
A New Object Searching Protocol for Multi-tag RFID

Subhasish Dhal∗ and Indranil Sengupta

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, INDIA

Email: Subhasish Dhal∗- sdhal@cse.iitkgp.ernet.in; Indranil Sengupta - isg@iitkgp.ac.in;

∗Corresponding author

Abstract

Searching an object from a large set is a tedious task. Radio Frequency IDentification (RFID) technology

helps us to search the desired object efficiently. In this technology, a small chip called RFID tag, that contains

the identification information about an object is attached to the same object. In general, a set of objects are

attached with RFID tags. To find out a particular object preserving the possible security requirements, the RFID

reader requests the tag in desired object to respond with its encrypted identification information. Since there is a

response only from the tag in desired object the adversary gets the knowledge of existence of the desired object.

Fake response from tag in undesired objects may fool the adversary. However, computation for fake responses is

an overhead. In this paper, we propose a search technique which has a negligible amount of computation for fake

responses. Multiple tags in the same object increases the detection probability and also the probability of success

in search process. Our aim is to search a particular object efficiently preserving the possible security requirements

amid various resource limitations in low-cost RFID tag.

keywords: multi-tag , RFID , authentication , resiliency

1 Introduction

Searching an object of interest from a large number of objects is not an easy task. This is because the

underlying information about the object may not be distinguishable manually, and hence may not be easily

visible. We may keep the underlying information of all objects in a database and provide a unique ID to each

object. Thus, we can distinguish an object using its ID. In RFID technology [1], the underlying information
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about an object is kept in a workstation called backend server, and a unique ID which is used to relate the

underlying information about the object is kept in a RFID tag attached to the same object. To search an

object, the RFID reader requests the tag attached with the desired object to respond with its ID and thus

it finds out the desired object.

There are many security and privacy risks involved in searching process. In some systems, the process of

searching an object may reveal valuable information to the adversary. Using this information, the adversary

may be able to achieve her objectives. Furthermore, RFID is a pervasive computing technology which is

easily susceptible to various kind of attacks. Therefore any communication in this technology needs to be

secure. On the other hand, RFID tag being a low cost device suffers from various resource limitations.

Therefore, traditional cryptography is not applicable in this technology. The challenge is to devise a search

technique which not only satisfies most of the security requirements but is also applicable to resource sensitive

environment. Any light-weight authentication scheme [2] [3] [4] [5] [6] can be used to search an object.

However, we have to authenticate each tag until we get the desired tag, which requires to authenticate n
2

number of tags on the average for each search, where n is the total number of tags in the environment.

The search process needs to be such that the adversary should not even know the existence of the desired

object. The fake responses from undesired objects can fool the adversary. However, the search process

requires useless computations due to fake responses. We propose a solution which requires a negligible

amount of computations for the fake responses.

During search process, if the location within the desired object where the tag is attached with is not

within the communication range of reader, the object cannot be detected. However, a few locations of the

same object may be within the communication range. Therefore lying within the communication range, the

object is undetected. Attachment of multiple number of tags in the same object with proper alignment [7]

solves this problem.

Recent works [8] [9] [10] [11] [12] have tried to solve the object searching problem with the assumption

that an object is attached with single tag and they keep only one set of security related information for an

object. However, if an object is attached with multiple number of tags, then there will be more resources and

it is possible to keep more than one set of security related information. This can make the search process

more powerful with respect to security and privacy. This is because the adversary now needs to compromise

multiple number of tags for compromising an object. Furthermore, if the search process mandates all the

tags in an object to respond for its detection, the achievable security and privacy benefit will be maximum.

However, this requirement may decrease the detection probability since all the tags need to be within the
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communication range of reader. A threshold scheme can mitigate the said issue, which uses the fact that

an object is detectable only when a minimum number of tags attached to it are within the communication

range of the reader. It is quite obvious that if the threshold value is less, the detection rate is more but

security is less. On the other hand, if the threshold value is more, the detection rate is less but security is

more. Therefore, the threshold value needs to be chosen according to the requirement. We have tried to find

out the solutions to the following questions:

a) How a reader can search at least a threshold number of tags from a large number of tags to identify

an object?

b) What are the extra benefits corresponding to security and privacy requirements that we can obtain?

c) How can we decrease the computation overhead for the fake responses?

d) What is the performance of the threshold scheme?

In this paper, we have proposed a search technique assuming the existence of multiple number of tags in the

same object. Our scheme takes advantage of multiple resources in the same object and hence improves the

security and privacy benefits. This is also light-weight and thus practically applicable to object searching

problem.

The remainder of the paper is organized as follows. In section 2, we have briefly discussed the related

schemes which have been proposed recently. In section 3, we have introduced the communication model and

possible threats in it. We have described our proposed object searching scheme in section 4. In section 5, we

have analyzed the proposed scheme an compared our scheme with the existing schemes followed by conclusion

in section 6.

2 Related works

Object search is a very important problem since the desired object needs to be searched efficiently preserving

the possible security and resource requirements. However, the literature has not focused this problem

adequately. A few tag searching schemes have been suggested in the literature. We briefly revisit and

analyze those schemes in this section.

