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Abstract. We present an efficient algorithm that can distinguish the keystream of WPA from that of
a generic instance of RC4 with a packet complexity of O(N2), where N denotes the size of the internal
permutation of RC4. In practice, our distinguisher requires approximately 219 packets; thus making
it the best known distinguisher of WPA to date. This is a significantly improved distinguisher than
the previous WPA distinguisher identified by Sepehrdad, Vaudenay and Vuagnoux in Eurocrypt 2011,
which requires more than 240 packets in practice. The motivation of our distinguisher arises from the
recent observations on WPA by AlFardan, Bernstein, Paterson, Poettering and Schuldt3, and this work
puts forward an example how an experimental bias may lead to an efficient theoretical distinguisher.
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1 Introduction

RC4, also known as Alleged RC4 or ARC4, is the most widely deployed commercial stream cipher, having
applications in network protocols such as SSL, WEP, WPA and in Microsoft Windows, Apple OCE, Secure
SQL, etc. The cipher consists of a Key Scheduling Algorithm (KSA) and a Pseudorandom Generation Algo-
rithm (PRGA). The internal state of RC4 is obtained as a permutation of all 8-bit words, i.e., a permutation
of N = 28 = 256 bytes, and the KSA produces the initial pseudorandom permutation of RC4 by scrambling
an identity permutation using the secret key k. The secret key k of RC4 is of length typically between 5 to
32 bytes, which generates the expanded key K of length N = 256 bytes by simple repetition. If the length of
the secret key k is l bytes (typically 5 ≤ l ≤ 32), then the expanded key K is constructed as K[i] = k[i mod l]
for 0 ≤ i ≤ N − 1. The initial permutation produced by the KSA acts as an input to the next procedure
PRGA that generates the keystream. The RC4 algorithms KSA and PRGA are depicted in Figure 1.
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Fig. 1. Description of RC4 stream cipher.

For round r = 1, 2, . . . of RC4 PRGA, we denote the indices by ir, jr, the keystream output byte by Zr,
the output byte-extraction index as tr = Sr[ir] + Sr[jr], and the permutations before and after the swap by
Sr−1 and Sr respectively. After r rounds of KSA, we denote the state variables by adding a superscript K to
each variable. All additions (subtractions) in context of RC4 are to be considered as ‘addition (subtraction)
modulo N ’, and all equalities in context of RC4 are to be considered as ‘congruent modulo N ’.

3 Note that the results by AlFardan, Bernstein, Paterson, Poettering and Schuldt [1] have identified through exper-
iments several biases in the initial keystream bytes of RC4 in TLS mode of operation (with N = 256 and 16-byte
keys). Almost all of these TLS-related unexplored biases, except for the one at Z1 = 129, have been proved in the
Ph.D thesis of Sen Gupta [10] (part of a joint work [9] with Sarkar, Paul and Maitra), submitted on 12 July 2013.



1.1 Description of WPA

IEEE 802.11 standard protocol for WiFi security used to be Wired Equivalent Privacy (WEP), which has
now been replaced by Wi-Fi Protected Access (WPA). Both WEP and WPA use RC4 as their core module.
In case of WEP, the protocol uses RC4 with a pre-shared key appended to a public initialization vector
(nonce) for self-synchronization. Using the technique of related key attacks on RC4, this scheme has been
broken through passive full-key recovery attacks, and thus WEP is considered insecure in practice.

To mitigate this problem, WEP has been replaced by WPA. The goal of WPA was to resolve all security
threats of WEP. However, the original WEP protocol was extensively adopted by the industry, and it was
already implemented in several commercial products, both in software and hardware. This rendered a design
of WPA from scratch quite impractical and costly. The work-around was to fix the full-key recovery problems
of WEP using a patch, as minimal as possible, on top of the original protocol.

The WPA protocol can be thought of as a wrapper on top of WEP to provide good key mixing features.
WPA introduces a key hashing module in the original WEP design to defend against the Fluhrer, Mantin
and Shamir attack [3]. It also includes a message integrity feature and a key management scheme to avoid
key reuse in the protocol.

TKIP key schedule. WPA uses a 16-byte secret key for RC4 PRNG, the core encryption module of the
system. This RC4 secret key is generated through a key schedule procedure known as TKIP [4], which takes
as input a 128-bit temporal key TK (shared between the parties), transmitter’s 48-bit MAC address TA and
a 48-bit initialization vector IV, and passes those through two phases to obtain the final RC4 secret key.

