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Abstract

The GHS attack is known as a method to map the discrete loga-
rithm problem(DLP) in the Jacobian of a curve C0 defined over the d
degree extension kd of a finite field k to the DLP in the Jacobian of a
new curve C over k which is a covering curve of C0. Such curves C0/kd

can be attacked by the GHS attack and index calculus algorithms. In
this paper, we will classify all elliptic curves and hyperelliptic curves
C0/kd of genus 2, 3 which possess (2, ..., 2) covering C/k of P1 un-
der the isogeny condition (i.e. g(C) = d · g(C0)) in odd characteristic
case. Our main approach is analysis of ramification points and repre-
sentation of the extension of Gal(kd/k) acting on the covering group
cov(C/P1). Consequently, all explicit defining equations of such curves
C0/kd and existential conditions of a model of C over k are provided.
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1 Introduction

Let q be a power of an odd prime, k := Fq, kd := Fqd . We consider in this
paper algebraic curves C0/kd used in cryptographic applications, i.e. elliptic
and hyperelliptic curves of genera g0 := g(C0) = 1, 2, 3.

It is known that one of the most powerful attacks to the cryptosystems
based on hyperelliptic curves of genus g ≥ 3 is the so-called double-large-
prime variation by Gaudry-Thériault-Thomé-Diem [13] and Nagao [27], with
complexities Õ(q2−

2
g ) over Fq. Hyperelliptic curves of genera 5 to 9 can be

attacked by the algorithm more effectively than the square-root attacks. For
g = 3, the computational cost is Õ(q4/3), slightly faster than the square-
root attacks. Therefore elliptic and hyperelliptic curve of genera less than
or equal to 3 are supposed to be secure at present. Recently Diem pro-
posed an attack under which non-hyperelliptic curves of low degrees and
genera greater than or equal to 3 are weaker than hyperelliptic curves[4].
In particular, if C is a non-hyperelliptic curve over k of genus g ≥ 3 such
that degC = d, the complexity of Diem’s double-large-prime variation [4]
is Õ(q2−

2
d−2 ). When d = g + 1, it is Õ(q2−

2
g−1 ). For an example, genus 3

non-hyperelliptic curves over Fq can be attacked in an expected time Õ(q).
Another generic attack to algebraic curve-based cryptosystem is the so-

called Weil descent attack, or GHS attack in particular[7][12][9][23][3][15][16][31]
[32][17] and cover attack[5]. The GHS attack, in term of cover attack, can
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be described as to map the DLP in the Jacobian of C0/kd to the DLP in the
Jacobian of a covering curve C/k of C0/kd, then apply the index calculus
algorithms. Recently, Gaudry proposed a general algorithm to solve discrete
logarithms on Abelian varieties of dimension n′ in running time Õ(q2−2/n′

)
where q tends to infinity and the constant hidden in the O(·) grows very
fast with n′ [11]. For finite d and q, its fastest case is for elliptic curves over
cubic extension field k3 when the running time Õ(q4/3) is the same as the
GHS attack with the double-large-prime algorithm to genus 3 hyperelliptic
curves C.

Therefore the most effective attack scenario at present is provided by
GHS attack when the covering curve C exists and is a non-hyperelliptic
curve in particular. In this paper, we will focus on this scenario.

Hereafter, we assume the following condition which we call ”the isogeny
condition”: There is a covering map between C/k and C0/kd

π/kd : C � C0 (1)

such that for

π∗ : J(C) � J(C0), (2)

Re(π∗) : J(C) −→ Rekd/kJ(C0) (3)

defines an isogeny over k, here J(C) is the Jacobian variety of C and
Rekd/kJ(C0) is its Weil restriction with respect to the field extension kd/d.
Obviously g(C) = d · g0 under this condition.

Notice that in general g(C) ≥ d · g0 and could be and are often very
large(see [3]). Therefore, J(C) has the smallest size under the isogeny con-
dition and the discrete logarithm problem on J(C) could be most easily
solved.

It is then an interesting and important question to see what kind and
how many curves C0 are weak against GHS attack or having coverings so
that they can be attacked by GHS attack, even though they could have been
originally designed to be secure for cryptographic applications. In particular,
to obtain a complete list of all weak curves or to classify these weak curves
should be very useful for cryptosystem design.

The classification and density analysis of these weak curves are nontrivial
problems. It was also expected that even if such curves did exist, they
should be special therefore rare. In [25] a classification and density analysis
is provided for odd characteristics and genus 1, 2, 3 elliptic and hyperelliptic
curves for extension degree 2, 3, 5, under an isogeny condition. In [26], a
detailed analysis for elliptic curves defined over cubic fields is provided. In
particular, existence of either hyperelliptic and non-hyperelliptic covering
C/k and densities of C0 are presented. It is shown that actually the number
of these weak curves could be large. For g0 = 1, d = 3, if one chosen random
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elliptic curves E defined over k3 in the Legendre form, then a half of them
are weak therefore can not be used in cryptosystems since 160-bit systems
could only have strength of 107 bits key-length under the proposed attack.

