the witness should include the randomness for the commitment ~C, and ~C1−b, but is omitted from
our notation.) Since the ZAP is WI, this hybrid is computationally indistinguishable from the previous one.

Hybrid 0.3: In this hybrid, the commitment ~Cb is for the plaintext 0|sb|, instead of the plaintext sb. This
hybrid is computationally indistinguishable from the previous one due to the computational hiding of the
commitment scheme ~C.

Hybrid 0.4: In this hybrid, instead of padding with PRG(sb), padding is done with a random independent
string u ← {0, 1}|PRG(sb)|. Computational indistinguishability of this hybrid and the previous one, follows
pseudorandomness.

Hybrid 0.5: In this hybrid, the padded value ab is taken to be w1 ⊕ rb, instead of w0 ⊕ rb. Since rb is
now uniform and independent of all other elements, this hybrid induces the exact same distribution as the
previous hybrid.

Hybrid 0.6: This hybrid now backtracks, returning to the same experiment as in hybrid 0.1 with the
exception that the ZAP witness is now ((sb, w1), (s1−b, w0)) instead of ((sb, w0), (s1−b, w0)). This indis-
tinguishability follows exactly as when moving from 0.1 to 0.5 (only backwards).

Hybrids 1.1 to 1.6: These hybrids are symmetric to the above hybrids, only that they start from w1

instead of w0. This means that they end in 1.6 which uses an ZAP witness ((sb, w0), (s1−b, w1)), which is
the same as 0.6, only in reverse order.

Hybrids 0.6 and 1.6 are computationally indistinguishable. This follows directly from the computational
hiding of the commitment ~C to b. Indeed, assume towards contradiction that V distinguishes the two hybrids.
Concretely, denote the probability it outputs 1 on 0.6 by p0, and the probability it outputs 1 on 1.6 by p1,
and assume WLOG that p0 − p1 ≥ ε(n), for some noticeable ε(n). We can construct a predictor that given
a commitment ~C = C(b) to a random bit b ← {0, 1}, guesses b with probability 1+ε(n)

2 . The predictor,
samples a random b′ ← {0, 1} as a candidate guess for b, and performs the experiment corresponding to
0.6, only that it locates w0 and w1 according to b′, rather than the unknown b. If the distinguisher outputs 1,
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the predictor guesses b = b′ and otherwise it guesses b = 1− b′.
Conditioned on b = b′, V is experiencing 0.6, and thus the guess will be correct with probability p0;

conditioned on b = 1 − b′, V is experiencing 1.6, and the guess will be right with probability 1 − p1. So
overall the guessing probability is p0

2 + 1−p1
2 ≥ 1

2 + ε(n)
2 . This completes the proof that the protocol is WI.

It is left to show that the protocol is an argument of knowledge. Indeed, let P ∗ be any prover that
convinces the honest verifier of accepting with noticeable probability ε(n), then with probability at least
ε(n)/2 over its first message, it holds with probability at least ε(n)/2 over the rest of the protocol that P ∗

convinces V . Let us call such a prefix good. Now for any good prefix, we can consider the perfectly binding
induced commitment to the bit b, and from the soundness of the ZAP, we get a circuit that with probability
at least ε(n)/2 − negl(n) produces an accepting commitment transcript for the plaintext s1−b, and gives a
valid witness w ∈ RL, padded with PRG(s1−b). This in particular, means that we can first sample a prefix
(hope it is good), and then use the extraction guarantee of the commitment to learn s1−b and PRG(s1−b),
and thus also the witness w. This completes the proof of Lemma 4.1.

2-message WI with instance-independent first message. We shall also make use of 2-message WI with
instance-independent first message. Here, there are two verifier and prover messages. Like in the three
message definition the verifier message does not depend on the instance, but is allowed to depend on its
length. In such a protocol, we only require soundness. ZAPs, for instance, satisfy this requirement, but we
can also do with a privately verifiable protocol rather than a ZAP. (In fact, also in the above construction of
3-message WIPOKs with instance-independent first message, the ZAPs can be replaced with any 2-message
WI with instance-independent first message.)

4.3 1-Hop Homomorphic Encryption

A 1-hop homomorphic encryption scheme [GHV10] allows a pair of parties to securely evaluate a function
as follows: the first party encrypts an input, the second party homomorphically evaluates a function on the
ciphertext, and the first party decrypts the evaluation result. Such a scheme can be instantiated based on
garbled-circuits and an appropriate 2-message oblivious transfer protocol, based on either Decision Diffie-
Hellman or Quadratic Residuosity [Yao86, GHV10, NP01, AIR01, HK12].