In Phase 1, a 80-bit key P1K is generated from TK, TA and IV32, the upper 32 bits of the IV, using an
unbalanced Feistel cipher with 80-bit block and 128-bit key structure. In Phase 2, the 128-bit RC4KEY is
generated from TK, P1K (from Phase 1) and IV16, the lower 16 bits of the IV. In this phase, TK and P1K
are mixed (using a temporary key PPK) to construct the last 104 bits (13 bytes) of the RC4KEY, and the
first 24 bits (3 bytes) of the RC4KEY are constructed directly from the IV16, as follows [4, Annex H.1].

RC4KEY[0] = Hi8(IV16); /* RC4KEY[0..2] is the WEP IV */

RC4KEY[1] = (Hi8(IV16) | 0x20) & 0x7F; /* Help avoid FMS weak keys */

RC4KEY[2] = Lo8(IV16);

In the above expression, Hi8(IV16) and Lo8(IV16) indicate the top and lower bytes of IV16, respectively.
RC4KEY[0] and RC4KEY[2] are simply two parts of the counter IV16, while RC4KEY[1] is purposefully
constructed to avoid the known WEP attack by Fluhrer, Mantin and Shamir [3]. Once the 128-byte (16-
byte) RC4KEY is prepared, it is directly used for encryption in the RC4 PRNG core of the protocol.

1.2 Distinguishing attack on WPA

Note that the best distinguisher of RC4 to date is the one based on the second-byte bias (for event Z2 = 0),
identified and proved by Mantin and Shamir [7] in 2001, which requires roughly N = 28 bytes to distinguish
the keystream generated by RC4 from a truly random sequence of bytes. This bias is effective even if the secret
key of RC4 is truly random, and thus it prevails in WPA as well. This produces a natural O(N) distinguisher
of WPA keystream from truly random sequence of bytes. However, the second-byte distinguisher of [7] fails
to distinguish between WPA and a generic RC4-based protocol, if the bias is prominent in both cases.

We describe a ‘distinguisher of WPA’ as an algorithm that can effectively distinguish the keystream
of WPA from the keystream of a generic RC4-based protocol (definition similar to [12, Section 7.3]).

Although various security analyses of WPA are available in the literature, mostly targeted towards key-
recovery of WPA using vulnerabilities of TKIP key schedule, the first distinguisher of WPA was proposed
quite recently (during 2011-12) by Sepehrdad, Vaudenay and Vuagnoux [12, 13]. The distinguisher of [13],
first presented in Eurocrypt 2011, achieves a 0.5 probability of success in distinguishing WPA with time
complexity 243 and packet complexity 240. Later in [12], the distinguisher was improved to achieve 0.5
probability of success in distinguishing WPA with time complexity 242 and packet complexity 242.



1.3 Contribution of this paper

We present an efficient algorithm that can distinguish the keystream of WPA from that of a generic in-
stance of RC4 with a packet complexity of O(N2). In practice, our distinguisher requires approximately
219 packets; thus making it the best known distinguisher of WPA to date. We clearly improve the previous
WPA distinguisher identified by Sepehrdad, Vaudenay and Vuagnoux in Eurocrypt 2011 [13], which requires
approximately 240 packets in practice, and its revised version in [12] that requires 242 packets to reduce the
time complexity. The motivation of our distinguisher arises from the recent experimental observations on
WPA by AlFardan, Bernstein, Paterson, Poettering and Schuldt [1], and this work puts forward an example
how an experimental bias may lead to an efficient theoretical distinguisher in case of RC4-based protocols.

2 Biases in WPA resulting from TKIP

Equation (1) summarizes the construction of the first three bytes of the RC4 secret key in WPA/TKIP.

K[0] = (IV16 >> 8) & 0xFF K[1] = ((IV16 >> 8) | 0x20) & 0x7F K[2] = IV16 & 0xFF (1)

Note that only a 16-bit (2-byte) IV16 is expanded to the initial 3 bytes of the key, and the first two bytes
K[0] and K[1] have quite a few bits in common. Specifically, the expansion of IV16 is as shown in Fig. 2,
and one may note that 6 bits are shared by K[0] and K[1], apart from the two fixed bits in K[1]. The third
key-byte, K[2] however, is independent of the first two bytes of the key. Thus, TKIP can generate only 216,
and not 224, distinct values of the first 3 bytes of the RC4 secret key – a loss in entropy that we believe may
result into some non-random behavior in the initial phases of the cipher.

