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Abstract

The Norwegian government ran a trial of internet remote voting during
the 2011 local government elections, and will run another trial during the
2013 parliamentary elections. A new cryptographic voting protocol will be
used, where so-called return codes allow voters to verify that their ballots
will be counted as cast.

This paper discusses this cryptographic protocol, and in particular the
ballot submission phase.

The security of the protocol relies on a novel hardness assumption
similar to Decision Diffie-Hellman. While DDH is a claim that a random
subgroup of a non-cyclic group is indistinguishable from the whole group,
our assumption is related to the indistinguishability of certain special
subgroups. We discuss this question in some detail.

Keywords: electronic voting protocols, Decision Diffie-Hellman.

1 Introduction

The Norwegian government ran a trial of internet remote voting during the
2011 local government elections. During the advance voting period, voters in
10 municipalities were allowed to vote from home using their own computers.
This form of voting made up a large majority of advance voting. The Norwegian
goverment will run a second trial of remote voting during the 2013 parliamentary
elections.

Internet voting, and electronic voting in general, faces a long list of security
challenges. For Norway, the two most significant security problems with internet
voting will be compromised voter computers and coercion.

Coercion will be dealt with by allowing voters to revote electronically. Revot-
ing cancels previously submitted ballots. Also, the voter may vote once on
paper, in which case every submitted electronic ballot is canceled, even those
submitted after the paper ballot submission. In theory, almost everyone should
therefore have sufficient tools to avoid coercion.
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This leaves compromised computers as the main remaining threat. Since
a significant fraction of home computers are compromised, the voting system
must allow voters to detect ballot tampering without relying on computers.
This is complicated by the fact that voters are unable to do even the simplest
cryptographic processing without computer assistance.

Norwegian municipal elections are somewhat complicated. The voter chooses
a party list, he is allowed to give personal votes to candidates on the list, and
he is allowed to amend the list by adding a certain number of candidates from
other party lists. Parliamentary elections are also somewhat complicated. The
voter again chooses a party list, but he is now allowed to reorder candidates or
strike them out.

Essentially, a ballot consists of a short, variable-length sequence of options
(at most about a hundred options) chosen from a small set of possible options
(at most a few thousand). Note that the entire sequence is required to prop-
erly interpret and count the ballot. For municipal elections, order within the
sequence does not matter, but for parliamentary elections order does matter.

We note in Norway paper ballots submitted in an election are considered
sensitive and access is restricted. One reason for this is that because of the
complex ballots, many distinct ballots will have essentially the same effect on
the election result. Therefore, it is possible to mark ballots, which means that
if the counted ballots were public, anyone could reliably buy votes.

Related work We can roughly divide the literature into protocols suitable
for voting booths [7, 8, 25, 26], and protocols suitable for remote internet voting
[2, 9, 18, 20, 23], although protocols often share certain building blocks. One dif-
ference is that protocols for voting booths should be both coercion-resistant and
voter verifiable, while realistic attack models (the attacker may know more than
the voter knows) for remote internet voting probably make it nearly impossible
to achieve both voter verifiability and coercion-resistance.

For internet voting protocols, we can again roughly divide the literature into
two main strands distinguished by the counting method. One is based on homo-
morphic tallying. Ballots are encrypted using a homomorphic cryptosystem, the
product of all the ciphertexts is decrypted (usually using some form of threshold
decryption) to reveal the sum of the ballots. For simple elections, this can be
quite efficient, but for Norwegian elections this becomes unwieldy.

The other strand has its origins in mix nets [5]. Encrypted ballots are sent
through a mix net. The mix net ensures that the mix net output cannot be
correlated with the mix net input. There are many types of mixes, based on
nested encryption [5] or reencryption, verifiable shuffles [15, 23] or probabilistic
verification [3, 18], etc. These can be quite efficient, even for the Norwegian
elections.

Much of the literature ignores the fact that a voter simply will not do any
computations. Instead, the voter delegates computations to a computer. Unfor-
tunately, a voter’s computer can be compromised, and once compromised may
modify the ballot before submission.
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One approach to defend against compromised computers is so-called preen-
crypted ballots and return codes [6, 4], where the voter well in advance of the
election receives a table with candidate names, identification numbers and re-
turn codes. The voter inputs a candidate identification number to vote and
receives a response. The voter can verify that his vote was correctly received by
checking the response against the printed return codes. In Norway, preencrypted
ballots will be too complicated, but return codes can still be used.

Note that unless such systems are carefully designed, privacy will be lost.
Clearly, general multiparty computation techniques can be used to divide the
processing among several computing nodes (presumably used by [6]). In prac-
tice, few independent data centres are available that have sufficient quality and
reputation to be used in elections. This means that general multiparty compu-
tation techniques are not so useful.

One approach for securely generating the return codes is to use a proxy
oblivious transfer scheme [16, 17]. A ballot box has a database of return codes
and the voter’s computer obliviously transfers the correct one to a messenger,
who then sends the return code to the voter. The main advantage of this
approach is that very few computing nodes are required. Unfortunately, this
particular solution is probably too computationally expensive to be used for
Norwegian elections.

Another useful tool is the ability for out-of-band communication with voters
[21]. This allows us to give the voter information directly, information that his
computer should not know and not be able to tamper with. The scheme in [16,
17] sends return codes to the voter out-of-band. This helps ensure that a voter is
notified whenever a vote is recorded, preventing a compromised computer from
undetectably submitting ballots on the voter’s behalf.

Our contribution The cryptographic protocol to be used in Norway is de-
signed by Scytl, a Spanish electronic voting company, with contributions by the
present author. It is mostly a fairly standard internet voting system based on
ElGamal encryption of ballots and a mix-net before decryption.

The system works roughly as follows (see Figure 1). The voter V gives his
ballot to a computer P , which encrypts the ballot and submits it to a ballot
box B. The ballot box and a return code generator R cooperate to compute a
sequence of return codes for the submitted ballot. These codes are sent by SMS
to the voter’s mobile phone F . The voter verifies the return codes against a list
of precomputed option–return code pairs printed on his voting card.

Once the ballot box closes, the submitted ciphertexts are decrypted by a
decryptor D. An auditor A supervises the entire process.

The main contribution of the current author to the protocol, and the focus
of this paper, is a novel method for computing the return codes efficiently. We
use the fact that exponentiation is in some sense a pseudo-random function
[10, 12], and since ElGamal is homomorphic, exponentiation can be efficiently
done “inside” the ciphertext.

The mechanics of the Norwegian electoral system means that we must en-
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Figure 1: Overview of the protocol players and communication channels.

crypt each option separately in order to generate return codes for each option
separately. If every ballot consisted of up to 100 ElGamal ciphertexts, mixing
would be prohibitively expensive. Therefore, Scytl uses a clever encoding of
options [22, 24] to allow the protocol to compress ciphertexts before mixing and
then recover the complete ballot after decryption. However, this encoding forces
us to do a more careful security analysis of the return code computation.

The main advantage of our contribution is that generating return codes is
cheap, amounting to just a few exponentations. At the same time, mixing is rea-
sonably fast. Since the protocol requires very few players to achieve reasonable
security, we have a protocol that is deployable in practice.

The protocol in this paper is an improved version of the protocol used in
the 2011 trials [13]. The main difference is that the protocol in this paper uses
multi-ElGamal and more efficient NIZK proofs to get a significant performance
improvement. The protocol analysis in this paper is also a significant improve-
ment on the analysis done on the previous protocol. The protocol that will be
used in the 2013 trials is a minor modification of the protocol described in this
paper.

Overview of the paper The cryptographic protocol is essentially based on
ElGamal encryptions. Section 2 describes the group structure used for ElGamal
and the special properties we require of it to be able to compress many cipher-
texts into one, and still recover complete ballots from the decryption. It then
defines and discusses a conjecturally hard problem on this group structure, a
problem that is similar to Decision Diffie-Hellman and required for the security
of the system.

Section 3 defines and analyses certain NIZK proofs required by the cryp-
tosystem. These are used to prove that various computations are correct. We
also need a proof of knowledge. Modeling this proof and its security is non-
trivial, and we spend some time on it in this section and in Appendix A.

Section 4 defines a cryptosystem with corresponding security notions, an
instantiation of this cryptosystem, and relates the security of this instantiation
to the conjecturally hard problem discussed in Section 2. This cryptosystem
encapsulates the essential cryptographic operations in the voting protocol.

Section 5 then shows how we build the cryptographic voting protocol on top
of the cryptosystem defined in Section 4, and how the security of the voting
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protocol essentially follows from the security of the cryptosystem, as well as the
assumed properties of various infrastructures.

2 The Underlying Group Structure

Underlying the entire voting protocol is a group structure with certain very
specific properties, needed to be able to compress ElGamal ciphertext. The
basic idea is that from the product of not too many small primes computed
modulo a large prime, the small primes can still be recovered efficiently by
trial division. These small primes then lead to a problem similar to Decision
Diffie-Hellman.

2.1 The Group Structure

Let q be a prime such that p = 2q + 1 is also a prime. Then the quadratic
residues of the finite field with p elements is a finite cyclic group G of prime
order q. Let g be a generator.

Let `1, `2, . . . , `L be the group elements corresponding to the L smallest
primes that are quadratic residues modulo p. Let O = {1, `1, `2, . . . , `L}.

2.2 Factoring

Factoring products of small primes is efficient. Suppose that all of these primes
are smaller than k

√
p for some integer 0 < k. If we select k elements from O and

multiply them, then we can efficiently recover the k elements from the product,
up to order. If we use the obvious ordering on the group elements, we get a map
from the set of all such products to Ok, and this map can be extended to a map
φ : G→ Gk by taking any other group element x to the k-tuple (1, . . . , 1, x).

If we care about the ordering of the tuples, we must use a different approach.
A tuple (v1, . . . , vk) is mapped to the product

k∏
i=1

vii .

Again, we can efficiently recover the prime powers in the product to see which
options were included, and in what order. Note that this approach significantly
reduces the length k of the tuples that can be encoded.

2.3 A Subgroup Problem

We are interested in a problem related to the prime p and the elements `1, `2, . . . , `L.
We begin our discussion with the usual Decision Diffie-Hellman (DDH) problem,
which can be formulated as follows:

Decision Diffie-Hellman. Given (g0, g1) ∈ G×G (where at least g1 is sampled
at random), decide if (x0, x1) ∈ G × G was sampled uniformly from the set
{(gs0, gs1) | 0 ≤ s < q} or uniformly from G×G.
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It is well-known (e.g. [10, 12]) that this is equivalent to the following prob-
lem:

L-DDH. Given (g0, . . . , gL) ∈ GL+1 (where at least g1, . . . , gL are sampled at
random), decide if (x0, . . . , xL) ∈ GL+1 was sampled uniformly from the set
{(gs0, . . . , gsL) | 0 ≤ s < q} or uniformly from GL+1.

Remark. An adversary for the former problem trivially becomes an adversary
for the latter problem.

Given (g0, g1), (x0, x1) ∈ G×G, we can create L tuples

(yi, zi) = (gri0 x
ti
0 , g

ri
1 x

ti
1 ), i = 1, 2, . . . , L,

for random ri, ti. If g1 = gu0 and (x0, x1) = (gs0, g
s
1), then zi = yui . If (x0, x1) =

(gs0, g
v
1), v 6≡ s (mod q), then zi and yi are uniformly random and independent.

It follows that an adversary for the latter problem becomes an adversary for
the former problem. We remark on this fact because in contrast to the obvious
hybrid argument, this argument does not reduce the adversary’s advantage by
1/L.

However, suppose the subgroup is generated by small primes instead of ran-
dom group elements. We get the following problem, which we call the Subgroup
Generated by Small Primes (SGSP) problem:

Subgroup Generated by Small Primes. Let the prime p be chosen at ran-
dom from an appropriate range, and let the generator g be chosen at random.
Determine the group elements `1, `2, . . . , `L as above. The problem is to decide
if (x0, x1, . . . , xL) ∈ GL+1 was sampled uniformly from the set {(gs, `s1, . . . , `sL) |
0 ≤ s < q} or uniformly from GL+1.

While this problem is very similar to Decision Diffie-Hellman, and indeed
cannot be hard unless Decision Diffie-Hellman is hard, it seems unlikely that its
hardness follows from hardness of Decision Diffie-Hellman.

For a prime p of practical interest, a reasonably large L will make it feasible
to find a single non-trivial relation among the small primes, which is enough to
decide where (x0, . . . , xL) was sampled from. However, when L is small, as it
will be for our application, this may not be true.

It is generally believed that the best way to solve the Decision Diffie-Hellman
is to compute one of the corresponding discrete logarithms.

It is known [19] that solving the static Diffie-Hellman problem with a fairly
large number of oracle queries is easier than solving the discrete logarithm prob-
lem. We can consider the challenge tuple (x0, . . . , xL) as the answers to certain
oracle queries, so any adversary against the SGSP problem could in some sense
be considered an adversary against static Diffie-Hellman. Therefore, our prob-
lem should not be easier than the static Diffie-Hellman problem.

For fairly large L, a static Diffie-Hellman solver could be applied to decide
the SGSP problem. This would be faster than the fastest known solver for the
Decision Diffie-Hellman problem in the same group. However, for our applica-
tion, L will always be small, hence a static Diffie-Hellman solver can not be
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directly applied. A hybrid approach could perhaps be deployed, but for small
L such an approach should not be significantly faster than simply computing a
discrete logarithm.

Remark. Note that it will probably be possible to choose the prime p together
with a relation among the small primes. Given such a relation, the decision
problem above will be easy, since the relation will hold for prime powers as well.
It is therefore important for our purposes that the prime p is chosen verifiably
at random. There are straight-forward ways to do this.

2.4 Further Analysis

While the SGSP problem discussed above is sufficient for our purposes, it is not
necessary. A weaker, sufficient condition would be if, given a permutation of
a subset of {`s1, . . . , `sL} and gs for some random s, it was hard to deduce any
information about which primes were involved and what the permutation was.

We study the case when there are only two elements, say `0 and `1, and the
subset contains one of them. Let A be an algorithm that takes as input five
group elements and outputs 0 or 1. Define

π00 = Pr[A(`0, `1, g, g
s, `s0) = 0],

π11 = Pr[A(`0, `1, g, g
s, `s1) = 1], and

πi,rnd = Pr[A(`0, `1, g, g
s, gt) = i], i ∈ {0, 1},

where s and t are sampled uniformly at random from {0, 1, . . . , q − 1}. Note
that π0,rnd = 1 − π1,rnd, since the input distribution to A is identical for both
probabilities.

We may define the advantage of A as |π00 + π11 − 1|. Observe that if |π00 −
π0,rnd| or |π11 − π1,rnd| are large, we have a trivial solver for Decision Diffie-
Hellman with the generator fixed to either `0 or `1.

We may assume that π00 + π11 − 1 = 2ε > 0. Then either π00 ≥ 1/2 + ε
or π11 ≥ 1/2 + ε, so assume the former. Furthermore, let π00 − π0,rnd = µ. If
|µ| ≥ ε, we have an adversary against Decision Diffie-Hellman with the generator
fixed to `0, so assume |µ| < ε. Then

π11 − π1,rnd = 1 + 2ε− π00 − (1− π0,rnd) = 2ε− µ ≥ ε,

which means that we must have an adversary with advantage at least ε against
Decision Diffie-Hellman with the generator fixed to either `0 or `1.

The same arguments applies to an algorithm that can recognize one out
of multiple elements. It must lead to a successful adversary against Decision
Diffie-Hellman with the generator fixed to one of the elements.