Definition 4.3. A scheme (Gen,Enc,Eval,Dec), where Gen,Eval are probabilistic and Enc,Dec are deter-
ministic, is a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme if it satisfies the
following properties:

• Perfect correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr
sk←Gen(1n)
c=Encsk(x)

Eval

[
ĉ← Evalsk(c, C)
Decsk(ĉ) = C(x)

]
= 1 .

• Semantic security: For any polysizeA, large enough n ∈ N, and any pair of inputs x0, x1 ∈ {0, 1}n

Pr
b←{0,1}

sk←Gen(1n)

[A(Encsk(xb)) = b] <
1

2
+ negl(n) .
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• Circuit privacy: A randomized evaluation should not leak information on the input circuit C. This
should hold even for malformed ciphertexts. Formally, let E(x) = Supp(Enc(x)) be the set of all
legal encryptions of x, let En = ∪x∈{0,1}nE(x) be the set legal encryptions for strings of length n,
and let Cn be the set of all circuits on n input bits. There exists a (possibly unbounded) simulator S
such that:

{C,Eval(c, C)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

≈c {C,S(c, C(x), |C|)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

{C,Eval(c, C)} n∈N
C∈Cn,c/∈En

≈c {C,S(c,⊥, |C|)} n∈N
C∈Cn,c/∈En

.

4.4 Constructions

In this section, we construct zero-knowledge protocols against verifiers with bounded advice from gener-
alized extractable one-way functions against adversaries with bounded auxiliary input (GEOWFs against
bounded-auxiliary-input adversaries). We start by describing a construction of a 3-message argument of
knowledge from any GEOWF, 1-hop homomorphic encryption, and 3-message WIPOK with instance-
independent first message. We then show a 2-message argument, assuming (non-interactive) commitments
that can be inverted in super-poly time T (n), GEOWFs that are hard against poly(T (n))-size adversaries,
and any 2-message WI with instance-independent verifier message (in particular, ZAPs).

4.4.1 A 3-message zero-knowledge argument of knowledge

Let (Gen,Enc,Eval,Dec) be a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme.
Let (wi1,wi2,wi3) denote the messages of 3-message WIPOK with an instance-independent first message
(as in Definition 4.2). Let F = {fn}n∈N be a key-less GEOWF, against (b(n) + 2n)-bounded-auxiliary-
input adversaries, with respect to a privately-verifiable relation RF =

{
RFn
}
n∈N. Let T (x, x′) be the

efficient tester for RFn (fn(x), x′). We further denote by Ty,x′(x) a circuit that, given input x, verifies that
“y 6= fn(x) or T (x, x′) = 1”; that is, either “x is not a valid preimage of y, or RFn (fn(x), x′) = 1”. Also,
let 1 be a circuit of the same size as Ty,x′ that always returns 1. The protocol is given in Figure 5.

Theorem 4.1. Protocol 5 is a zero-knowledge argument of knowledge against b-bounded-auxiliary-input
verifiers.

High-level idea behind the proof. For simplicity let us explain why the protocol is sound, showing it
is an argument of knowledge follows a similar reasoning. Assuming that ϕ /∈ L, in order to pass the
WIPOK, with respect to an evaluated cipher ĉ that decrypts to 1, the prover must know a witness x′ such
that Ty,x′(x) = 1. This, by definition, and the fact that the verifier indeed sends an image y together with
its encrypted preimage x, means that x′ must be such that x′ satisfies RF (fn(x), x′) = 1, and thus the
prover actually violates RF -hardness (formally, we also need to invoke semantic security to claim that the
encryption of x does not help in producing such a witness.)

To show ZK, we use the fact that if the verifier sends y together with an encryption of a true preimage
x, the the simulator can invoke the extractor and extract a witness x′ from its code and auxiliary input,
and use it to complete the WIPOK. Here we use the bound on the first WI prover message, to claim that
the overall auxiliary-input is appropriately bounded. In case, the verifier diverges from the protocol, and
doesn’t send proper y and encrypted preimage, the definition of Ty,x′ guarantees that the circuit will also
accept in this case. Thus in either case, the circuit privacy of homomorphic evaluation would guarantee
indistinguishability from a real proof, where the prover actually evaluates the constant 1 circuit.
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Protocol 5

Common Input: ϕ ∈ L ∩ {0, 1}n.