Tan et al. [8] proposed four tag searching schemes. In their basic scheme (depicted in Figure 1), the

reader broadcasts the desired tag information. The tag will check the validity and then respond. Although

the request information is encrypted, the adversary may use this information to track the tag. They provide

3



Figure 1: Proposed protocol by Tan et al. [8] scheme 1

a solution (sketched in Figure 2) by using a list of random numbers in the tag. In each session, the reader

will use a new random number. Hence, the tag will check the random number sent by reader in its list

and if it finds any match, it will ignore the request. Otherwise, the tag will accept the request and add the

Figure 2: Proposed protocol by Tan et al. [8] scheme 2

new random number to its list. This solution is not scalable since the tag has to manage the list of random

numbers which will increase in each session. The other problem is that the adversary may not have any

knowledge about the object, however, she gets the idea about the existence of it. This scheme also suffers

from tracking attack [13]. In another improvement (see Figure 3), they allow all tags in the vicinity to reply

Figure 3: Proposed protocol by Tan et al. [8] scheme 3

revealing a few bits of tag identifier which has a proper structure. The reader will distinguish the desired

tag using the revealed bits. However, a few bits of tag identifier is revealed to the adversary providing

some knowledge which allows the adversary to track the tag [13]. Finally, they have another improvement

(illustrated in Figure 4) where all tags other than the desired one will reply with certain probability. In this

improvement, they have used two hash functions in both reader side and tag side which is less efficient and

suffers from ID disclosure attack [13].
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Figure 4: Proposed protocol by Tan et al. [8] scheme 4

Kulseng et al. [9] proposed three algorithms based on Linear Feedback Shift Register (LFSR) and Physi-

cally Unclonable Function (PUF). In first algorithm (depicted in Figure 5), the reader has information IDT ,

pairwise secret K and two greetings gn, gn+1 for tag T. On the other hand, tag T has the same identifier

Figure 5: Proposed protocol by Kulseng et al. [9] scheme 1

IDT and pairwise secret key K in its memory. Reader will broadcast a search query with encrypted tag

information. The desired tag will respond with authentication information. In this scheme, the only desired

tag will reply and adversary will be able to know about its existence. In the second algorithm (illustrated

in Figure 6), they have improved the first by keeping old information which removes the synchronization

problem. This solution also suffers from same problem. In third solution, they have removed this problem

Figure 6: Proposed protocol by Kulseng et al. [9] scheme 2

by allowing all tags in the vicinity to respond where the undesired tags will respond with certain probability

using fake information. In this scheme, the reader needs to process all responses one by one in the same way

the reader needs to process the valid response.

Hoque et al. [10] proposed the S-search protocol (see Figure 7) for finding a tag. In their scheme, the

server will send a frame length and a random number to the reader. The reader will generate encrypted tag

information and broadcast it along with slots for the tags. Each tag in the vicinity of reader will compute the
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slot for itself and then check the tag information. The desired tag will generate authentication information

Figure 7: Protocol proposed by Hoque et al. [10]

and respond along with the slot to reader. The other tags will respond with a certain probability and reply

with a random number along with the slot assigned to them. The reader will generate a bit record (BR) and

verify the presence of desired tag and then send this to server. The server will investigate the bit record and

confirm about the existence of desired tag. In their scheme, the computation is more due to hash functions

in both reader and tag which makes the scheme less efficient.

Yoon et al. [11] proposed a tag searching scheme (illustrated in Figure 8) where a trusted verifier and tag

will maintain a counter. The verifier will send encrypted tag information to reader along with the counter

value. The reader will broadcast this information.

Desired tag will check the tag information and then check the counter value. If all are verified, it will

update its counter value and generate the authentication information. Then the desired tag will respond

with authentication information to verifier through reader. The verifier will validate this information and

report the search result. In this scheme, the adversary has the knowledge about the existence of desired tag.

Another problem is that they have used two hash operations in tag which will consume more power and

make the protocol less efficient.

Zheng et al. [12] proposed a two-phase compact approximator based tag searching protocol (see Figure 9)

using bloom filter. In their scheme, multiple number of tags can be searched in same query. In the first

phase of their scheme, the reader will broadcast the membership information of desired tags using a bloom
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Figure 8: Protocol proposed by Yoon et al. [11]

filter. A tag will check the membership and get silent if it is not a member. However, due to false positive

property of bloom filter, a few undesired tags will be selected along with desired tags. Thus, a number of

Figure 9: Protocol proposed by Zheng et al. [12]

tags including the desired tags will be ready to cooperate further. In second phase, the selected tags in first

phase will respond on a query from reader. The reader will forward these responses to server. Then the

server will construct a virtual bloom filter and filter the desired tags. In this scheme, there is a probability

that a number of undesired tags could be selected even after second filtration due to false positive property

of bloom filter.

The schemes in [8] [9] [10] [11] [12] assume that an object is attached with single tag. These are also suffer

from one or more flaws. Thus, the compromise of single tag will enable the adversary to search the object
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attached by that tag. We have proposed an object searching scheme with the assumption that an object is

attached with multiple number of tags and to get valid response from the desired object, a minimum number

of tags attached to it need to be visible to the reader. In this scheme, the compromise of single tag is not

sufficient for the adversary. She needs to compromise a minimum number of tags equal to a threshold value

and no less to get information about the object and search further.

3 Communication model and possible threats

In this section, we briefly introduce the communication model and the possible threats in it.

Figure 10: Components of communication model

3.1 Communication model

In our proposed object searching scheme, we have three components which can communicate with each other,

namely, object, reader and backend server as shown in Figure 10.

1. Object: We assume that there are multiple number of objects and each object is attached with

multiple number of RFID tags. There are four type of tags, namely, active, semi-active, semi-passive

and passive. In this paper, we have assumed that the tags are of type passive. However, our scheme is

applicable to other type of tags also.

2. Backend server: Backend server is a stationary component that checks the authentication of in-

formation about an object and updates various security parameters accordingly. It also maintains a

database. Various information about each object and hence about each tag are kept in this database.
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3. Reader: RFID reader is responsible for initiating a search with the help of backend server. It acts

in between an object and backend server as shown in Figure 10. We assume that the communication

between reader and backend server is secure while the communication between a reader and object is

insecure.

