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Abstract

Quantum Readout PUFs (QR-PUFs) have been proposed as a technique for remote au-
thentication of objects. The security is based on basic quantum information theoretic prin-
ciples and the assumption that the adversary cannot efficiently implement arbitrary unitary
transformations. We analyze the security of QR-PUF schemes in the case where each chal-
lenge consists of precisely n quanta and the dimension K of the Hilbert space is larger than
n2. We consider a class of attacks where the adversary first tries to learn as much as possible
about the challenge and then bases his response on his estimate of the challenge. For this
class of attacks we derive an upper bound on the adversary’s success probability as a function
of K and n.

1 Introduction

1.1 Physical Unclonable Functions

Authentication is usually based on either “something that you know” or “something that you
possess”. In the second case it is desirable to work with tokens that are difficult to clone, even
for the manufacturer of the token. With the advent of Physical Unclonable Functions (PUFs),
physical systems have been developed which satisfy strong uniqueness and unclonability properties,
e.g. phenomena such as laser speckle based on multiple scattering. A PUF is a complex piece
of material whose structure is difficult to reproduce accurately because its manufacture contains
uncontrollable steps [1, 2, 3, 4, 5, 6, 7, 8, 9]. A stimulus can be applied to the PUF (‘challenge’),
leading to a ‘response’ that depends in a complex way on the challenge and the precise details of
the PUF’s structure. The combination of a challenge and the corresponding response is called a
Challenge-Response Pair (CRP).
An example of a physical system satisfying the above requirements is the so-called Optical PUF:
a three-dimensional diffusive structure containing randomly positioned optical scatterers. When
an Optical PUF is illuminated by a laser, the transmitted and reflected light has a random-
looking pattern of dark and bright spots known as speckle. The characteristics of the laser beam
(e.g. wavelength, angle, focus) constitute the challenge; the speckle pattern is the response. The
response depends strongly on the challenge and on the exact positions of the scatterers. Optical
PUFs support a large number of independent CRPs [10, 11, 12].

1.2 Quantum readout of PUFs

A PUF-based authentication or anti-counterfeiting system typically has two phases: enrollment
and verification. In the enrollment phase the Verifier applies a limited number of random challenges
to a PUF and records the CRPs in a database. Later, in the verification phase, the Verifier has
to decide whether a PUF is authentic. He looks up the CRPs listed for that given PUF, and
by challenging the PUF anew verifies if it produces the listed responses. The procedure sketched
above is extremely reliable when the Verifier has full physical control over the PUF. There are
many cases, however, where the PUF owner is unwilling or unable to hand over his PUF. In
such situations the Verifier must do verification without having full control. This is referred to
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as “hands-off” verification. Achieving a high level of security is far more difficult in this setting,
since there is a serious danger of emulation (‘spoofing’).
In practical situations, the number of supported independent CRPs is ‘small’ in the sense that
anyone holding the PUF can, in a feasible amount of time, extract enough information from the
PUF to be able to compute (or look up) the response to any future PUF challenge without having
to use the PUF any more. Thus we must assume that a PUF can be emulated once the adversary
has had a chance to examine it. This also holds for Optical PUFs, though the emulation may
require quite a large database of CRPs. In general, the stricter the robustness requirements (i.e.
reproducibility of responses), the smaller the challenge space and hence the more serious the danger
of emulation.
The usual way to retain control in the “hands-off” setting is to have a trusted measurement device
in the field or extra sensors for detecting specific kinds of spoofing. This approach has a drawback:
The extra anti-spoofing hardware adds cost, while it is difficult to ascertain how secure the system
actually is. For instance, remote trusted devices need to be tamper-proofed, but hardware attacks
improve over time. Similarly, new techniques are continuously developed to spoof sensors. Thus,
it is an arms race situation.
An elegant way out of this expensive arms race was proposed in [13]: Quantum Readout (QR)
of PUFs. It makes spoofing fundamentally difficult by making use of basic quantum information
theoretic principles. The main idea is to have PUF challenges that are quantum states, so that the
adversary cannot extract all information from them; if he does not know the challenge, he does
not know what to emulate. This approach is fundamentally secure as long as the adversary does
not have the means to efficiently1 apply arbitrary unitary transformations to the quantum state.
More specifically, the scheme works as follows. The PUF interacts with the challenge state via
unitary evolution and produces a response that is also a quantum state. The Verifier, who knows
from the enrollment phase what the response state is supposed to be, is able to verify if the response
is correct. All this can be done without a trusted remote device, because of the inherent tamper-
resistant properties of single quanta. The No Cloning Theorem [16, 17] ensures that an unknown
single quantum state cannot be copied onto another particle. One of the implications is that
the state of an unknown quantum challenge cannot be fully determined. By repeatedly sending
random challenges, the verifier ensures that the probability of successful spoofing is brought down
exponentially. Nice properties of the QR-PUF technique are that the challenge space does not
have to be large, and that the scheme is still secure if the list of responses is publicly known.
Quantum Readout of PUFs was first experimentally realized by Goorden et al. [15] in an Op-
tical PUF system. The challenge was implemented as a weak coherent light pulse with average
photon number n and a randomly chosen wavefront that has K degrees of freedom, with K � n.
The scattering in the PUF scrambles the wavefront. The response is the scrambled light pulse.
Verification was performed using a spatial light modulator and a photon counter. The security
is based on the fact that performing measurements on n photons reveals too little information to
characterize the K-mode challenge state.