Hi8(IV16) Lo8(IV16)

0 1

K[0] K[1] K[2]

Fig. 2. Expansion of WPA IV16 into the first three bytes of the RC4 secret key.

2.1 Bias in K[0] + K[1] for WPA/TKIP

AsK[0] andK[1] share 6 bits from the common source Hi8(IV16), we first take a look at their sum,K[0]+K[1],
for potential non-randomness. We notice the following pattern in this direction.

1. The value of K[0] +K[1] must always be even, as K[0] and K[1] have the same LSB.
2. The value of K[1] can never exceed 127 as the MSB is 0. The value can not attain all possible numbers

below 127 either, as the 6-th bit (from LSB side) is fixed at 1.
3. Value of K[1] and hence K[0] +K[1] strictly depend on the value and range of K[0].

The above restrictions result in corresponding conditions on the range of K[1] and K[0]+K[1], depending
on the range of K[0]. The complete set of conditions on the respective ranges is shown in Table 1, which
results in a consolidated probability distribution of K[0] +K[1], as follows.

Theorem 1. The probability distribution of the sum of first two bytes of the RC4 key generated by TKIP
key schedule in WPA, i.e., the distribution of Pr(K[0] +K[1] = v) for v = 0, 1, . . . , 255, is as in Table 1:

Pr(K[0] +K[1] = v) = 0 if v is odd;

Pr(K[0] +K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159];

Pr(K[0] +K[1] = v) = 2/256 if v is even and v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255];

Pr(K[0] +K[1] = v) = 4/256 if v is even and v ∈ [64, 95] ∪ [192, 223].



Proof. The value of K[0] + K[1] is always even, as discussed earlier. The value and range of K[1], and
hence that of K[0] +K[1], depends on the range of K[0]; shown in Table 1. The probability distribution of
K[0] +K[1] may be calculated directly from this dependence pattern; also shown in Table 1. One may check

(128× 0)︸ ︷︷ ︸
odd values

+

(
16× 0 + 16× 2

256
+ 16× 4

256
+ 16× 2

256
+ 16× 0 + 16× 2

256
+ 16× 4

256
+ 16× 2

256

)
= 1,

to validate the consistency of the probability distribution of K[0] +K[1], as depicted in Table 1. ut

Table 1. Probability distribution of K[0] + K[1] resulting due to TKIP key scheduling in WPA.

K[0] K[1] (depends on K[0]) K[0] + K[1] (only even) K[0] + K[1] Probability

Range Value Range Value Range (only even) (0 for odd)

0 – 31 K[0] + 32 32 – 63 2K[0] + 32 32 – 95 0 – 31 0

32 – 63 K[0] 32 – 63 2K[0] 64 – 127 32 – 63 2/256

64 – 95 K[0] + 32 96 – 127 2K[0] + 32 160 – 223 64 – 95 4/256

96 – 127 K[0] 96 – 127 2K[0] 192 – 255 96 – 127 2/256

128 – 159 K[0]− 96 32 – 63 2K[0]− 96 160 – 233 128 – 159 0

160 – 191 K[0]− 128 32 – 63 2K[0]− 128 192 – 255 160 – 191 2/256

192 – 223 K[0]− 96 96 – 127 2K[0]− 96 32 – 95 192 – 223 4/256

224 – 255 K[0]− 128 96 – 127 2K[0]− 128 64 – 127 224 – 255 2/256

2.2 Bias in RC4 PRGA initial permutation S0 for WPA/TKIP

In 2008, Maitra and Paul [5] proved the famous Roos’ biases [8], which states that the initial bytes of the
permutation S0, right after the completion of RC4 KSA, are biased towards certain combination of secret
key bytes. We get S0[0] biased towards K[0], which is uniformly distributed, identical to the lower half of
the counter IV16. For S0[1] however, we get the following result.

Theorem 2. In WPA/TKIP, the probability distribution of the second location of the RC4 permutation S0

generated after KSA, i.e., the distribution of Pr(S0[1] = v) for v = 0, 1, . . . , 255, is given as

Pr(S0[1] = v) = α · Pr(K[0] +K[1] = v − 1) + (1− α) · (1/N),

where α = 1
N +

(
1− 1

N

)N+2
, and the term Pr(K[0] +K[1] = v − 1) can be computed using Theorem 1.