3.2 Possible threats

During the search process, a number of complications may arise. An adversary may try to mount various

kind of attacks since the communication between reader and object is insecure. We define each attack as

follows:

i) Eavesdropping: The adversary listens to the communication between RFID reader and tag and be

able to get valuable information.

ii) Physical attack: The adversary clones a legitimate tag and responds as a valid tag.

iii) Traceability: The adversary traces an object by observing the response pattern in each successful

session.

iv) Traceability within two consecutive successful sessions: The adversary broadcasts the same

query in between two consecutively successful sessions. The tag, on the other hand, replies with same

information. Thus, the adversary is successful to trace the tag and hence object.

v) Man in the middle attack: The adversary disrupts the search process by modifying the information

communicated between reader and tag.

vi) Forward security: The adversary guesses the variable secret like session key and be able to guess

the future secrets utilizing the learnt secrets.

vii) Backward security: The adversary guesses the variable secret like session key and be able to guess

the past secrets utilizing the learnt secrets.

viii) Replay attack: The adversary grasps the information exchanged during a valid search and utilizes

the same to impersonate as a legitimate entity.

ix) Information leakage: The adversary gets the knowledge about the existence of an object by viewing

the number of responses.
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x) Synchronization attack: The adversary blocks the communication between reader and tag to desyn-

chronize the information stored in backend server and tag.

4 Object searching protocol

We have proposed an object searching scheme preserving the possible security and privacy threats. In this

section, we illustrate the problem and then we describe our proposed scheme. We have used the notations

in Table 1 for explaining the scheme.

4.1 Problem definition

There is a large set of objects and each object is attached with multiple number of tags. A backend server

keeps the information about all the tags. The owner of all the objects tries to find out a specific object from

the set by initiating a search query in the server.

The goal of the server is to search a set of tags attached to the desired object efficiently preserving the

necessary security and privacy requirements mentioned in section 3.2. All the tags attached to the object

may not be within the communication range of RFID reader and hence the server requires to search at least

a threshold number of tags attached to the object.

4.2 The protocol

We have proposed an object searching scheme based on the communication model explained in section 3.1.

Before the explanation of our proposed scheme, we describe the data structures used in various components.

4.2.1 Database

Each tag contains a secret key, two session keys, and two identifiers. We keep two session key fields among

which one is old and another is new. Similarly, there are two identifier fields. In Figure 11, there are five

Figure 11: Tag database

fields which are the contents in the memory of tag Ti attached in object G. The first field is the secret key,

the second and third fields contain the new and old session keys and the fourth and fifth fields contain the

new and old identifiers.
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We keep information about each object in a database in backend server. There is a table which contains

the records for each object. Therefore, for n objects there are n records in the table. Figure 12 shows various

fields of a record for an object G. The first field contains the secret keys for the tags attached in object G.

Figure 12: Record in Backend server

The second and third fields contain the session keys and identifiers for each tag in object G.

4.2.2 Initialization

A few parameters are initialized and preloaded before the deployment of objects, reader and backend server.

Following is the initialization steps in our proposed object searching scheme. For the sake of clarity, we

mention the existence of only one object. However, the scheme is applicable to multiple objects.

a) The ith(i = 1, 2, ..., n) tag of object G is assigned a secret key Si which is kept in secret key field in

the memory of the same tag.

b) The ith(i = 1, 2, ..., n) tag of object G is assigned a session key Ni, which is kept in both Ninew and

Niold fields in the memory of the same tag.

c) An identifier IDi is also assigned to ith(i = 1, 2, ..., n) tag of object G and this is kept in both IDinew

and IDiold fields in the memory of same tag.

d) In backend server, the database is initialized with records of all objects. The information Si, Ni, and

IDi for each tag attached in object G are kept under the record of G.

4.2.3 Steps involved in object searching:

The searching process in our scheme has a sequence of steps. We explain the required steps to search an

object according to our scheme as follows:

Step 1: Communication from reader to backend server

• Reader requests backend server to send information for object G to be searched.

Step 2: Operation in backend server
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• Generates a set A of n random numbers r21, r22, ..., r2n.

• Assigns r2i as index of tag Ti(i = 1, 2, ..., n).

• for each tag Ti(i = 1, 2, ..., n), generates a new session key Ninew and an identifier IDinew.

• Generates update information M1i ← (Si−Ni)⊕ (IDinew−Si) and M2i ← (Si− IDi)⊕ (Ninew−Si).

Step 3: Communication from backend server to reader

• Backend server sends IDi, Ni,M1i, and M2i for each tag Ti(i = 1, 2, ..., n) along with A.

Step 4: Operation in reader

For each tag Ti (i = 1, 2, ..., n) in object G

• Generates a random number r1i.

• Calculates Ki ← (Ni − r1i)⊕ (IDi − r1i), Vi ← (r2i −Ni)⊕ IDi.

Step 5: Communication from reader to object

• Broadcasts request message with η1η2...ηn. Here ηi = r1i,Ki, Vi,M1i,M2i, (i = 1, 2, ..., n).

Step 6: Operation in reachable tag Ti

• Retrieves ηi(= r1i,Ki, Vi,M1i,M2i)
1 intended to it from η1η2...ηn.

• Calculates K ′
i ← [(Ninew − r1i)⊕ (IDinew − r1i)]

• if K ′
i = Ki then

– Calculates (r2i −Ninew)← Vi ⊕ IDinew and then r2i ← (r2i −Ninew) +Ninew

– Calculates (ID′
i − Si)←M1i ⊕ (Si −Ninew) and then ID′

i ← (ID′
i − Si) + Si

– Calculates (N ′
i − Si)←M2i ⊕ (Si − IDinew) and then N ′

i ← (N ′
i − Si) + Si

– Calculates Pi ← r2i‖[(IDinew − r2i)⊕ (Ninew + r1i)].

– Updates Niold ← Ninew, IDiold ← IDinew and then Ninew ← N ′
i , IDinew ← ID′

i.

• else

– Calculates K ′
i ← (Niold − r1i)⊕ (IDiold − r1i)

1The ith tag in an object receives only the ith chunk of broadcast message and test for validity
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– if K ′
i = Ki then

∗ Calculates (r2i −Niold)← Vi ⊕ IDiold and then r2i ← (r2i −Niold) +Niold

∗ Calculates (ID′
i − Si)←M1i ⊕ (Si −Niold) and then ID′

i ← (ID′
i − Si) + Si

∗ Calculates (N ′
i − Si)←M2i ⊕ (Si − IDiold) and then N ′

i ← (N ′
i − Si) + Si

∗ if Ninew 6= N ′
i and IDinew 6= ID′

i then

* Calculates Pi ← r2i‖[(IDiold − r2i)⊕ (Niold + r1i)].