1.3 Security of Quantum-Readout PUFs: previous work

The existing security analyses of QR-PUFs assume that the adversary does not have a way to
perform arbitrary unitary operations. The analyses are restricted to so-called challenge estimation
attacks, in which the adversary first does a measurement on the challenge, from the outcome
calculates an estimate of the challenge and finally produces a response quantum state consistent
with the estimated challenge. We will also work in this context.
In [14] it was proven for the case of single-quantum challenges that the per-round false accept
probability cannot exceed 2/(K + 1), where K is the dimension of the Hilbert space. Hence,
QR-OUFs can be secure even if the dimension of the Hilbert space is low, e.g. K = 2.
Ref. [18] analyzed the case of Optical QR-PUFs [15] with K modes and average photon number n.
The adversary has (on average) n quanta to examine, which gives him more information than in

1By ‘efficient’ we mean without particle losses, fast, and at a reasonable cost. At the moment, and in the
foreseeable future, there is no lossless way to apply arbitrary unitary operations in the optical PUF system of [15].
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the n = 1 case. A specific type of measurement was considered known as quadrature, which is the
most informative kind of measurement on electromagnetic fields. It was shown that a challenge
estimation attack in this context cannot achieve a per-quantum false accept probability better
than approximately n/(K + n). Thus, security is achievable as long as n is not large compared to
K.
The previous work does not provide a result for the case of more than one quantum in the challenge
(n > 1) combined with arbitrary measurements by the adversary.

1.4 Contributions and outline

We analyze the security of QR-PUFs against challenge-estimation attacks. We consider the case
where the challenge comprises exactly n quanta, without making assumptions about the measure-
ments allowed to the adversary.

• Our main result is an upper bound on the adversary’s per-quantum accept probability.
For n �

√
K the result is approximately (6n − 4)/K. A bound on his per-round accept

probability and the overall false accept probability are straightforwardly obtained.

• For n = 1 our bound reduces to the known result 2/(K + 1), but the proof is much more
elegant than the proof in [14].

In Section 2 we detail the attacker model and briefly review Mutually Unbiased Bases (MUBs).
MUBs are important to us since they represent a set of most informative measurements for the
adversary. We also discuss Gauss sums, which arise because of the use of MUBs, and generalized
Beta functions, which pop up when one averages over the challenge space. In Section 3 we derive
our bound. Section 4 contains a short discussion.