Unfortunately, the above argument breaks down if the algorithm is allowed
to see multiple elements raised to the same power, that is, if given {`si | i ∈ I}
for some small index set I, the algorithm can decide what I is.
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2.5 Further variants

Consider a group GL+1 and a generator (g0, . . . , gL) for a subgroup of GL+1.
First, suppose we choose L further elements uniformly and independently at

random from GL+1. Note that the probability that these L+ 1 elements do not
generate the entire group GL+1 is

1−
L∏
i=1

(1− 1/qL+1−i) ≈ 1

q
.

We can safely ignore this probability.
Suppose we have an algorithm that decides if L elements from GL+1 have

been sampled uniformly at random from the entire group, or from the subgroup
generated by (g0, . . . , gL).

A standard hybrid argument shows that such an algorithm can be converted
into one that decides if a single element in GL+1 has been sampled uniformly
at random from the entire group, or from the subgroup. This means that, up
to a reduction of advantage by a factor 1/L, we are free to assume L sampled
elements.

This is important, since if we have L+1 elements chosen uniformly at random
from GL+1, we can (except with probability 1/q, which we can safely ignore)
span the entire group with a linear combination of our L+ 1 elements.

We get the following alternative variation of the Decision Diffie-Hellman
problem.

n-L-DDH. Given (g0, . . . , gL) ∈ GL+1 (where at least g1, . . . , gL are sampled
at random), and up to n tuples (xi,0, . . . , xi,L) ∈ GL+1, decide if these n tuples
were sampled uniformly from the set {(gs0, . . . , gsL) | 0 ≤ s < q} or uniformly
from GL+1.

If DDH is (T, εDDH)-hard, then this alternative problem is (T, εDDHL)-hard.

Remark. We shall assume that n is larger than L, in which case this bound
is better than the bound (T, εDDHn)-hard that we get from standard hybrid
arguments.

If we replace the randomly chosen g1, . . . , gL by `1, . . . , `L, we get a many-
challenges version of the Subgroup Generated by Small Primes problem, and
if the SGSP problem is (T, εSGSP )-hard, then the many-challenges problem is
(T, εSGSPL)-hard.

3 Non-interactive Zero Knowledge Proofs

In our analysis, we need to force the adversary to prove that he knows the con-
tent of a ciphertext and that certain exponentiations have been done correctly.
For this, we use non-interactive zero knowledge proofs. The instantiations of
these proofs are fairly standard. We include certain proofs taken from [1] for
completeness sake.
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On (prove, aux , g, x, t) from honest U :

1. Verify that x = gt.
2. πpok ← Ppok (aux ; g;x; t).
3. Send (proof, πpok) to U .

On (verify, aux , g, x, πpok) from honest U :

1. If Vpok (aux ; g;x;πpok) = 1, send (verified) to U .
2. Otherwise, send (reject) to U .

Figure 2: Protocol for proof of knowledge of one discrete logarithm. Note that
verifying the correctness of the given discrete logarithms in the proof generation
step is superfluous in the complete protocol.

3.1 Proof of knowledge

Once we have produced a group element by exponentiation, we will need to be
able to prove that we know the corresponding discrete logarithm, that is, we
will need a proof of knowledge. Furthermore, this proof must be tied to certain
auxillary information.

The public input is some auxillary information aux , one generator g for
the group G and one group element x. The prover’s private input is t such
that x = gt. The prover’s algorithm generates a proof πpok, and the verifier’s
algorithm takes the proof and the public input and either accepts or rejects.

We denote the proof generation and verification algorithms by

πpok ← Ppok (aux ; g;x; t), and

0 or 1← Vpok (aux ; g;x;πpok).

The corresponding protocol is given in Figure 2. As usual, we require complete-
ness, in that any proof created by Ppok must be accepted by Vpok .

Instantiation We sketch one example of such a proof of knowledge based
on batch verification. The description takes the form of a three-move protocol
between a prover and a verifier, and then applies the Fiat-Shamir heuristic to
get a suitable non-interactive system.

The prover chooses u at random, computes α = gu and sends u to the
verifier.

The verifier chooses a random challenge β and sends it to the prover.
The prover computes

ν ← r − tβ mod q.

and sends ν to the verifier.
The verifier accepts if and only if

α
?
= gνxβ .
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The Fiat-Shamir heuristic with a hash function H : {0, 1}∗ ×G3 → Z eval-
uated as

β ← H(aux , g, x, α)

gives us a non-interactive zero knowledge proof πpok = (β, ν), verified by check-
ing that

β
?
= H(aux , g, x, gνxβ).

The cost of generating a proof is one full exponentiation. The cost of veri-
fying a proof is one full exponentiation and one short exponentiation.

Security Analysis It is clear that this protocol is special honest verifier zero
knowledge, since for any challenge β, we can choose a random ν and get a
uniformly random α from the verification equation. This provides us with a
simulated proof with the same distribution as the real proof. We denote this
sampling by

(α, ν)← Simpok (aux , g, x, β).

Under the Fiat-Shamir heuristic, special honest verifier zero knowledge gives
us non-interactive zero knowledge. To generate a proof, we first choose a random
challenge β, use Simpok and then reprogram the random oracle to return the
random challenge when queried with α.

The proof that the interactive protocol is a proof of knowledge is done by
rewinding. Once the adversary has produced two correct responses for two
challenges to the same commitment, an easy computation recovers the discrete
logarithm.

Rewinding is more difficult after we apply the Fiat-Shamir heuristic, and no
sound argument is known for why the non-interactive version really is a proof
of knowledge.

However, in the generic group model (see Appendix A), it is possible to
prove that the non-interactive Schnorr proofs are proofs of knowledge. In the
real world constructing a valid proof without knowing the requisite discrete
logarithms definitely seems to be hard. It therefore seems reasonable to assume
that anyone who can reliably create valid proofs can also produce the requisite
discrete logarithms, even if we cannot explicitly construct an extractor.

We claim that the ideal functionality described in Figure 3 is a reasonable
interpretation of the security afforded by the Schnorr proofs. Note first that
the functionality never generates a proper proof, but instead uses Simpok and
informs the ideal adversary about the generated proof (allowing a simulator to
properly simulate the random oracle). This means that proofs are zero knowl-
edge. Second, whenever an honest player attempts to verify a proof that wasn’t
generated by the functionality, the functionality informs the ideal adversary
and accepts only if the ideal adversary responds with the requisite discrete log-
arithms. This means that proofs are proofs of knowledge.

We want to phrase this claim in the usual language of universal composabil-
ity, but this is surprisingly tricky. In the traditional formulation, an environment
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On (prove, aux , g, x, t) from honest U :

1. Verify that x = gt.
2. Choose random challenge β, and compute

(α, ν)← Simpok (aux , g, x, β).

3. Let πpok = (β, ν). Store (aux , g, x, πpok), send (proof, πpok) to U and hand
over (proved, πpok, aux , g, x, β) to A.

On (verify, aux , g, x, πpok) from honest U :

1. If (aux , g, x, πpok) is stored, send (verified) to U .
2. Otherwise, hand over (verify, aux , g, x, πpok) to A, and wait for (verify, t) or

(reject).
3. In the former case, verify that x = gt, store (aux , g, x, πpok) and send

(verified) to U .
4. In the latter case, send (reject) to U .

Figure 3: Ideal functionality for proof of knowledge of discrete logarithms, pa-
rameterized on the group G and the simulator Simpok .

and an adversary interacts with the protocol. The natural idea would be to re-
place the adversary by some simulator. However, the boundary between the
environment and adversary is not well-defined. Nothing prevents the environ-
ment from forging the proof and then passing it to the adversary. Indeed the
adversary may even be a so-called dummy adversary.

We use the alternative UC formulation given in [14], where there is no explicit
adversary. Replacing the environment does not actually make sense, but adding
some bookkeeping that extracts the discrete logarithm from the environment
could make sense.

Many settings (and in particular, our setting) where an adversary tries to
forge a Schnorr proof will correspond to a two-part environment, where one part
of the environment actually knows the discrete logarithm, while another part is
trying to forge a proof of knowledge. In this situation, it is of course trivial to
add bookkeeping code to the environment, but such a modified environment is
clearly useless.

We use the vague phrase “morally equivalent” environment to mean an en-
vironment with additional bookkeeping code that does not resort to such trivial
solutions. The bookkeeping code must recover the discrete logarithm by looking
just at the part of the environment trying to forge the proof, not the part of the
environment that should know the discrete logarithm.

We make the following, rather vague assumption about the security of the
protocol given in Figure 2. We have no proof that the assumption is sound.

Schnorr proof assumption. Any environment interacting with the protocol
described Figure 2 (instantiated as above with a random oracle), can be replaced
by a “morally equivalent” environment interacting with the functionality in Fig-
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ure 3 and some ideal simulator A (that among other things simulates the random
oracle and extracts the appropriate discrete logarithms from the modified envi-
ronment).

If the original interaction requires time at most T , then the new interaction
requires time at most χT for some small χ.

We shall also assume that any environment’s advantage εpok in distinguish-
ing the two cases is small.

Remark. The time requirements are motivated both in the generic model proof
(Appendix A) and the fact that no attacks against Schnorr signatures better
than computing discrete logarithms are known.

Remark. Fischlin [11] gives similar non-interactive proofs with online extractors.
Based on these, it should be easy to realize the functionality, which means that
the analysis in Section 4.4 works unchanged. However, Fischlin’s proofs are
significantly more costly than Schnorr proofs.

Another, less expensive, alternative is the techniques Gennaro and Shoup
[28] used to build public key encryption schemes with distributed decryption.
While these will probably be more costly than Schnorr proofs, they will definitely
be cheaper than Fischlin’s proofs. However, adopting these techniques will
probably require rewriting the analysis in Section 4.4.

3.2 Proof of correct computation I

We need to prove that we have raised a number of group elements to the same
power.

The public input is some auxillary information aux , one generator g, a com-
mitment γ and 2k group elements x1, x2, . . . , xk, x̄1, x̄2, . . . , x̄k. The prover’s
private input is an integer s such that γ = gs and x̄i = xsi , i = 1, 2, . . . , k. The
prover’s algorithm generates a proof πeqdl, and the verifier’s algorithm takes the
proof and the public input and either accepts or rejects.

We denote the proof generation and verification algorithms by

πeqdl ← Peqdl(aux , g, s;x1, x2, . . . , xk; x̄1, x̄2, . . . , x̄k), and

0 or 1← Veqdl(aux , g, γ;x1, x2, . . . , xk; x̄1, x̄2, . . . , x̄k;πeqdl).

As usual, we require completeness, in that any proof created by Peqdl must be
accepted by Veqdl .

Instantiation We sketch one example of such a proof based on batch verifi-
cation [1]. The description takes the form of a four-move protocol between a
prover and a verifier, and then applies the Fiat-Shamir heuristic to get a suitable
non-interactive system.

The verifier chooses random β1, . . . , βk and sends them to the prover.
The prover computes x =

∏k
i=1 x

βi

i , chooses u at random, computes α1 = gu,
α2 = xu and sends (α1, α2) to the verifier.

The verifier chooses random β and sends it to the prover.
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The prover computes ν ← u− sβ mod q, and sends ν to the verifier.
The verifier computes

x =

k∏
i=1

xβi

i and x̄ =

k∏
i=1

x̄βi

i ,

and accepts if and only if

α1
?
= gνγβ and α2

?
= xν x̄β .

The Fiat-Shamir heuristic with hash functions H1 : {0, 1}∗ × G2k+2 → Zk
and H2 : {0, 1}∗ ×G2k+4 → Zk evaluated as

(β1, β2, . . . , βk)← H1(aux , g, γ, x1, x2, . . . , xk, x̄1, x̄2, . . . , x̄k), and

β ← H2(aux , g, γ, x1, x2, . . . , xk, x̄1, x̄2, . . . , x̄k, α1, α2),

gives us a non-interactive proof. The proof is πeqdl = (β, ν), and it is accepted
if and only if

β
?
= H2(aux , g, γ, x1, x2, . . . , xk, x̄1, x̄2, . . . , x̄k, g

νγβ , xν x̄β).

The cost of generating a proof is two full exponentiations and k short expo-
nentiations. The cost of verifying a proof is two full exponentiations and 2k+ 2
short exponentiations.

Security Analysis We shall require two properties. First, the proofs must
be zero knowledge, in the sense that there must exist a simulator that generates
appropriate proofs without knowledge of the secret s. Furthermore, it must be
hard to generate valid proofs when the discrete logarithms are not equal. The
latter requirement can be formalized in a game where the adversary presents
the public input, the claimed discrete logarithm and a proof. The adversary
wins if the discrete logarithm is incorrect for at least one value.

It is clear that the protocol is special honest verifier zero knowledge, since
for any challenge β1, . . . , βk and β, we can choose a random ν and get properly
distributed α1, α2 using

α1 = gνγβ and α2 = xν x̄β

with x and x̄ as above. This provides us with a simulated proof with the same
distribution as the real proof. We denote this sampling by

ν ← Simeqdl(aux , g, γ, x1, . . . , xk, x̄1, . . . , x̄k, β1, . . . , βk, β).

The Fiat-Shamir heuristic gives us a non-interactive zero knowledge proof.
To generate a proof, we first choose a random β, query the H1 hash oracle to
get β1, . . . , βk, use Simeqdl , and then reprogram the H2 oracle appropriately.

These non-interactive proofs are also sound in the random oracle model, in
the sense that unless the discrete logarithms are all equal, a very large number
of hash queries is required to produce a proof that incorrectly verifies.
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Proposition 1. For any algorithm that makes at most η < 2τ/2 − 1 queries
to the random oracles H1 and H2 and outputs a proof πeqdl = (β, ν), a bit
string aux , an integer s, and group elements g, γ, x1, . . . , xk, x̄1, . . . , x̄k such
that xsi 6= x̄i for some i, then

Veqdl(aux , g, γ;x1, . . . , xk; x̄1, . . . , x̄k;πeqdl) = 1

holds with probability at most (η + 1)2−τ+1.

We need three minor results. The first shows that when sampling each
coordinate from any sufficiently large subset of a finite field, the resulting vector
is unlikely to be confined to any proper subspace. The second shows that random
linear combinations are unlikely to satisfy a discrete logarithm relation unless
the elements combined originally satisfy the relation. The third proves that the
usual equality of discrete logarithms proof is sound in our sense.

Lemma 1. Let V be any proper subspace of Fkq , and let S be a subset of Fq with
2τ elements. Sample β1, . . . , βk independently and uniformly at random from
S. Then the probability that the vector (β1, β2, . . . , βk) lies inside V is at most
2−τ .

Proof. Let pr i be the projection onto the first i coordinates, i = 0, 1, 2, . . . , k.
For some i, the image of V under both pr i−1 and pr i has dimension i − 1.
This means any choice of β1, . . . , βi−1 corresponds to a vector in V , but the ith
coordinate in any such vector is fully determined by the first i− 1 coordinates.

Since the values β1, . . . , βi are sampled independently, the probability that
βi equals the value determined by the first i− 1 values is at most 2−τ .

Lemma 2. Let G be a group of prime order q, and let g be a generator. Let
S be a subset of {0, 1, . . . , q − 1} with 2τ elements. Suppose s,∆1, . . . ,∆k are
integers such that s 6≡ 0 (mod q) and ∆j = 0 for at least one j. Finally, let
x1, . . . , xk, x̄1, . . . , x̄k group elements such that x̄i = xsi g

∆i , i = 1, . . . , k.
If ∆i 6≡ 0 (mod q) for any i, and β1, . . . , βk are integers chosen indepen-

dently and uniformly at random from a set with 2τ elements, then

k∏
i=1

x̄βi

i =

(
k∏
i=0

xβi

i

)s
(1)

holds with probability at most 2−τ .