In this paper, we classify the elliptic and hyperelliptic curves which are
subjected to the GHS attack or have covering curves under the isogeny con-
dition. In particular, we classify all (2, ..., 2)-covering of C0/kd, i.e. those
with covering groups of order 2n for 1 < n ≤ d. Our main approach is anal-
ysis of ramification points and representation of the extension of Gal(kd/k)
acting on the covering group cov(C/P1). Furthermore, existential conditions
of a model of C over k are discussed. As a result, a complete list and ex-
plicit defining equations of such weak curves C0/kd are obtained, which is
included in the section 7.

2 GHS and cover attack

Assume the Frobenius automorphism σkd/k extends to an automorphism σ
of order d in the separable closure of kd(x). It is showed by Diem[3] that
σkd/k extends to an automorphism of the order d when C0 is a hyperelliptic
curve and d is odd for the odd characteristic cases. In the section 6, we will
show a generalization of the condition.

Under the assumption, the Galois closure of kd(C0)/k(x) is K := kd(C0)·
σ(kd(C0)) · · ·σd−1(kd(C0)) and the fixed field of K by the automorphism σ
is K ′ := {ζ ∈ K | σ(ζ) = ζ}. The original GHS attack maps the DLP
in Cl0(kd(C0)) ∼= J(C0)(kd) to the DLP in Cl0(K ′) ∼= J(C)(k) using the
following composition of conorm and norm maps:

NK/K′ ◦ ConK/kd(C0) : Cl0(kd(C0)) −→ Cl0(K ′)

for elliptic curves in characteristic 2 case [12]. This attack has been extended
to various classes of curves. It is also conceptually generalized to the cover
attack by Frey and Diem [5] as described briefly as follows. When there
exist an algebraic curve C/k and a covering π/kd : C −→ C0, the DLP in
J(C0)(kd) can be mapped to the DLP in J(C)(k) by a pullback-norm map,
as in the following diagram.

J(C)(kd)

N
��

J(C0)(kd)
π∗

oo

N◦π∗
xxpppppppppp

J(C)(k)

Unless otherwise noted, we consider that following hyperelliptic curves with
g(C0) ∈ {1, 2, 3} given by

C0/kd : y2 = c · f(x) (4)
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where c ∈ k×d and f(x) is a monic polynomial in kd[x] such that

C0
2−→ P1(x) (5)

is a degree 2 covering over kd . Then, we have a tower of extensions of func-

tion fields such that kd(x, y, σ
1
y, . . . , σ

n−1
y) ≃ kd(C) is a

n︷ ︸︸ ︷
(2, ..., 2) type exten-

sion where n ≤ d. Here, a

n︷ ︸︸ ︷
(2, . . . , 2) covering is defined as a covering π/kd :

C −→ P1 such that cov(C/P1) ≃ Fn
2 , here cov(C/P1) := Gal(kd(C)/kd(x)).

Lemma 2.1. The isogeny condition is equivalent to the each of following
two statements.
(A)

∀I ⊂ cov(C/P1), [cov(C/P1) : I] = 2,

g(C/I) =

{
0 I ̸= σi

H, ∀i

g0 I ≃ σi
H, ∃i

or CI = C/I =

{
P1 I ̸= σi

H, ∀i
σi
C0 I ≃ σi

H, ∃i

here C/H = C0

(B) There is H ⊂ cov(C/P1), a subgroup of index 2 such that the Tate
module of J(C) has the following decomposition

Vl(J(C)) = ⊕d−1
i=0 Vl(J(C))

σi
H . (6)

3 Galois representation

We will classify all n-tuple (2, ..., 2) coverings C/P1 with degree 2 subcovering
C0/P1 as below.

n︷ ︸︸ ︷
(2, · · · , 2)︷ ︸︸ ︷

C −→ C0 −→ P1(x)︸ ︷︷ ︸
2

(7)

In order to do that, we consider and classify the representation of G(kd/k)
on cov(C/P1) ≃ Fn

2 . For simplicity, we denote hereafter σkd/k as σ.

Gal(kd/k) × cov(C/P1) −→ cov(C/P1) (8)

(σi, ϕ) 7−→ σi
ϕ := σiϕσ−i (9)

Here, one has a map onto Aut(cov(C/P1)).

Gal(kd/k) ↪→ Aut(cov(C/P1)) ≃ GLn(F2) (10)
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The representation of σ for given n, d has the following form in general. (We
use the same notation for σ and its representation in the rest of this paper):

σ =


∆1 O · · · O

O ∆2
. . .