2 Preliminaries

2.1 Notation

Quantum states are represented as vectors in a Hilbert space. We adopt the usual Dirac ‘bra’ and
‘ket’ notation; the ket vector |ψ〉 stands for a quantum state labelled by some description ψ which
summarizes all the knowable information about the state. The Hermitian conjugate is denoted
as the bra vector 〈ψ|. The notation for the inner product between two states is 〈ψ1|ψ2〉. We will
consider only normalized states, i.e. satisfying 〈ψ|ψ〉 = 1. Real-valued observables are represented
by Hermitian operators acting on the Hilbert space. The expectation value of an operator A, given
state |ψ〉, is denoted as 〈ψ|A|ψ〉, or in shorthand notation 〈A〉 when it is clear from the context
what the state is. The Hermitian conjugate of A is denoted as A†.
We will consider a K-dimensional Hilbert space, with K � 1. The set {0, . . . ,K − 1} will be
abbreviated as K; the set {1, . . . , n} as [n]. We reserve the symbol δ for the Kronecker delta (as
in δab) and for the Dirac delta function. The standard basis states are written as |z〉, with z ∈ K.
We define ω = exp(i2π/K).
Vectors that are not quantum states will be written in boldface. We define 1K as the K-component
vector (1, · · · , 1).
Furthermore, we use multi-index notation: xu stands for the product

∏
j x

uj
j .

The properties of the PUF are summarized as a unitary K ×K transition matrix R. The PUF
response to a challenge |ψ〉 is R|ψ〉.

2.2 Attacker model

We consider the following attacker model. The verifier prepares a challenge consisting of exactly
n quanta (with n < K) that are all in the same state |ψ〉. He is allowed to choose any |ψ〉 in the
Hilbert space. He sends the challenge to the PUF holder. There the challenge interacts with the
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PUF, resulting in a response state. The challenge state can be written as |Ψ〉 = ⊗nα=1|ψ〉α, and
the expected response state is |Ω〉 = ⊗nα=1|ω〉α with |ω〉 = R|ψ〉. The response state is returned
to the verifier.
For each quantum independently the verifier checks the validity of the response. He does this
by projecting each response quantum onto |ω〉 (with measurement outcome 1 in the case of a
match and 0 otherwise). We assume that he has the technological means to measure the projec-
tion operator |ω〉〈ω| for arbitrary |ω〉. Ideally, the correct response yields n matches. However,
imperfections in the equipment may cause some noise. (Noise can occur at any stage: challenge
preparation, state transport, interaction with the PUF, and measurement of |ω〉〈ω|.) In order to
accommodate for such noise, the verifier tolerates a fraction εnoise of all projection outcomes to
be zero.
We investigate the following attack. The attacker fully knows R but does not possess the PUF.
Furthermore, he does not possess a quantum computer or, equivalently, a device that can perform
arbitrary unitary operations in a lossless way. The attacker performs a measurement on each of
the n quanta separately, in order to estimate |ψ〉 as accurately as he can. He chooses n Hermitian
operators B(1), · · · , B(n). The set of operators is denoted as B = {B(α)}nα=1. Each operator B(α)

has its own orthonormal eigenbasis of eigenvectors |bαj〉 with j ∈ K. Without loss of generality we
scale the eigenvalues such that B(α)|bαj〉 = j|bαj〉; this is allowed, since we are only interested in
the eigenvectors. The attacker performs measurement B(α) on the α’th quantum in the challenge.
The outcome of measurement α is denoted as kα ∈ K, and we define a vector k = (kα)α∈[n]. The
outcome state of measurement α is |bαkα〉. Based on B and k, the attacker computes an estimate of
|ψ〉. We denote this estimate as |ψ̂k〉. The best estimate (i.e. the one with the highest probability
of being correct, conditioned on the observed k) is given by the average of the outcome vectors
|bαkα〉, where each of these vectors is given equal weight. We define

|ψ̂k〉 ∝
∑
α∈[n]

|bαkα〉, (1)

with 〈ψ̂k|ψ̂k〉 = 1. The normalization constant for |ψ̂k〉 is denoted as Nk.