* Updates Ninew ← N
′

i , IDinew ← ID
′

i.

∗ else

* Generates r2i, Pi ← r2i‖fake data.

∗ end if

– else

* Generates r2i, Pi ← r2i‖fake data.

– end if

• end if

Step 7: Communication from tag Ti to reader

• if Ti is valid then

– Sends Pi to reader.

• else

– Sends Pi to reader with probability λ.

• end if

Step 8: Operation in reader

• Extracts r2i from Pi for the responded tag Ti

• if r2i /∈ A then

– Ignores the message.

• end if
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Step 9: Communication from reader to backend server

• if reader finds at least threshold number (l) of valid responses then

– For a valid tag Ti, it forwards Pi, r1i to backend server.

• else

– Stops and reports object not found.

• end if

Step 10: Operation in backend server

• For tag Ti, separates (ID′′
i − r2i)⊕ (N ′′

i − r1i) and r2i from Pi.

• Locates Pi and r1i to appropriate record in database indexed by G and r2i.

• Calculates (N ′′
i − r1i)← [(ID′′

i − r2i)⊕ (N ′′
i − r1i)]⊕ (IDi − r2i)

• Calculates N ′′
i ← (N ′′

i − r1i) + r1i

• if N ′′
i =Ni then

– The entry for Ti in record for G is valid

– Updates IDi ← IDinew, Ni ← Ninew

• endif

• if at least threshold number (l) of valid entries found for G then

– Reports search is successful

• else

– Reports search is unsuccessful and stops.

• end if

Brief description: Figure 13 illustrates the proposed scheme for searching an object G attached with n

number of tags. We briefly describe how search process takes place in our scheme. In initialization, each

object is assigned with different set having n number of tags where each tag Ti is loaded with a pairwise
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Figure 13: Tag searching scheme for multi tag RFID

secret key Si, a tag id ID i in both the fields IDinew and IDiold, and a session key Ni in both the fields

Ninew and Niold. The database in backend server is loaded with records for each object. The record for an

object G contains the information about the tags assigned to it. The information are pairwise secret keys

S1, S2, ..., Sn, tag ids ID1, ID2, ..., IDn, and session keys N1, N2, ..., Nn.

During search process, the RFID reader requests the backend server to send information about the object

G to be searched in step 1. The backend server generates a set A having n number of random numbers

(r21, r22, ..., r2n) in step 2 and then assigns the random number r1i, (i = 1, 2, ..., n) as index for the tag Ti in

G. Therefore, a tag Ti in G has two index {G, r2i}. It then generates new tag id IDinew and new session key

Ninew for Ti. Using these newly generated information and pairwise secret key, it generates the encrypted

update information M1i and M2i. The backend server sends the ID, session key, and update information for

each tag in G along with A to reader in step 3.
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For each tag Ti in G, the reader generates a random number r1i and then encrypts the ID and session

key to generate Ki and Vi in step 4 using r1i and r2i. The reader then broadcasts a search request η1η2..., ηn,

where ηi = r1i,Ki, Vi,M1i,M2i (i = 1, 2, ..., n) in step 5.

Reachable tag Ti retrieves ηi from the broadcast information and checks the validity in step 6. To

check the validity, firstly it uses the information in the fields IDinew and Ninew in its memory and if

validity confirms it extracts r2i from Vi and generates the authentication information Pi in step 6 using the

information in fields IDinew,Ninew, and r2i. It copies the information in IDinew and Ninew to IDiold and

Niold respectively and updates IDinew and Ninew using the ID and session key extracted from M1i and

M2i. If validity does not confirm using the information in fields IDinew and Ninew, it checks the validity

using the information in fields IDiold and Niold. If validity confirms, it extracts the update information

and checks whether the update information has already stored in its memory or not. If there is no match

then it extracts r2i from Vi and generates the authentication information using the information in fields

IDiold, Niold, and r2i and updates the information in fields IDinew and Ninew using the ID and session key

extracted from M1i and M2i. The tag Ti which had verified the request successfully is obviously attached

with the desired object G. It then sends Pi in step 7 to reader. The tag Ti on which the verification of

request had been failed is obviously attached with an undesired object. Therefore it generates a random r2i

and then sends a fake Pi having newly generated r2i with a probability λ in step 7.

The reader filters the responses in step 8. It checks whether the r2i in received response belongs to set A

or not. The responses having r2i ∈ A are partially valid. The reader forwards the partially valid responses

in step 9 to backend server if it finds at least threshold number (l) of partially valid responses.

In step 10, the backend server maps the responses using index {G, r2i} and checks the authentication of

each response. It updates the session key and ID for a valid response using the ID and session key generated

earlier in step 2. The backend server then reports that the search is successful if it finds threshold number

(l) of valid responses. Otherwise it reports that the desired object is not found.

5 Analysis of the scheme

We have analyzed our scheme to see its applicability. To do this, we select the following parameters:

authentication, security, computation, communication and memory.
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5.1 Authentication

Since RFID is a pervasive computing technology, authentication is an important requirement during search

of an object. In our scheme, we have assumed that the communication between reader and backend server

is secure while the communication between reader and tag is insecure and hence there is a need to check

authentication of those entities which are the source of any information communicates through the insecure

medium. In step 6 of our proposed scheme, the tag Ti checks the authentication of r1i,Ki, Vi,M1i, and M2i

and hence checks the authentication of reader and backend server. In step 8, reader partially checks the

authentication of Pi. In step 10, the backend server fully checks the authentication of Pi and hence the tag

Ti is authenticated. Thus, the authentication of all the entities are checked in our proposed scheme.