...
...

. . . . . . O
O · · · O ∆s


}
n1}
n2

}
ns

, n =
s∑

i=1

ni (11)

where O stands for the zero matrix. The indecomposable subrepresentations

∆i :=


Ωi Ωi Ô · · ·

Ô Ωi
. . . . . .

...
. . . . . . Ωi

Ô · · · Ô Ωi


}
ni/li}
ni/li
...}
ni/li

(12)

is an ni×ni matrix which has a form of an li×li block matrix. The sub-block
Ωi is an ni/li × ni/li matrix and Ô also the zero matrix. Here, we denote
the characteristic polynomial of Ωi as fi(x), the characteristic polynomial
of ∆i is Fi(x) := fi(x)li , F (x) := LCM{Fi(x)} is the minimal polynomial
of σ. Denoting di :=ord(∆i), one has d = LCM{di}.

Now define the minimal polynomial of σ as F (x) := xn + an−1x
n−1 +

· · · + a1x + a0 ∈ F2[x]. Then σn = an−1σ
n−1 + · · · + a1σ + a0. The Galois

action of Gal(kd/k) on y induces

σn
y ≡

n−1∏
j=0

(
σj
y
)aj

mod kd(x)×.

Therefore

σn
y2 ≡

n−1∏
j=0

(
σj
y2

)aj

mod
(
kd(x)×

)2
.

As a result, we obtain the following necessary and sufficient condition for
existence of a model of C over kd given n, d, σ :

Indeed, C has a model over kd if and only if
F (σ)y2 ≡ 1 mod (kd(x)×)2 and
G(σ)y2 ̸≡ 1 mod (kd(x)×)2 for ∀G(x) | F (x), G(x) ̸= F (x). (13)

4 Classification of C0/kd with covering C/k

Below, we show that, under the isogeny condition, the following combina-
tions of n and d are all possible cases for genus 1, 2, 3 hyperelliptic curves
C0/kd with (2, .., 2) covering C/k therefore subjected to the GHS attacks.
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g0 (n, d)
1 (2, 2), (2, 3), (3, 3), (3, 7), (4, 5)
2 (2, 2), (2, 3)
3 (2, 2), (2, 3), (3, 7), (4, 15)

Hereafter, let S be the set of the ramification points in P1 of the covering
C/P1. Then according to Riemann-Hurwitz genus formula,

2g(C) − 2 = 2n(0 − 2) + #S · 2n−1(2 − 1) · 1. (14)

Here ramification indices equal 2, and the number of fibres on C over a
ramification point on P1 is 2n−1, since the ramification group is cyclic for
gcd(char(k), 2) = 1.

Therefore,

#S =
2g(C) − 2 + 2n+1

2n−1
= 4 +

d · g0 − 1
2n−2

. (15)

The coverings can be classified to the following four cases.

4.1 The case when σ is indecomposable

We will treat the cases when d is even and odd separately.

4.1.1 When d is even

Assume d = 2r · d′ (2 - d′). Representation of an indecomposable σ is in the
form of the following block matrix:

σ =


Ω Ω Ô · · ·

Ô Ω
.. . . . .

...
. . . . . . Ω

Ô · · · Ô Ω


n (16)

Here n = l ·m, Ω is in Mm(F2) such that Ωd′ = I, and

σ2r
=


Ω̃ Ô Ô · · ·

Ô Ω̃
. . . . . .

...
. . . . . . Ô

Ô · · · Ô Ω̃


1

...

l

, σd = (σ2r
)d′ =


I Ô Ô · · ·

Ô I
. . . . . .

...
. . . . . . Ô

Ô · · · Ô I

 . (17)

Then, we have 2r−1 < l ≤ 2r and Ω ∈ Mm(F2), Ω /∈ Mm′(F2) for 1 ≤
∀m′ ≤ m − 1. Since the minimal polynomial of Ω is in the form of xm +
ãm−1x

m−1 + · · · + ã1x+ ã0, we have

d′|(2m − 1), d′ - (2m′ − 1), 1 ≤ m′ ≤ m− 1. (18)
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As we shown in the previous section, the number of the ramification
points of C/P1 is #S = 4 + d·g0−1

2n−2 . The numerator d · g0 − 1 of the fraction
part in #S is odd since d is even. Then the denominator 2n−2 must be 1
since #S ∈ N. Therefore n = 2.

Now from n = 2, l > 1, one has m = 1, l = n = 2, By (18), d′ = 1,
d = 2r. Since 2r−1 < 2 ≤ 2r = d, r = 1, therefore d = 2. Thus we know
that (d, n) = (2, 2) is the only possibility.