|ψ̂k〉 =
∑
α |bαkα〉√∑

αβ〈bαkα |bβkβ 〉
=

1√
Nk

∑
α

|bαkα〉. (2)

The attacker computes |ω̂k〉 = R|ψ̂k〉, prepares this state n times and sends ⊗nα=1|ω̂k〉 back to the
verifier.
We say that the attack has succeeded if, in a succession of challenge-response protocols, the success
rate exceeds 1− εnoise.

2.3 Mutually unbiased operators

In the above described setting with n quanta, it is known[19, 20] that a set of n mutually unbiased
operators optimally extracts information from the state |ψ〉. We briefly review the main properties
of mutually unbiased bases.

Definition 1 (Mutually unbiased) Let {Mi}si=1 be a set of Hermitian operators on a K-dimensional
Hilbert space. Let the orthonormal basis associated with Mi be denoted as |i, a〉, with a ∈ K. The
set of operators is called mutually unbiased if∣∣〈i, a|j, b〉∣∣2 =

1
K

∀a,b∈K, i,j∈[s], i 6=j . (3)

In other words, the ‘mutually unbiased’ property means: if a system is in an eigenstate of Mi, and
a measurement is done of some Mj with j 6= i, then there is no bias towards any of the possible
outcomes.
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For general K it is hard to determine how large the maximal set size s is. However, if K is a prime
number, then a set of K + 1 mutually unbiased operators exists. A construction is as follows. Let
|z〉, with z ∈ K, be the standard basis. In this basis define a diagonal operator Z and a ‘rotation’
operator X as

Z =
∑
z∈K

ωz|z〉〈z| ; X =
∑
z∈K
|z + 1〉〈z|. (4)

Here the numbers in the bra and ket brackets are taken modulo K. For j ∈ K we define operators
Mj = XZj . Their eigensystems are given by

|j, a〉 =
1√
K

∑
z∈K

ω−azωjz(z−1)/2|z〉 ; Mj |j, a〉 = ωa|j, a〉 (5)

where a ∈ K. The set {Mj}K−1
j=0 together with Z forms a set of K+1 mutually unbiased operators.

2.4 Gauss sums and Legendre symbols

The appearance in (5) of the z2 in the exponent will lead to so-called Gauss sums.

Lemma 1 (Gauss sum) Let p be a prime. Let sp be defined such that sp = 1 if p = 1 mod 4
and sp = i if p = 3 mod 4. Let b ∈ {1, . . . , p − 1}. Let Lbp be the Legendre symbol (+1 if b is a
square modulo p, −1 if it is not). Then

p−1∑
`=0

(exp i
2π
p

)b`
2

= spL
b
p

√
p. (6)

Lemma 2 For sp = 1 it holds that L−xp = Lxp, while for sp = i one has L−xp = −Lxp.

2.5 Averaging over the random challenge

In Section 3 we will need to compute expectation values over the randomly chosen challenge |ψ〉.
This will be handled as follows. We pick an arbitrary orthonormal basis and expand |ψ〉 as

|ψ〉 =
∑
j∈K

rje
iϕj |j〉, (7)

where the angles ϕj are uniformly drawn from [−π, π), and the vector r = (rj)j∈K, with rj ≥ 0,
is uniformly drawn from an orthant of the unit hypersphere

∑
j∈K r

2
j = 1. The rj and the angles

are all mutually independent.
Taking the expectation over |ψ〉 will be denoted as Eψ. The Eψ can be split up into independent
expectations, Eψ = ErEϕ0 · · ·EϕK−1 . We will use shorthand notation Eϕ for the expectation over
all the angles.
The following lemmas will help us to compute expectations.

Lemma 3 Let t ∈ Z and j ∈ K. Then Eϕ[eitϕj ] = δt0.