Proof. From the proof of Roos’ biases in [5], the initial permutation byte S0[y] of RC4 is biased towards
fy =

∑y
x=0K[x]+y(y+1)/2. In particular, for y = 1, we get S0[1] biased towards K[0]+K[1]+1, as follows:

Pr(S0[1] = K[0] +K[1] + 1) ≈ 1

N
+

(
1− 1

N

)N+2

= α, say.

Thus, the probability distribution of S0[1] in case of WPA/TKIP is given as

Pr(S0[1] = v) = Pr(S0[1] = v ∧ S0[1] = K[0] +K[1] + 1) + Pr(S0[1] = v ∧ S0[1] 6= K[0] +K[1] + 1)

= Pr(S0[1] = K[0] +K[1] + 1) · Pr(K[0] +K[1] + 1 = v)

+ Pr(S0[1] 6= K[0] +K[1] + 1) · Pr(S0[1] = v)

≈ α · Pr(K[0] +K[1] = v − 1) + (1− α) · (1/N),

where we have assumed that S0[1] = K[0] + K[1] + 1 and K[0] + K[1] + 1 = v are mutually independent,
and that S0[1] = v occurs with random probability of association 1/N in case S0[1] 6= K[0] +K[1] + 1. ut



While computing for N = 256, as in practical WPA and RC4, α ≈ 0.368 in Theorem 2, and we have:

Pr(S0[1] = v) = 0.368× Pr(K[0] +K[1] = v − 1) + 0.00246875.

The values of Pr(K[0] +K[1] = v − 1) in case of WPA/TKIP may be taken from Theorem 1, while in case
of generic RC4, the distribution K[0] + K[1] = v − 1 may be assumed to be uniform as the key bytes K[0]
and K[1] are chosen at random. This produces two different distributions of S0[1], one for generic RC4, and
another for WPA/TKIP, as shown in Fig. 3.

Fig. 3. Theoretical plot for Pr(S0[1] = v) for RC4 and WPA, where v = 0, . . . , 255.

2.3 Bias in the first keystream byte Z1 of WPA/TKIP

Recall that in the first round of RC4 PRGA, the initial permutation entry S0[1] is crucial; it serves as
j1 = S0[i1] = S0[1], and plays an important role in determining the first keystream byte

Z1 = S1[S1[i1] + S1[j1]] = S1[S0[j1] + S0[i1]] = S1[S0[S0[1]] + S0[1]].

In fact, we know that S0[1] is a vital component in the closed-form expression for Z1, as proved by Sen
Gupta, Maitra, Paul and Sarkar [11]. We reproduce the expression for Z1 from [11, Theorem 13] as follows.

Proposition 1 (from [11]). The probability distribution of the first output byte of RC4 keystream is as
follows, where v ∈ {0, . . . , N−1}, Lv = {0, 1, . . . , N−1}\{1, v} and Tv,X = {0, 1, . . . , N−1}\{0, X, 1−X, v}.

Pr(Z1 = v) = Qv +
∑

X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y ] = v),

with Qv =


Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;
Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;
Pr(S0[1] = 1 ∧ S0[2] = v) + Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v), otherwise.



We consider two cases while computing the numeric values of Pr(Z1 = v). If the initial permutation
S0 of RC4 PRGA is constructed from the regular KSA with random key, the probabilities Pr(S0[u] = v)
closely follow the distribution proved by Mantin in [6, Theorem 6.2.1]. However, if the initial permutation
S0 originates from RC4 KSA using TKIP-generated keys, as in the case with WPA, then Pr(S0[1] = v) must
be computed using Theorem 2, including its idiosyncratic biases for WPA/TKIP shown in Fig. 3.

We compute the exact probabilities Pr(Z1 = v) for generic RC4 and WPA/TKIP using the estimation
strategy of joint probabilities proposed in [11], where the distribution of S0[1] = v is considered independently
in each case. This results in two different distributions of Z1; one for generic RC4 and the other for RC4
used with TKIP, as in WPA. Figure 4 displays the two distributions, clearly pointing out the bias resulting
in the PRGA as a result of TKIP key schedule.

Fig. 4. Theoretical plot for Pr(Z1 = v) for RC4 and WPA, where v = 0, . . . , 255.