Proof. The equation
∑k
i=1 ∆iβi ≡ 0 (mod q) defines a proper subspace of Fkq .

If (1) holds, then
∏k
i=1 g

∆iβi = 1, or
∑k
i=1 ∆iβi ≡ 0 (mod q). Therefore

(1) holds only if (β1, . . . , βk) considered as an Fq-vector falls inside a proper
subspace of Fkq . The claim then follows by Lemma 1.

Lemma 3. Let G be a group of prime order q, and let g be a generator. Suppose
s and ∆ are integers and γ, x, x̄, α1, α2 are group elements such that γ = gs and
x̄ = xs+∆.

14



If ∆ 6= 0 and β is an integer chosen uniformly at random from a set with 2τ

elements, the probability that there exists an integer ν such that

α1γ
β = gν and α2x̄

β = xν

is at most 2−τ .

Proof. Let α1 = gu and α2 = xu+δ. The requirements on ν then translate into

u+ βs ≡ ν (mod q) and u+ δ + βs+ β∆ ≡ ν (mod q).

We see that no integer can satisfy these equations unless

δ + β∆ ≡ 0 (mod q).

Since both δ and ∆ are fixed before β is chosen, the probability that this equation
holds is at most 2−τ .

Proof of Proposition 1. If the algorithm has not already queried both H1 and
H2 at the relevant points, the proof verifies correctly with probability 2−τ .

By Lemma 2, every time the algorithm queries H1, the probablity that the
resulting hash value will allow an attacker to create a forgery is at most 2−τ .

By Lemma 3, every time the algorithm queries H2 for some input for which
he cannot already create a forged proof, the probability that the result hash
value will allow an attacker to create a forgery is at most 2−τ .

We now have at most η + 1 events, each with probability at most 2−τ , and
η + 1 < 2τ/2. We can bound the probability that at least one of them happen.
Let δ = 2−τ . Then

1− (1− δ)η+1 = 1−
η+1∑
i=0

(
η + 1

i

)
(−1)iδi =

η+1∑
i=1

(
η + 1

i

)
(−1)iδi

≤ (η + 1)δ +

η+1∑
i=2

(
η + 1

i

)
δi ≤ (η + 1)δ +

η+1∑
i=2

(η + 1)iδi

= (η + 1)δ +

η+1∑
i=2

((η + 1)δ)i ≤ (η + 1)δ +

η+1∑
i=2

(
√
δ)i

≤ (η + 1)δ +

η+1∑
i=2

δ ≤ (η + 1)δ + (η − 1)δ,

which completes the proof.

Note that a better proof and a sharper result is probably possible, but the
result is sufficient for our needs.

15



3.3 Proof of correct computation II

We shall also need to prove that a single group element has been raised to
correct, distinct powers.

The public input is some auxillary information aux , one generator g, a set
of commitments y1, . . . , yk, the base x̄ and the and the powers ŵ1, . . . , ŵk. The
prover’s private input are integers a1, . . . , ak. The prover’s algorithm generates
a proof π′eqdl, and the verifier’s algorithm takes the proof and the public input
and either accepts or rejects.

We denote the proof generation and verification algorithms by

π′eqdl ← P ′eqdl(aux , g, x̄; a1, . . . , ak; ŵ1, . . . , ŵk) and

0 or 1← V ′eqdl(aux , g, x̄; y1, . . . , yk; ŵ1, . . . , ŵk;π′eqdl).

As usual, we require completeness, in that any proof created by P ′eqdl must be
accepted by V ′eqdl .

Instantiation We sketch one example of such a proof based on batch verifi-
cation [1]. The description takes the form of a four-move protocol between a
prover and a verifier, and then applies the Fiat-Shamir heuristic to get a suitable
non-interactive system.

The verifier chooses random β1, . . . , βk and sends them to the prover.
The prover computes y =

∏k
i=1 y

βi

i , chooses u at random, computes α1 = gu,
α2 = yu, and sends (α1, α2) to the verifier.

The verifier chooses random β and sends it to the prover.
The prover computes ν ← u−β

∑k
i=1 βiai mod q and sends ν to the verifier.

The verifier computes

y =

k∏
i=1

yβi

i and ŵ =

k∏
i=1

ŵβi

i ,

and accepts the proof if and only if

α1
?
= gνyβ and α2

?
= x̄νŵβ .

The Fiat-Shamir heuristic with hash functions H1 : {0, 1}∗ × G2k+2 → Zk
and H2 : {0, 1}∗ ×G2k+4 → Z evaluated as

(β1, . . . , βk)← H1(aux , g, x̄, y1, . . . , yk, ŵ1, . . . , ŵk), and

β ← H2(aux , g, x̄, y1, . . . , yk, ŵ1, . . . , ŵk, α1, α2)

gives us a non-interactive proof. The proof is π′eqdl = (β, ν), and it is accepted
if and only if

β
?
= H2(aux , g, x̄, y1, . . . , yk, ŵ1, . . . , ŵk, g

νyβ , x̄νŵβ).

The cost of generating a proof is two full exponentiations and k short expo-
nentiations. The cost of verifying a proof is two full exponentiations and 2k+ 2
short exponentiations.
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Security Analysis The security properties we require are as for the previous
proof.

It is clear that the protocol is special honest verifier zero knowledge, since
for any challenge β1, . . . , βk and β, we can choose a random ν and get properly
distributed α1, α2 using

α1 = gνyβ and α2 = x̄νŵβ

with y and ŵ as above. This provides us with a simulated proof with the same
distribution as the real proof. We denote this sampling by

ν ← Sim ′eqdl(aux , g, x̄, y1, . . . , yk, ŵ1, . . . , ŵk, β1, . . . , βk, β).

The Fiat-Shamir heuristic gives us a non-interactive zero knowledge proof.
To generate a proof, we first choose a random β, query the H1 hash oracle to
get β1, . . . , βk, use Sim ′eqdl , and then reprogram the H2 oracle appropriately.

The soundness result is essentially the same as the one stated in Proposi-
tion 1.

Proposition 2. For any algorithm that makes at most η < 2τ/2 − 1 queries to
the random oracles H1 and H2 and outputs a proof πeqdl = (β, ν), a bit string
aux , integer a1, . . . , ak, and group elements g, y1, . . . , yk, x̄, ŵ1, . . . , ŵk such that
yi = gai , i = 1, 2, . . . , k, but x̄aii 6= ŵi for some i, then

V ′eqdl(aux , g, γ;x1, . . . , xk; x̄1, . . . , x̄k;πeqdl) = 1

holds with probability at most (η + 1)2−τ+1.

The proof of the above proposition is identical to the proof of Proposition 1,
except that the reference to Lemma 2 is replaced by a reference to the following
result.

Lemma 4. Let G be a group of prime order q, and let g be a generator. Suppose
a1, . . . , ak,∆1, . . . ,∆k are integers and x̄, y1, . . . , yk, ŵ1, . . . , ŵk group elements
such that yi = gai and ŵi = x̄aig∆i , i = 1, . . . , k.

If ∆i 6≡ 0 (mod q) for any i, and β1, . . . , βk are integers chosen indepen-
dently and uniformly at random from a set with 2τ elements, then the probability
that an integer a exists such that

k∏
i=0

yβi

i = ga and

k∏
i=1

ŵβi

i = x̄a (2)

holds with probability at most 2−τ .

Proof. Suppose the left half of (2) holds. Then

k∏
i=1

g∆iβi = 1

or
∑k
i=1 ∆iβi ≡ 0 (mod q). Therefore (2) only holds if (β1, . . . , βk) considered

as an Fq-vector falls inside a previously defined, proper subspace of Fkq . The
claim then follows by Lemma 1.
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4 The Cryptosystem

In order to simplify the analysis of the Norwegian internet voting protocol, we
isolate the most essential cryptographic operations into a cryptosystem that can
be considered in isolation. We can then later use the security properties of the
cryptosystem to reason about the voting protocol’s security.

We briefly summarize the relevant cryptographic operations.
Before an election can be run, keys must be generated and the per-voter

option–return code correspondence must be set up.
During ballot submission, the voter V ’s computer P encrypts the voters’

ballot into a ciphertext that is tied to the voter’s identity. The ballot box
B transforms this ciphertext into a new ciphertext that contains pre-codes, a
half-way step between options and return codes. The return code generator R
decrypts this ciphertext in order to get the pre-codes, which it will turn into
human-readable return codes.

During counting, the ballot box extracts “naked” ciphertexts that cannot be
tied to individual voters. The decryptor D decrypts the naked ciphertexts and
convinces the auditor A that the decryptions are correct.

4.1 Preliminaries

Let I be a set of identities, M a set of messages and O ⊆ M a set of options,
one of which is the null option denoted by 1O. A ballot is a k-tuple of options.
We denote options by v and a ballot (v1, v2, . . . , vk) by ~v.

Let C be a set of pre-codes, one of which is the null pre-code denoted by
1C . We shall have a set S of pre-code maps from M to C such that for every
s ∈ S, s(1O) = 1C . We also need a set of commitments to pre-code maps, one
commitment for each map.

We extend pre-code maps to k-tuples of messages ~m = (m1,m2, . . . ,mk) in
the obvious way: s(~m) = (s(m1), . . . , s(mk)) ∈ Ck.

We also require a total order ≺ on the set of options, and a canonical ordering
map on ballots ω : Ok → Ok such that for any ballot ~v, if ω(~v) = (v1, v2, . . . , vk),
then for any 1 ≤ i ≤ j ≤ k, vi ≺ vj . This map is extended in some way to a
map ω : Mk →Mk.

For elections where option order is relevant, we let ω be the identity map.

4.2 Definition

Our cryptosystem consists of six algorithms and one protocol:

• A key generation algorithm K that outputs a public key ek , a decryption
key dk1, a transformation key dk2 and a code decryption key dk3.

• A pre-code map generation algorithm S that on input of a public key ek
and an identity V outputs a pre-code map s and a commitment γ to that
map.
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• An encryption algorithm E that on input of an encryption key ek , an
identity V ∈ I and a message sequence ~m ∈Mk outputs a ciphertext c.

• A deterministic extraction algorithm X that on input of an identity V and
a ciphertext c outputs a naked ciphertext c̃ or the special symbol ⊥.

• A transformation algorithm T that on input of a transformation key dk2,
an identity V ∈ I, a pre-code map s and a ciphertext c outputs a pre-code
ciphertext č or the special symbol ⊥.

• A deterministic pre-code decryption algorithm DR that on input of a pre-
code decryption key dk3, an identity V ∈ I, a pre-code map commitment
γ, a ciphertext c and a pre-code ciphertext č outputs a sequence of pre-
codes ~ρ ∈ Ck.

• A decryption protocol ΠDP between a prover and a verifier. The common
input is a public key ek and a sequence of naked ciphertexts c̃1, . . . , c̃n.
The prover’s private input is a decryption key dk1. The number of protocol
rounds is independent of both public and private input. The prover and
the verifier output either ⊥ or a sequence of messages ~m1, . . . , ~mn.

In addition, we require one more algorithm that is only used to define security
requirements.

• A decryption algorithm D that on input of a decryption key dk1, and
identity V ∈ I and a ciphertext outputs a message sequence ~m ∈ Mk or
the special symbol ⊥.

Such a cryptosystem cannot be useful unless it guarantees correct decryption
of ciphertexts and transformed ciphertexts. We capture this with the following
completeness requirements:

C1. For any message and any identity, encryption followed by decryption should
return the original message, unchanged.

For any keys ek , dk1 output by K, any message ~m and any identity V

Pr[D(ek , dk1, E(ek , V, ~m)) = ~m] = 1.

C2. For any sequence of messages, encrypting, extracting and then running
the decryption protocol should faithfully reproduce the messages, up to the
action of the order map.

For any message and identity sequences ~m1, ~m2, . . . , ~mn and V1, V2, . . . , Vn,
if the following actions happen:

(ek , dk1, dk2, dk3) ← K; for i from 1 to n: ci ← E(ek , Vi, ~mi),
c̃i ← X (Vi, ci); the protocol ΠDP is run with ek and (c̃1, . . . , c̃n)
as public input and dk1 as the prover’s private input.
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Then the prover and verifier in the protocol both output the same se-
quence of messages, and that sequence is a permutation of the sequence
ω(~m1), . . . , ω(~mn).

C3. Transformation of a ciphertext should apply the given pre-code map to the
content of the ciphertext.

For any ~m ∈Mk and any V ∈ I, if the following actions happen:

(ek , dk1, dk2, dk3) ← K; (s, γ) ← S(ek , V ); c ← E(ek , V, ~m);
č← T (dk2, V, s, c); ~ρ← DR(dk3, V, γ, c, č).

Then č 6= ⊥ and ~ρ = s(~m).

4.3 Security Requirements

We define a set of fairly natural notions of security for the cryptosystem, relating
to privacy and integrity.

D-Privacy Naked ciphertexts should not be correlatable to identities.

For any V ∈ I and ~m ∈Mk, if the following actions happen:

(ek , dk1, dk2, dk3)← K; c← E(ek , V, ~m); c̃← X (V, c).

Then the distribution of c̃ should be independent of V .

B-Privacy An adversary that knows the transformation key should not be able
to say anything about the content of any ciphertexts he sees. We play the
following game between a simulator and an adversary, and the probability
that the adversary wins should be close to 1/2.

A simulator samples b← {0, 1} and computes (ek , dk1, dk2, dk3)← K.

The adversary gets ek and dk2, and sends a sequence of challenge mes-
sages ~m0

1, ~m
0
2, . . . , ~m

0
n to the simulator, one by one, along with identities

V1, V2, . . . , Vn.

When the simulator gets (~m0
i , Vi), 1 ≤ i ≤ n, it samples a random message

~m1
i , computes ci ← E(ek , Vi, ~m

b
i ) and sends ci to the adversary.

At any time, the adversary may submit tuples (V, c, č, s, γ) to the simu-
lator. First, the simulator verifies that the s matches γ, then computes
~m ← D(dk1, V, c) and ~ρ ← DR(dk3, V, γ, c, č). If c 6= ci for any i, if
~m 6= ⊥ 6= ~ρ, (~m, ~ρ) is returned to the adversary. If c = ci for some i, then
~ρ is returned to the adversary. Otherwise, ⊥ is returned to the adversary.

Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

R-Privacy An adversary that controls the pre-code decryption key and sees
many transformed encryptions of valid ballots from Ok should not be able
to say anything non-trivial about the content of those encryptions. We
play the following game between a simulator and an adversary, and the
probability that the adversary wins should be close to 1/2.
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A simulator samples b← {0, 1}, a random permutation π1 on O and sets
π0 to be the identity map on O. It computes (ek , dk1, dk2, dk3) ← K.
The adversary gets ek and dk3, and chooses a challenge identity V . The
simulator computes (s, γ)← S(ek , V ) and sends γ to the adversary.

The adversary then submits a sequence of ballots ~v1, ~v2, . . . , ~vn from Ok,
one by one. The simulator computes ci ← E(ek , V, πb(~vi)), či ← T (dk2, V, s, ci)
and sends (ci, či) to the adversary.

Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

A-Privacy An adversary that runs the verifier part of the decryption protocol
should not be able to correlate ciphertexts with decryptions. We play the
following game between a simulator and an adversary, and the probability
that the adversary wins should be close to 1/2.

A simulator samples b ← {0, 1} and computes (ek , dk1, dk2, dk3) ← K.
The adversary gets ek , then chooses two sequences of identities V1, . . . , Vn′ ,

V ′1 , . . . , V
′
n′′ and corresponding messages ~m1, . . . , ~mn′ , ~m

(0)
1 , . . . , ~m

(0)
n′′ , for

some n′, n′′ < n.

The simulator sets π0 to be the identity map on {1, 2, . . . , n′}, and samples
a random permutation π1 on {1, 2, . . . , n′} and a sequence of random mes-

sages ~m
(1)
1 , . . . , ~m

(1)
n′′ . Then the simulator computes c′i ← E(ek , V ′i , ~m

(b)
i )

for i = 1, 2, . . . , n′′ and ci ← E(ek , Vi, ~mπb(i)), c̃i ← X (Vi, ci) for i =
1, 2, . . . , n′, sends c′1, . . . , c

′
n′′ , c1, . . . , cn′ to the adversary and runs the

prover part of the protocol ΠDP with appropriate input against the ad-
versary’s verifier.

Finally, the adversary outputs b′ ∈ {0, 1} and wins if b = b′.

B-Integrity An adversary that knows all the key material, and chooses the per-
voter key material, should not be able to create an identity, a ciphertext and
a transformed ciphertext such that the transformed ciphertext decryption
is inconsistent with the decryption of the ciphertext. We play the following
game between a simulator and an adversary, and the probability that the
adversary wins should be close to 0.

A simulator computes (ek , dk1, dk2, dk3)← K. The adversary gets (ek , dk1, dk2, dk3),
then produces a tuple (V, s, γ, c, č). The simulator computes ~m← D(dk1, V, c)
and ~ρ← DR(dk3, V, γ, c, č).

The adversary wins if ~ρ 6= ⊥ and either ~m = ⊥, or s(~m) 6= ~ρ.

D-Integrity An adversary that runs the prover’s part of the protocol ΠDP

should not be able to tamper with the decryption. We play the follow-
ing game between a simulator and an adversary, and the probability that
the adversary wins should be close to 0.

A simulator computes (ek , dk1, dk2, dk3) ← K. The adversary gets ek
and dk1, then chooses a sequence of identities V1, . . . , Vn and messages
~m1, . . . , ~mn.
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The simulator computes ci ← E(ek , Vi, ~mi), c̃i ← X (Vi, ci), i = 1, 2, . . . , n,
sends c̃1, . . . , c̃L to the adversary and runs the verifier part of the protocol
ΠDP with appropriate input against the adversary’s prover.

The adversary wins if the verifier run ouputs a sequence of messages that
is not a permutation of ω(~m1), . . . , ω(~mn).

Remark. The cryptosystem is a convenient abstraction of one part of the voting
protocol. Section 5 shows that security of the voting protocol follows from the
above security properties and other security measures in the protocol.

A cryptosystem (K,S, E ,X , T ,DR,ΠDP) is (T,N, n, L, k, ε)-secure if it sat-
isfies D-Privacy, and any adversary against the above privacy and integrity
notions using time at most T and seeing at most n ballots (where relevant),
each with k options chosen from among L+ 1 options, has advantage at most ε.

4.4 Instantiation

We shall now describe our instantiation of the above cryptosystem. It will be
based on the group structure described in Section 2.

The set of group elements of G will be both the message space M and the
set of pre-codes C. We interpret O as the set of options, and 1 as the null option
and null code.

The set of pre-code maps S is the set of automorphisms on G, which corre-
sponds to the set of exponentiation maps {x 7→ xs | s ∈ {1, 2, . . . , q − 1}}. We
commit to a pre-code map s by computing s(g) ∈ G.

When option order is irrelevant, we define the map ω as

ω(~m) = φ(m1m2 · · ·mk).

Otherwise, ω is simply the identity map.

• The key generation algorithm K samples a1,i and a2,i uniformly at random
from {0, 1, . . . , q − 1} for each i from 1 to k, then computes a3,i = a1,i +
a2,i mod q, y1,i = ga1,i , y2,i = ga2,i and y3,i = ga3,i . The public key is

ek = (y1,1, . . . , y1,k, y2,1, . . . , y2,k, y3,1, . . . , y3,k).

The decryption key is dk1 = a1 =
∑k
i=1 a1,i mod q, the transforma-

tion key is dk2 = (a2,1, . . . , a2,k) and the code decryption key is dk3 =
(a3,1, . . . , a3,k).

• The pre-code map generation algorithm S(ek , V ) samples s uniformly from
the set {1, 2, . . . , q − 1}. It computes γ = gs and outputs the map deter-
mined by s and the commitment γ.

• The encryption algorithm E(ek , V,~v) samples a random number t uni-
formly at random from {0, 1, 2, . . . , q − 1}, computes x = gt and wi =
yt1,ivi for i = 1, 2, . . . , k, and generates a proof of knowledge πpok ←
Ppok (V ||x||w1|| . . . ||wk; g;x; t). The ciphertext is c = (x,w1, w2, . . . , wk, πpok).
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• The extraction algorithm X (V, c) where c = (x1, w1, . . . , wk, πpok), first
verifies the proof πpok, computes

w̃ =

{
w1w2 · · ·wk if order is irrelevant,∏k
i=1 w

i
i otherwise,

and outputs the naked ciphertext c̃ = (x, w̃).

• The transformation algorithm T (dk2, V, s, c), c = (x,w1, . . . , wk, πpok),
verifies the proof πpok, computes x̄ = xs, w̄i = wsi and ŵi = x̄a2,i for
i = 1, 2, . . . , k, generates proofs

π̄ ← Peqdl(c, g, s;x,w1, . . . , wk; x̄, w̄1, . . . , w̄k),

π̂ ← P ′eqdl(c, g, x̄; a2,1, . . . , a2,k; ŵ1, . . . , ŵk)

and outputs the pre-code ciphertext č = (x̄, w̄1, . . . , w̄k, ŵ1, . . . , ŵk, π̄, π̂).

• The pre-code decryption algorithm DR(dk3, V, γ, c, č), with c = (x,w1, . . . , wk, πpok)
and č = (x̄, w̄1, . . . , w̄k, ŵ1, . . . , ŵk, π̄, π̂), verifies πpok, π̄ and π̂, com-
putes ρi = w̄iŵix̄

−a3,i for i = 1, 2, . . . , k and outputs the precodes ~ρ =
(ρ1, . . . , ρk).

• Since this paper’s focus is on the ballot submission protocol, we do not
specify a decryption protocol.

However, we note that there is a straight-forward one-move protocol. The
prover first creates a shuffle of the naked ciphertexts along with a proof
of correct shuffle [15, 23], then decrypts the shuffled naked ciphertexts
and creates a proof of correct decryption (possibly using the proof in
Section 3.2). It then applies φ to every message and outputs the resulting
message list. The verifier role verifies the two proofs. If they verify, it
outputs the message list, otherwise it outputs ⊥.

The decryption algorithm first verifies the proof of knowledge πpok, then
computes mi = wix

−a1,i , i = 1, 2, . . . , k. Note that, for this to work, the
decryption key must be (a1,1, . . . , a1,k), not

∑
i a1,i mod q.

The decryption algorithm clearly satisfies completeness requirement C1.
The completeness requirement C2 is satisfied, because the zero knowledge

proofs are complete, ElGamal encryptions are homomorphic and the map φ
recovers a proper representation of the ballot from the product.

The completeness requirement C3 is again satisfied because the zero knowl-
edge proofs are complete and ElGamal is homomorphic. For an encryption
(x,wi) = (gt, yt1,im) and a pre-code map s, we get that x̄ = gts and

ρi = w̄iŵix̄
−a3,i = wsi x

sa2,ix−sa3,i = gta1,ismsgtsa2,ig−tsa3,i = ms

because a1,i + a2,i ≡ a3,i (mod q).
We summarize the security claims about the cryptosystem in the following

statement.
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Theorem 1. Suppose there are L + 1 options, each ballot contains at most k
options, there are at most n ballots, and that proof challenges are τ bits long.
Suppose further that the Schnorr proof assumption holds, that the SGSP problem
(and therefore Decision Diffie-Hellman) is (χT, ε)-hard, and that χT < 2τ/2−1.
Then the cryptosystem is (T,N, n, L, k, ε′)-secure, where

ε′ ≤ (k2 + L)ε+ εpok + 2−τ/2+2 +
3nT

q
+
N

qL
.

4.4.1 Security: D-Privacy

Since the voter’s identity is only used to create the proof of knowledge πpok, and
this part is removed before creating the naked ciphertext, the naked ciphertext
is independent of the identity.

4.4.2 Security: B-Integrity

Since the pre-code decryption algorithm verifies the πpok part of c, it cannot be
the case that c does not decrypt while č decrypts.

We may assume that the number of random oracle queries an algorithm
makes is bounded by the time T the algorithm executes. Therefore, if T is less
than 2τ/2 − 1, Propositions 1 and 2 tells us that if π̄ and π̂ are both accepted,
then ρi = ms

i except with probability at most 2−τ/2+2.

4.4.3 Security: B-Privacy

We do this proof in the usual manner, and construct a sequence of indistin-
guishable games resulting in a proof of the following result:

Proposition 3. If the Schnorr proof assumption holds, Decision Diffie-Hellman
is (χT, εDDH)-hard and χT < 2τ/2 − 1, then any adversary against B-privacy
using time at most T has advantage at most k2εDDH + εpok + 2−τ/2+2, where k
is the maximum number of options to encrypt.

Game 1 corresponds to the game defining B-privacy, and the event E1 is
used to measure the adversary’s advantage. Our object is to bound the distance
between Pr[E1] and 1/2.

Games 2–5 begin the process by changing the original game such that secret
keys are no longer used. This means that we can change the key generation
process in Game 6 such that the secret keys no longer exist. Also, we change
the encryption process so that it no longer samples a random exponent and
computes powers of the encryption keys, but instead samples random DDH
tuples by computing linear combinations of a basis of DDH tuples.

In the final game, we change our basis of DDH tuples to a basis of random
tuples, which means that we encrypt using random tuples, not DDH tuples. At
this point no information about b leaks to the adversary.

An upper-bound on the adversary’s advantage follows from this sequence of
games, from which the claim follows.
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Game 1 We begin with the usual game between a simulator and an adversary,
requiring time at most T , receiving at most n challenge ciphertext and making
at most Nd queries to the decryption oracle.

If E1 is the event that the adversary correctly guesses the bit b, the adver-
sary’s advantage is

ε = |Pr[E1]− 1/2|.

Game 2 The original game can be considered as an environment interact-
ing with the proof-of-knowledge-generating protocol given in Figure 2, which
by assumption (see Section 3.1) can be replaced with a “morally equivalent”
environment. In this case, “morally equivalent” means that the simulator is
unchanged and that the modified adversary works as before, except that it also
reveals certain discrete logarithms, namely those elements for which the simu-
lator verifies a proof of knowledge.

Furthermore, if the original system required time T , our security assumption
states that the modified system requires time χT and any environment has
distinguishing advantage at most εpok . Specifically, this means that

|Pr[E1]− Pr[E2]| ≤ εpok .

Game 3 In this game, for every honestly generated ciphertext, we remember
the ballot encrypted. It is clear that

Pr[E2] = Pr[E3].

Game 4 In this game, whenever the simulator decrypts a pre-code ciphertext
tied to an adversarially generated ciphertext (x,w1, . . . , wk, πpok) to pre-codes
ρ1, . . . , ρk, it uses the logarithm t of x (revealed by the adversary upon verifica-
tion of πpok) to decrypt the ciphertext as

mi = wiy
−t
1,i ,

and then computes ρ′i = ms
i .

For any pre-code ciphertext that is tied to an honestly generated ciphertext
(x,w1, . . . , wk, πpok), the simulator recalls the encrypted ballot (m1, . . . ,mk)
and computes ρ′i = ms

i .
The simulator returns the values ρ′1, . . . , ρ

′
k instead of ρ1, . . . , ρk.

Unless either π̄ or π̂ are forgeries, this change is unobservable.It follows
by Propositions 1 and 2 that when the time bound χT is less than 2τ/2 − 1,
the probability of forgeriesis bounded by 2−τ/2+2. It follows that this game is
2−τ/2+2-indistinguishable from the previous game. Specifically, this means that

|Pr[E3]− Pr[E4]| ≤ 2−τ/2+2.

Game 5 In this game, we stop computing with the secret keys a1, a3,1, . . . , a3,k.
Since no observable behaviour depended on these computations, this change
cannot be observed and

Pr[E4] = Pr[E5].
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Game 6 During key generation, we sample the elements y1,1, . . . , y1,k at ran-
dom. The keys a2,1, . . . , a2,k are generated as usual, but we never generate the
keys a1,1, . . . , a1,k and a3,1, . . . , a3,k.

After key generation, we sample k tuples (z10, z11, . . . , z1k), . . . , (zk0, zk1, . . . , zkk)
uniformly from the subgroup generated by (g, y1,1, . . . , y1,k).

When we encrypt a message ~v, we choose k+1 random numbers t0, t1, . . . , tk
and compute the ciphertext as

x = gt0
k∏
j=1

z
tj
j0, and wi = yt01,ivi

k∏
j=1

z
tj
ji , i = 1, 2, . . . , k.

It is clear that the changes in key generation and encryption are unobserv-
able. Therefore,

Pr[E5] = Pr[E6].

Game 7 We sample the k tuples (z10, z11, . . . , z1k), . . . , (zk0, zk1, . . . , zkk) uni-
formly from Gk+1 after key generation.

First, we see that the only difference between the two games is the distri-
bution of the zji values. The discussion in Sections 2.3 and 2.5 applies, which
means that it is easy to create a Decision Diffie-Hellman distinguisher from
an environment that can distinguish these games, using standard results. The
following lemma can then be proven.

Lemma 5. Suppose Decision Diffie-Hellman is (χT, εDDH)-hard. Then

|Pr[E7]− Pr[E6]| ≤ k2εDDH .

Analysis It is clear that in Game 7, it is impossible for the adversary to decide
if the requested messages were encrypted or not. In other words,

Pr[E7] = 1/2.

A simple application of the triangle inequality tells us that

ε = |Pr[E1]− 1/2| ≤ εpok + 2−τ/2+2 + k2εDDH ,

which concludes the proof of Proposition 3.

4.4.4 Security: R-Privacy

We shall now prove a bound for the advantage of an adversary against R-privacy.

Proposition 4. If the SGSP problem is (T, εSGSP )-hard and the DDH problem
is (T, εDDH)-hard, then any adversary against R-privacy using at most N voter
identities and time at most T has advantage at most

ε ≤ 3ntotT

q
+ LεSGSP +Nq−L + k2εDDH .
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We do this proof in the usual manner, and construct a sequence of indistin-
guishable games resulting in a proof of the claim. Game 1 corresponds to the
game defining R-privacy, and the event E1 is used to measure the adversary’s
advantage. Our goal is to bound the distance between Pr[E1] and 1/2.

Game 2 replaces real proofs of knowledge and proofs of correct computation
by simulated versions. Game 3–4 isolates the use of the per-identity pre-code
generation map to the start of the game.

In Game 5 we use random pre-codes instead of computing pre-codes, and
the distinguishing advantage is bounded by the advantage against the SGSP
problem.