Proof: For t = 0 we have Eϕ[1] = 1. For t 6= 0 we have Eϕ[eitϕj ] = 1
2π

∫ π
−π dϕj eitϕj = 0. �

Lemma 4 (Dirichlet integral) Let v = (vj)j∈K be a vector, with vj > 0 for all j. Then∫ 1

0

dKp δ(1−
∑
a∈K

pa)p−1+v = B(v) =
∏
α∈K Γ(va)

Γ(
∑
b∈K vb)

. (8)

The B is the generalized Beta function, and Γ is the Gamma function.
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Lemma 5 Let f be a function of r. The expectation Er[f(r)] can be computed as

Er[f(r)] =
1

2−KB(1K)

∫ 1

0

dKr δ(1− |r|2) r1f(r). (9)

Proof: The f is integrated over the whole hypersphere orthant, with equal weight in every point,
and with the correct area element rdr in each dimension. We can see as follows that the normaliza-
tion is correct. We take Er[1], which leads to an integral

∫ 1

0
dKr δ(1− |r|2)r1 proportional to the

area of the hypersphere. We change integration variables to pa = r2a, which gives radra = 1
2dpa.

Applying Lemma 4 we find the normalization 2−KB(1K). �

Lemma 6 Let u = (uj)j∈K be a vector satisfying uj > −1 for all j. Then

Er[r2u] =
B(1K + u)
B(1K)

. (10)

Proof: Follows directly from Lemmas 5 and 4. �

3 Security analysis

Now we determine the attacker’s success probability in the model specified in Section 2.2. In
Section 2.3 we established that it is optimal for the attacker if B consists of n mutually unbiased
operators. In order to further create optimal attack conditions, we assume K to be prime; then,
since we assume n < K, a mutually unbiased B can always be realized. We write |bαkα〉 = |gα, kα〉,
with gα ∈ K and α 6= β =⇒ gα 6= gβ . The notation |· , ·〉 was introduced in Section 2.3 for the
mutually unbiased basis states.

3.1 The False Accept probability per quantum

For each of the attacker’s response quanta independently there is a probability Pψk that the state
will be projected to |ω〉,

Pψk = |〈ω|ω̂k〉|2 = |〈ψ|R†R|ψ̂k〉|2 = |〈ψ|ψ̂k〉|2. (11)

We have used the fact that R is unitary, i.e. R†R = 1. We define an averaged version of λψk as

Pav = EψEk|ψPψk. (12)

Here Eψ denotes the expectation value over the random challenge, and Ek|ψ the expectation over
the outcome k for given |ψ〉. The expected number of passing attacker quanta is nPav.
In order to pass one round of the verification protocol, the adversary must have at least d(1 −
εnoise)ne of his quanta project onto |ω〉. The probability Ppass1 of this happening is

Ppass1 = EψEk|ψ

n∑
u=d(1−εnoise)ne

(
n

u

)
Puψk(1− Pψk)n−u (13)

since the projections of the quanta are independent events, giving rise to a binomial distribution
of the number of passed quanta. The adversary’s overall probability of passing the whole protocol
depends on the number of rounds: P#rounds

pass1 . Hence, as long as Ppass1 is sufficiently below 1, the
overall False Accept probability can be made exponentially small. Using Jensen’s inequality, we
can bound (13) from above as

Ppass1 ≤
n∑

u=d(1−εnoise)ne

(
n

u

)
Puav(1− Pav)n−u. (14)
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Remark: When Pav becomes higher than 1 − εnoise, the attacker’s overall success probability
becomes non-negligible.
For proof-technical reasons we will concentrate on the quantity Pav instead of Ppass1. Once we
have an upper bound on Pav, the inequality (14) allows us to obtain an upper bound on Ppass1.
Expanding Ek|ψ in (12) and then |ψ̂k〉, we write

Pav = Eψ
∑

k∈Kn
|〈ψ|ψ̂k〉|2

∏
α∈[n]

|〈bαkα |ψ〉|2

= Eψ
∑

k∈Kn

1
Nk

∑
β,γ∈[n]

〈ψ|bβkβ 〉〈bγkγ |ψ〉
∏
α∈[n]

|〈bαkα |ψ〉|2. (15)

We will upper bound (15) as follows. First we derive an upper bound 1/Nk which depends on
K and n, but not on k. The thus obtained upper bound on (15) can be drastically simplified,
allowing for a final bounding using Cauchy-Schwartz.