Note that the patterns of these two theoretical distributions closely match the recent experimental ob-
servations of AlFardan, Bernstein, Paterson, Poettering and Schuldt [1] (Fig. 10(a) in the full version of the
paper, available online). The only difference is that there exist keylength dependent spikes at Z1 = 129 for
the observations in [1], as the experiments were done using 16-byte keys, whereas in our theoretical analysis,
we disregard the keylength dependence altogether, and prove a general distribution of Z1.

In fact, if WPA had employed RC4 with full-length 256-byte secret keys, where the first three bytes of the
key K[0],K[1],K[2] were constructed from the IV using TKIP key schedule principle (as in Equation (1)),
the pattern of the bias in Z1 for WPA/TKIP would have been the same. We have independently verified our
theoretical results through experiments involving secret keys of various lengths.

2.4 Bias towards zero in keystream bytes Z3, . . . , Z255 of WPA/TKIP

We extend the effect of the bias in S0 to the biases in the initial keystream bytes towards zero. Sen Gupta,
Maitra, Paul and Sarkar [11] proved the biases of the initial keystream bytes Z3, . . . , Z255 towards zero, and
we reproduce their result from [11, Theorem 14] in Proposition 2, as follows.



Proposition 2 (from [11]). For PRGA rounds 3 ≤ r ≤ N − 1, the probability that Zr = 0 is given by:

Pr(Zr = 0) ≈ 1

N
+

cr
N2

, where cr =


N

N−1 (N · Pr(Sr−1[r] = r)− 1)− N−2
N−1 , for r = 3;

N
N−1 (N · Pr(Sr−1[r] = r)− 1) , otherwise.

In [11], the computation of Pr(Zr = 0) depended on the computation of Pr(Sr−1[r] = r), which in turn
required the distribution of the initial permutations S0 and S1 of RC4 PRGA (refer to [11, Corollary 2]
and [11, Lemma 1] for details). We consider two cases – one in which the initial permutation S0 is generated
by generic RC4 KSA using random keys, and the other where S0 is biased (as discussed earlier) for using
RC4 with keys originating from TKIP. These two cases produce two different distributions of Pr(Zr = 0) for
r = 3, . . . , 255, as depicted in Fig. 5. The patterns closely match the experimental observations of AlFardan,
Bernstein, Paterson, Poettering and Schuldt [1] (Fig. 11 in the full version of the paper, available online).

Fig. 5. Theoretical plot for Pr(Zr = 0) for RC4 and WPA, where r = 3, . . . , 255.

3 Distinguishers of WPA

Our target is to use the aforesaid biases of WPA to build a distinguisher that can efficiently distinguish WPA
from generic RC4. The striking difference between WPA and RC4 have already been displayed in Figures 4
and 5, in terms of the distributions of (Z1 = v) and (Zr = 0), respectively. We may exploit either case
towards the target distinguisher.

3.1 Distinguishers based on individual values of Z1

From Fig. 4, it is evident that the probabilities Pr(Z1 = v) for WPA and RC4 differ for almost all v. Thus,
any event of type (Z1 = v), for a fixed v, will produce a distinguisher of WPA. For such a distinguisher, the
complexity is estimated by [7, Theorem 2], restated as follows.

Proposition 3 (from [7]). Let X,Y be distributions, and suppose that the event e happens in X with
probability p and in Y with probability p(1+q). Then for small p and q, O( 1

pq2 ) samples suffice to distinguish
X from Y with a constant probability of success.



We assume the distribution of Z1 = v in RC4 as our base distribution X, and the distribution of Z1 = v
in WPA as the distribution Y . From our theoretical results on the distribution of Z1 in WPA and RC4,
as proved in Section 2.3, we estimate the distinguisher complexity depending on each event (Z1 = v) for
v = 0, 1, . . . , 255, and find the following.

Best complexity for a distinguisher based on the event (Z1 = v) that can distinguish between WPA
and RC4 with more than 70% probability of success is approximately 223, applicable for v = 34.

In addition, we obtain the following comprehensive estimate on the distinguisher complexities:

– Complexity for a distinguisher based on (Z1 = v) is less than 224 (i.e., less than N3) for precisely 16
values of v; when v ∈ {34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64}.

– Complexity for a distinguisher based on (Z1 = v) is between 224 and 232 (i.e., between N3 and N4) for
precisely 222 values of v.

– Complexity for a distinguisher based on (Z1 = v) is between 232 and 240 (i.e., betweenN4 andN5) for pre-
cisely 16 values of v; when v ∈ {148, 232, 233, 234, 235, 236, 237, 238, 241, 242, 243, 244, 245, 246, 247, 248}.