In fact, the general form of σ only appear in cases when the isogeny
condition does not hold, which will be reported elsewhere.

4.1.2 When d is odd

(a) d = 2n − 1
By the Riemann-Hurwitz genus formula, 2dg0 − 2 = 2n(−2) + 2n−1 · #S.
Therefore

#S =
2d(g0 + 1)

2n−1
=
d(g0 + 1)

2n−2
. (19)

Now, since d is odd, there exists a natural number t ∈ N such that g0 + 1 =
t · 2n−2. Then #S = d · t. Below we consider cases with different g0:

• g0 = 1
In this case, t = 2

2n−2 ∈ N. It is obvious that only n = 2, 3 are possible.
Therefore we have (n, d) = (2, 3), (3, 7) since d = 2n − 1.

• g0 = 2
In the similar manner, t = 3

2n−2 ∈ N therefore (n, d) = (2, 3).

• g0 = 3
t = 4

2n−2 ∈ N therefore (n, d) = (2, 3), (3, 7), (4, 15).

In the above cases, the representations of σ are n×n matrices whose orders
are d. Then we have the following minimal polynomial F (x) as a degree n
irreducible factor of xd + 1 for each σ:

• (n, d) = (2, 3)
Since x3 + 1 = (x+ 1)(x2 + x+ 1), we obtain F (x) = x2 + x+ 1.

• (n, d) = (3, 7)
F (x) = x3 + x+ 1 or F (x) = x3 + x2 + 1 since x7 + 1 = (x+ 1)(x3 +
x+ 1)(x3 + x2 + 1).

• (n, d) = (4, 15)
F (x) = x4 + x+ 1 or F (x) = x4 + x3 + 1 since x15 + 1 = (x+ 1)(x2 +
x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1).
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(b) d ̸= 2n − 1
For given n and d, we know that

σ ∈Mn(F2), σ /∈Ml(F2) for 1 ≤ ∀l ≤ n− 1. (20)

Since σn = an−1σ
n−1 + · · · + a1σ + a0, we have

d|(2n − 1), d - (2l − 1). (21)

Then 3d ≤ 2n − 1. Obviously, n ≥ 4. From the Riemann-Hurwitz formula,

#S = 4 +
dg0 − 1
2n−2

. (22)

Therefore, g0 is odd, which means that g0 = 1 or 3. On the one hand, we
have

#S = 4 +
dg0 − 1
2n−2

≥ 2g0 + 3 (23)

dg0 − 1 ≥ 2n−1(2g0 − 1) (24)
2n−2 − 1 ≥ 2n−1g0 − dg0 = (2n−1 − d)g0. (25)

From now, we consider g0 = 1 and g0 = 3 :

• g0 = 1
Since #S = 4 + d−1

2n−2 ∈ N, there exists a natural number t ∈ N such
that d = 1 + 2n−2t. We have already known that 2n − 1 ≥ 3d, which
does not hold if t ≥ 2. Therefore, only t = 1 is possible. Now, as
d|(2n − 1), we have

d = (1 + 2n−2)|(2n − 1). (26)

Then d |
{
4(2n−2 + 1) − 5

}
since 2n − 1 = 4(2n−2 + 1)− 5. Therefore,

(n, d) = (4, 5) is the only possibility. In this case, σ is a 4 × 4 matrix
whose order is 5 and the minimal polynomial F (x) is x4+x3+x2+x+1.

• g0 = 3
We have 2n−2 − 1 ≥ (2n−1 − d)3 = 3 · 2n−1 − 3d.
Furthermore,

3d ≥ 3 · 2n−2 − 2n−2 + 1 = 2n + 2n−2 + 1, (27)

which is against

2n − 1 ≥ 3d, (28)

so this case does not exist.
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4.2 The case when σ is decomposable

As a Gal(kd/k)-module, the representation of σ is a direct sum of indecom-
posable subrepresentations Ai.

cov(C/P1) = A1 ⊕ · · · ⊕Ar, r ≥ 2, #Ai = 2ni (29)

Define

A′
i :=

⊕
j ̸=i

Aj . (30)

Under the isogeny condition, we know that

Aj ∩ σi
H = {0} and Aj ̸⊂ σi

H for i = 0, ..., n− 1. (31)

Therefore, it follows that

g(C/Aj) = 0 for j = 1, ..., r. (32)

A similar argument also apply to A′
i, therefore we have

C/Aj = C/A′
i = P1 for i, j = 1, ..., r. (33)

If r ≥ 3,

C/(A′
i ∩A′

j) = C/(⊕l ̸=i,jAl) = P1 for ∀i, j. (34)