3.2 Bound on the norm Nk

Theorem 1 Let n <
√
K. The normalization constant Nk as defined in (2) can be bounded as

1
Nk
≤ 1
n
· 1

1− (n− 1)/
√
K
. (16)

Proof: We start from the definition Nk =
∑
αβ〈bαkα |bβkβ 〉 and substitute |bαkα〉 = |gα, kα〉, with

the mutually unbiased basis states as defined in (5). We introduce shorthand notation 4kαβ =
kα − kβ and 4gαβ = gα − gβ .

Nk =
1
K

∑
α,β∈[n]

∑
`∈K

ω−`4kαβω4gαβ`(`−1)/2

= n+
1
K

∑
α,β∈[n]
α6=β

ω
−
4gαβ

2 ( 1
2+
4kαβ
4gαβ

)2 ∑
`∈K

ω
4gαβ

2 [`−( 1
2+
4kαβ
4gαβ

)]2

. (17)

We perform the `-summation in (17) using Lemma 1 (Gauss sum). This yields

Nk = n+
sK√
K

∑
α,β∈[n]
α6=β

L
4gαβ/2
K ω

−
4gαβ

2 ( 1
2+
4kαβ
4gαβ

)2

. (18)

The notation sK and L are explained in Lemma 1. In the Legendre symbol, the expression4gαβ/2
for odd 4gαβ should be read as 4gαβ · 2−1 mod K. Using Lemma 2, we rewrite (18) as

Nk = n+
2√
K

∑
α,β∈[n]
α<β

Re
[
sKL

4gαβ/2
K ω

−
4gαβ

2 ( 1
2+
4kαβ
4gαβ

)2
]
. (19)

At worst, every term in the summation is equal to −1. There are n(n− 1)/2 terms. We conclude
that Nk ≥ n− n(n− 1)/

√
K. �

Remark: The equal sign in Theorem 1 is attained when n = 1.

3.3 Main result

Our main result is the theorem below.

Theorem 2 Let n <
√
K. Then the quantity Pav is bounded as

Pav ≤
[

6(n− 1)K
(K + 1)(K + 2)

+
2

K + 1

]
1

1− n−1√
K

. (20)
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Proof: We introduce the abbreviation CKn = n−1[1 − n−1√
K

]−1, so that Theorem 1 is compactly
written as 1/Nk ≤ CKn. Since every term multiplying 1/Nk in (15) is nonnegative, we can write

Pav ≤ CKnEψ
∑

k∈Kn

∑
β,γ∈[n]

〈ψ|bβkβ 〉〈bγkγ |ψ〉
∏
α∈[n]

|〈bαkα |ψ〉|2

= CKn
∑
β∈[n]

∑
kβ∈K

Eψ|〈ψ|bβkβ 〉|4
∑
k\kβ

∏
α∈[n]\{β}

|〈bαkα |ψ〉|2

+CKn
∑
β,γ∈[n]
β 6=γ

∑
kβ ,kγ

Eψ〈ψ|bβkβ 〉〈bγkγ |ψ〉|〈ψ|bβkβ 〉|2|〈bγkγ |ψ〉|2 ·

∑
k\kβ ,kγ

∏
α∈[n]\{β,γ}

|〈bαkα |ψ〉|2

= CKn
∑
β∈[n]