– Complexity for a distinguisher based on (Z1 = v) is more than 240 (i.e., more than N5) for precisely 2
values of v; when v ∈ {239, 240}.

3.2 Distinguishers based on sets of values of Z1

Next, we attempt at combining the values of Z1 in suitable subsets of {0, 1, . . . , 255} to construct a better
distinguisher than the ones based on individual values (Z1 = v). The structure of the event considered for
distinguishing WPA from RC4 in this case is “eS : (Z1 ∈ S) where S ⊆ {0, 1, . . . , 255}”.

In this case however, the subset S may be quite large, and thus the probability Pr(eS) in either distribution
may not be small. In other words, the base probability p is not essentially small in this case, and thus the
estimates for distinguisher complexity from [7, Theorem 2] may not work directly. To circumvent this issue,
we propose the following result for estimating the complexity of a distinguisher for general p and small q.

Lemma 1. Let X,Y be distributions, and suppose that the event e happens in X with probability p and in
Y with probability p(1 + q). Then for small q-value, O( 1−p

pq2 ) samples suffice to distinguish X from Y with a
constant probability of success.

Proof. Similar to the proof for [7, Theorem 2], with approximations on p, q reconsidered for general p. ut

Now that we have a decent estimate for the distinguisher complexity, we may define a suitable set S for
the target distinguishing event. As most of the ‘good’ (with complexity less than 224) distinguishers based
on individual values of Z1 are applicable for even values of the first byte, we assume that the distributions
of WPA and RC4 differ the most in cases when Z1 takes an even value. Based on this intuition, we pick the
set S as the set of all even values {0, 2, 4, . . . , 254} within the range; thus defining the distinguishing event:

eS : (Z1 = 2k for k = 0, 1, . . . , 127).

Complexity of the distinguisher. We assume the distribution of Z1 ∈ S in RC4 as our base distribution
X, and the distribution of Z1 ∈ S in WPA as the distribution Y . From our theoretical results on the
distribution of Z1 in WPA and RC4, as proved in Section 2.3, we estimate the following probabilities:

p = Pr(eS) in RC4 ≈ 0.499995, p(1 + q) = Pr(eS) in WPA ≈ 0.500713 ⇒ q ≈ 0.001437 ≈ 0.37/N.

The complexity of the distinguisher is estimated as O( 1−p
pq2 ), i.e., O(N2), as per Lemma 1, where the constant

depends on the desired probability of success.

For N = 256, as in the case with practical WPA, we require an estimated 8N2 = 219 keystream packets
to distinguish WPA from a generic instance of RC4 with more than 70% probability of success.

This is clearly the best distinguisher of WPA to date, improving the previous distinguishers of packet
complexity more than 240, identified by Sepehrdad, Vaudenay and Vuagnoux [12,13].



4 Conclusion

In this paper, we have presented an efficient algorithm that can distinguish the keystream of WPA from
that of a generic instance of RC4 with a packet complexity of O(N2). In practice, our distinguisher requires
approximately 219 packets; thus making it the best known distinguisher of WPA to date. We clearly improve
the previous WPA distinguishers identified by Sepehrdad, Vaudenay and Vuagnoux [12, 13], which require
more than 240 packets in practice. We have extensively experimented with our proposed distinguisher to
verify its claimed packet complexity and probability of success.

The motivation of our distinguisher arises from the recent experimental observations on WPA by Al-
Fardan, Bernstein, Paterson, Poettering and Schuldt [1], and this work puts forward an example how an
experimental bias may lead to an efficient theoretical distinguisher in case of RC4-based protocols. WPA has
been a time-tested protocol with wide-spread deployment in network security applications, and no simple
distinguisher was ever mounted on the system. The observations on WPA biases in [1] have provided a timely
opportunity to construct a simple and effective algorithm that can distinguish between WPA/TKIP and a
generic instance of RC4 with a considerably low complexity.

We believe that the observations of [1] may give rise to more such results on WPA/TKIP, especially in the
keylength dependent cases. For example, the single-valued distribution of the first byte Z1 = 129 shows spikes
in two opposite directions in WPA and generic RC4. The order of this difference in the bias is approximately
4/N2, which may potentially generate a WPA distinguisher of complexity N3/16, i.e., approximately 220 for
N = 256. Proof for the keylength dependent bias in Z1 = 129 will be interesting in this direction.
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