5.2 Security analysis

The adversary may attempt to mount various kind of attacks in the communication between reader and

object since it is assumed to be insecure. In this section, we have analyzed how our scheme prevents all the

possible attacks (defined in section 3.2) during the search of an object.

a) Eavesdropping: During search process, the adversary listens r1i, (Ni− r1i)⊕ (IDi− r1i), (r2i−Ni)⊕ IDi,

(Si −Ni)⊕ (IDinew − Si), (Si − IDi)⊕ (Ninew − Si), and Pi and may try to learn the secrets Ni, IDi etc.

However these secrets are bound with each other using XOR operation and hence the adversary is unable

to learn any secret. If the adversary try to learn the secrets by compromising tags attached to an object,

she needs to compromise at least a threshold number (l) of tags and no less. This increases the difficulty

for the adversary to mount this kind of attack.

b) Physical attack: To mount physical attack, the adversary has to clone at least threshold number (l)

of tags. Therefore, we do not claim that our scheme is fully secure from this kind of attack. However, it

increases the difficulty for the adversary. Hence, our scheme partially fulfills this requirement.

c) Traceability: The security related information Ni, IDi etc. are generated randomly and updated in each

successful session in our scheme. Therefore, there is no relation between the Pi in one session and the Pi

in another session and hence the adversary is unable to obtain any pattern from the responses. Thus, the

objects are not traceable from the information communicated through insecure medium.

d) Traceability within two successive and successful sessions: Between two successful sessions, the ad-

versary may try to send same search query r1i, Ki(= (Ni − r1i) ⊕ (IDi − r1i)), Vi(= (r2i − Ni) ⊕ IDi),

M1i(= (Si−Ni)⊕ (IDinew−Si), M2i(= (Si− IDi)⊕ (Ninew−Si)) multiple times and the tags are expected
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to respond with same Pi and thus the adversary may trace an object during this period. According to our

scheme, if the tag gets same search query the verification of the query will be successful using Niold and

IDiold stored in the tag. However, the retrieved session key N ′
i and identifier ID′

i in M1i and M2i will be

equal to the Ninew and IDinew respectively stored in the tag since the same session key and identifier were

retrieved in previous session and stored as new session key and identifier. Hence the tag sends a fake Pi

which has no relation with the Pi sent as a response to the previous query. Thus the adversary is unable to

get any pattern from the responses during the period between two successful sessions.

e) Man in the middle attack : Blocking the original r1i,Ki, Vi,M1i,M2i and Pi, the adversary may send

fake r1i,Ki, Vi,M1i,M2i and Pi through insecure medium. However, the fake information will be discarded

since the adversary does not have any secrets Ni, IDi, and Si and hence they cannot generate and send any

information that can be validated.

f) Forward security: In our scheme, the session key Ni and identifier IDi are changing in each successful

session, i.e. these secrets are variable in nature. The adversary is unable to calculate Ni or identifier IDi or

both for the next sessions using the learnt variable secrets in current session due to the presence of fresh r1i

and r2i and the secret key Si in Ki, Vi,M1i,M2i, Pi. Therefore, our scheme provides the forward security

benefit.

g) Backward security : Use of fresh r1i, r2i, and Si prevents the adversary to calculate the variable secrets

used in past sessions. Thus, our scheme satisfies the backward security requirement.

h) Replay attack : The adversary may store r1i, Ki(= (Ni − r1i) ⊕ (IDi − r1i)), Vi(= (r2i − Ni) ⊕ IDi),

M1i(= (Si−Ni)⊕ (IDinew−Si), and M2i(= (Si− IDi)⊕ (Ninew−Si)) and send later to tag. If the original

session has completed successfully, the replayed information will be verified using Niold and IDiold. In the

case of incomplete original session, the replayed information will be verified using Ninew and IDinew. In

both cases, the tag in the desired object will respond with Pi after successful verification which includes

r1i of original session. On a new request from reader, the adversary may try to send this Pi. However,

this Pi will not be verified since the reader have used the new nonce r1i to send the new request. Also the

adversary cannot inject new nonce since she does not have secret keys.

i) Information leakage: In traditional search process, only the tags of desired object would reply in response

to a search by reader. According to this process, the adversary may not be able to obtain any secure

information, however, she can be able to obtain the information about its presence. In some situations,

this information may be valuable to the adversary. In our scheme, the undesired tags respond2 with fake

2An undesired tag responds with probability λ
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information (Pi = r2i‖fake data). Since the adversary does not have any secret key she cannot distinguish

between the fake response and legitimate response. Therefore the adversary cannot conclude about the

existence of the desired object.

j) Synchronization attack: If adversary blocks Pi, the tag contains new session key and identifier which were

updated after successful authentication of r1i,Ki, Vi,M1i,M2i. However the backend server cannot update

the session key and identifier for the same tag in its database and will contain the old copies. Thus it seems

that there can be a synchronization problem. To avoid this problem, we keep old session key and identifier

in tag along with the updated session key and identifier. Thus the server can send a request using old

session key and identifier and the tag can successfully verify it using old session key and identifier stored in

its memory and update accordingly. Hence it will respond and the backend server will update accordingly.

Therefore, there is no synchronization problem in our scheme.

5.3 Comparison

We have chosen four parameters, namely, security, computation, communication and memory requirements

for comparing our scheme with the existing schemes we have described in section 2.

5.3.1 Security requirements

We have already discussed the assurance of security in our scheme in section 5.2. In this section we provide

a comparative study.

In Table 2, we have specified the security requirements with the symbols a, b, c etc. The meaning of

symbols are written under the table. Each row indicates the scheme under discussion. Each entry in the

table indicates the prevention status of security requirement in corresponding column for the scheme in

corresponding row. There are three type of status and they are satisfy, not satisfy, and partially satisfy. The

symbols are Y,N , and P respectively.