Games 6–8 replaces the encryptions of the ballots by encryptions of random
group elements. The distinguishing advantage is essentially bounded by the
advantage against the DDH problem. In the final game, it is trivial to verify
that the adversary has no advantage.

Game 1 We begin with the R-privacy game between a simulator and an
adversary. The game requires time at most T and the adversary submits at
most ntot ballots.

If E1 is the event that the adversary correctly guesses the bit b, the adver-
sary’s advantage is

ε = |Pr[E1]− 1/2|.

Game 2 In this game, whenever we need to generate a proof, we fake the
proofs using the simulators given in Section 3 and reprogram the random oracle
appropriately.

This is only noticeable if the random oracle reprogramming fails, because
the oracle has already been queried there before. There are at most 3ntot
reprogramming attempts, and since the number of random oracle queries is
bounded by T , and each query involves a group element chosen uniformly at
random, the probability that any single reprogramming attempt fails is bounded
by T/q.

We can now bound the probability of the exceptional event, and we see that

|Pr[E2]− Pr[E1]| ≤ 3ntotT

q
.

Note that the encryption process is described by the following equations:

x = gt wi = yt1,ivi

x̌ = xsV w̄i = wsVi ŵi = x̌a2,i

where 1 ≤ i ≤ k.

Game 3 At the start of this game, we construct for each voter V a table of
options and corresponding pre-codes (v, ρV,v), where ρV,v = vsV .
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Now we encrypt using the following equations:

x = gt wi = xa1,ivi

x̌ = γtV w̄i = x̌a1,iρV,vi ŵi = x̌a2,i

Note that we exploit the fact that key generation is done by the simulator.
Therefore, we know all the secret keys.

This change to the encryption process cannot be noticed, since

γtV = (gsV )t = (gt)sV = xsV .

Therefore,
Pr[E3] = Pr[E2].

Game 4 We change the encryption process again. The simulator chooses
additional random numbers t′1, . . . , t

′
k and does:

x = gt
∏

v
t′i
i wi = xa1,ivi

x̌ = γtV
∏

ρ
t′i
V,vi

w̄i = x̌a1,iρV,vi ŵi = x̌a2,i

Since the group is cyclic of prime order, for every i there exists an integer u
such that vi = gu and ρV,vi = vsVi = (gsV )u = γuV . The joint distribution of x
and x̌ is therefore identical to the one in the previous game, and

Pr[E4] = Pr[E3].

Game 5 At the start of the game, when we construct the per-voter table of
options and corresponding pre-codes, the simulator chooses for each option a
random pre-code ρV,v instead of computing ρV,v = vsV .

We can now construct a distinguisher for the L-SGSP problem. The distin-
guisher gets L challenge tuples and constructs the per-voter tables as random
linear combinations of these tuples. It then runs the remaining (common) game.

If the distinguisher gets elements that all lie inside the subgroup, the ran-
dom linear combinations will all lie inside the subgroup, and the tables will be
generated according to the exact same distribution as in Game 4. Otherwise,
the random linear combinations will result in random tuples, and the tables
will be generated according to the exact same distribution as in Game 5. The
distinguisher therefore proves the following lemma:

Lemma 6. If the SGSP problem is (T, εSGSP )-hard, then

|Pr[E5]− Pr[E4]| ≤ LεSGSP .
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Game 6 Once more, we change the encryption process as follows (t′ is another
random number):

x = gt wi = xa1,ivi

x̌ = γt
′

V w̄i = x̌a1,iρV,v ŵi = x̌a2,i

Unless the randomly chosen tuple (γV , ρV,v1 , . . . , ρV,vL) lies inside the sub-
group, the distribution of x̌ in Game 5 will be independent of the distribution
of x, just like in this game.

The probability that one such tuple lies inside the subgroup is q−L. The
probability that at least one out of N such tuples lies inside the subgroup is
upperbounded by Nq−L.

We now have a bound on an exceptional event, from which it follows that

|Pr[E6]− Pr[E5]| ≤ Nq−L.

We note that this term is extremely small, but we include it for completeness
sake.

Game 7 We change the encryption process as follows:

x = gt wi = yt1,ivi

x̌ = gt
′

w̄i = yt
′

1,iρV,vi ŵi = yt
′

2,i

It is clear that the resulting distributions are identical to the previous game’s
distribution, and therefore that

Pr[E7] = Pr[E6].

At this point, the pre-code ciphertext is an independent encryption of a
random per-option value.

Game 8 In the final game, we again change the encryption process as follows
(ui is a random group element):

x = gt wi = yt1,iuivi

x̌ = gt
′

w̄i = yt
′

1,iρV,vi ŵi = yt
′

2,i

As for Game 4 and Game 5, we can now create a k-DDH distinguisher. This
distinguisher (which we omit) proves the following lemma:

Lemma 7. If the DDH problem is (T, εDDH)-hard, then

|Pr[E8]− Pr[E7]| ≤ k2εDDH .
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Analysis In the final game, since the ciphertexts are independent of the exact
options used to create them, the adversary cannot tell if we encrypt vi or a
permutation of vi. Therefore,

Pr[E8] = 1/2.

A simple application of the triangle inequality tells us that

ε = |Pr[E1]− 1/2| ≤ 3ntotT

q
+ LεSGSP +Nq−L + k2εDDH ,

which concludes the proof of Proposition 4.

4.4.5 Security: D-Integrity and A-Privacy

Since this paper’s focus is on ballot submission, the shuffle and decryption proofs
have not been specified. It is therefore impossible to properly analyse the secu-
rity.

However, the standard security notions for verifiable decryption and verifi-
able shuffles are sufficient to ensure verifiable shuffled decryption, which is what
our security requirements amount to.

Such proofs exist and are reasonably efficient.

5 The Voting Protocol

The voting protocol is built on top of the cryptosystem from Section 4, together
with several other tools.

The players in the voting protocol are the voters, the voters’ computers,
the voters’ telephones, several electoral board players and several infrastructure
players.

5.1 Functional and Security Requirements

The ideal functionality described in Figure 4 defines both the functional require-
ments for our internet voting protocol, as well as the security requirements.

Conceptually, there are three phases to the election: setup, ballot submis-
sion, and counting. We assume that every player knows when the transition
from the setup phase to the ballot submission phase happens. Therefore, we
are justified in not describing the housekeeping that deals with this transition.
However, there may be players that do not know the exact time of the transition
from ballot submission to counting. Therefore, we describe a bit of housekeeping
for that transition.

The setup phase is used by the electoral board and the infrastructure players
to generate keys. The adversary is free to block key generation, but in that case,
the functionality never enters the ballot submission phase.

During ballot submission, voters submit ballots. The adversary may to a
certain degree interfere with ballot submission, or attempt to forge ballots.
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Finally, the functionality enters counting phase when the ballot box is in-
structed to close. The adversary may to a certain degree interfere with counting.

The adversary’s ability to interfere undetectably with ballots is determined
by the relation ∼ on the ballot set Ok.

The amount of information that leaks directly to an adversary during ballot
submission is described by the leak(·, ·, ·, ·) function defined as follows:

leak(Λ, V, P, ~m) =


~m P corrupt,

Λ(~m) R corrupt, and

⊥ otherwise.

Note that Λ is a permutation on O which is extended to Ok in the obvious
manner.

We see that a corrupt computer will learn the voter’s confidential ballot, and
a corrupt return code generator will learn a permutation of the voter’s chosen
options.

The following claims about the security of the ideal functionality are all easy
to verify:

S1 If the auditor accepts the result, then:

• At most one ballot per voter will be counted.

• The number of ballots counted will not be higher than the number
of voters who submitted a ballot, attempted to submit a ballot or
complained about a forgery.

S2 If the voter accepts his ballot as cast as intended, and does not later
revote or complain about a forgery, the ballot is counted as intended up
to equivalence under ∼.

S3 If the voter’s computer and the return code generator are both honest,
and the voter does not complain about forgeries, the content of the voter’s
ballot remains private.

S4 If the return code generator is corrupt, the adversary learns the number
of null options in each ballot submission, and if a voter submits multiple
ballots, learns where these ballots differ.

When we prove that the protocol realizes the ideal functionality, it then
follows that the above claims also hold for the protocol. We shall see that these
claims (and the leakage function) are optimal for the protocol.

The leakage caused by corrupt computers seems unavoidable in practice.
To protect against a corrupt computer, the voter must somehow input an en-
crypted ballot, which is too difficult for the complex Norwegian ballots. For
other elections, this could be practically feasible.

Likewise, the leakage caused by a corrupt return code generator is again hard
to avoid, since the voter must be able to interpret the return codes. Multiple
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S e t u p p h a s e

On (keygen) from U :

1. Send (keygen, U) to A, and wait for (keygen, U, b) from A.
2. If b = 0, send (reject) to U and stop. Otherwise, send (accept) to U .
3. If R is corrupt, then for each voter V choose a random permutation ΛV on
O.

4. If all setup phase players have sent (accept), enter the ballot submission
phase.

B a l l o t s u b m i s s i o n p h a s e

On (use, P ) from V :

1. Hand over (using, P, V ) to A and wait for (using, P, V ) from A. Record
(use, V, P ). Send (using) to V .

On (vote, P, ~m) from V :

1. Select the next sequence number seq .
2. Stop if (use, V, P ) is not recorded, or if V is marked as voting. Mark V as

voting.
3. Hand over (voting, seq , V, P, leak(ΛV , V, P, ~m)) to A. Wait for (store, V, b1),

(notify, V, b2) and (finish, V, b3) from A.

• If P is honest: If b1 = 1, erase any record (ballot, V, . . . ), record
(ballot, V, ~m) and append (notify, ~m) to V ’s queue. Otherwise, record
(lost, seq , V, ~m).

• If b2 = 1, pop the first entry (notify, ~m′) from V ’s queue.

Between messages, hand over (done) to A.
4. If b1 = b2 = b3 = 1 and ~m′ ∼ ~m, send (accept) to V , otherwise send

(reject) to V .
5. Mark V as not voting.

On (replay, seq) from A:

1. Stop unless (lost, seq , V, ~m) is recorded.
2. Erase the record (lost, seq , V, ~m) and any record (ballot, V, . . . ).
3. Record (ballot, V, ~m). Append (notify, ~m) to V ’s queue.
4. Hand over (forged) to A.

On (forge, V, P, ~m) from A:

1. Ignore unless V and P are corrupt, or (use, V, P ) recorded.
2. Erase any record (ballot, V, . . . ). Record (ballot, V, ~m).
3. If V is honest, append (notify, ~m) to V ’s queue.
4. Hand over (forged) to A.

On (notify, V, b) from A:

1. If b = 1, discard the first entry from V ’s queue.
2. Send (forgery) to V .

Figure 4a: Ideal functionality for the internet voting protocol, parameterized by
a leak(·, ·, ·, ·) function.
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B a l l o t s u b m i s s i o n p h a s e ( c o n t . )

On (close) from B, or from A if B is corrupt:

1. Enter counting phase. Any (vote, . . . , . . . ) messages currently being
processed will proceed as above, subject to the requirement that the
(store, . . . , b1) message must have b1 = 0.

2. Let (ballot, V1, ~m1), . . . , (ballot, Vn, ~mn) be all the ballot records, sorted by
ballot. Hand over (closing, ~m1, . . . , ~mn) to A.

C o u n t i n g p h a s e

On (vote, P, ~m) from V :

1. Select the next sequence number seq .
2. Stop if V is marked as voting. Mark V as voting.
3. Hand over (voting, seq , V, P, leak(ΛV , V, P, ~m)) to A. Wait for (store, V, b1),

(notify, V, b2) and (finish, V, b3) from A. Between messages, hand over
(done) to A.

4. Send (reject) to V .
5. Mark V as not voting.

On (finish, D, b) from A:

1. If b = 0 and either B, R or A is corrupt, send (reject) to D. Otherwise, let
(ballot, V1, ~m1), . . . , (ballot, Vn, ~mn) be all the ballot records, send
(result, sort(ω(~m1), . . . , ω(~mk))) to D.

On (finish, A, b) from A:

1. If b = 0 and either B, R or D is corrupt, send (reject) to A. Otherwise, let
(ballot, V1, ~m1), . . . , (ballot, Vn, ~mn) be all the ballot records, send
(result, sort(ω(~m1), . . . , ω(~mk))) to A.

Figure 4b: Ideal functionality for internet voting, parameterized by a
leak(·, ·, ·, ·) function.
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On (send, X,m) from Y :

1. If (X,Y ) is in V × P, P × V, {A,B,D,R}2, or {(V, FV ) | V ∈ V}, then
send (recv, Y,m) to X.

Figure 5: Secure channel functionality.

sets of return codes would provide some measure of security, but the added
complexity is not commensurate with the added security.

While the leakage seems acceptable (comparable to surveillance attacks against
ordinary paper elections), active attacks are much more worrying. If the voter
has ever used a corrupt computer, the functionality allows an adversary to sub-
mit forged ballots on the voter’s behalf. The forged ballot is unproblematic,
since the voter will report the forgery eventually and take corrective action.
But the adversary may use this ability to learn information about confidential
ballots.

The following attack works. The attacker notices that the voter attempts to
submit a ballot, guesses what ballot the voter is about to submit, and immedi-
ately submits the guess as a forgery. Careful interaction with the functionality
ensures that the voter accepts the ballot if and only if the attacker’s guess
matches the voter’s ballot. The subsequent behaviour of the voter leaks infor-
mation about the ballot. Eventually, the voter will complain about a forgery,
but this does not prevent a loss of confidentiality.

5.2 Assumptions about the Environment

The players in the protocol can be distinguished into three groups: the voters
and their computers and phones, the infrastructure players and the electoral
board players.

There is a set of voters V, a set of computers P and a set of phones F . Several
voters may share one computer, and one voter may use multiple computers.
Phones, however, are personal and we denote the phone belonging to voter V
by FV .

We assume that there are confidential, identified and authenticated channels
between the infrastructure players, between voters and computers, between vot-
ers and their own phones, and a one-way channel from the return code generator
R to the voters’ phones. This assumption is captured by the ideal functionalities
in Figure 5 and 6.

For the channel from the return code generator to the voter’s phone, mes-
sages are confidential, and the adversary cannot interfere with their integrity.
They are also delivered in the same order as they were sent. The only thing
under adversarial control is the timing of the delivery. For the channels modeled
by the functionality in Figure 5, the adversary cannot even interfere with the
timing of the delivery.

Remark. In the interests of readability, we ignore the secure channel functional-
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On (send, FV ,m) from R:

1. Push m onto FV ’s queue. Hand over (sending, FV ) to A.

On (deliver, FV ) from A:

1. Pop m from the front of FV ’s queue. Send (recv, R,m) to FV .

Figure 6: Phone channel functionality

ity in the description of the voting protocol. When U wants to send a message
to U ′, U will a message to U ′, not send (send, U ′,m) to the secure channel
functionality. Likewise, U will receive a message from U ′, not a (recv, U ′,m)
message from the secure channel functionality.

We shall also assume the existence of a pre-existing PKI where voters can
delegate their identity to one or more computers, after which the computer can
on behalf of the voter digitally sign and establish authenticated connections to
the ballot box. We shall assume that every infrastructure player can verify such
signatures. This assumption is captured by the ideal functionality described in
Figure 7.

Remark. In the interests of readability, we ignore most of the technicalities
involving the PKI functionality in the description of the voting protocol. We
shall say that P establishes a connection to B, and then sends messages to and
receives messages from B, ignoring the trivial technicalities involving session
identifiers and sending messages to the functionality. Likewise, we shall say
that P signs a message on behalf of V , instead of sending a signing message and
waiting for the signature reply.