Auxiliary Input to P : a witness w for ϕ.

1. P sends the first message wi1 ∈ {0, 1}n of the instance-dependent WIPOK.

2. V samples x← {0, 1}`(n) and sk← Gen(1n), computes y = fn(x), cx = Encsk(x)
and sends (y, cx) , as well as the second WIPOK message wi2.

3. P samples ĉ← Eval(1, cx), and sends ĉ, together with the WIPOK message wi3 stating that:

{ϕ ∈ L}
∨{
∃x′ : ĉ = Eval(Ty,x′ , cx)

}
,

using the witness w ∈ RL(ϕ).

4. V verifies the proof and that Decsk(ĉ) = 1.

Figure 5: A 3-message ZK argument of knowledge against verifiers with b-bounded auxiliary-input.

A more detailed proof follows.

Proof. We first show that the protocol is an argument of knowledge.

Claim 4.1. Protocol 5 is an argument of knowledge against against arbitrary polysize provers.

Proof. Let P ∗ be any polysize prover that convinces V of accepting with noticeable probability ε(n). The
witness extractor would derive from P ∗ a new prover for P ∗wi that emulates P ∗ in the WIPOK; in particular,
it would honestly sample (y, cx) as part of the second verifier message that P ∗ gets. The extractor would
then choose the random coins r for P ∗wi, sample a transcript tr of an execution with the honest WIPOK
verifier Vwi, and apply the WIPOK extractor on the transcript tr, with oracle access to P ∗wi. The WIPOK
extractor then hopefully obtains a witness for the WI statement

{ϕ ∈ L}
∨{
∃x′ : ĉ = Eval(Ty,x′ , cx)

}
,

where (y, cx) are those honestly sampled by P ∗wi, and ĉ is output by P ∗.
We claim that, with noticeable probability ε(n)2/2 − negl(n), we find a witness w for the first part of

the statement ϕ ∈ L. Otherwise, we can use P ∗ to break the RF -hardness of F . To prove this claim, we
first note that the emulated transcript tr in this experiment is distributed identically to the transcript in a
real execution of P ∗ with the honest verifier. Thus, we know that such a transcript tr is accepted by V with
probability at least ε(n). Now, let us call random coins r for P ∗wi good if they are such that with probability at
least ε(n)/2 over the coins of the WIPOK verifier Vwi, it accepts the proof given by P ∗wi. Since we know that
overall Vwi accepts with probability at least ε(n), then by a standard averaging argument, at least an ε(n)/2
fraction of the coins r for P ∗wi are good. Furthermore, conditioned on a transcript tr that is accepted by V ,
the probability that the corresponding coins r are good increases. Thus, it follows that the probability that tr
is accepting and the corresponding coins r are good is at least ε(n) · ε(n)/2. Now, recall that, whenever this
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occurs, the extractor for the WIPOK would also output a witness for the corresponding statement (except
with negligible probability).

We would like to show that the extracted witness is the one for the ϕ ∈ L statement. Indeed, assume
that, with noticeable probability η(n) , it holds that tr is accepting, the extractor outputs a witness, but the
witness is for the second statement. This, in particular, means that the witness extractor outputs x′ such that
ĉ = Eval(Ty,x′ , cx), where ĉ is the output of P ∗. Moreover, since the transcript is accepted by V , we know
that Dec(ĉ) = 1. By correctness of decryption, this means that Ty,x′(x) = 1, which in turn implies that
T (x, x′) = 1, since y = fn(x). In other words, x′ is a valid witness satisfyingRFn (fn(x), x′) = 1.

We can now construct a breaker for the RF -hardness of F . The breaker, given y = fn(x), would
simply emulate all of the experiment above on its own, where Pwi would use y, and an encryption of zero
c0 = Encsk(0) to emulate the second verifier message, instead of sampling (y = fn(x), cx) on its own.
We claim that it would obtain the desired witness x′ with noticeable probability η(n) − negl(n). Indeed,
had we used an encryption cx of the preimage of y, instead of a zero-encryption, we know that it would
produce a valid witness x with probability η(n). Thus, the claim follows by the semantic security of Enc.
This completes the proof of Claim 4.1

We next show that the protocol is ZK. We note that, since the ZK simulator is allowed to simulate the
(apriori unbounded) randomness of the verifier V ∗, we can restrict attention to verifiers V ∗ that only have
bounded randomness. Indeed (assuming there exist OWFs), we can always consider a new verifier Ṽ ∗ that
first stretches its bounded randomness using a PRG and then emulates V ∗. Then to simulate the view of V ∗,
we can first apply the simulator S̃ for Ṽ ∗, and then apply the PRG on the simulated randomness to obtain a
full simulated view for V ∗. In particular, from hereon we we can simply focus on deterministic verifiers V ∗

that get their bounded randomness as part of their bounded advice.