Thus, one obtains the following covering
C/

∩
l ̸=i

A′
l

iiiiiiiiiiiiiiiiiiiiii

ssssssssss

KKKKKKKKKK

UUUUUUUUUUUUUUUUUUUUUU

C/A′
1

VVVVVVVVVVVVVVVVVVVVVVVVV · · ·C/A′
i−1

NNNNNNNNNNNN
C/A′

i+1 · · ·

pppppppppppp
C/A′

r

hhhhhhhhhhhhhhhhhhhhhhhhh

P1

Since C/
∩
l ̸=i

A′
l = P1, this implies one has a (2,..,2)-covering P1/P1 of degree

2
∑
l̸=i

nl

. Now we consider

ν︷ ︸︸ ︷
(2, ..., 2)-covering P1 −→ P1. By the Riemann-

Hurwitz genus formula, when char(k) ̸= 2, the number of the ramification
points of this covering is 4 − 1

2ν−2 . It follows that ν ≤ 2.
Therefore, we obtain

∑
l ̸=i

nl ≤ 2 for ∀i. Thus, r = 2. Consequently,

the only possibility is n = n1 + n2 = 1 + 2 = 3, d = 3, g0 = 1 when σ is
decomposable. This means that σ decomposes into a product of (1) and a
2 × 2 matrix whose order is 3 :

σ =

1 0 0
0 1 1
0 1 0

 . (35)
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5 Defining equations of C0/kd for c = 1 or a square

Now we wish to determine the defining equations of C0/kd for given n, d.
Hereafter, we assume that C is a model over kd. In this section, we also
assume that c = 1 (i.e. c ∈ (k×d )2) in (4). Then, it is sufficient to find
a monic f(x) in (4) such that C has a model over kd (i.e. F (σ)f(x) ≡ 1
mod (kd(x)×)2). For d = 2, 3, it is possible to find f(x) by using the Venn
diagram to describe the sets of ramification points of σi−1

C0/P1. In the
section 6, we will treat explicit conditions for c ∈ k×d such that the curve C
has a model over k, then determine the defining equations with nonsquare
c.

5.1 σ : indecomposable

5.1.1 d : even

From the section 4.1.1, the only possibility here is d = 2, n = 2. Thus,
#S = 2g0 + 3. Let Si be the set of ramification points of σi−1

C0/P1 for
i = 1, 2. Then S = S1 ∪ S2. For d = 2, n = 2, the ramification points of
σi−1

C0/k2 for i = 1, 2 and C/k on P1 can be represented by the following
Venn diagram.

a ab

S1 S2

Here, b := #(S1 ∩ S2), a := #S1 − b = #S2 − b. As a result, we obtain the
following simultaneous equations :{

a+ b = 2g0 + 2
2a+ b = #S.

(36)

From Riemann-Hurwitz genus formula, #S = 5, 7, 9 for g0 = 1, 2, 3. By solv-
ing the above simultaneous equations, one obtains (a, b) = (1, 3), (1, 5), (1, 7)
for g0 = 1, 2, 3 respectively. Consequently, the defining equations C0/k2 are

y2 = (x− α)h(x) (37)

where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 2, · · · , 7.

5.1.2 d : odd

(a) d = 2n − 1
In this case, all possibilities for (n, d) are (2, 3)(3, 7)(4, 15) from the section
4.1.2. Recall that F (x) := xn + an−1x

n−1 + · · · + a1x + a0 ∈ F2[x] is the
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minimal polynomial of σ. Then σn = an−1σ
n−1 + · · · + a1σ + a0. Here, we

define a homomorphism M of kd(x)× as

M : kd(x)× −→ kd(x)× (38)

µ 7−→
d−1∏
i=0

(
σi
µ
)bi

. (39)

The sequence {bi ∈ F2|i = 0, . . . , d− 1} is defined as follows:

b0 = b1 = · · · = bn−1 = 1, (40)

bn+j :=
n−1∑
i=0

an−ibn+i for j = 0, 1, . . . , d− 1 − n. (41)

Then one can verify that

F (σ)

{
d−1∏
i=0

(
σi
µ
)bi

}
≡ 1 mod

(
kd(x)×

)2
. (42)

Consequently, we have the following defining equation of C0/kd. Recall that
#S = d · t. Assume t is decomposed into t := t1 + t2 + · · · + tr, αi ∈ kd·ti ,
kd(αi) = kd·ti ,

{
σι
αi

}
ι
∩

{
σι
αj

}
ι
= ∅ (i ̸= j). Then we have

f(x) =
r∏

i=1

Nkd·ti/kd
(M(x− αi)) =

r∏
i=1

Nkd·ti/kd

d−1∏
j=0

σj
(x− αi)bj

 . (43)

Recall the following minimal polynomial F (x) for each (n, d):

• (n, d) = (2, 3) : F (x) = x2 + x+ 1

• (n, d) = (3, 7) : F (x) = x3 + x+ 1 or F (x) = x3 + x2 + 1

• (n, d) = (4, 15) : F (x) = x4 + x+ 1 or F (x) = x4 + x3 + 1 .