Finally, we need a hash function H for various purposes. We shall require
that this function is collision resistant.

The return code generator will have a signing key, and the ballot box and
every computer has the corresponding verification key. The assumption that this
cryptographic infrastructure is pre-existing is captured by the ideal functionality
described in Figure 8.

Remark. As usual, in the interests of readability, we say that R signs something
to get a signature, instead of sending a message to the functionality and then
waiting for the reply. Likewise, we say that the other players verify R’s signature
on some message.

5.3 Setup Phase

Our focus in this paper is not on the setup phase. We shall quite simply assume
that all keys are generated by a trusted dealer (except for the return code
generator’s signing key, where only key distribution is needed), as described in
Figure 9.

We note that election key generation can happen a long time before the
election, so key generation does not have to be very quick. The key generation
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On (use, P ) from V :

1. Hand (using, V, P ), and wait for (using, V, P ). Record (use, V, P ). Send
(using) to V .

On (establish, B, V ) from P :

1. Stop unless (use, V, P ) recorded.
2. Choose a unique session identifier sid . Hand over (establish, sid , B, V, P ) to
A.

3. Wait for (established, sid) from A. Record (session, sid , V, P, 0). Send
(established, sid , P, V ) to B and hand over (establish, sid , B, V, P ).

4. Wait for (established, sid) from A. Record (session, sid , V, P, 1). Send
(established, sid , B, V ) to P .

On (send, sid ,m) from U :

1. If U = B, set b = 0, otherwise set b = 1.
2. Stop unless (session, sid , . . . , . . . , b) is recorded.
3. Push m onto the sid -b queue, and hand over (sending, sid , |m|, b) to A.

On (deliver, sid , b) from A:

1. Stop unless (session, sid , . . . , P, 1) is recorded.
2. Pop m off the front of the sid -b queue. If b = 0, send (recv, sid ,m) to P ,

otherwise send (recv, sid ,m) to B.

On (sign, V,m) from P :

1. Stop unless (use, V, P ) recorded.
2. If no record (keys, V, sk , vk) exists, compute (sk , vk)← Ks and record

(keys, V, sk , vk).
3. Choose a unique signing identifier sid . Hand over (signing, sid , V, P ) to A

and wait for (signing, sid , V, P ).
4. Compute σ ← Ss(sk ,m). Record (signature, V,m, σ, 1). Send

(signature, V,m, σ) to P .

On (verify, V,m, σ) from U :

1. If no record (keys, V, sk , vk) exists, or (signature, V,m, σ, 1) is not recorded,
record (signature, V,m, σ, 0).

2. If (signature, V,m, σ, b) is recorded, send (verified, V,m, σ, b) to U .

Figure 7: PKI functionality, parameterized over a signature scheme (Ks,Ss,Vs).
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On (sign,m) from R:

1. If no record (keys, R, sk , vk) exists, compute (sk , vk)← Ks and record
(keys, R, sk , vk).

2. Compute σ ← Ss(sk ,m). Record (signature, R,m, σ, 1). Send
(signature,m, σ) to R.

On (verify, R,m, σ) from U :

1. If no record (keys, R, sk , vk) exists, or (signature, R,m, σ, 1) is not recorded,
record (signature, R,m, σ, 0).

2. If (signature, R,m, σ, b) is recorded, send (verified, R,m, σ, b) to U .

Figure 8: Return code generator signature functionality, parameterized over a
signature scheme (Ks,Ss,Vs).

On (keygen) from U :

1. If this is the first (keygen) message received, do:

• (ek , dk1, dk2, dk3)← K.

• For each voter V , compute (sV , γV )← S(ek , V ) and sample a
random injective function DV from the image of sV to CH .

2. Hand over (keygen, U) to A.

On (keygen, U, b) from A:

1. If b = 1, send (keys,material) to U , where material is as detailed in
Table 1. Otherwise, send (reject) to U .

2. If (keygen, U, 1) has been received for every infrastructure player and every
electoral board player, then for each voter V , send (keys,material) to V ,
where material is as detailed in Table 1.

Figure 9: Trusted dealer for the setup phase of the protocol.

algorithm can therefore easily be replaced by a suitable multiparty protocol.
One possible protocol for generating the per-voter key material is the fol-

lowing three-party protocol. Player 1 samples the precode derivation map s
(and its commitment γ) and a random permutation m1, . . . ,mL of the elements
of O. It then sends to Player 2 the random permutation, and to Player 3 the
commitment to s and the sequence s(m1), . . . , s(mL). Player 3 chooses from
CH a random unique value for each element in the sequence, and sends this list
to Player 2.

Player 1 now knows s, Player 3 knows γ and a random injective function D
from the image of s to CH , and Player 2 can reconstruct the set {(m, r) | r =
D(s(m))}.
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Table 1: Distribution of key material to the players.

Player Key material
V The set {(m,DV (sV (m))) | m ∈ O \ {1O}}.
P The public key ek .
B The transformation key dk2 and the set {(V, sV )}.
R The pre-code decryption key dk3 and the set {(V, γV , DV )}.
D The decryption key dk1.
A The public key ek .

V FVPV B R

~v
(V, c, σ)

(seq , V, c, σ, č)

(seq , σ′)
σ′

ok

~r
~r

Figure 10: Overview of messages sent during ballot submission.

5.4 Protocol

The voting protocol is described in Figure 11 (pp. 40–44.)
As discussed above, the protocol execution goes through three phases: setup,

ballot submission and counting. During the setup phase, only the electoral board
players and the infrastructure players are active.

During ballot submission, only two of the four infrastructure players are
active, along with the voters and their computers and phones. The diagram in
Figure 10 gives an overview of the ballot submission process.

• The voter gives his ballot to a computer.

• The computer encrypts the ballot and signs it on the voter’s behalf, then
submits it to the ballot box.

• The ballot box transforms the ciphertext and sends everything to the
return code generator.

• The return code generator creates the return codes and sends them to the
voter’s phone. It also signs a hash of the ballot and sends this signature
to the ballot box.
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• The ballot box stores the encrypted ballot and passes the return code
generator’s signature on to the voter’s computer.

• The computer verifies the signature and tells the voter that the ballot was
accepted.

• When the voter’s phone receives the return codes, it passes them on to
the voter.

• The voter accepts the ballot as cast only if the computer accepted the
ballot as cast, and the return codes are correct.

Ballot submission ends when the ballot box is told to close. During the
counting phase, only the infrastructure players are active.

The ballot box refuses to accept new ballot submissions, but waits until on-
going ballot submissions are done. Then it informs the return code generator
that the ballot box has closed, sends every recorded ballot to the auditor, ex-
tracts naked ciphertexts from the ballots that should be counted, and sends the
naked ciphertexts to the decryptor.

The return code generator sends its records to the auditor.
The decryptor tells the auditor which naked ciphertexts it receives, then

runs the decryption protocol with the auditor as verifier.
The auditor verifies that the ballot box and the return code generator agree

on which ballots were submitted, and that it agrees with the decryptor about
which naked ciphertexts should be counted. Then it runs the decryption proto-
col with the decryptor as prover.

5.5 Security Analysis

It is well-known that no ideal functionality for public key encryption can be
realized under adaptive corruption. Since our cryptosystem is essentially public
key encryption, we must restrict ourselves to static corruption.

Our protocol can only guarantee security if at most one infrastructure player
is corrupt. Likewise, if the return code generator and some voter’s computer
are both corrupt, security cannot be guaranteed. Furthermore, assuming that
a corrupt voter will have to use an honest computer is unrealistic. We therefore
arrive at the following four classes of static corruption:

• the ballot box, a subset of the voters and a subset of the computers are
corrupt;

• the return code generator is corrupt;

• the decryptor is corrupt; and

• the auditor is corrupt.

Our goal is to prove the following theorem.
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S e t u p p h a s e

On (keys, T ) from key generation functionality:

1. Remember the set T .

B a l l o t s u b m i s s i o n p h a s e

On input (use, P ):

1. Send (use, P ) to the PKI functionality, wait for (using) in return, and
record (use, V, P ).

On input (vote, P, ~m):

1. Stop if already voting or (use, V, P ) is not recorded. Mark as voting.
2. Send (vote, ~m) to P .
3. Wait for (accept) from P and (codes, ~r) from FV , or (reject) from P .
4. If (reject) was received from P , output (reject) and stop.
5. Let ~m = (m1,m2, . . . ,mk) and ~r = (r1, r2, . . . , rk). If (mi, ri) 6∈ T for some
i, output (reject). Otherwise, output (accept). Mark as not voting.

On (codes, . . . ) from FV :

1. Output (forgery).

Figure 11a: The voting protocol: The voter.

On m from R:

1. Send m to V .

Figure 11b: The voting protocol: The phone.

S e t u p p h a s e

On (keys, ek) from the key generation functionality:

1. Remember ek .

B a l l o t s u b m i s s i o n p h a s e

On (vote, ~m) from V :

1. If any step below fails, send (reject) to V and stop.
2. Establish a connection to the ballot box B.
3. c← E(ek , V, ~m).
4. Sign c on behalf of V to get a signature σ.
5. Send (V, c, σ) (using a fixed-length encoding of (V, c, σ)) to B and wait for
σR from B.

6. Verify that σR is R’s signature on H(V, c), then send (accept) to V .

Figure 11c: The voting protocol: The computer.
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S e t u p p h a s e

On input (keygen):

1. Send (keygen) to the key generation functionality.
2. Wait for (keys, dk2, {(V, sV )}) or (reject) from the key generation

functionality.
3. In the former case, remember dk2 and {(V, sV )}, and output (accept).

Otherwise output (reject).

B a l l o t s u b m i s s i o n p h a s e

On (established, sid , P, V ) from the PKI functionality:

1. If any step below fails, send (reject) to P and stop.
2. Wait for (V, c, σ) from P .
3. Verify that σ is V ’s signature on c.
4. If the voter V is marked as voting, wait until V is no longer marked as

voting. Mark V as voting.
5. Select the next sequence number seq .
6. Compute č← T (dk2, V, sV , c), and verify that č 6= ⊥.
7. Send (ballot, seq , V, c, σ, č) to R and wait for (receipt, seq , σR) from R.
8. Verify that σR is R’s signature on H(V, c).
9. Record (ballot, seq , V, c, σ), mark V as not voting, and send σR to P .

On input (close):

1. Enter counting phase. Wait until every ballot submission currently in
progress has finished.

2. Send (close) to R.
3. Let L1 be the list of all ballot records. For each voter, select the ballot

record with maximal sequence number, resulting in the records
(ballot, seq1, V1, c1, σ1), . . . , (ballot, seqn, Vn, cn, σn).

4. Compute c̃i = X (Vi, ci), i = 1, 2, . . . , n.
5. Let L2 be the sorted list of naked ciphertexts c̃1, . . . , c̃n.
6. Send (decrypt, L2) to D and (content, L1) to A.

C o u n t i n g p h a s e

On (established, sid , P, V ) from the PKI functionality:

1. Ignore.

Figure 11d: The voting protocol: The ballot box
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S e t u p p h a s e

On input (keygen):

1. Send (keygen) to the key generation functionality.
2. Wait for (keys, dk3, {(V, γV , DV )}) or (reject) from the key generation

functionality.
3. In the former case, remember dk3 and {(V, γV , DV )}, and output (accept).

Otherwise output (reject).

B a l l o t s u b m i s s i o n p h a s e

On (ballot, seq , V, c, σ, č) from B:

1. If any step below fails, send (reject, seq) to B and stop.
2. Verify that V is not marked as voting. Mark V as voting.
3. Compute h← H(V, c). Verify that no records (ballot, V, . . . , h) or

(ballot, V, seq ′, . . . ), seq ≤ seq ′, exist. Record (ballot, V, seq , h).
4. Verify that σ is V ’s signature on c.
5. Compute ~ρ← DR(dk3, V, γV , c, č), and verify that ~ρ 6= ⊥ and that ρi is in

the domain of DV for i = 1, 2, . . . , k.
6. Compute ri = DV (ρi), i = 1, 2, . . . , k.
7. Sign h to get the signature σR.
8. Send ~r to FV and (receipt, seq , σR) to B. Mark V as not voting.

On (close) from B:

1. Verify that all ballot processing is done.
2. Let L3 be the list of all ballot records. Send (hashes, L3) to A.

C o u n t i n g p h a s e

On (ballot, seq , V, c, σ, č) from B:

1. Ignore.

Figure 11e: The voting protocol: The return code generator.
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S e t u p p h a s e

On input (keygen):

1. Send (keygen) to the key generation functionality.
2. Wait for (keys, dk1) or (reject) from the key generation functionality.
3. In the former case, remember dk1 and output (accept). Otherwise output

(reject).

C o u n t i n g p h a s e

On (decrypt, L2) from B:

1. Send (hash, H(L2)) to A. Wait for (accept) from A.
2. Run the prover role of the decryption protocol ΠDP with dk1 as private

input and L2 as public input, and with A playing the verifier role.
3. If the decryption protocol output is ⊥, output (reject).
4. If the decryption protocol output is ~m1, . . . , ~mn, then output

(result, sort(~m1, . . . , ~mn)).

Figure 11f: The voting protocol: The decryptor.

Theorem 2. Consider an election with N voters, L options and ballot length
k. Suppose the cryptosystem is (T,N, ntot , L, k, ε)-secure and the hash function
H is (T, ε)-collision resistant. Let R2 be a resource bound for interaction with
the internet voting protocol that limits the total number of messages to ν, the
total number of submitted ballots to ntot and the time used to T .

There exists a resource bound R1 that is the same as R2, though with a
slightly smaller time bound, such that under static corruption restricted as de-
scribed above, the internet voting protocol given in Figure 11 interacting with
the ideal functionalities given in Figures 5–9 (R1, δ, R2, δ + 3ε, δ + 3ε)-realizes
the internet voting functionality given in Figure 4.

This theorem follows from Propositions 5, 6, 7 and 8.
We must specify an ideal simulator and prove that the composition of the

functionality and the simulator is indistinguishable from the real protocol in-
teracting with its functionalities. Under static corruption, we can consider the
each case separately.

In all cases, our strategy is the same. We begin with a game where the
environment interacts with the protocol and its functionalities. Then we make
several modifications to this game. Finally, in the end, we show how an ideal
simulator can be constructed based on the final game.

5.5.1 The Ballot Box

Proposition 5. Under the conditions of Theorem 2, there exists a resource
bound R1 such that when the ballot box, a subset of the voters and a subset of the
computers are corrupt, the internet voting protocol given in Figure 11 interacting
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S e t u p p h a s e

On input (keygen):

1. Send (keygen) to the key generation functionality.
2. Wait for (keys, ek) or (reject) from the key generation functionality.
3. In the former case, remember ek and output (accept). Otherwise output

(reject).

C o u n t i n g p h a s e

On (content, L1) from B:

1. Wait for (hashes, L3) from R and (hash, h) from D.
2. Verify that for each ballot (ballot, seq , V, c, σ) in L1, σ is V ’s signature on c.
3. Verify that for each ballot (ballot, seq , V, c, σ) in L1, there is a

corresponding record (ballot, V, seq , h′) in L3 with h′ = H(V, c), and vice
versa.

4. For each voter, select the ballot record with maximal sequence number
from L1, resulting in the records
(ballot, seq1, V1, c1, σ1), . . . , (ballot, seqn, Vn, cn, σn).