Claim 4.2. Protocol 5 is ZK against any polytime verifier V ∗ with auxiliary-input of size at most b(n).

Proof. We describe a universal ZK simulator S and show its validity (universality is in the sense of Re-
mark 4.1). Let ϕ ∈ L and let V ∗ be the code of any malicious verifier, and let z′ be any advice of length
at most b(n). S starts by honestly computing the first message wi1 ∈ {0, 1}n of the WIPOK with instance-
independent first message. It then feeds wi1 to V ∗(ϕ; z′) who returns (y, c,wi2) that are (allegedly) an image
under the function fn, an encryption of a corresponding preimage, and the second message of the WIPOK.
S now constructs from the code of V ∗ a machine MV ∗ that, given 1n and z = (z′, ϕ,wi1) as input,

outputs some y, and whose running time is linear in the running time tV ∗ of V ∗. Note that |z| ≤ |z′|+ |ϕ|+
|wi1| ≤ b(n) + 2n, and thus, if y = fn(x) for some x, applying the extractor E onMV ∗ would result in a
witness x′, such that RF (y, x′) = 1, in time poly(t∗V ). S does not test whether y is a valid image directly,
it applies the extractor regardless to obtain a candidate x′, and then computes ĉ = Eval(Ty,x′ , c). Then it
sends ĉ to V ∗, and completes the WIPOK using the trapdoor x′ as a witness.

The validity of the simulator now follows by witness indistinguishability, as well as by the circuit privacy
guarantee given by Eval. Specifically, we first move to a hybrid simulator S ′ that proves the WIPOK
statement using the actual witness w. The view generated by S ′ is indistinguishable from the one generated
by S due to the WI property.

Now, we claim that the view generated by S ′ is indistinguishable from that generated by honest prover
P . First, note that the only difference between the two is that P sends ĉ ← Eval(1, c), whereas S ′ sends
ĉ← Eval(Ty,x′ , c), for the extracted input x′. Now, note that if c is a valid ciphertext, then Ty,x′(Dec(c)) =
1(Dec(c)) = 1; indeed, if y = fn(x) where x = Dec(c), then the extracted x′ is such that T (x, x′) = 1,
and the above follows by the definition of Ty,x′(x). Thus, in this case, the distribution of ĉ induced by P is
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indistinguishable from that induced by S ′, by circuit privacy. In fact, circuit privacy says that this is also the
case if c is an invalid cipher.

This completes the proof of Theorem 4.1.

4.4.2 A 2-message zero-knowledge argument.

In this section, we show that, using complexity leveraging (and superpolynomial hardness assumptions), we
can augment the protocol from the previous section to a 2-message argument.

Let (Gen,Enc,Eval,Dec) be a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme.
Let (wi1,wi2) denote the messages of 2-message WI with an instance-independent first message (as in Def-
inition 4.2). Let F = {fn}n∈N be a key-less GEOWF, against (b(n) + n)-bounded-auxiliary-input adver-
saries, with respect to a privately-verifiable relation RF =

{
RFn
}
n∈N. Further assume that F is one-way

against adversaries of size poly(T ) (see Remark 3.2). Let T (x, x′) be the efficient tester forRFn (fn(x), x′).
We further denote by Ty,x′(x) a circuit that, given input x, verifies that “y 6= fn(x) or T (x, x′) = 1”;
that is, either “x is not a valid preimage of y, or RFn (fn(x), x′) = 1”. Also, let 1 be a circuit of the same
size as Ty,x′ that always returns 1. Let C be a perfectly binding commitment that is hiding against polysize
adversaries, and can be completely inverted in time T (n), for some computable super-polynomial function
T (n) = nω(1). The protocol is given in Figure 6.

Protocol 6

Common Input: ϕ ∈ L ∩ {0, 1}n.

Auxiliary Input to P : a witness w for ϕ.

1. V samples x← {0, 1}`(n) and sk← Gen(1n), computes y = fn(x), cx = Encsk(x)
and sends (y, cx) , as well as the second WIPOK message wi2.