Then one obtains the defining equations C0/k3 as follows:

• g0 = 1, d = 3, n = 2
#S = d · t = 3 · 2, F (x) = x2 + x+ 1
Then we have the following two cases.

1. t = t1 + t2 = 1 + 1
α1, α2 ∈ k3, {α1, α

q
1, α

q2

1 } ∩ {α2, α
q
2, α

q2

2 } = ∅
f(x) =

∏2
i=0

(
σi

(x− α1)bi

) ∏2
j=0

(
σj

(x− α2)bj

)
Since b1 = b2 = 1, a0 = a1 = a2 = 1, b2 = a2b0 + a1b1 = 0,
C0/k3 : y2 = (x− α1)(x− αq

1)(x− α2)(x− αq
2)
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2. t = t1 = 2
α1 ∈ k6, k(α1) = k6

C0/k3 : y2 = Nk6/k3

(∏2
i=0

σi
(x− α1)bi

)
= (x− α1)(x− αq

1)(x− αq3

1 )(x− αq4

1 )

• g0 = 1, d = 7, n = 3
Since #S = d · t = 7 · 1 = 7, then t = t1.
α ∈ k7, k(α) = k7

C0/k7 : y2 = M(x− α) =
6∏

i=0

(σi
(x− α))bi

=

{
(x− α)(x− αq)(x− αq2

)(x− αq4
) if F (x) = x3 + x+ 1

(x− α)(x− αq)(x− αq2
)(x− αq5

) if F (x) = x3 + x2 + 1

Lists of all defining equations for g0 = 2, 3 are given in the table of the
final section.

(b) d ̸= 2n − 1
Since x5 + 1 = (x + 1)(x4 + x3 + x2 + x + 1), when (n, d) = (4, 5), σ has
the minimal polynomial F (x) = x4 + x3 + x2 + x+ 1. Recall that we need
F (σ)f(x) ≡ 1 mod (kd(x)×)2 in order that C is a model over kd. If this
condition is satisfied, f(x) has following three possibilities for α ∈ k5 \ k :

(x− α)(x− αq) | f(x) or

(x− α)(x− αq2
) | f(x) or

(x− α)(x− αq)(x− αq2
)(x− αq3

) | f(x).

For g0 = 1 and #S = 4 + 1 = 5, it follows that

C0/k5 : y2 = (x− α)(x− αq)(x− αq2
)(x− αq3

). (44)

5.2 σ : decomposable

Recall that there exists the only case of g0 = 1, n = 3, d = 3 when σ is
decomposable and #S is the number of ramification points of C/P1. By
Riemann-Hurwitz genus formula, #S = 4 + dg0−1

2n−2 = 5. Let Si be the set
of ramification points of σi−1

C/P1. Then, #S = #(S1 ∪ S2 ∪ S3). Now,
#S1 = #S2 = #S3 = 2g0 + 2 = 4 since g0 = 1. Here, we define a, b, c as
follows:

c := #(S1 ∩ S2 ∩ S3)
b := #(S1 ∩ S2) − c = #(S2 ∩ S3) − c = #(S3 ∩ S1) − c

a := #S1 − (2b+ c) = #S2 − (2b+ c) = #S3 − (2b+ c).
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ab

S1

S3

a

a

b b
c

S2

Then we obtain the simultaneous equations as follows :{
a+ 2b+ c = 2g0 + 2
3a+ 3b+ c = #S.

(45)

In the case of g0 = 1, n = 3, d = 3,#S = 5, the solution of the equation is
a = 0, b = 1, c = 2. Thus the defining equation is

C0/k3 : y2 = (x− α)(x− αq)h(x) (46)

where α ∈ k3 \ k, h(x) ∈ k[x],deg h(x) = 2 or 1. In fact, C is a hyperelliptic
curve (see [26]). Notice that there do not exist other cases except g0 =
1, n = 3, d = 3 when σ is decomposable.

6 Existence of a model of C over k and defining
equations of C0

6.1 Existential condition of a model of C over k

Finally, we discuss conditions for existence of a model of C over k. One
knows that model of C over k exists if and only if the extension σ of the
Frobenius automorphism σkd/k is an automorphism of kd(C) of order d in
the separable closure of kd(x). In this section, we define F̂ (x) ∈ F2[x] as the
polynomial such that xd + 1 = F (x)F̂ (x) ∈ F2[x].