5. Compute c̃i = X (Vi, ci), i = 1, 2, . . . , n.
6. Verify that h equals H(sort(c̃1, . . . , c̃n)).
7. Send (accept) to D.
8. Run the verifier role of the decryption protocol ΠDP with ek and L2 as

public input, and with D playing the prover role.
9. If the decryption protocol output is ⊥, output (reject).

10. If the decryption protocol output is ~m1, . . . , ~mn, then output
(result, sort(~m1, . . . , ~mn)).

Figure 11g: The voting protocol: The auditor.
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with the ideal functionalities given in Figures 5–9 (R1, δ, R2, δ+3ε, δ+3ε)-realizes
the internet voting functionality given in Figure 4.

Let Ti be the time bound for Ri.
The proof proceeds as follows: We begin with a game where an environment

interacts with the voting protocol and its underlying functionalities. Then we
make a sequence of modifications to this game, where each modification gives a
new game that is indistinguishable from the preceeding game.

Game 1 is the initial game. Game 2 is a technical step where we gather all
the various honest machines into one big machine, and make various technical
preparations for subsequent games.

In Game 3, our simulated return code generator computes the pre-codes
from the ballot decryptions using the per-voter pre-code map, instead of from
the transformed ciphertexts. This does not change observable behaviour by
B-integrity.

Game 4 introduces bookkeeping to keep track of the decryption of the ci-
phertexts generated or seen by the honest players, in preparation for a later
game. Game 5 compares two lists of ciphertexts instead of comparing the hash
of the lists. Since the hash function is collision resistant, this is not observable.

Game 6 decrypts the ciphertexts directly (using D) instead of running the
decryption protocol. Game 7 no longer decrypts values, instead relying on the
bookkeeping introduced in Game 4. These changes are unobservable due to
completeness.

In Game 8, honestly generated ballots are encryptions of random ballots
instead of the real ballots. Since the decryptions of the honestly generated
ciphertexts are never used, this is unobservable by B-privacy.

Game 9 removes the reliance on the actual return codes. By the properties
of the various functions used, this does not change observable behaviour.

When we have suitably modified the initial game, we construct an ideal
simulator that runs a copy of the final game. The input to the protocol machines
is simulated, based on messages from the ideal functionality. Certain events in
the game are translated into messages to the ideal functionality.

It will be straight-forward to verify that our machine in the final game is in-
distinguishable from the ideal functionality interacting with the ideal simulator
and the environment. Transitivity of indistinguishability then proves that the
voting protocol realizes the functionality.

Game 1 The initial game consists of some environment interacting with the
protocol and its underlying functionalities.

We assume that this game is (R1, δ)-bounded, where R1 is a resource bound
with time bound T1 and at most ν messages sent by the environment. Note
that ν is very small compared to T1.

Game 2 We gather all the honest players and the functionalities into one
machine.
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We also insert certain delays into much of the processing in this game. The
delays allow us to later modify processing without changing time usage. This
simplifies the technicalities involved.

Given the time bound T1 for Game 1, this game will have a time bound
T2 = T1 + poly(ν). As will be seen through the rest of the proof, the constants
involved are very small, so T2 ≈ T1.

With R2 the same as R1 except that the time bound is replaced by T2, we
have that Game 2 is (R2, δ)-bound. The following result is immediate.

Lemma 8. Game 2 is (R1, δ, R2, δ, δ)-indistinguishable from Game 1.

Game 3 Step 5 in the return code generator is modified as follows:

5. Compute ~ρ0 ← DR(dk3, V, γV , c, č) and ~m ← D(dk1, V, c), verify that ~m 6=
⊥ 6= ~ρ0 and thatmi ∈ O for i = 1, 2, . . . , k. Compute ~ρ = (sV (m1), . . . , sV (mk)).

Lemma 9. If the cryptosystem is (T2, N, ntot , L, k, ε)-secure, with ntot < ν,
then Game 3 is (R2, δ, R2, δ + ε, ε)-indistinguishable from Game 2.

Proof. It is clear that the two games behave differently only when the system
as a whole has constructed a ciphertext c and transformed ciphertext č that
decrypt inconsistently, either because c does not decrypt correctly, but č does,
or the decryption of č is inconsistent with the decryption of c.

This is exactly the requirement for winning the B-integrity game, and we
see that it is easy to convert the system in Game 3 into an adversary against
B-integrity.

We therefore have an exceptional event and a probability bound on that
event, and the claim follows.

Game 4 We add some bookkeeping: When an honest computer generates a
ciphertext, we record who generated it and the corresponding message. When
Step 5 of the return code generator successfully decrypts a message, we record
the message and the corresponding voter identity.

Game 5 Modify the decryptor and the auditor so that instead of verifying
that they agree on a hash of the naked ciphertexts, they verify that they agree
on the naked ciphertexts. The following result is immediate.

Lemma 10. If the hash H is (T2, ε)-secure, then Game 5 is (R2, δ + ε, R2, δ +
2ε, ε)-indistinguishable from Game 4.

Proof. Finding a collision in the hash is an exceptional event. If the hash is
secure, we have an appropriate probability bound, and the claim follows.

Game 6 We modify both the decryptor and the auditor so that instead of
running the decryption protocol on naked ciphertexts, they run the decryption
algorithm on the corresponding ciphertexts as divulged by the corrupt ballot
box, then applies the ω before sorting the result.
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The completeness requirements on the cryptosystem ensures that this game
behaves exactly as the previous game.

Game 7 Modify Step 5 so that instead of decrypting ciphertexts, we look up
the ciphertext record and use that result instead.

Note that every ciphertext that is decrypted is either honestly generated (in
which case we have a record), or seen and decrypted by the return code generator
(in which case we have a record). Therefore, this game behaves exactly as the
previous game.

Game 8 Modify Step 3 of the computer description to encrypt a random
message, not the voter’s ballot.

3. Choose random ~m0 and compute c← E(ek , V, ~m0).

Lemma 11. If the cryptosystem is (T2, N, ntot , L, k, ε)-secure with ntot < ν,
then Game 8 is (R2, δ + 2ε, R2, δ + 3ε, ε)-indistinguishable from Game 7.

Proof. We want to transform the two games into adversaries for the B-privacy
game. To do that, we have to create an adversary that when interacting with
the privacy game’s simulator behaves either as Game 7 or Game 8, depending
on the simulator’s choice for b.

The decryption of transformed ciphertexts and ciphertexts generated by the
adversary can be replaced by queries to the decryption oracle. There is no other
use of private keys, so key generation can be simulated using the key material
the adversary receives.

Furthermore, the encryptions done by honest computers can be replaced by
encryption queries. If the simulator’s b is 0, the encryption oracle encrypts as in
Game 7, otherwise it encrypts as in Game 8. Any change in behaviour will yield
an advantage against B-privacy, thereby upperbounding the distinguishability.

Game 9 We modify the voter and the return code generator as follows:

• The voter keeps track of the sequence in which ballots are submitted to
honest computers. This corresponds to the sequence in which honestly
generated ciphertexts are created, which we also keep track of.

• When the return code generator responds to an honestly generated cipher-
text, it replies with its sequence number, not with the return codes. When
the return code generator responds to a adversary-generated ciphertext for
an honest voter, it replies with the ballot itself and not the return code.

• When the honest voter receives a message containing a sequence number,
it looks up the corresponding ballot and compares it with the submitted
ballot. When the honest voter receives a message containing a ballot, it
compares it with the submitted ballot.
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The return code generator rejects a ciphertext unless the decryption is in
Ok. Since the function DV ◦ s : O → CH is injective, comparing ballots before
or after applying DV ◦ s makes no difference.

The Ideal Simulator The simulator runs a copy of Game 9. The outputs
from the various players are discarded, unless otherwise specified.

On (keygen, U), hand over (keygen) to U . On output (accept) from U , hand
over (keygen, U, 1) to the functionality. On output (reject) from U , hand over
(keygen, U, 0) to the functionality.

On (using, P, V ), hand over (use, P ) to V . On (using) from V , hand over
(using, P, V ) to the functionality.

On (voting, seq , V, P,⊥) or (voting, seq , V, P, ~m), the simulator starts a voting
session by giving V as input (vote, P, (1O, . . . , 1O)) or (vote, P, ~m).

When the return code generator accepts a ciphertext c for the voter V , there
are four cases:

• If the voter is corrupt, the ideal simulator hands over (forge, V, P, ~m) to
the functionality, for some corrupt computer P .

• If the ciphertext was not created by an honest computer, a corrupt com-
puter P , which V has used, must have asked the PKI functionality to sign
the ciphertext. The ideal simulator then hands over (forge, V, P, ~m) to the
functionality.

• If the ciphertext was created by an honest computer in a session where
(store, V, ·) has not yet been sent, hand over (store, V, 1) to the functional-
ity.

• If the ciphertext was created by an honest computer in a session with
sequence number seq where (store, V, 0) was sent, hand over (replay, seq)
to the functionality.

When a voting session for voter V where (notify, V, 1) has not yet been
sent receives a message from the voter’s phone, hand over (notify, V, 1) to the
functionality.

If the voter V is about to output (forgery), hand over (notify, V, 1) to the
functionality.

When a voting session for voter V using P receives (reject) from P , the
simulator hands over (finish, V, 0) to the functionality. If they have not already
been sent for this session, it also hands over (store, V, 0) and (notify, V, 0).

When a voting session for voter V using P receives (accept) from P , the
simulator hands over (finish, V, 1) to the functionality.

When the return code generator receives (close) from the corrupt B, the sim-
ulator sends (close) to the functionality. The functionality immediately replies
with the final ballots. When the auditor/decryptor decides to output (reject),
the simulator hands over (finish, A/D, 0). When the auditor/decryptor decides
to output (result, . . . ), the simulator hands over (finish, A/D, 1).

We note the following about Game 9:
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• During the ballot submission phase, ballots submitted through honest
computers are only used for the return code verification. In the simulated
Game 9, this check is done with incorrect ballots. The ideal simulator
ignores the outcome of this incorrect check. Instead, the functionality
performs the correct check with the correct ballots.

• When we consider the ballots of a single voter, they are received by the re-
turn code generator with strictly increasing sequence numbers. Every time
the return code generator accepts a ballot, the functionality is instructed
to record that ballot as the voter’s choice.

Since the ballots with maximal sequence number are selected for counting,
this will correspond to the ballots stored by the functionality.

Furthermore, ballots are added to the functionality’s notification queue in
the same order as messages are inserted into the phone channel queue.

It is now fairly easy to verify that the ideal functionality interacting with
this ideal simulator has the same behaviour as our machine in Game 9, after
which Proposition 5 follows.

5.5.2 The Return Code Generator

Proposition 6. Under the conditions of Theorem 2, there exists a resource
bound R1 such that when the return code generator is corrupt, then the internet
voting protocol given in Figure 11 interacting with the ideal functionalities given
in Figures 5–9 (R1, δ, R2, δ + ε, δ + ε)-realizes the internet voting functionality
given in Figure 4.

Let Ti be the time bound for Ri.
The proof proceeds as follows: We begin with a game where an environment

interacts with the voting protocol and its underlying functionalities. Then we
make a sequence of modifications to this game, where each modification gives a
new game that is indistinguishable from the preceeding game.

Game 1 is the initial game. Game 2 is a technical step where we gather all
the various honest machines into one big machine, and make various technical
preparations for subsequent games.

Game 3 does not run the decryption protocol, but instead records ballots
as ciphertexts are created, and computes the result from these records. Since
every ciphertext is honestly generated, completeness ensures that this does not
change observable behaviour.

Game 4 chooses randomly permutes ballot options before encryption and
before return code verification. This change is unobservable by R-privacy.

When we have suitably modified the initial game, we construct an ideal
simulator that runs a copy of the final game. The input to the protocol machines
is simulated, based on messages from the ideal functionality. Certain events in
the game are translated into messages to the ideal functionality.

It will be straight-forward to verify that our machine in the final game is in-
distinguishable from the ideal functionality interacting with the ideal simulator
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and the environment. Transitivity of indistinguishability then proves that the
voting protocol realizes the functionality.

Game 1 We begin with a game where an environment and a corrupt return
code generator interacts with the other honest players and the ideal functional-
ities used by the protocol.

We assume that this game is (R1, δ)-bounded, where R1 is a resource bound
with time bound T1 and at most ν sent by the environment. Note that ν is very
small compared to T1.

Game 2 We gather the honest players into a single machine.
We also insert certain delays into much of the processing in this game. The

delays allow us to later modify processing without changing time usage. This
simplifies the technicalities involved.

Given the time bound T1 for Game 1, this game will have a time bound
T2 = T1 + poly(ν). As will be seen through the rest of the proof, the constants
involved are very small, so T2 ≈ T1. With R2 the same as R1 except that
the time bound is replaced by T2, we have that Game 2 is (R2, δ)-bound. The
following result is immediate.

Lemma 12. Game 2 is (R1, δ, R2, δ, δ)-indistinguishable from Game 1.

Game 3 In this game, we record all the plaintexts and ciphertexts as they
are created. We do not run the decryption protocol, but instead compute the
election result from the recorded plaintexts and the actual ciphertexts submitted
for counting.

Because of completeness of the cryptosystem, this change cannot be observed
by any environment.

Note that we no longer use the decryption key in this game.

Game 4 In this game, we choose for each voter a random permutation on O
and apply it before we encrypt the ballot, and again before we check the return
codes.

It is clear that we can use this game and the previous game to construct
an adversary against R-privacy for the cryptosystem. This proves the following
lemma.

Lemma 13. If the cryptosystem is (T2, N, ntot , L, k, ε)-secure with ntot < ν,
this game is (R2, δ, R2, δ + ε, ε)-indistinguishable from the previous game.

Ideal Simulator Sketch Constructing an ideal simulator is easy. Our simu-
lator runs a simulation identical to Game 4. Whenever a permuted ballot leaks
from the ideal functionality, we start the voter with the permuted ballot as in-
put. The adversary now has three clearly defined ways of interfering with the
ballot submission:
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• He can delay or prevent delivery of messages through the PKI functional-
ity.

• He can reject the ballot by refusing to sign the hash of the ciphertext, or
producing an incorrect signature.

• He can send the voter incorrect or no return codes on ballot submission,
and can send return codes at a time of his choosing.

It is easy to observe that all of these actions are easily detectable in Game 4,
and the ideal simulator can send messages to the ideal functionality reproducing
the correct effect of the return code generator’s actions.

Proposition 6 is therefore proved.

5.5.3 The Decryptor

Proposition 7. Under the conditions of Theorem 2, there exists a resource
bound R1 such that when the decryptor is corrupt, then the internet voting pro-
tocol given in Figure 11 interacting with the ideal functionalities given in Fig-
ures 5–9 (R1, δ, R2, δ + ε, δ + ε)-realizes the internet voting functionality given
in Figure 4.

Let Ti be the time bound for Ri.
The proof proceeds as follows: We begin with a game where an environment

interacts with the voting protocol and its underlying functionalities. Then we
make a sequence of modifications to this game, where each modification gives a
new game that is indistinguishable from the preceeding game.

Game 1 is the initial game. Game 2 is a technical step where we gather all
the various honest machines into one big machine, and make various technical
preparations for subsequent games.

In Game 3, random ballots are used during ballot submission, but before
counting, the real ballots are encrypted yet again. The properties of the PKI
functionality and D-privacy ensure that there is no observable change of be-
haviour.

In Game 4, we stop if the decrypted ballots do not match the ballots used to
create the ciphertexts. By D-privacy, this change of behaviour is unobservable.