Our scheme satisfies all the security requirements except the physical attack. However, it increase the

difficulty for the adversary to mount this kind of attack. The other schemes [8] [9] [10] [11] [12] in Table 2

do not satisfy all the security requirements and hence in security aspect, our scheme is stronger than the

existing schemes.

Resiliency : We define a parameter, namely, resiliency that indicates the strength of a scheme in terms of

attack prevention against compromise of various security related information. We assume that the adversary

tries to mount various kind of attacks after compromising the security related information such as session
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key, ID, etc. Compromise of a few information may not help her to mount all possible attacks. However,

she can manage to mount some attacks. Therefore, we incrementally compromise the best combination

of security related information and analyze how many attacks are still preventable for a particular search

scheme. Here best combination implies that the combination of a certain number of information which helps

the adversary to mount maximum number of attacks. The other combination of same number of information

may not help the adversary to mount as many attacks. We define resiliency as the number of attacks which

are preventable on compromise of a certain number of security related information.

Table 3, illustrates the resiliency of the existing schemes [8] [9] [10] [11] [12] and our scheme. A row

indicates the the scheme under consideration and a column indicates the number of messages have been

compromised. Therefore an entry in the table indicates the number of attacks prevented by the scheme in

corresponding row on compromise of the number of messages in corresponding column. We have analyzed

the related schemes [8] [9] [10] [11] [12] and our scheme by compromising the best combination of security

related information incrementally and deduced the resiliency. We have assumed that the threshold value for

our scheme is 3. According to this analysis, Table 3 shows that our scheme have maximum resiliency without

compromise of any information. The resiliency level continues high until the compromise of threshold number

of information. This is because the compromise of single information for a single tag allows to mount all the

attacks for that tag. Thus, to mount attacks for an object the adversary requires to compromise at least one

information from each of the threshold number of tags. If we increase the threshold value then the resiliency

of our schemes also increases accordingly. However, for the schemes [9] [10] [11] [12], the resiliency level falls

down on compromise of less than 3 information. For schemes [9] [12], the resiliency level falls down quickly

even before the compromise of 2 information. The resiliency of our scheme is directly proportional to the

threshold value and hence can be tuned according to the requirement. The other schemes do not have this

facility.

5.3.2 Computational overhead

Various protocols performs various operations. We have selected the operations we have used in our scheme

and the other additional operations used in other schemes. Table 4 shows the quantitative analysis of

various operations performed in [8] [9] [10] [11] [12] and in our proposed scheme. The operations we have

considered in our analysis are XOR, hash, random number generation, attachment/detachment, modulus,

addition/subtraction, and others indicated by a, b, c, d, e, f, and g respectively. The components involved

in RFID communication are RFID tags, RFID reader, and backend server. We have further classified the
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tags in our analysis as desired and undesired. This is because the second category of tags are silent or

do some other operations which are not common with the operations performed by first category of tags.

Table 4 has four columns, namely, desired tag, undesired tag, reader, and backend server. Each column is

further divided into seven sub columns. A sub column represents how many time the component specified

in corresponding column performs a particular operation specified in it. Each row in Table 4 represents the

scheme under consideration in our analysis. Therefore, an entry in the table indicates how many time a

component specified in the corresponding column in the scheme specified in corresponding row performs an

operation specified in corresponding sub column. We explore a comparative study by analyzing the entries

in Table 4.

The desired tag in our scheme does not require to execute any computationally expensive operations

such as random number generation and hash operation, however it requires to compute maximum number of

light-weight operations i.e, XOR and addition/subtraction. The other schemes, on the other hand, requires

one or more hash computations and many random number generations for desired tags which are very

time consuming operations. Therefore, the desired tags in our scheme are efficient in compared to other

schemes [8] [9] [10] [11] [12] since our scheme requires to compute no heavy weight operations.

The undesired tag in our scheme needs to generate only one random number and less number of XOR

and addition/subtract operations. However, it does not requires to compute any hash operations. Therefore

the undesired tags in our scheme are also efficient compared to other schemes [8] [9] [10] [11] [12].

The reader in our scheme does not compute any hash operation. It requires to compute more light

operations i.e. XOR, addition/subtraction etc. compared to the schemes [8] [9] [10] [11] [12]. This is due

to the fact that more than one tags are attached in an object and hence reader needs to find out at least

threshold number of desired responses.

The backend server in our scheme also does not require to compute any hash operation. It requires to

compute more number of operations compared to other scheme [8] [9] [10] [11] [12] since it has to generate

and process search information for more than one tag for a desired object. We assume that the server is a

high speed stationary computer which does not suffer from computation constraint.

From this comparative discussion, we conclude that in comparison to other schemes, our scheme is

efficient in terms of generating a response by a tag. The reader and backend server are less efficient than

other schemes due to the fact that an object is attached with multiple number of tags and hence to search

an object, the reader and backend server need to compute various operations for every tag attached to that

object.
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5.3.3 Computational overhead due to responses from undesired tags

An adversary may try to know the existence information of the desired object. The adversary can be able

to get this information if only the tags in desired object respond. Therefore, although the response from

desired object is secure it leaks some information to the adversary. To prevent this kind of attack, the

undesired tags respond with fake information. Therefore the adversary cannot distinguish between a fake

and legitimate response. However, the legitimate reader and/or backend server has/have to distinguish the

legitimate response from all the responses. To do this, they have to process all the responses which introduce

an useless computation overhead.

Probability of useless computation in our scheme: In our scheme, the reader partially checks r2i in each

response for its validity. The tags in desired object extracts a valid r2i and sends it to reader. Therefore

this response is validated and forwarded to backend server. The reader validates simply by comparing

the received r2i with the random numbers in A. Therefore, there is no such computational overhead in

it. However, the tag which had sent fake response has used a random r2i which may be a member of A.

Therefore any response with such kind of r2i would be forwarded to backend server and backend server has

to process those fake responses. This introduces an useless computational overhead in backend server. We

have computed the probability of such kind of useless computation in our scheme as follows. Let us define

various symbols and then deduce the probability.