Lemma 6.1. In order that the curve C has a model over k, when F̂ (1) = 0,
c needs to be a square: c ∈ (k×d )2. When F̂ (1) = 1, if σ does not have order
d, there is a ϕ ∈ cov(C/P1) such that σϕ has order d so we can adopt σϕ
instead of σ. Therefore C always has a model over k when F̂ (1) = 1.

Proof: Let Q := { b(x)
a(x) |kd[x] ∋ a(x), b(x) : monic}.

Since F (σ)f(x) ≡ 1 mod (kd(x)×)2, we have
F (σ)y2 ≡ F (σ)c = cF (q) mod (kd(x)×)2 (47)
F (σ)y ≡ ϵc

F (q)
2 mod Q, here ϵ = ±1 (48)

F̂ (σ)F (σ)y ≡ F̂ (σ)ϵc
F̂ (q)F (q)

2 (49)

σd+1y ≡ ϵF̂ (1)c
qd+1

2 (50)

σd
y ≡ ϵF̂ (1)c

qd−1
2 y (51)
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We first consider two possibilities of F (1) = 1 and F (1) = 0 respectively.

• Case F (1) = 1 :

We notice F̂ (1) = 0 in this case. Now, σd
y ≡ c

qd−1
2 y. In order that σ

has order d (i.e. σd
y ≡ y), c needs to be a square c ∈ (k×d )2.

• Case F (1) = 0 :
Here, we consider further two possibilities of F̂ (1) = 0 and F̂ (1) = 1.
(a) F̂ (1) = 0

Similarly, σd
y ≡ c

qd−1
2 y. c should be a square element in k×d .

(b) F̂ (1) = 1

Then σd
y ≡ ϵc

qd−1
2 y.

If ϵ = +1 and c ∈ (k×d )2, then σ has order d (i.e. σd
y = y).

If ϵ = −1 or c /∈ (k×d )2, then σ has order 2d.
However, we can show that in this case there is a ϕ ∈ cov(C/P1) such
that (σϕ)d = 1.
Indeed, suppose d = 2r · d′ (2 - d′). Since σϕ := σϕσ−1, we have

(σϕ)d = σϕσ−1 · σ2ϕσ−2 · · ·σdϕσ−d · σd (52)

= σϕ σ2
ϕ · · · σd

ϕ σd (53)

= σϕ σ2
ϕ · · · σ2rd′

ϕ σd. (54)

Now, we choose ϕ := t(
m︷ ︸︸ ︷

0, 0, . . . , 1, 0, . . . , 0) ∈ cov(C/P1). Define

I as the identity matrix, J :=


0 1 O
...

. . . . . .
... O

. . . 1
0 . . . . . . 0


m ≤ 2r .

Then Jm = O. We notice that the representation of σ is(
∆ O
O ∗

)
where ∆ := I + J. (55)

Here, σi
ϕ corresponds to (I + J)i · t(

m︷ ︸︸ ︷
0, . . . 0, 1). Now, since σ2r

ϕ = ϕ,
(σϕ)d = (ϕ σϕ σ2

ϕ · · · σ2r−1
ϕ)d′ σd. Furthermore, since

I+(I+J)+· · ·+(I+J)2
r−1 =



O if m < 2r
0 . . . 0 1
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 if m = 2r,
(56)
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where O is the zero matrix, it follows that

ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ =
{

t(0, 0, . . . , 0) if m < 2r

ψ := t(1, 0, . . . , 0) if m = 2r.
(57)

On the one hand, define K as the Galois closure of kd(C0)/k(x), σd is
an element in the center of Gal(K/k(x)), i.e., σd ∈ Z(Gal(K/k(x))) =
{1, ψ}. When ord(σ) = 2d, σd = ψ. Furthermore, notice that m = 2r

in the case of (b). Thus, in the multiplicative notation,

(σϕ)d = (ϕ σϕ σ2
ϕ · · · σ2r−1

ϕ)d′ σd = ψd′ · ψ = 1 (58)

As a result, we can adopt the above σϕ instead of σ.

Consequently, we can determine defining equations of all classes of C0/kd :
y2 = c · f(x) whose covering curves C has a model over k under the isogeny
condition. When F̂ (1) = 0, c has to be a square in kd or can be regarded as
1, which has been treated in previous section.

6.2 Defining equations of C0 with nonsquare c

In this section, we will treat only the defining equations of C0 with nonsquare
c . The defining equations of all classes of C0/kd can be found in the table
in the section 7.

6.2.1 σ : indecomposable

• g0 = 1, n = 2, d = 2
Here, x2 + 1 = (x+ 1)2, thus F (x) = (x+ 1)2, F̂ (x) = 1.
Since F̂ (x) = 1, F̂ (1) = 1. From Lemma 6.1, c can be arbitrary elements in
k×2 in order that the curve C has a model over k. Extending the result of
the section 5, we obtain

C0/k2 : y2 = η(x− α)h(x) (59)

where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 3 or 2, η = either 1 for a square
or a non-square element in k2.