2. P samples a commitment to zero C ← C(0`), ĉ ← Eval(1, cx), and sends (C, ĉ), together with
the second WI message wi2 stating that:

{ϕ ∈ L}
∨{

∃x′ : ĉ = Eval(Ty,x′ , cx)
C = C(x′)

}
,

using the witness w ∈ RL(ϕ).

3. V verifies the proof and that Decsk(ĉ) = 1.

Figure 6: A 2-message ZK argument against verifiers with b-bounded auxiliary input.

Theorem 4.2. Protocol 6 is a zero-knowledge argument against b-bounded-auxiliary-input verifiers.

High-level idea behind the proof. Proving ZK against verifiers with bounded advice is essentially the same
as in the 3-message protocol, only that now the simulator also commits to the input that it extracts from the
verifier (and by the hiding of the commitment ZK is maintained). The proof of soundness is essentially the
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same as showing POK in the 3-message protocol, only that now, the WI does not provide witness extraction,
instead we will extract a witness in time poly(T (n)), by inverting the prover’s commitment with brute-force.
Since one-wayness holds even against poly(T (n))-adversaries, soundness follows.

A more detailed proof follows.

Proof sketch. We first show that the protocol is a sound against polysize adversaries.

Claim 4.3. Protocol 6 is an argument.

Proof sketch. Let P ∗ be any polysize prover, and assume towards contradiction that for infinitely many
ϕ /∈ L, P ∗ convinces V of accepting with noticeable probability ε(n). We show to break the RF -hardness
of F . The breaker, given y would sample a first WI message wi1, and encryption of zero c0, and feed
(y, c0,wi1) to P ∗, who outputs a commitment C, an alleged image y, and a proof wi2 for the statement

{ϕ ∈ L}
∨{

∃x′ : ĉ = Eval(Ty,x′ , cx)
C = C(x′)

}
.

By the semantic security of the 1-hop encryption, the above is indistinguishable from an experiment in which
the breaker uses cx for an actual preimage of y, and thus we know that with probability ε(n) − negl(n the
proof is convincing. By the soundness of the WI system, and since ϕ /∈ L, it follows that C is a commitment
to a proper witness x′. The inverter can now break C in time T (n) and thus breakRF -hardness of F .

We next show that the protocol is ZK. As noted in the previous section, we can restrict attention to
deterministic verifiers V ∗ that get their bounded randomness as part of their bounded advice.

Claim 4.4. Protocol 6 is ZK against any polytime verifier V ∗ with advice of size at most b(n).

Proof sketch. We describe a universal ZK simulator S and show its validity (universality is in the sense of
Remark 4.1). Let ϕ ∈ L and let V ∗ be the code of any malicious verifier, and let z′ be any advice of length
at most b(n). S starts by running V ∗(ϕ; z′) who returns (y, c,wi1) that are (allegedly) an image of the of
the function fn, an encryption of its preimage, and the verifier message of the WI protocol.
S now constructs from the code of V ∗ a machineMV ∗ that, given 1n and z = (z′, ϕ) as input, outputs

some y, and whose running time is linear in the running time tV ∗ of V ∗. In particular, |z| ≤ |z′| + |ϕ| ≤
b(n) + n. S then applies the extractor E on MV ∗ , and obtains a candidate witness x′ ∈ {0, 1}` in time
poly(t∗V ).
S now computes ĉ = Eval(Ty,x′ , c), as well as a commitment C to x′, and completes the WI using the

trapdoor x′ as a witness. It sends (C, ĉ,wi2) to complete the simulation.
The validity of the simulator now follows by witness indistinguishability, as well as the circuit privacy

guarantee. Specifically, we can first move to a hybrid simulator S ′ that proves the WI statement using
the witness w. The view generated by S ′ is indistinguishable from the one generated by S due to the WI
property. Now, we can claim that the view generated by S ′ is indistinguishable from that generated by the
honest prover P . Indeed, the only difference between the two is that P commits to 0` instead of x′, and
sends ĉ ← Eval(1, c), whereas S ′ sends ĉ ← Eval(Ty,x′ , c), for the extracted input x′. The two views
are indistinguishable by the hiding of the commitment and by the function privacy guarantee of the 1-hop
evaluation (this is argued exactly as in the proof of Claim 4.2).