P (X) is the probability of event X, E1 be an event that an invalid tag generates a valid r2i, E2 be an

event that an invalid tag responds, E3 be an event that an invalid tag responds with valid r2i, E4 be an

event that a valid tag responds with valid r2i, E5 be an event of useless computation in backend server, n

be the number of valid r2i, b be the number of bits constitutes a r2i, Miv be the number of invalid tags and

Mv be the number of valid tags.

P (E1) =
n

2b
(1)

Let

P (E2) = λ (2)

Therefore,

P (E3) =
λn

2b
(3)

Since the number of invalid tags is Miv, the number of fake responses with valid r2i is

fake = MivP (E3) =
λnMiv

2b
(4)
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Since a valid tag extracts a valid r2i, it responds with valid r2i and hence P (E4) = 1 and the number of

responses from valid tags with valid r2i

valid = MvP (E4) = Mv (5)

Since the reader passes only the responses with valid r2i the total number of responses from valid and invalid

tags that passes through the reader

total = valid + fake = Mv +
λnMiv

2b
(6)

From equations 4 and 6, we can say that

P (E5) =
λnMiv

2b

Mv + λnMiv

2b

=
λnMiv

Mv2b + λnMiv
(7)

Probability of useless computation in other schemes [9] [10] [12]: To prevent information leakage attack,

the other schemes allows the tags in undesired objects to respond with fake information while the tag in

desired object responds with valid information. however, the reader or backend server has to process all the

responses which introduces an useless computational overhead. We have computed the probability of such

kind of useless computation in other schemes as follows. We define the symbols we have used to deduce the

probability.

P (X) is the probability of event X, E6 be an event that an invalid tag responds with fake information,

E5 be an event of useless computation, Miv be the number of invalid tags.

Let

P (E6) = λ (8)

Since the number of invalid tags is Miv, the number of fake responses is

fake = MivP (E6) = λMiv (9)

Since there is only one valid tag and that tag responds with valid information. Therefore, the number of

valid response

valid = 1 (10)

Therefore, the total number of response

total = valid + fake = 1 + λMiv (11)
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From equations 9 and 11, we can say that

P (E5) =
λMiv

1 + λMiv
(12)

Comparison: Table 5 illustrates the probability of useless computation for n = 8,Mv = 8, λ = 1
2 and various

number of invalid tags(Miv). From the table, we see that the probability that the backend server has to

process useless computation in our scheme is only 0.0007 for 100 invalid tags. However, the probability of

useless computation in other schemes which allows the undesired tags to respond with fake information is

0.9803 for the same number of invalid tags. Therefore our scheme prevents information leackage attack with

negligible amount of useless computation in backend server.

5.4 Message communication

Backend server, reader and tags communicate messages with each other. We have made an analysis in

terms of number of messages communicated. Table 6 shows the comparison of existing schemes and our

scheme in terms of communication overhead. In Table 6, the columns indicate the components involved in

communication and each row explores the schemes involved in our comparison. Therefore, each entry in

the table indicates the number of messages communicated by the components specified in the corresponding

column in the scheme specified in corresponding row. The communication overhead for desired or undesired

tags in our scheme is almost equals in comparison to the schemes [8] [9] [11]. However, it is less than the

schemes [10] [12]. The communication overhead in reader and backend server is more than the other schemes

since an object in our scheme is attached with multiple number of tags.

5.5 Memory requirement

The RFID tags has limited memory and hence we have analyzed the memory requirement of various schemes

and Table 7 illustrates the comparative study. Besides listing the memory requirement in RFID tag, we have

also listed the memory requirements in RFID reader and backend server which do not have such limitation.

Each row in Table 7 represents a particular scheme and each column represents a particular components.

Therefore, an entry in the table indicates the number of messages need to be kept in a component mentioned

in corresponding column for the scheme mentioned in corresponding row. Requirement of memory in tag

for our scheme is more since we keep old information to prevent synchronization attack. The memory

requirement in backend server is more due to the fact that an object is attached with multiple number of

tags and hence we have to keep information about all the tags attached to an object. Since the backend
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server does not suffer from memory resource constraint our scheme is practically applicable. There is no

memory requirement in reader for our scheme whereas almost all the other schemes have this requirement.

6 Conclusion

We have proposed a light-weight object searching scheme where an object is attached with multiple number

of tags. We take the advantage of multiple resources in same object. This has increased the security since

the adversary faces difficulty to compromise an object. This is because the adversary needs to compromise

threshold number of tags instead of single tag to compromise an object. Also she finds it difficult to clone

the threshold number of tags in certain cases. Our scheme is efficient in terms of computation in RFID

tag since we have used XOR and plus/minus operation for encryption and decryption process and only one

random number generation process in RFID tag. The resources in tag support to do these operations. There

is a negligible amount of useless computation in our scheme to achieve the requirement of prevention against

information leakage problem. A threshold number of tags in an object need to be visible in our scheme

limits the detection probability in multi-tag arrangement, however, increases the security. Therefore, an

appropriate threshold value can balance between the security and detection probability and the selection of

this value can be done depending on the application environment.
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Tables

Table 1: Notations

Symbol Meaning
G An object
Ti ith Tag in G
n Number of tags attached in G

IDi ID of ith tag in G
Ni Session key of ith tag in G
Si Pairwise secret between backend server and ith tag in G
A A set of random numbers

r1i, r2i Random numbers for ith tag in G
IDinew New ID of ith tag in G
Ninew New session key of ith tag in G
⊕ XOR operation
‖ Concatenation operation
l Threshold value
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Table 2: Assurance of Security

a b c d e f g h i j
Hoque et al. Y N Y N Y N N Y Y Y

Kulseng et al. Protocol 1 Y Y Y N Y N N Y N N
Kulseng et al. Protocol 2 Y Y Y N Y N N Y N Y
Kulseng et al. Protocol 3 Y Y Y N Y N N Y Y Y