In the same manner, we can determine c also for g0 = 2, 3 as follows.
• g0 = 2, n = 2, d = 2

C0/k2 : y2 = η(x− α)h(x) (60)

16



where h(x) ∈ k[x], α ∈ k2 \ k, deg h(x) = 5 or 4, η = either 1 for a square
or a non-square element in k2.
• g0 = 3, n = 2, d = 2

C0/k2 : y2 = η(x− α)h(x) (61)

where deg h(x) = 7 or 6.

Thus the curves (59)(60)(61) contain (37) as a subcase.

6.2.2 σ : decomposable

Here, there exists only the case of g0 = 1, n = 3, d = 3. Since x3 + 1 =
(x + 1)(x2 + x + 1), F (x) = x3 + 1, F̂ (x) = 1, then F̂ (1) = 1. Therefore
c is either 1 or a non-square element in k3. Then we obtain the defining
equation of C0/k3 as

C0/k3 : y2 = η(x− α)(x− αq)h(x) (62)

where η = either 1 or a non-square element in k3, α ∈ k3 \ k, h(x) ∈
k[x],deg h(x) = 2 or 1. Notice that the curves (62) extends the class of (46).

7 A complete list of C0/kd with (2,...,2)-covering
C/k

Curves in the following list are all classes of hyperelliptic curves C0/kd for
g(C0) ∈ {1, 2, 3} which possess (2, ..., 2) covering C/k of P1 under the isogeny
condition. Here, C0/kd : y2 = c · hd(x)h(x), hd(x) ∈ kd[x] \ ku[x], u||d,
h(x) ∈ k[x], α ∈ kd \ kv, v||d (here a||b means a|b and a ̸= b ), η = either 1
or a non-square element in kd.
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C0/kd : y2 = c · hd(x)h(x)

g0 n, d c hd(x) deg(h(x))
1 2, 2 η x− α 3 or 2

2, 3 1 (x− α1)(x− αq
1)(x− α2)(x− αq

2) 0
Either α1, α2 ∈ k3 \ k or α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1

C:Hyper ⇐⇒ ∃A ∈ GL2(k), α2 = A · α1, T r(A) = 0 [26]
3, 3 η (x− α)(x− αq) 2 or 1
4, 5 1 (x− α)(x− αq)(x− αq2

)(x− αq3
) 0

3, 7 1 (1) (x− α)(x− αq)(x− αq2
)(x− αq4

) 0
(2) (x− α)(x− αq)(x− αq2

)(x− αq5
)

2 2, 2 η x− α 5 or 4
2, 3 1 (x− α1)(x− αq

1)(x− α2)(x− αq
2)(x− α3)(x− αq

3) 0
Either α1, α2, α3 ∈ k3 \ k or

α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3 ∈ k3 \ k or
α1 ∈ k9 \ k3, α2 = αq3

1 , α3 = αq6

1

3 2, 2 η x− α 7 or 6
2, 3 1 (x− α1)(x− αq

1)(x− α2)(x− αq
2)(x− α3)(x− αq

3) 0
×(x− α4)(x− αq

4)
Either α1, α2, α3, α4 ∈ k3 \ k or

α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3, α4 ∈ k3 \ k or
α1 ∈ k6 \ (k2 ∪ k3), α2 = αq3

1 , α3 ∈ k6 \ (k2 ∪ k3), α4 = αq3

3 or
α1 ∈ k9 \ k3, α2 = αq3

1 , α3 = αq6

1 , α4 ∈ k3 \ k or
α1 ∈ k12 \ (k6 ∪ k4), α2 = αq3

1 , α3 = αq6

1 , α4 = αq9

1

3, 7 1 (1) (x− α1)(x− αq
1)(x− αq2

1 )(x− αq4

1 ) 0
×(x− α2)(x− αq

2)(x− αq2

2 )(x− αq4

2 )
(2) (x− α1)(x− αq2

1 )(x− αq3

1 )(x− αq4

1 )
×(x− α2)(x− αq2

2 )(x− αq3

2 )(x− αq4

2 )
Either α1, α2 ∈ k7 \ k or

α1 ∈ k14 \ (k2 ∪ k7), α2 = αq7

1

4, 15 1 (1) (x− α)(x− αq)(x− αq2
)(x− αq3

) 0
×(x− αq7

)(x− αq10
)(x− αq11

)(x− αq13
)

(2) (x− α)(x− αq)(x− αq2
)(x− αq3

)
×(x− αq5

)(x− αq7
)(x− αq8

)(x− αq11
)

α ∈ k15 \ (k3 ∪ k5)
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