∑
k∈K

Eψ|〈ψ|bβk〉|4

+CKn
∑
β,γ∈[n]
β 6=γ

∑
k,`∈K

Eψ〈ψ|bβk〉 |〈ψ|bβk〉|2 〈bγ`|ψ〉 |〈bγ`|ψ〉|2. (21)

In the last step we repeatedly used that
∑
k∈K |k〉〈k| = 1, followed by 〈ψ|ψ〉 = 1. The first term

in (21) is evaluated using Lemma 6, Eψ[r4βk] = 2
K(K+1) . Thus we obtain

Pav ≤
2nCKn
K + 1

+ CKn
∑
β,γ∈[n]
β 6=γ

∑
k,`∈K

Eψ〈ψ|bβk〉 |〈ψ|bβk〉|2 〈bγ`|ψ〉 |〈bγ`|ψ〉|2. (22)

We consider the Eψ in (22) as an inner product 〈X,Y 〉 with X = 〈bβk|ψ〉 |〈ψ|bβk〉|2 and Y =
〈bγ`|ψ〉 |〈bγ`|ψ〉|2. Applying Cauchy-Schwartz, we have 〈X,Y 〉 ≤

√
〈X,X〉〈Y, Y 〉 =

√
(Err6k)(Err6` ) =

6
K(K+1)(K+2) . The sum over k and ` gives rise to a factor K2, and the sum over β 6= γ gives a
factor n2 − n. �

We note the following:

• For n = 1 Theorem 2 reproduces the known result 2/(K + 1).

• Theorem 2 allows us to draw some conclusions about the speckle-based QR-PUF system
of [15]. There the number of quanta is not fixed but Poisson-distributed, and the average
number of photons nav is known. For a powerful class of challenge estimation attacks (but
not general challenge estimation attacks) the Pav was computed in [18], Pav ≈ nav/(K+nav)
for nav � K. Theorem 2 with the substitution n→ nav is consistent with that result, namely
the adversary potentially has a higher probability of success when he is allowed more general
attacks.

• The bound in (20) can probably be improved upon. First, we think that the value
√
K in

the condition n <
√
K has no special meaning. It seems purely proof-technical. Given the

result ≈ n/(K + n) for the quadrature based attack [18], we expect that a bound of order
n/K can be derived for general challenge estimation attacks without the condition n <

√
K.

Second, the factor ‘6’ can probably be reduced. We suspect that our application of the
Cauchy-Schwartz inequality does not give a tight bound.

4 Discussion

For a QR-PUF scheme with n quanta and a K-dimensional Hilbert space, we have derived an
upper bound (Theorem 2) on the per-quantum success probability Pav of an adversary who does a
generic challenge-estimation attack. From this result a bound is straightforwardly obtained on the
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adversary’s per-round and overall success probability. Our bound is conservative (i.e. high) since
we have assumed K to be a prime number, which guarantees the availability of a set of mutually
unbiased measurements. For non-prime K the adversary may not have such an optimum set of
measurements.
Our result reduces to the known bound 2/(K + 1) for n = 1. The proof is more elegant than the
proof in [14].
We expect that our bound can be made significantly tighter, and that the condition n <

√
K is

in fact not required for getting a bound of order n/K.
We realize that there is a whole class of attacks that we have not considered here, namely ‘quantum’
attacks involving additional particles that can be entangled with the challenge state, or involving
‘partial’ measurements. This is a topic for future work. Furthermore, another class of attacks that
remains to be analyzed is the use of ‘imperfect’ unitary operations by the adversary (e.g. lossy
and/or inaccurate). A first step in this direction was already made in [13] for n = 1, but this
approach needs to be improved.
What we would like to have is a more complete security proof along the lines of the security proofs
for Quantum Key Distribution, but under the condition that the adversary is not allowed to
implement arbitrary unitaries in a lossless way. However, because of the differences between QR-
PUFs and Quantum Key Distribution, most notably the fact that the adversary must immediately
create a response state which immediately gets measured by the verifier, we suspect that such a
full security proof will point to the challenge-estimation attack as the strongest possible attack.
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