This completes the proof of Theorem 4.2.
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A Black-Box Lower Bounds

In our construction of EOWFs (or GEOWFs) against bounded-auxiliary-input adversaries, the extractor
is non-black-box, i.e., it makes explicit use of the adversary’s code. In particular, the simulation of our
2-message and 3-message ZK protocols, which invokes this extractor, makes a non-black-box use of the
adversarial verifier. In this section, we show that this is inherent by extending known results for adversaries
with unbounded polynomial advice to the case of bounded-advice adversaries. We also observe that such
black-box impossibilities do not hold for totally uniform adversaries (having no advice at all, on top of their
constant size description).

EOWF with black-box extractors. We sketch why there do not exist EOWFs against b−bounded-auxiliary-input
adversaries where b = nΩ(1), for security parameter n, and where the extractor only uses the adversary as
a black-box (a similar implication can be shown for the case of generalized EOWFs). Specifically, we
show that given a function family F that satisfies one-wayness, there does not exist a PPT black-box ex-
tractor E such that for any PPT adversaryM, any large enough security parameter n ∈ N, and any advice
z ∈ {0, 1}b(n):

Pr
e←KF (1n)

[
y ←M(e; z)
∃x : fe(x) = y

∧ x′ ← EM(·;z)(e)
fe(x

′) 6= y

]
≤ negl(n) .3

This essentially follows the same idea behind the impossibility presented in Section ??, only that now
some of the computation done there by the obfuscated auxiliary-input can be shifted from the auxiliary-input
to the adversary itself, as it is anyhow accessed as a black-box. Concretely, consider the adversaryM that
interprets its auxiliary input z as a seed k of a pseudo-random function that maps the keys of F to inputs
of F . On input (e; z), M computes an input x = PRFz(e) and outputs y = fe(x). Using the guarantee
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of the pseudo-random function, it is not hard to see that any black-box extractor E can be used to break the
one-wayness property of F (using a much simplified version of the proof in Section ??).

Note that the above does not hold when b(n) = O(log(n)), since then the advice cannot contain a
seed for a secure pseudo-random function. In fact, when b(n) = O(log(n)), any family that is EOWF
against b-bounded-auxiliary-input adversaries also has a black-box extractor. The extractability property of
the EOWF guarantees the existence of an extractor for every adversary M and advice z. Since there are
only polynomially many different pairs (M, z), a black-box extractor can run the (possibly non-black-box)
extractor for every such (M, z), and is guaranteed that one of these executions outputs a valid preimage.

3-round ZK with black-box simulation. Goldreich and Krawczyk [GK96] show that a 3-message protocol
for a language L /∈ BPP that is zero-knowledge against non-uniform verifiers cannot have a black-box
simulator. That is, there is no simulator that only uses the verifier as a black-box. To show this, they first
construct a specific family V of non-uniform verifiers, and then prove that any black-box simulator that can
simulate verifiers in V can be used to decide L efficiently. This proof, however, does not directly rule out
black-box simulation for bounded-auxiliary-input verifiers. The reason is that, in the proof of [GK96], the
advice given to verifiers in V encodes a key for a p-wise independent hash function where p bounds the
running time of the simulator. Now, to rule out any polytime simulator, we must require simulation for
verifiers with advice of arbitrary polynomial length.

However, assuming one-way functions exist, we can replace the p-wise independent hash function in
the construction of V by a pseudo-random function with seed length that is independent of p. Then,
using the same argument as [GK96], we can show that black-box simulation is impossible even for b-
bounded-auxiliary-input verifiers where b(n) = nΩ(1).

Similarly to the case EOWF, there is no impossibility for 3-message ZK against b-bounded-auxiliary-input
verifiers where b(n) = O(log(n)). In fact, as explained above, in this case, the non-black-box extractor of
our GEOWF also implies a black-box extractor, which we can use to construct a black-box simulator in our
3-message ZK protocol.

2-round ZK. Goldreich and Oren [GO94] show that 2-message protocols for any language L /∈ BPP that
are zero-knowledge against non-uniform verifiers do not exist (even with non-black-box simulation). Their
result crucially relies on the fact that the auxiliary-input of the verifier can encode the first message of
the protocol (and can in fact be extended to also rule out the case of bounded-auxiliary-input verifiers, with
advice longer that the first message). Our construction of 2-message ZK does not contradict the impossibility
of [GO94] sice it is only ZK against b-bounded-auxiliary-inputadversaries where b is smaller then the length
of the first protocol message.
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