When we have suitably modified the initial game, we construct an ideal
simulator that runs a copy of the final game. The input to the protocol machines
is simulated, based on messages from the ideal functionality. Certain events in
the game are translated into messages to the ideal functionality.

It will be straight-forward to verify that our machine in the final game is in-
distinguishable from the ideal functionality interacting with the ideal simulator
and the environment. Transitivity of indistinguishability then proves that the
voting protocol realizes the functionality.

Game 1 We begin with a game where an environment and a corrupt decryptor
interacts with the other honest players and the ideal functionalities used by the
protocol.

51



We assume that this game is (R1, δ)-bounded, where R1 is a resource bound
with time bound T1 and at most ν sent by the environment. Note that ν is very
small compared to T1.

Game 2 We gather the honest players into a single machine.
We also insert certain delays into much of the processing in this game. The

delays allow us to later modify processing without changing time usage. This
simplifies the technicalities involved.

Given the time bound T1 for Game 1, this game will have a time bound
T2 = T1 + poly(ν). As will be seen through the rest of the proof, the constants
involved are very small, so T2 ≈ T1. With R2 the same as R1 except that
the time bound is replaced by T2, we have that Game 2 is (R2, δ)-bound. The
following result is immediate.

Lemma 14. Game 2 is (R1, δ, R2, δ, δ)-indistinguishable from Game 1.

Game 3 In this game, we run ballot submission with random ballots. When
the ballot box closes, we “rerun” ballot submission with just the ballots that
should be submitted, in random order. During this “rerun”, we use random
identities. These ciphertexts are then used for the remainder of the protocol
run.

Because the PKI functionality only leaks the message lengths, and the cryp-
tosystem has a fixed-length encoding, the adversary cannot see that ballot
submission was run with random ballots. Likewise, he cannot see that bal-
lot submission was rerun. Furthermore, the sorted order of naked ciphertexts is
independent of the ballot submission order.

It follows that this game is indistinguishable from the previous game.

Game 4 In this game, if the auditor accepts, but the decrypted ballots are
different from the ballots used for the “rerun”, the auditor rejects anyway.

It is straight-forward to use D-integrity to bound the probability of the
exceptional event. This proves the following lemma:

Lemma 15. If the cryptosystem is (T2, N, ntot , L, k, ε)-secure, then Game 4 is
(R2, δ, R2, δ + ε, ε)-indistinguishable from Game 3.

Ideal Simulator Sketch The ideal simulator runs a copy of Game 4, except
that it does not know the real ballots upon ballot submission. However, when
it wants to do the “rerun”, it has received the correct ballots from the ideal
functionality.

Observe that the adversary can only interfere with ballot submission by de-
laying or rejecting messages through the PKI functionality. The ideal simulator
can mimic this effect by delaying its messages to the ideal functionality, or by
sending rejection messages.
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It is easy to check that the ideal functionality interacting with this ideal
simulator is indistinguishable from Game 4, which means that the Proposition 7
has been proven.

5.5.4 The Auditor

Proposition 8. Under the conditions of Theorem 2, there exists a resource
bound R1 such that when the auditor is corrupt, then the internet voting protocol
given in Figure 11 interacting with the ideal functionalities given in Figures 5–9
(R1, δ, R2, δ+ε, δ+ε)-realizes the internet voting functionality given in Figure 4.

Let Ti be the time bound for Ri.
The proof proceeds as follows: We begin with a game where an environment

interacts with the voting protocol and its underlying functionalities. Then we
make a sequence of modifications to this game, where each modification gives a
new game that is indistinguishable from the preceeding game.

Game 1 is the initial game. Game 2 is a technical step where we gather all
the various honest machines into one big machine, and make various technical
preparations for subsequent games.

In Game 3, random ballots are used during ballot submission, but before
counting, the real ballots are encrypted yet again. The properties of the PKI
functionality ensures that there is no observable change of behaviour.

In Game 4, when the ballots are encrypted again, ballots that should not be
counted are replaced by random ballots, and the other ballots are encrypted in
random order. By A-privacy, this change of behaviour is unobservable.

When we have suitably modified the initial game, we construct an ideal
simulator that runs a copy of the final game. The input to the protocol machines
is simulated, based on messages from the ideal functionality. Certain events in
the game are translated into messages to the ideal functionality.

It will be straight-forward to verify that our machine in the final game is in-
distinguishable from the ideal functionality interacting with the ideal simulator
and the environment. Transitivity of indistinguishability then proves that the
voting protocol realizes the functionality.

Game 1 The initial game consists of some environment interacting with the
protocol and its underlying functionalities.

We assume that this game is (R1, δ)-bounded, where R1 is a resource bound
with a time bound T1 and at most ν messages sent by the environment. Note
that ν is very small compared to T1.

Game 2 We gather all the honest players and the functionalities into one
machine.

We also insert certain delays into much of the processing in this game. The
delays allow us to later modify processing without changing time usage. This
simplifies the technicalities involved.
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Given the time bound T1 for Game 1, this game will have a time bound
T2 = T1 + O(ν). As will be seen through the rest of the proof, the constants
involved are very small, so T2 ≈ T1.

With R2 the same as R1 except that the time bound is replaced by T2, we
have that Game 2 is (R2, δ)-bound. The following result is immediate.

Lemma 16. Game 2 is (R1, δ, R2, δ, δ)-indistinguishable from Game 1.

Game 3 In this game, we run the ballot submission phase twice. First once,
allowing the adversary to interact. Then once more, but this time we do not
allow the adversary to interact, and we only consider those ballots that were
stored in the ballot box during the first run.

Because the PKI functionality only leaks the length of messages, and cipher-
texts have a fixed-length encoding, the adversary cannot detect directly that the
ciphertexts transmitted during the first submission phase (that the adversary
can interfere with), are distinct from those it later receives.

It follows that this game is indistinguishable from the previous game.

Game 4 In this game, we use random ballots for the first run of the ballot
submission phase. In the second run, we replace the ballots that we know should
not be counted by random ballots. The ballots that should be counted are used
in random order.

If the environment distinguishes this game from the previous game, we can
easily construct an adversary against A-privacy, which proves the following
lemma.

Lemma 17. If the cryptosystem is (T2, N, ntot , L, k, ε)-secure, with ntot < ν,
then Game 3 is (R2, δ, R2, δ + ε, ε)-indistinguishable from Game 3.

Ideal Simulator Sketch The ideal simulator runs a copy of Game 3, except
that it does not know the real ballots upon ballot submission. However, before
the second submission phase (where the adversary cannot interfere), it knows
which ciphertexts will be decrypted, and it has received the correct ballots from
the ideal functionality.

Observe that the adversary can only interfere with ballot submission by de-
laying or rejecting messages through the PKI functionality. The ideal simulator
can mimic this effect by delaying its messages to the ideal functionality, or by
sending rejection messages.

We can now observe that the ideal functionality interacting with this ideal
simulator is indistinguishable from Game 3 which proves Proposition 8.

6 Concrete Security

We shall consider the exact security of the voting protocol. The election pa-
rameters are based on a full-scale Norwegian election, even though the current
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trials involve less than a tenth of all voters. The security parameters correspond
to those being used in the current trials.

Suppose an election involving N = 221 voters each submitting ballots with
up to k = 27 options chosen from a set of L = 213 options. Suppose the voters
submit not more than ntot = 230 ballots in total. The most interesting numbers
are k and L, since their effect will dominate the others.

The cryptosystem will be run with p ≈ 22048, and the NIZK proofs both use
τ = 256.

We shall assume that the best attack on the hash function is a brute force
collision search, which means that any adversary we know against the hash
function using time at most 290 has success probability at most 2−70. That is,
the hash function is (290, 2−70)-secure.

The usual analysis says that computing discrete logarithms in our field re-
quires about 2112 work. Some discrete logarithm algorithms can trade one bit of
work for two bits of success probability (halving the effort reduces success prob-
ability to one fourth). The number field sieve does not work like that. When the
number of relations is significantly smaller than the number of elements in the
factor bases, the rank of the resulting linear system will with high probability
be too small, and the algorithm will fail.

If we accept that computing discrete logarithms using the number field sieve
is the best approach to solving the DDH and the SGSP problems, it seems
reasonable to assume that the SGSP problem is (290, 2−50)-hard.

Finally, we shall assume that the constant involved in the Schnorr proof
assumption is χ = 210, and that any adversary using time at most 280 is εpok =
2−60.

The secure communication and the phone functionality represent assump-
tions about the capabilities of an intruder, and as such no concrete security
assumptions are natural.

Since 290 < 2128−1, Theorem 1 then says that the cryptosystem is (280, 221, 230, 213, 27, ε′)-
secure, with

ε′ ≤ (k2 + L)ε+ εpok + 2−τ/2+2 +
3ntotT

q
+
N

qL

= (214 + 213)2−50 + 2−60 + 2−126 +
3 · 2110

22047
+

221

22047·213

≈ 3 · 2−37.

Since any adversary that breaks the security properties claimed in Section 5.1
will result in a distinguisher, Theorem 2 can be interpreted as saying that any
adversary limited to the above parameters and time 280 will not break the above
security properties except with probability 3 · 2−35.

Remark. Analysis of the PKI functionality is out of scope for this paper. Also, in
practice, any PKI functionality will rely on TLS, which despite recent progress
is showing considerable resistance to analysis.

From a practical point of view, it seems easier today to compromise a voter’s
computer or the PKI protocols built on top of TLS, rather than TLS. To a
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certain extent, any attacks on the PKI protocol will be subsumed by our rather
generous assumptions on computer compromise built into the PKI protocol.

7 Conclusion

We have defined a novel public key encryption scheme with certain new proper-
ties. This scheme encapsulates the essential cryptographic operations required
for an internet voting protocol that we also define. We show that the security of
the internet voting protocol follows from the security of the encryption scheme
and the properties of certain infrastructure.

The analysis of the encryption scheme requires a novel cryptographic prob-
lem related to the Decision Diffie-Hellman problem, which we have defined and
discussed.

The security of the encryption scheme also relies on the Schnorr proof of
knowledge, but in order to use this proof of knowledge for we have to model
it. We use rather unconventional (and for some, unconvincing) techniques, but
we argue, using among other things evidence from the generic group model,
that these techniques are reasonable in practice. We also discuss briefly two
alternatives to the Schnorr proof of knowledge.

An earlier paper [13] similar to this one was the basis for the internet voting
system used in an internet voing trial during the 2011 municipal elections in
Norway. This paper describes a significantly more efficient protocol that will be
used in a second internet voting trial during the 2013 parliamentary elections.
Compared to the previous paper, the protocol analysis is significantly improved.
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A On the Security of Schnorr Proofs of Knowl-
edge

We have claimed that the Schnorr proof of knowledge protocol given in Figure 2
“morally” realizes the functionality in Figure 3 with a fairly tight time cost. We
substantiate that claim by proving this result for our application in the generic
model. That is, we prove that there exists a “morally equivalent” environment
and an ideal simulator that is indistinguishable from the original environment
interacting with the protocol.

This argument was first given by Schnorr and Jakobsson [27]. We redo the
argument for our cryptosystem and B-privacy.

In the generic group model, players have access to a generic group oracle (in
addition to any other oracles, such as a random hash oracle). The generic group
oracle has a random bijection σ : G → S, where S is a set of group element
representations. The oracle responds to queries ⊥, s ∈ S or s1, s2 ∈ S with
(σ(1), σ(g)), σ(σ−1(s)) and σ(σ−1(s1)σ−1(s2)), where g is some generator.

Game 1 We begin with the usual B-privacy game between a simulator and an
adversary in the generic group model, where at most ntot honest ciphertexts are
generated. Note that the game’s simulator can be considered as a composition of
the Schnorr proof of knowledge protocol and some machineM . The environment
therefore consists of M and the adversary.

Game 2 The first modification we make to the game is to simulate the proof
of knowledge generated by M using Simpok . This change is unobservable.

Game 3 The next modification is to compute the encryptions by choosing x
to be a random element from S, and computing wi = xa1,ivi, i = 1, 2, . . . , k.
This change is unobservable.

Game 4 Next, we add bookkeeping for a second representation of the group
elements as tuples from Zntot+3

q . The identity is represented by the all-zeros
tuple (0, . . . , 0) and the generator is represented by (1, 0, . . . , 0, 1). The element
xi used for the ith encryption is represented by a tuple (0, . . . , 0, 1, 0, . . . , 0, dxi

),
where the 1 is in the i + 1th position and dx randomly chosen. For every new
element s ∈ S seen by the oracle, the bookkeeping records a tuple (a, b, c, d) as
follows:
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• If s is input, it chooses c uniformly at random and records (0, . . . , 0, c, c).

• If s is the inverse of an element with record (a, b1, . . . , bntot
, c, d), it records

(−a,−b1, . . . ,−bntot
,−c,−d).

• If s is the sum of elements with records (a, b1, . . . , bntot , c, d) and (a′, b′1, . . . , b
′
ntot

, c′, d′),
it records (a+ a′, b1 + b′1, . . . , bntot + b′ntot

, c+ c′, d+ d′).

Two tuples are considered equivalent if they have equal fourth coordinates.
We note that any tuple (a, b1, . . . , bntot

, c, d) recorded will satisfy a+
∑ntot

i=1 bidxi
+

c = d.

Game 5 Next, before every group operation, we first compute the correspond-
ing operation on the second representation. We stop the game if we ever find
distinct tuples that are equivalent. It can be shown in the usual manner that if
the number of group oracle queries is small, collisions are unlikely.

Analysis Suppose the protocol accepts a maliciously generated proof of knowl-
edge (β, ν) for some auxillary information aux and element x. We know that

β = H(aux , σ(g), x, σ(g)νxβ).

Since H is a random function, it is extremely unlikely that this equation holds
unless H has been queried at (aux , σ(g), x, α) for some α before β was known,
and

α = gνxβ .

Suppose also that x is represented by (a, b1, . . . , bntot , c, d) and α is repre-
sented by (a′, b′1, . . . , bntot

, c′, d′). We then know that

(ν, 0, 0, ν) = (a′ − aβ, b′1 − b1β, . . . , b′ntot
− bntot

β, c′ − cβ, d′ − dβ).

Since both bi and b′i are chosen before the hash function is queried and β is
determined, we know that except with negligible probability, b′i = bi = 0, i =
1, 2, . . . , ntot and c = c′ = 0. It follows that x is represented by (a, 0, . . . , 0, a).

From this it follows that if we add code to the adversary for keeping track
of the a-values for each group element produced (that is, we do not add the full
bookkeeping introduced in Game 4), then for any accepted proof of knowledge
for x, the discrete logarithm of x can easily be extracted from the bookkeeping.
In this way we can create a new environment that interacts with the functionality
and an ideal simulator that simulates the random hash function.

Since the bookkeeping is only added to the adversary, and M is left un-
changed, this is clearly a “morally equivalent” environment.

The bookkeeping requires storing one element of Zq for each group element
stored. Therefore, if the total number of group elements seen is n, then the
total memory usage is O(n). The cost of storing and retrieving information
is O(log n). If the number of group operations n is polynomial in the size of
the group order q, then O(log n) = O(log log q), though the constant terms
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need not be comparable. Also, for every group operation, the bookkeeping code
must do one addition/negation in Zq, which costs O(log q). If we count the
cost of a group operation as polynomial in log q, a plausible estimate is that the
bookkeeping time cost is at most equal to the original time cost.

We conclude that in the generic model, the Schnorr proof assumption holds
for our specific environment with χ ≤ 2.
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