Yoon et al. Y N Y N Y P P Y N Y
Tan et al. Protocol 1 N N N N N Y Y N N Y
Tan et al. Protocol 2 N N N N N Y Y N N Y
Tan et al. Protocol 3 Y N N N N Y Y Y P Y
Tan et al. Protocol 4 N N N N N Y Y N N Y

Zheng et al. Y N Y Y N Y Y Y Y Y
Our scheme Y P Y Y Y Y Y Y Y Y

a: Eavesdropping, b: Physical attack, c: Traceability, d: Traceability between successful-
e: Man in the middle attack, f : Forward security, g: Backward security, h: Replay attack,
i: Information leakage, j: Synchronization attack, Y : Satisfy, N : Not satisfy, P : Partially satisfy

Table 3: Resiliency Statistics

Number of compromised messages 0 1 2 3
Hoque et al. 8 8 3 3
Kulseng et al. scheme 1 7 0 0 0
Kulseng et al. scheme II 8 0 0 0
Kulseng et al. scheme III 9 1 1 1
Yoon et al. 7 7 1 1
Tan et al. scheme I 3 3 3 3
Tan et al. scheme II 3 3 3 3
Tan et al. scheme III 5 3 3 3
Tan et al. scheme IV 3 3 3 3
Zheng et al. 5 1 1 1
Our scheme 10 10 10 1

Table 4: Number of operations performed in various scheme

Desired Tag Undesired tag Reader Backend Server
a b c d e f g a b c d e f g a b c d e f g a b c d e f g

Hoque et al. 3 3 1 0 1 0 0 2 2 0 0 1 0 0 2 2 0 0 0 0 BR 1 1 1 0 1 0 0
Kulseng et al. Protocol 1 5 6 0 0 0 0 0 2 1 0 0 0 0 0 5 4 1 0 0 0 0 0 0 0 0 0 0 0
Kulseng et al. Protocol 2 4 5 0 0 0 0 0 2 1 0 0 0 0 0 4 3 1 0 0 0 0 0 0 0 0 0 0 0
Kulseng et al. Protocol 3 4 5 0 0 0 0 0 2 1 2 0 0 0 0 4f1 3f1 1 0 0 0 0 0 0 0 0 0 0 0

Yoon et al. 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 INC
Tan et al. Protocol 1 2 3 1 3 0 0 0 1 2 0 2 0 0 0 2 2 1 3 0 0 0 0 0 0 0 0 0 0
Tan et al. Protocol 2 2 3 1 3 0 0 0 1 2 0 2 0 0 0 2 2 1 3 0 0 0 0 0 0 0 0 0 0
Tan et al. Protocol 3 1 1 1 2 0 0 0 1 1 1 2 0 0 0 f1 f1 1 2f1 0 0 0 0 0 0 0 0 0 0
Tan et al. Protocol 4 2 3 3 1 0 0 0 1 2 2 2 0 0 0 1 + f1 1 + f1 1 1 + 2f1 0 0 0 0 0 0 0 0 0 0

Zheng et al. 0 k1 + k2 0 0 0 0 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 BF2 0 k1 + k2 2 0 0 0 0
Our scheme 6 0 0 1 0 11 0 2 0 1 1 0 4 0 2n 0 n f1 0 3n 0 2n+ δ + α 0 n δ + α 0 4n+ δ + α 0

a: XOR, b: Hash, c: Random number generation, d: Attachment/Detachment, e: Modulas, f : Addition/Subtraction, g: Other, f1:
Number of tags replied, INC: Increment, k1, k2: Number of hash functions used in bloom filter, α: Number of false positive response,
δ: Number of valid response to backend server, n: Number of tags attached to an object
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Table 5: Probability of useless computation in backend server

Number of invalid tags 10 20 30 40 50 60 70 80 90 100
P (E5) for our scheme 0.000076 0.000153 0.000229 0.000305 0.000381 0.000458 0.000534 0.000610 0.000686 0.000762
P (E5) for other schemes 0.833333 0.909091 0.937500 0.952381 0.961538 0.967742 0.972222 0.975610 0.978261 0.980392

Table 6: Communication overhead of various scheme

Desired Tag Undesired tag Reader Backend Server
Hoque et al. f + 5 f + 3 f + k + 6 3

Kulseng et al. Protocol 1 5 3 5 0
Kulseng et al. Protocol 2 4 2 4 0
Kulseng et al. Protocol 3 4 2 2(f1 + 1) 0

Yoon et al. 6 3 12 6
Tan et al. Protocol 1 5 3 5 0
Tan et al. Protocol 2 5 3 5 0
Tan et al. Protocol 3 5 3 3 + 2f1 0
Tan et al. Protocol 4 5 3 3 + 2f1 0

Zheng et al. k2 + 8 4 15 + k2 + f1 8
Our scheme 6 6 9n+ 2(δ + α) + f1 + 2 4n+ 2(δ + α+ 1)

f : Length of Bit Record(BR) in Hoque et al., k: Number of single or collied reply, f1: Number of tags replied, k2: Number of slots in
Zheng et al., δ: Number of valid responses to backend server, α: Number of false positive responses, n: Number of tags attached to an
object

Table 7: Memory requirement

Tag Reader Backend Server
Hoque et al. 2 2β 2β

Kulseng et al. Protocol 1 2 4β 0
Kulseng et al. Protocol 2 3 3β 0
Kulseng et al. Protocol 3 3 3β 0

Yoon et al. 3 0 2β + 1
Tan et al. Protocol 1 2 2β + 1 3β + 1
Tan et al. Protocol 2 2 + l 2β + 1 3β + 1
Tan et al. Protocol 3 2 2β + 1 3β + 1
Tan et al. Protocol 4 2 2β + 1 3β + 1

Zheng et al. 1 0 β
Our scheme 5 0 3βn

l: Number of completed sessions, β: Number of objects n: Number of tags in each object

28


